]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFV r358511,r358532:
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A", 
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A", 
167     "Total amount of available swap storage.");
168
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179
180 static counter_u64_t swap_free_deferred;
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184
185 static counter_u64_t swap_free_completed;
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189
190 /* bits from overcommit */
191 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
192 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
193 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
194
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198         uint64_t newval;
199         u_long value = *(u_long *)arg1;
200
201         newval = ((uint64_t)value) << PAGE_SHIFT;
202         return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204
205 int
206 swap_reserve(vm_ooffset_t incr)
207 {
208
209         return (swap_reserve_by_cred(incr, curthread->td_ucred));
210 }
211
212 int
213 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
214 {
215         u_long r, s, prev, pincr;
216         int res, error;
217         static int curfail;
218         static struct timeval lastfail;
219         struct uidinfo *uip;
220
221         uip = cred->cr_ruidinfo;
222
223         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
224             (uintmax_t)incr));
225
226 #ifdef RACCT
227         if (racct_enable) {
228                 PROC_LOCK(curproc);
229                 error = racct_add(curproc, RACCT_SWAP, incr);
230                 PROC_UNLOCK(curproc);
231                 if (error != 0)
232                         return (0);
233         }
234 #endif
235
236         pincr = atop(incr);
237         res = 0;
238         prev = atomic_fetchadd_long(&swap_reserved, pincr);
239         r = prev + pincr;
240         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
241                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
242                     vm_wire_count();
243         } else
244                 s = 0;
245         s += swap_total;
246         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
247             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
248                 res = 1;
249         } else {
250                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
251                 if (prev < pincr)
252                         panic("swap_reserved < incr on overcommit fail");
253         }
254         if (res) {
255                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
256                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
257                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
258                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
259                         res = 0;
260                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
261                         if (prev < pincr)
262                                 panic("uip->ui_vmsize < incr on overcommit fail");
263                 }
264         }
265         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
266                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
267                     uip->ui_uid, curproc->p_pid, incr);
268         }
269
270 #ifdef RACCT
271         if (racct_enable && !res) {
272                 PROC_LOCK(curproc);
273                 racct_sub(curproc, RACCT_SWAP, incr);
274                 PROC_UNLOCK(curproc);
275         }
276 #endif
277
278         return (res);
279 }
280
281 void
282 swap_reserve_force(vm_ooffset_t incr)
283 {
284         struct uidinfo *uip;
285         u_long pincr;
286
287         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
288             (uintmax_t)incr));
289
290         PROC_LOCK(curproc);
291 #ifdef RACCT
292         if (racct_enable)
293                 racct_add_force(curproc, RACCT_SWAP, incr);
294 #endif
295         pincr = atop(incr);
296         atomic_add_long(&swap_reserved, pincr);
297         uip = curproc->p_ucred->cr_ruidinfo;
298         atomic_add_long(&uip->ui_vmsize, pincr);
299         PROC_UNLOCK(curproc);
300 }
301
302 void
303 swap_release(vm_ooffset_t decr)
304 {
305         struct ucred *cred;
306
307         PROC_LOCK(curproc);
308         cred = curproc->p_ucred;
309         swap_release_by_cred(decr, cred);
310         PROC_UNLOCK(curproc);
311 }
312
313 void
314 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
315 {
316         u_long prev, pdecr;
317         struct uidinfo *uip;
318
319         uip = cred->cr_ruidinfo;
320
321         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
322             (uintmax_t)decr));
323
324         pdecr = atop(decr);
325         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
326         if (prev < pdecr)
327                 panic("swap_reserved < decr");
328
329         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
330         if (prev < pdecr)
331                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
332 #ifdef RACCT
333         if (racct_enable)
334                 racct_sub_cred(cred, RACCT_SWAP, decr);
335 #endif
336 }
337
338 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
339 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
340 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
341 static int nsw_wcount_async;    /* limit async write buffers */
342 static int nsw_wcount_async_max;/* assigned maximum                     */
343 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
344
345 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
346 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
347     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
348     "Maximum running async swap ops");
349 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
350 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
351     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
352     "Swap Fragmentation Info");
353
354 static struct sx sw_alloc_sx;
355
356 /*
357  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
358  * of searching a named list by hashing it just a little.
359  */
360
361 #define NOBJLISTS               8
362
363 #define NOBJLIST(handle)        \
364         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
365
366 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
367 static uma_zone_t swwbuf_zone;
368 static uma_zone_t swrbuf_zone;
369 static uma_zone_t swblk_zone;
370 static uma_zone_t swpctrie_zone;
371
372 /*
373  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
374  * calls hooked from other parts of the VM system and do not appear here.
375  * (see vm/swap_pager.h).
376  */
377 static vm_object_t
378                 swap_pager_alloc(void *handle, vm_ooffset_t size,
379                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
380 static void     swap_pager_dealloc(vm_object_t object);
381 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
382     int *);
383 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
384     int *, pgo_getpages_iodone_t, void *);
385 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
386 static boolean_t
387                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
388 static void     swap_pager_init(void);
389 static void     swap_pager_unswapped(vm_page_t);
390 static void     swap_pager_swapoff(struct swdevt *sp);
391 static void     swap_pager_update_writecount(vm_object_t object,
392     vm_offset_t start, vm_offset_t end);
393 static void     swap_pager_release_writecount(vm_object_t object,
394     vm_offset_t start, vm_offset_t end);
395
396 struct pagerops swappagerops = {
397         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
398         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
399         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
400         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
401         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
402         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
403         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
404         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
405         .pgo_update_writecount = swap_pager_update_writecount,
406         .pgo_release_writecount = swap_pager_release_writecount,
407 };
408
409 /*
410  * swap_*() routines are externally accessible.  swp_*() routines are
411  * internal.
412  */
413 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
414 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
415
416 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
417     "Maximum size of a swap block in pages");
418
419 static void     swp_sizecheck(void);
420 static void     swp_pager_async_iodone(struct buf *bp);
421 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
422 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
423 static int      swapongeom(struct vnode *);
424 static int      swaponvp(struct thread *, struct vnode *, u_long);
425 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
426
427 /*
428  * Swap bitmap functions
429  */
430 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
431 static daddr_t  swp_pager_getswapspace(int *npages);
432
433 /*
434  * Metadata functions
435  */
436 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
437 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
438 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
439     vm_pindex_t pindex, vm_pindex_t count);
440 static void swp_pager_meta_free_all(vm_object_t);
441 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
442
443 static void
444 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
445 {
446
447         *start = SWAPBLK_NONE;
448         *num = 0;
449 }
450
451 static void
452 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
453 {
454
455         if (*start + *num == addr) {
456                 (*num)++;
457         } else {
458                 swp_pager_freeswapspace(*start, *num);
459                 *start = addr;
460                 *num = 1;
461         }
462 }
463
464 static void *
465 swblk_trie_alloc(struct pctrie *ptree)
466 {
467
468         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
469             M_USE_RESERVE : 0)));
470 }
471
472 static void
473 swblk_trie_free(struct pctrie *ptree, void *node)
474 {
475
476         uma_zfree(swpctrie_zone, node);
477 }
478
479 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
480
481 /*
482  * SWP_SIZECHECK() -    update swap_pager_full indication
483  *
484  *      update the swap_pager_almost_full indication and warn when we are
485  *      about to run out of swap space, using lowat/hiwat hysteresis.
486  *
487  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
488  *
489  *      No restrictions on call
490  *      This routine may not block.
491  */
492 static void
493 swp_sizecheck(void)
494 {
495
496         if (swap_pager_avail < nswap_lowat) {
497                 if (swap_pager_almost_full == 0) {
498                         printf("swap_pager: out of swap space\n");
499                         swap_pager_almost_full = 1;
500                 }
501         } else {
502                 swap_pager_full = 0;
503                 if (swap_pager_avail > nswap_hiwat)
504                         swap_pager_almost_full = 0;
505         }
506 }
507
508 /*
509  * SWAP_PAGER_INIT() -  initialize the swap pager!
510  *
511  *      Expected to be started from system init.  NOTE:  This code is run
512  *      before much else so be careful what you depend on.  Most of the VM
513  *      system has yet to be initialized at this point.
514  */
515 static void
516 swap_pager_init(void)
517 {
518         /*
519          * Initialize object lists
520          */
521         int i;
522
523         for (i = 0; i < NOBJLISTS; ++i)
524                 TAILQ_INIT(&swap_pager_object_list[i]);
525         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
526         sx_init(&sw_alloc_sx, "swspsx");
527         sx_init(&swdev_syscall_lock, "swsysc");
528 }
529
530 static void
531 swap_pager_counters(void)
532 {
533
534         swap_free_deferred = counter_u64_alloc(M_WAITOK);
535         swap_free_completed = counter_u64_alloc(M_WAITOK);
536 }
537 SYSINIT(swap_counters, SI_SUB_CPU, SI_ORDER_ANY, swap_pager_counters, NULL);
538
539 /*
540  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
541  *
542  *      Expected to be started from pageout process once, prior to entering
543  *      its main loop.
544  */
545 void
546 swap_pager_swap_init(void)
547 {
548         unsigned long n, n2;
549
550         /*
551          * Number of in-transit swap bp operations.  Don't
552          * exhaust the pbufs completely.  Make sure we
553          * initialize workable values (0 will work for hysteresis
554          * but it isn't very efficient).
555          *
556          * The nsw_cluster_max is constrained by the bp->b_pages[]
557          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
558          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
559          * constrained by the swap device interleave stripe size.
560          *
561          * Currently we hardwire nsw_wcount_async to 4.  This limit is
562          * designed to prevent other I/O from having high latencies due to
563          * our pageout I/O.  The value 4 works well for one or two active swap
564          * devices but is probably a little low if you have more.  Even so,
565          * a higher value would probably generate only a limited improvement
566          * with three or four active swap devices since the system does not
567          * typically have to pageout at extreme bandwidths.   We will want
568          * at least 2 per swap devices, and 4 is a pretty good value if you
569          * have one NFS swap device due to the command/ack latency over NFS.
570          * So it all works out pretty well.
571          */
572         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
573
574         nsw_wcount_async = 4;
575         nsw_wcount_async_max = nsw_wcount_async;
576         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
577
578         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
579         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
580
581         /*
582          * Initialize our zone, taking the user's requested size or
583          * estimating the number we need based on the number of pages
584          * in the system.
585          */
586         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
587             vm_cnt.v_page_count / 2;
588         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
589             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
590         if (swpctrie_zone == NULL)
591                 panic("failed to create swap pctrie zone.");
592         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
593             NULL, NULL, _Alignof(struct swblk) - 1, 0);
594         if (swblk_zone == NULL)
595                 panic("failed to create swap blk zone.");
596         n2 = n;
597         do {
598                 if (uma_zone_reserve_kva(swblk_zone, n))
599                         break;
600                 /*
601                  * if the allocation failed, try a zone two thirds the
602                  * size of the previous attempt.
603                  */
604                 n -= ((n + 2) / 3);
605         } while (n > 0);
606
607         /*
608          * Often uma_zone_reserve_kva() cannot reserve exactly the
609          * requested size.  Account for the difference when
610          * calculating swap_maxpages.
611          */
612         n = uma_zone_get_max(swblk_zone);
613
614         if (n < n2)
615                 printf("Swap blk zone entries changed from %lu to %lu.\n",
616                     n2, n);
617         /* absolute maximum we can handle assuming 100% efficiency */
618         swap_maxpages = n * SWAP_META_PAGES;
619         swzone = n * sizeof(struct swblk);
620         if (!uma_zone_reserve_kva(swpctrie_zone, n))
621                 printf("Cannot reserve swap pctrie zone, "
622                     "reduce kern.maxswzone.\n");
623 }
624
625 static vm_object_t
626 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
627     vm_ooffset_t offset)
628 {
629         vm_object_t object;
630
631         if (cred != NULL) {
632                 if (!swap_reserve_by_cred(size, cred))
633                         return (NULL);
634                 crhold(cred);
635         }
636
637         /*
638          * The un_pager.swp.swp_blks trie is initialized by
639          * vm_object_allocate() to ensure the correct order of
640          * visibility to other threads.
641          */
642         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
643             PAGE_MASK + size));
644
645         object->un_pager.swp.writemappings = 0;
646         object->handle = handle;
647         if (cred != NULL) {
648                 object->cred = cred;
649                 object->charge = size;
650         }
651         return (object);
652 }
653
654 /*
655  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
656  *                      its metadata structures.
657  *
658  *      This routine is called from the mmap and fork code to create a new
659  *      OBJT_SWAP object.
660  *
661  *      This routine must ensure that no live duplicate is created for
662  *      the named object request, which is protected against by
663  *      holding the sw_alloc_sx lock in case handle != NULL.
664  */
665 static vm_object_t
666 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
667     vm_ooffset_t offset, struct ucred *cred)
668 {
669         vm_object_t object;
670
671         if (handle != NULL) {
672                 /*
673                  * Reference existing named region or allocate new one.  There
674                  * should not be a race here against swp_pager_meta_build()
675                  * as called from vm_page_remove() in regards to the lookup
676                  * of the handle.
677                  */
678                 sx_xlock(&sw_alloc_sx);
679                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
680                 if (object == NULL) {
681                         object = swap_pager_alloc_init(handle, cred, size,
682                             offset);
683                         if (object != NULL) {
684                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
685                                     object, pager_object_list);
686                         }
687                 }
688                 sx_xunlock(&sw_alloc_sx);
689         } else {
690                 object = swap_pager_alloc_init(handle, cred, size, offset);
691         }
692         return (object);
693 }
694
695 /*
696  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
697  *
698  *      The swap backing for the object is destroyed.  The code is
699  *      designed such that we can reinstantiate it later, but this
700  *      routine is typically called only when the entire object is
701  *      about to be destroyed.
702  *
703  *      The object must be locked.
704  */
705 static void
706 swap_pager_dealloc(vm_object_t object)
707 {
708
709         VM_OBJECT_ASSERT_WLOCKED(object);
710         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
711
712         /*
713          * Remove from list right away so lookups will fail if we block for
714          * pageout completion.
715          */
716         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
717                 VM_OBJECT_WUNLOCK(object);
718                 sx_xlock(&sw_alloc_sx);
719                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
720                     pager_object_list);
721                 sx_xunlock(&sw_alloc_sx);
722                 VM_OBJECT_WLOCK(object);
723         }
724
725         vm_object_pip_wait(object, "swpdea");
726
727         /*
728          * Free all remaining metadata.  We only bother to free it from
729          * the swap meta data.  We do not attempt to free swapblk's still
730          * associated with vm_page_t's for this object.  We do not care
731          * if paging is still in progress on some objects.
732          */
733         swp_pager_meta_free_all(object);
734         object->handle = NULL;
735         object->type = OBJT_DEAD;
736 }
737
738 /************************************************************************
739  *                      SWAP PAGER BITMAP ROUTINES                      *
740  ************************************************************************/
741
742 /*
743  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
744  *
745  *      Allocate swap for up to the requested number of pages.  The
746  *      starting swap block number (a page index) is returned or
747  *      SWAPBLK_NONE if the allocation failed.
748  *
749  *      Also has the side effect of advising that somebody made a mistake
750  *      when they configured swap and didn't configure enough.
751  *
752  *      This routine may not sleep.
753  *
754  *      We allocate in round-robin fashion from the configured devices.
755  */
756 static daddr_t
757 swp_pager_getswapspace(int *io_npages)
758 {
759         daddr_t blk;
760         struct swdevt *sp;
761         int mpages, npages;
762
763         KASSERT(*io_npages >= 1,
764             ("%s: npages not positive", __func__));
765         blk = SWAPBLK_NONE;
766         mpages = *io_npages;
767         npages = imin(BLIST_MAX_ALLOC, mpages);
768         mtx_lock(&sw_dev_mtx);
769         sp = swdevhd;
770         while (!TAILQ_EMPTY(&swtailq)) {
771                 if (sp == NULL)
772                         sp = TAILQ_FIRST(&swtailq);
773                 if ((sp->sw_flags & SW_CLOSING) == 0)
774                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
775                 if (blk != SWAPBLK_NONE)
776                         break;
777                 sp = TAILQ_NEXT(sp, sw_list);
778                 if (swdevhd == sp) {
779                         if (npages == 1)
780                                 break;
781                         mpages = npages - 1;
782                         npages >>= 1;
783                 }
784         }
785         if (blk != SWAPBLK_NONE) {
786                 *io_npages = npages;
787                 blk += sp->sw_first;
788                 sp->sw_used += npages;
789                 swap_pager_avail -= npages;
790                 swp_sizecheck();
791                 swdevhd = TAILQ_NEXT(sp, sw_list);
792         } else {
793                 if (swap_pager_full != 2) {
794                         printf("swp_pager_getswapspace(%d): failed\n",
795                             *io_npages);
796                         swap_pager_full = 2;
797                         swap_pager_almost_full = 1;
798                 }
799                 swdevhd = NULL;
800         }
801         mtx_unlock(&sw_dev_mtx);
802         return (blk);
803 }
804
805 static bool
806 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
807 {
808
809         return (blk >= sp->sw_first && blk < sp->sw_end);
810 }
811
812 static void
813 swp_pager_strategy(struct buf *bp)
814 {
815         struct swdevt *sp;
816
817         mtx_lock(&sw_dev_mtx);
818         TAILQ_FOREACH(sp, &swtailq, sw_list) {
819                 if (swp_pager_isondev(bp->b_blkno, sp)) {
820                         mtx_unlock(&sw_dev_mtx);
821                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
822                             unmapped_buf_allowed) {
823                                 bp->b_data = unmapped_buf;
824                                 bp->b_offset = 0;
825                         } else {
826                                 pmap_qenter((vm_offset_t)bp->b_data,
827                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
828                         }
829                         sp->sw_strategy(bp, sp);
830                         return;
831                 }
832         }
833         panic("Swapdev not found");
834 }
835
836
837 /*
838  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
839  *
840  *      This routine returns the specified swap blocks back to the bitmap.
841  *
842  *      This routine may not sleep.
843  */
844 static void
845 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
846 {
847         struct swdevt *sp;
848
849         if (npages == 0)
850                 return;
851         mtx_lock(&sw_dev_mtx);
852         TAILQ_FOREACH(sp, &swtailq, sw_list) {
853                 if (swp_pager_isondev(blk, sp)) {
854                         sp->sw_used -= npages;
855                         /*
856                          * If we are attempting to stop swapping on
857                          * this device, we don't want to mark any
858                          * blocks free lest they be reused.
859                          */
860                         if ((sp->sw_flags & SW_CLOSING) == 0) {
861                                 blist_free(sp->sw_blist, blk - sp->sw_first,
862                                     npages);
863                                 swap_pager_avail += npages;
864                                 swp_sizecheck();
865                         }
866                         mtx_unlock(&sw_dev_mtx);
867                         return;
868                 }
869         }
870         panic("Swapdev not found");
871 }
872
873 /*
874  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
875  */
876 static int
877 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
878 {
879         struct sbuf sbuf;
880         struct swdevt *sp;
881         const char *devname;
882         int error;
883
884         error = sysctl_wire_old_buffer(req, 0);
885         if (error != 0)
886                 return (error);
887         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
888         mtx_lock(&sw_dev_mtx);
889         TAILQ_FOREACH(sp, &swtailq, sw_list) {
890                 if (vn_isdisk(sp->sw_vp, NULL))
891                         devname = devtoname(sp->sw_vp->v_rdev);
892                 else
893                         devname = "[file]";
894                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
895                 blist_stats(sp->sw_blist, &sbuf);
896         }
897         mtx_unlock(&sw_dev_mtx);
898         error = sbuf_finish(&sbuf);
899         sbuf_delete(&sbuf);
900         return (error);
901 }
902
903 /*
904  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
905  *                              range within an object.
906  *
907  *      This is a globally accessible routine.
908  *
909  *      This routine removes swapblk assignments from swap metadata.
910  *
911  *      The external callers of this routine typically have already destroyed
912  *      or renamed vm_page_t's associated with this range in the object so
913  *      we should be ok.
914  *
915  *      The object must be locked.
916  */
917 void
918 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
919 {
920
921         swp_pager_meta_free(object, start, size);
922 }
923
924 /*
925  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
926  *
927  *      Assigns swap blocks to the specified range within the object.  The
928  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
929  *
930  *      Returns 0 on success, -1 on failure.
931  */
932 int
933 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
934 {
935         daddr_t addr, blk, n_free, s_free;
936         int i, j, n;
937
938         swp_pager_init_freerange(&s_free, &n_free);
939         VM_OBJECT_WLOCK(object);
940         for (i = 0; i < size; i += n) {
941                 n = size - i;
942                 blk = swp_pager_getswapspace(&n);
943                 if (blk == SWAPBLK_NONE) {
944                         swp_pager_meta_free(object, start, i);
945                         VM_OBJECT_WUNLOCK(object);
946                         return (-1);
947                 }
948                 for (j = 0; j < n; ++j) {
949                         addr = swp_pager_meta_build(object,
950                             start + i + j, blk + j);
951                         if (addr != SWAPBLK_NONE)
952                                 swp_pager_update_freerange(&s_free, &n_free,
953                                     addr);
954                 }
955         }
956         swp_pager_freeswapspace(s_free, n_free);
957         VM_OBJECT_WUNLOCK(object);
958         return (0);
959 }
960
961 static bool
962 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
963     vm_pindex_t pindex, daddr_t addr)
964 {
965         daddr_t dstaddr;
966
967         KASSERT(srcobject->type == OBJT_SWAP,
968             ("%s: Srcobject not swappable", __func__));
969         if (dstobject->type == OBJT_SWAP &&
970             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
971                 /* Caller should destroy the source block. */
972                 return (false);
973         }
974
975         /*
976          * Destination has no swapblk and is not resident, transfer source.
977          * swp_pager_meta_build() can sleep.
978          */
979         VM_OBJECT_WUNLOCK(srcobject);
980         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
981         KASSERT(dstaddr == SWAPBLK_NONE,
982             ("Unexpected destination swapblk"));
983         VM_OBJECT_WLOCK(srcobject);
984
985         return (true);
986 }
987
988 /*
989  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
990  *                      and destroy the source.
991  *
992  *      Copy any valid swapblks from the source to the destination.  In
993  *      cases where both the source and destination have a valid swapblk,
994  *      we keep the destination's.
995  *
996  *      This routine is allowed to sleep.  It may sleep allocating metadata
997  *      indirectly through swp_pager_meta_build().
998  *
999  *      The source object contains no vm_page_t's (which is just as well)
1000  *
1001  *      The source object is of type OBJT_SWAP.
1002  *
1003  *      The source and destination objects must be locked.
1004  *      Both object locks may temporarily be released.
1005  */
1006 void
1007 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1008     vm_pindex_t offset, int destroysource)
1009 {
1010
1011         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1012         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1013
1014         /*
1015          * If destroysource is set, we remove the source object from the
1016          * swap_pager internal queue now.
1017          */
1018         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1019             srcobject->handle != NULL) {
1020                 VM_OBJECT_WUNLOCK(srcobject);
1021                 VM_OBJECT_WUNLOCK(dstobject);
1022                 sx_xlock(&sw_alloc_sx);
1023                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1024                     pager_object_list);
1025                 sx_xunlock(&sw_alloc_sx);
1026                 VM_OBJECT_WLOCK(dstobject);
1027                 VM_OBJECT_WLOCK(srcobject);
1028         }
1029
1030         /*
1031          * Transfer source to destination.
1032          */
1033         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1034
1035         /*
1036          * Free left over swap blocks in source.
1037          *
1038          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1039          * double-remove the object from the swap queues.
1040          */
1041         if (destroysource) {
1042                 swp_pager_meta_free_all(srcobject);
1043                 /*
1044                  * Reverting the type is not necessary, the caller is going
1045                  * to destroy srcobject directly, but I'm doing it here
1046                  * for consistency since we've removed the object from its
1047                  * queues.
1048                  */
1049                 srcobject->type = OBJT_DEFAULT;
1050         }
1051 }
1052
1053 /*
1054  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1055  *                              the requested page.
1056  *
1057  *      We determine whether good backing store exists for the requested
1058  *      page and return TRUE if it does, FALSE if it doesn't.
1059  *
1060  *      If TRUE, we also try to determine how much valid, contiguous backing
1061  *      store exists before and after the requested page.
1062  */
1063 static boolean_t
1064 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1065     int *after)
1066 {
1067         daddr_t blk, blk0;
1068         int i;
1069
1070         VM_OBJECT_ASSERT_LOCKED(object);
1071         KASSERT(object->type == OBJT_SWAP,
1072             ("%s: object not swappable", __func__));
1073
1074         /*
1075          * do we have good backing store at the requested index ?
1076          */
1077         blk0 = swp_pager_meta_lookup(object, pindex);
1078         if (blk0 == SWAPBLK_NONE) {
1079                 if (before)
1080                         *before = 0;
1081                 if (after)
1082                         *after = 0;
1083                 return (FALSE);
1084         }
1085
1086         /*
1087          * find backwards-looking contiguous good backing store
1088          */
1089         if (before != NULL) {
1090                 for (i = 1; i < SWB_NPAGES; i++) {
1091                         if (i > pindex)
1092                                 break;
1093                         blk = swp_pager_meta_lookup(object, pindex - i);
1094                         if (blk != blk0 - i)
1095                                 break;
1096                 }
1097                 *before = i - 1;
1098         }
1099
1100         /*
1101          * find forward-looking contiguous good backing store
1102          */
1103         if (after != NULL) {
1104                 for (i = 1; i < SWB_NPAGES; i++) {
1105                         blk = swp_pager_meta_lookup(object, pindex + i);
1106                         if (blk != blk0 + i)
1107                                 break;
1108                 }
1109                 *after = i - 1;
1110         }
1111         return (TRUE);
1112 }
1113
1114 /*
1115  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1116  *
1117  *      This removes any associated swap backing store, whether valid or
1118  *      not, from the page.
1119  *
1120  *      This routine is typically called when a page is made dirty, at
1121  *      which point any associated swap can be freed.  MADV_FREE also
1122  *      calls us in a special-case situation
1123  *
1124  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1125  *      should make the page dirty before calling this routine.  This routine
1126  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1127  *      depends on it.
1128  *
1129  *      This routine may not sleep.
1130  *
1131  *      The object containing the page may be locked.
1132  */
1133 static void
1134 swap_pager_unswapped(vm_page_t m)
1135 {
1136         struct swblk *sb;
1137         vm_object_t obj;
1138
1139         /*
1140          * Handle enqueing deferred frees first.  If we do not have the
1141          * object lock we wait for the page daemon to clear the space.
1142          */
1143         obj = m->object;
1144         if (!VM_OBJECT_WOWNED(obj)) {
1145                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1146                 /*
1147                  * The caller is responsible for synchronization but we
1148                  * will harmlessly handle races.  This is typically provided
1149                  * by only calling unswapped() when a page transitions from
1150                  * clean to dirty.
1151                  */
1152                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1153                     PGA_SWAP_SPACE) {
1154                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1155                         counter_u64_add(swap_free_deferred, 1);
1156                 }
1157                 return;
1158         }
1159         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1160                 counter_u64_add(swap_free_completed, 1);
1161         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1162
1163         /*
1164          * The meta data only exists if the object is OBJT_SWAP
1165          * and even then might not be allocated yet.
1166          */
1167         KASSERT(m->object->type == OBJT_SWAP,
1168             ("Free object not swappable"));
1169
1170         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1171             rounddown(m->pindex, SWAP_META_PAGES));
1172         if (sb == NULL)
1173                 return;
1174         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1175                 return;
1176         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1177         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1178         swp_pager_free_empty_swblk(m->object, sb);
1179 }
1180
1181 /*
1182  * swap_pager_getpages() - bring pages in from swap
1183  *
1184  *      Attempt to page in the pages in array "ma" of length "count".  The
1185  *      caller may optionally specify that additional pages preceding and
1186  *      succeeding the specified range be paged in.  The number of such pages
1187  *      is returned in the "rbehind" and "rahead" parameters, and they will
1188  *      be in the inactive queue upon return.
1189  *
1190  *      The pages in "ma" must be busied and will remain busied upon return.
1191  */
1192 static int
1193 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1194     int *rbehind, int *rahead)
1195 {
1196         struct buf *bp;
1197         vm_page_t bm, mpred, msucc, p;
1198         vm_pindex_t pindex;
1199         daddr_t blk;
1200         int i, maxahead, maxbehind, reqcount;
1201
1202         VM_OBJECT_ASSERT_WLOCKED(object);
1203         reqcount = count;
1204
1205         KASSERT(object->type == OBJT_SWAP,
1206             ("%s: object not swappable", __func__));
1207         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1208                 VM_OBJECT_WUNLOCK(object);
1209                 return (VM_PAGER_FAIL);
1210         }
1211
1212         KASSERT(reqcount - 1 <= maxahead,
1213             ("page count %d extends beyond swap block", reqcount));
1214
1215         /*
1216          * Do not transfer any pages other than those that are xbusied
1217          * when running during a split or collapse operation.  This
1218          * prevents clustering from re-creating pages which are being
1219          * moved into another object.
1220          */
1221         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1222                 maxahead = reqcount - 1;
1223                 maxbehind = 0;
1224         }
1225
1226         /*
1227          * Clip the readahead and readbehind ranges to exclude resident pages.
1228          */
1229         if (rahead != NULL) {
1230                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1231                 pindex = ma[reqcount - 1]->pindex;
1232                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1233                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1234                         *rahead = msucc->pindex - pindex - 1;
1235         }
1236         if (rbehind != NULL) {
1237                 *rbehind = imin(*rbehind, maxbehind);
1238                 pindex = ma[0]->pindex;
1239                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1240                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1241                         *rbehind = pindex - mpred->pindex - 1;
1242         }
1243
1244         bm = ma[0];
1245         for (i = 0; i < count; i++)
1246                 ma[i]->oflags |= VPO_SWAPINPROG;
1247
1248         /*
1249          * Allocate readahead and readbehind pages.
1250          */
1251         if (rbehind != NULL) {
1252                 for (i = 1; i <= *rbehind; i++) {
1253                         p = vm_page_alloc(object, ma[0]->pindex - i,
1254                             VM_ALLOC_NORMAL);
1255                         if (p == NULL)
1256                                 break;
1257                         p->oflags |= VPO_SWAPINPROG;
1258                         bm = p;
1259                 }
1260                 *rbehind = i - 1;
1261         }
1262         if (rahead != NULL) {
1263                 for (i = 0; i < *rahead; i++) {
1264                         p = vm_page_alloc(object,
1265                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1266                         if (p == NULL)
1267                                 break;
1268                         p->oflags |= VPO_SWAPINPROG;
1269                 }
1270                 *rahead = i;
1271         }
1272         if (rbehind != NULL)
1273                 count += *rbehind;
1274         if (rahead != NULL)
1275                 count += *rahead;
1276
1277         vm_object_pip_add(object, count);
1278
1279         pindex = bm->pindex;
1280         blk = swp_pager_meta_lookup(object, pindex);
1281         KASSERT(blk != SWAPBLK_NONE,
1282             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1283
1284         VM_OBJECT_WUNLOCK(object);
1285         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1286         /* Pages cannot leave the object while busy. */
1287         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1288                 MPASS(p->pindex == bm->pindex + i);
1289                 bp->b_pages[i] = p;
1290         }
1291
1292         bp->b_flags |= B_PAGING;
1293         bp->b_iocmd = BIO_READ;
1294         bp->b_iodone = swp_pager_async_iodone;
1295         bp->b_rcred = crhold(thread0.td_ucred);
1296         bp->b_wcred = crhold(thread0.td_ucred);
1297         bp->b_blkno = blk;
1298         bp->b_bcount = PAGE_SIZE * count;
1299         bp->b_bufsize = PAGE_SIZE * count;
1300         bp->b_npages = count;
1301         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1302         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1303
1304         VM_CNT_INC(v_swapin);
1305         VM_CNT_ADD(v_swappgsin, count);
1306
1307         /*
1308          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1309          * this point because we automatically release it on completion.
1310          * Instead, we look at the one page we are interested in which we
1311          * still hold a lock on even through the I/O completion.
1312          *
1313          * The other pages in our ma[] array are also released on completion,
1314          * so we cannot assume they are valid anymore either.
1315          *
1316          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1317          */
1318         BUF_KERNPROC(bp);
1319         swp_pager_strategy(bp);
1320
1321         /*
1322          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1323          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1324          * is set in the metadata for each page in the request.
1325          */
1326         VM_OBJECT_WLOCK(object);
1327         /* This could be implemented more efficiently with aflags */
1328         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1329                 ma[0]->oflags |= VPO_SWAPSLEEP;
1330                 VM_CNT_INC(v_intrans);
1331                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1332                     "swread", hz * 20)) {
1333                         printf(
1334 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1335                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1336                 }
1337         }
1338         VM_OBJECT_WUNLOCK(object);
1339
1340         /*
1341          * If we had an unrecoverable read error pages will not be valid.
1342          */
1343         for (i = 0; i < reqcount; i++)
1344                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1345                         return (VM_PAGER_ERROR);
1346
1347         return (VM_PAGER_OK);
1348
1349         /*
1350          * A final note: in a low swap situation, we cannot deallocate swap
1351          * and mark a page dirty here because the caller is likely to mark
1352          * the page clean when we return, causing the page to possibly revert
1353          * to all-zero's later.
1354          */
1355 }
1356
1357 static int
1358 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1359     int *rbehind, int *rahead)
1360 {
1361
1362         VM_OBJECT_WLOCK(object);
1363         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1364 }
1365
1366 /*
1367  *      swap_pager_getpages_async():
1368  *
1369  *      Right now this is emulation of asynchronous operation on top of
1370  *      swap_pager_getpages().
1371  */
1372 static int
1373 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1374     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1375 {
1376         int r, error;
1377
1378         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1379         switch (r) {
1380         case VM_PAGER_OK:
1381                 error = 0;
1382                 break;
1383         case VM_PAGER_ERROR:
1384                 error = EIO;
1385                 break;
1386         case VM_PAGER_FAIL:
1387                 error = EINVAL;
1388                 break;
1389         default:
1390                 panic("unhandled swap_pager_getpages() error %d", r);
1391         }
1392         (iodone)(arg, ma, count, error);
1393
1394         return (r);
1395 }
1396
1397 /*
1398  *      swap_pager_putpages:
1399  *
1400  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1401  *
1402  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1403  *      are automatically converted to SWAP objects.
1404  *
1405  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1406  *      vm_page reservation system coupled with properly written VFS devices
1407  *      should ensure that no low-memory deadlock occurs.  This is an area
1408  *      which needs work.
1409  *
1410  *      The parent has N vm_object_pip_add() references prior to
1411  *      calling us and will remove references for rtvals[] that are
1412  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1413  *      completion.
1414  *
1415  *      The parent has soft-busy'd the pages it passes us and will unbusy
1416  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1417  *      We need to unbusy the rest on I/O completion.
1418  */
1419 static void
1420 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1421     int flags, int *rtvals)
1422 {
1423         struct buf *bp;
1424         daddr_t addr, blk, n_free, s_free;
1425         vm_page_t mreq;
1426         int i, j, n;
1427         bool async;
1428
1429         KASSERT(count == 0 || ma[0]->object == object,
1430             ("%s: object mismatch %p/%p",
1431             __func__, object, ma[0]->object));
1432
1433         /*
1434          * Step 1
1435          *
1436          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1437          */
1438         if (object->type != OBJT_SWAP) {
1439                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1440                 KASSERT(addr == SWAPBLK_NONE,
1441                     ("unexpected object swap block"));
1442         }
1443         VM_OBJECT_WUNLOCK(object);
1444         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1445         swp_pager_init_freerange(&s_free, &n_free);
1446
1447         /*
1448          * Step 2
1449          *
1450          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1451          * The page is left dirty until the pageout operation completes
1452          * successfully.
1453          */
1454         for (i = 0; i < count; i += n) {
1455                 /* Maximum I/O size is limited by maximum swap block size. */
1456                 n = min(count - i, nsw_cluster_max);
1457
1458                 if (async) {
1459                         mtx_lock(&swbuf_mtx);
1460                         while (nsw_wcount_async == 0)
1461                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1462                                     "swbufa", 0);
1463                         nsw_wcount_async--;
1464                         mtx_unlock(&swbuf_mtx);
1465                 }
1466
1467                 /* Get a block of swap of size up to size n. */
1468                 VM_OBJECT_WLOCK(object);
1469                 blk = swp_pager_getswapspace(&n);
1470                 if (blk == SWAPBLK_NONE) {
1471                         VM_OBJECT_WUNLOCK(object);
1472                         mtx_lock(&swbuf_mtx);
1473                         if (++nsw_wcount_async == 1)
1474                                 wakeup(&nsw_wcount_async);
1475                         mtx_unlock(&swbuf_mtx);
1476                         for (j = 0; j < n; ++j)
1477                                 rtvals[i + j] = VM_PAGER_FAIL;
1478                         continue;
1479                 }
1480                 for (j = 0; j < n; ++j) {
1481                         mreq = ma[i + j];
1482                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1483                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1484                             blk + j);
1485                         if (addr != SWAPBLK_NONE)
1486                                 swp_pager_update_freerange(&s_free, &n_free,
1487                                     addr);
1488                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1489                         mreq->oflags |= VPO_SWAPINPROG;
1490                 }
1491                 VM_OBJECT_WUNLOCK(object);
1492
1493                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1494                 if (async)
1495                         bp->b_flags = B_ASYNC;
1496                 bp->b_flags |= B_PAGING;
1497                 bp->b_iocmd = BIO_WRITE;
1498
1499                 bp->b_rcred = crhold(thread0.td_ucred);
1500                 bp->b_wcred = crhold(thread0.td_ucred);
1501                 bp->b_bcount = PAGE_SIZE * n;
1502                 bp->b_bufsize = PAGE_SIZE * n;
1503                 bp->b_blkno = blk;
1504                 for (j = 0; j < n; j++)
1505                         bp->b_pages[j] = ma[i + j];
1506                 bp->b_npages = n;
1507
1508                 /*
1509                  * Must set dirty range for NFS to work.
1510                  */
1511                 bp->b_dirtyoff = 0;
1512                 bp->b_dirtyend = bp->b_bcount;
1513
1514                 VM_CNT_INC(v_swapout);
1515                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1516
1517                 /*
1518                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1519                  * can call the async completion routine at the end of a
1520                  * synchronous I/O operation.  Otherwise, our caller would
1521                  * perform duplicate unbusy and wakeup operations on the page
1522                  * and object, respectively.
1523                  */
1524                 for (j = 0; j < n; j++)
1525                         rtvals[i + j] = VM_PAGER_PEND;
1526
1527                 /*
1528                  * asynchronous
1529                  *
1530                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1531                  */
1532                 if (async) {
1533                         bp->b_iodone = swp_pager_async_iodone;
1534                         BUF_KERNPROC(bp);
1535                         swp_pager_strategy(bp);
1536                         continue;
1537                 }
1538
1539                 /*
1540                  * synchronous
1541                  *
1542                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1543                  */
1544                 bp->b_iodone = bdone;
1545                 swp_pager_strategy(bp);
1546
1547                 /*
1548                  * Wait for the sync I/O to complete.
1549                  */
1550                 bwait(bp, PVM, "swwrt");
1551
1552                 /*
1553                  * Now that we are through with the bp, we can call the
1554                  * normal async completion, which frees everything up.
1555                  */
1556                 swp_pager_async_iodone(bp);
1557         }
1558         swp_pager_freeswapspace(s_free, n_free);
1559         VM_OBJECT_WLOCK(object);
1560 }
1561
1562 /*
1563  *      swp_pager_async_iodone:
1564  *
1565  *      Completion routine for asynchronous reads and writes from/to swap.
1566  *      Also called manually by synchronous code to finish up a bp.
1567  *
1568  *      This routine may not sleep.
1569  */
1570 static void
1571 swp_pager_async_iodone(struct buf *bp)
1572 {
1573         int i;
1574         vm_object_t object = NULL;
1575
1576         /*
1577          * Report error - unless we ran out of memory, in which case
1578          * we've already logged it in swapgeom_strategy().
1579          */
1580         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1581                 printf(
1582                     "swap_pager: I/O error - %s failed; blkno %ld,"
1583                         "size %ld, error %d\n",
1584                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1585                     (long)bp->b_blkno,
1586                     (long)bp->b_bcount,
1587                     bp->b_error
1588                 );
1589         }
1590
1591         /*
1592          * remove the mapping for kernel virtual
1593          */
1594         if (buf_mapped(bp))
1595                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1596         else
1597                 bp->b_data = bp->b_kvabase;
1598
1599         if (bp->b_npages) {
1600                 object = bp->b_pages[0]->object;
1601                 VM_OBJECT_WLOCK(object);
1602         }
1603
1604         /*
1605          * cleanup pages.  If an error occurs writing to swap, we are in
1606          * very serious trouble.  If it happens to be a disk error, though,
1607          * we may be able to recover by reassigning the swap later on.  So
1608          * in this case we remove the m->swapblk assignment for the page
1609          * but do not free it in the rlist.  The errornous block(s) are thus
1610          * never reallocated as swap.  Redirty the page and continue.
1611          */
1612         for (i = 0; i < bp->b_npages; ++i) {
1613                 vm_page_t m = bp->b_pages[i];
1614
1615                 m->oflags &= ~VPO_SWAPINPROG;
1616                 if (m->oflags & VPO_SWAPSLEEP) {
1617                         m->oflags &= ~VPO_SWAPSLEEP;
1618                         wakeup(&object->handle);
1619                 }
1620
1621                 /* We always have space after I/O, successful or not. */
1622                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1623
1624                 if (bp->b_ioflags & BIO_ERROR) {
1625                         /*
1626                          * If an error occurs I'd love to throw the swapblk
1627                          * away without freeing it back to swapspace, so it
1628                          * can never be used again.  But I can't from an
1629                          * interrupt.
1630                          */
1631                         if (bp->b_iocmd == BIO_READ) {
1632                                 /*
1633                                  * NOTE: for reads, m->dirty will probably
1634                                  * be overridden by the original caller of
1635                                  * getpages so don't play cute tricks here.
1636                                  */
1637                                 vm_page_invalid(m);
1638                         } else {
1639                                 /*
1640                                  * If a write error occurs, reactivate page
1641                                  * so it doesn't clog the inactive list,
1642                                  * then finish the I/O.
1643                                  */
1644                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1645
1646                                 /* PQ_UNSWAPPABLE? */
1647                                 vm_page_activate(m);
1648                                 vm_page_sunbusy(m);
1649                         }
1650                 } else if (bp->b_iocmd == BIO_READ) {
1651                         /*
1652                          * NOTE: for reads, m->dirty will probably be
1653                          * overridden by the original caller of getpages so
1654                          * we cannot set them in order to free the underlying
1655                          * swap in a low-swap situation.  I don't think we'd
1656                          * want to do that anyway, but it was an optimization
1657                          * that existed in the old swapper for a time before
1658                          * it got ripped out due to precisely this problem.
1659                          */
1660                         KASSERT(!pmap_page_is_mapped(m),
1661                             ("swp_pager_async_iodone: page %p is mapped", m));
1662                         KASSERT(m->dirty == 0,
1663                             ("swp_pager_async_iodone: page %p is dirty", m));
1664
1665                         vm_page_valid(m);
1666                         if (i < bp->b_pgbefore ||
1667                             i >= bp->b_npages - bp->b_pgafter)
1668                                 vm_page_readahead_finish(m);
1669                 } else {
1670                         /*
1671                          * For write success, clear the dirty
1672                          * status, then finish the I/O ( which decrements the
1673                          * busy count and possibly wakes waiter's up ).
1674                          * A page is only written to swap after a period of
1675                          * inactivity.  Therefore, we do not expect it to be
1676                          * reused.
1677                          */
1678                         KASSERT(!pmap_page_is_write_mapped(m),
1679                             ("swp_pager_async_iodone: page %p is not write"
1680                             " protected", m));
1681                         vm_page_undirty(m);
1682                         vm_page_deactivate_noreuse(m);
1683                         vm_page_sunbusy(m);
1684                 }
1685         }
1686
1687         /*
1688          * adjust pip.  NOTE: the original parent may still have its own
1689          * pip refs on the object.
1690          */
1691         if (object != NULL) {
1692                 vm_object_pip_wakeupn(object, bp->b_npages);
1693                 VM_OBJECT_WUNLOCK(object);
1694         }
1695
1696         /*
1697          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1698          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1699          * trigger a KASSERT in relpbuf().
1700          */
1701         if (bp->b_vp) {
1702                     bp->b_vp = NULL;
1703                     bp->b_bufobj = NULL;
1704         }
1705         /*
1706          * release the physical I/O buffer
1707          */
1708         if (bp->b_flags & B_ASYNC) {
1709                 mtx_lock(&swbuf_mtx);
1710                 if (++nsw_wcount_async == 1)
1711                         wakeup(&nsw_wcount_async);
1712                 mtx_unlock(&swbuf_mtx);
1713         }
1714         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1715 }
1716
1717 int
1718 swap_pager_nswapdev(void)
1719 {
1720
1721         return (nswapdev);
1722 }
1723
1724 static void
1725 swp_pager_force_dirty(vm_page_t m)
1726 {
1727
1728         vm_page_dirty(m);
1729         swap_pager_unswapped(m);
1730         vm_page_launder(m);
1731 }
1732
1733 /*
1734  *      swap_pager_swapoff_object:
1735  *
1736  *      Page in all of the pages that have been paged out for an object
1737  *      to a swap device.
1738  */
1739 static void
1740 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1741 {
1742         struct swblk *sb;
1743         vm_page_t m;
1744         vm_pindex_t pi;
1745         daddr_t blk;
1746         int i, nv, rahead, rv;
1747
1748         KASSERT(object->type == OBJT_SWAP,
1749             ("%s: Object not swappable", __func__));
1750
1751         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1752             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1753                 if ((object->flags & OBJ_DEAD) != 0) {
1754                         /*
1755                          * Make sure that pending writes finish before
1756                          * returning.
1757                          */
1758                         vm_object_pip_wait(object, "swpoff");
1759                         swp_pager_meta_free_all(object);
1760                         break;
1761                 }
1762                 for (i = 0; i < SWAP_META_PAGES; i++) {
1763                         /*
1764                          * Count the number of contiguous valid blocks.
1765                          */
1766                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1767                                 blk = sb->d[i + nv];
1768                                 if (!swp_pager_isondev(blk, sp) ||
1769                                     blk == SWAPBLK_NONE)
1770                                         break;
1771                         }
1772                         if (nv == 0)
1773                                 continue;
1774
1775                         /*
1776                          * Look for a page corresponding to the first
1777                          * valid block and ensure that any pending paging
1778                          * operations on it are complete.  If the page is valid,
1779                          * mark it dirty and free the swap block.  Try to batch
1780                          * this operation since it may cause sp to be freed,
1781                          * meaning that we must restart the scan.  Avoid busying
1782                          * valid pages since we may block forever on kernel
1783                          * stack pages.
1784                          */
1785                         m = vm_page_lookup(object, sb->p + i);
1786                         if (m == NULL) {
1787                                 m = vm_page_alloc(object, sb->p + i,
1788                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1789                                 if (m == NULL)
1790                                         break;
1791                         } else {
1792                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1793                                         m->oflags |= VPO_SWAPSLEEP;
1794                                         VM_OBJECT_SLEEP(object, &object->handle,
1795                                             PSWP, "swpoff", 0);
1796                                         break;
1797                                 }
1798                                 if (vm_page_all_valid(m)) {
1799                                         do {
1800                                                 swp_pager_force_dirty(m);
1801                                         } while (--nv > 0 &&
1802                                             (m = vm_page_next(m)) != NULL &&
1803                                             vm_page_all_valid(m) &&
1804                                             (m->oflags & VPO_SWAPINPROG) == 0);
1805                                         break;
1806                                 }
1807                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1808                                         break;
1809                         }
1810
1811                         vm_object_pip_add(object, 1);
1812                         rahead = SWAP_META_PAGES;
1813                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1814                             &rahead);
1815                         if (rv != VM_PAGER_OK)
1816                                 panic("%s: read from swap failed: %d",
1817                                     __func__, rv);
1818                         vm_object_pip_wakeupn(object, 1);
1819                         VM_OBJECT_WLOCK(object);
1820                         vm_page_xunbusy(m);
1821
1822                         /*
1823                          * The object lock was dropped so we must restart the
1824                          * scan of this swap block.  Pages paged in during this
1825                          * iteration will be marked dirty in a future iteration.
1826                          */
1827                         break;
1828                 }
1829                 if (i == SWAP_META_PAGES)
1830                         pi = sb->p + SWAP_META_PAGES;
1831         }
1832 }
1833
1834 /*
1835  *      swap_pager_swapoff:
1836  *
1837  *      Page in all of the pages that have been paged out to the
1838  *      given device.  The corresponding blocks in the bitmap must be
1839  *      marked as allocated and the device must be flagged SW_CLOSING.
1840  *      There may be no processes swapped out to the device.
1841  *
1842  *      This routine may block.
1843  */
1844 static void
1845 swap_pager_swapoff(struct swdevt *sp)
1846 {
1847         vm_object_t object;
1848         int retries;
1849
1850         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1851
1852         retries = 0;
1853 full_rescan:
1854         mtx_lock(&vm_object_list_mtx);
1855         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1856                 if (object->type != OBJT_SWAP)
1857                         continue;
1858                 mtx_unlock(&vm_object_list_mtx);
1859                 /* Depends on type-stability. */
1860                 VM_OBJECT_WLOCK(object);
1861
1862                 /*
1863                  * Dead objects are eventually terminated on their own.
1864                  */
1865                 if ((object->flags & OBJ_DEAD) != 0)
1866                         goto next_obj;
1867
1868                 /*
1869                  * Sync with fences placed after pctrie
1870                  * initialization.  We must not access pctrie below
1871                  * unless we checked that our object is swap and not
1872                  * dead.
1873                  */
1874                 atomic_thread_fence_acq();
1875                 if (object->type != OBJT_SWAP)
1876                         goto next_obj;
1877
1878                 swap_pager_swapoff_object(sp, object);
1879 next_obj:
1880                 VM_OBJECT_WUNLOCK(object);
1881                 mtx_lock(&vm_object_list_mtx);
1882         }
1883         mtx_unlock(&vm_object_list_mtx);
1884
1885         if (sp->sw_used) {
1886                 /*
1887                  * Objects may be locked or paging to the device being
1888                  * removed, so we will miss their pages and need to
1889                  * make another pass.  We have marked this device as
1890                  * SW_CLOSING, so the activity should finish soon.
1891                  */
1892                 retries++;
1893                 if (retries > 100) {
1894                         panic("swapoff: failed to locate %d swap blocks",
1895                             sp->sw_used);
1896                 }
1897                 pause("swpoff", hz / 20);
1898                 goto full_rescan;
1899         }
1900         EVENTHANDLER_INVOKE(swapoff, sp);
1901 }
1902
1903 /************************************************************************
1904  *                              SWAP META DATA                          *
1905  ************************************************************************
1906  *
1907  *      These routines manipulate the swap metadata stored in the
1908  *      OBJT_SWAP object.
1909  *
1910  *      Swap metadata is implemented with a global hash and not directly
1911  *      linked into the object.  Instead the object simply contains
1912  *      appropriate tracking counters.
1913  */
1914
1915 /*
1916  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1917  */
1918 static bool
1919 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1920 {
1921         int i;
1922
1923         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1924         for (i = start; i < limit; i++) {
1925                 if (sb->d[i] != SWAPBLK_NONE)
1926                         return (false);
1927         }
1928         return (true);
1929 }
1930
1931 /*
1932  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1933  *
1934  *  Nothing is done if the block is still in use.
1935  */
1936 static void
1937 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1938 {
1939
1940         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1941                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1942                 uma_zfree(swblk_zone, sb);
1943         }
1944 }
1945    
1946 /*
1947  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1948  *
1949  *      We first convert the object to a swap object if it is a default
1950  *      object.
1951  *
1952  *      The specified swapblk is added to the object's swap metadata.  If
1953  *      the swapblk is not valid, it is freed instead.  Any previously
1954  *      assigned swapblk is returned.
1955  */
1956 static daddr_t
1957 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1958 {
1959         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1960         struct swblk *sb, *sb1;
1961         vm_pindex_t modpi, rdpi;
1962         daddr_t prev_swapblk;
1963         int error, i;
1964
1965         VM_OBJECT_ASSERT_WLOCKED(object);
1966
1967         /*
1968          * Convert default object to swap object if necessary
1969          */
1970         if (object->type != OBJT_SWAP) {
1971                 pctrie_init(&object->un_pager.swp.swp_blks);
1972
1973                 /*
1974                  * Ensure that swap_pager_swapoff()'s iteration over
1975                  * object_list does not see a garbage pctrie.
1976                  */
1977                 atomic_thread_fence_rel();
1978
1979                 object->type = OBJT_SWAP;
1980                 object->un_pager.swp.writemappings = 0;
1981                 KASSERT((object->flags & OBJ_ANON) != 0 ||
1982                     object->handle == NULL,
1983                     ("default pager %p with handle %p",
1984                     object, object->handle));
1985         }
1986
1987         rdpi = rounddown(pindex, SWAP_META_PAGES);
1988         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1989         if (sb == NULL) {
1990                 if (swapblk == SWAPBLK_NONE)
1991                         return (SWAPBLK_NONE);
1992                 for (;;) {
1993                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1994                             pageproc ? M_USE_RESERVE : 0));
1995                         if (sb != NULL) {
1996                                 sb->p = rdpi;
1997                                 for (i = 0; i < SWAP_META_PAGES; i++)
1998                                         sb->d[i] = SWAPBLK_NONE;
1999                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2000                                     1, 0))
2001                                         printf("swblk zone ok\n");
2002                                 break;
2003                         }
2004                         VM_OBJECT_WUNLOCK(object);
2005                         if (uma_zone_exhausted(swblk_zone)) {
2006                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2007                                     0, 1))
2008                                         printf("swap blk zone exhausted, "
2009                                             "increase kern.maxswzone\n");
2010                                 vm_pageout_oom(VM_OOM_SWAPZ);
2011                                 pause("swzonxb", 10);
2012                         } else
2013                                 uma_zwait(swblk_zone);
2014                         VM_OBJECT_WLOCK(object);
2015                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2016                             rdpi);
2017                         if (sb != NULL)
2018                                 /*
2019                                  * Somebody swapped out a nearby page,
2020                                  * allocating swblk at the rdpi index,
2021                                  * while we dropped the object lock.
2022                                  */
2023                                 goto allocated;
2024                 }
2025                 for (;;) {
2026                         error = SWAP_PCTRIE_INSERT(
2027                             &object->un_pager.swp.swp_blks, sb);
2028                         if (error == 0) {
2029                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2030                                     1, 0))
2031                                         printf("swpctrie zone ok\n");
2032                                 break;
2033                         }
2034                         VM_OBJECT_WUNLOCK(object);
2035                         if (uma_zone_exhausted(swpctrie_zone)) {
2036                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2037                                     0, 1))
2038                                         printf("swap pctrie zone exhausted, "
2039                                             "increase kern.maxswzone\n");
2040                                 vm_pageout_oom(VM_OOM_SWAPZ);
2041                                 pause("swzonxp", 10);
2042                         } else
2043                                 uma_zwait(swpctrie_zone);
2044                         VM_OBJECT_WLOCK(object);
2045                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2046                             rdpi);
2047                         if (sb1 != NULL) {
2048                                 uma_zfree(swblk_zone, sb);
2049                                 sb = sb1;
2050                                 goto allocated;
2051                         }
2052                 }
2053         }
2054 allocated:
2055         MPASS(sb->p == rdpi);
2056
2057         modpi = pindex % SWAP_META_PAGES;
2058         /* Return prior contents of metadata. */
2059         prev_swapblk = sb->d[modpi];
2060         /* Enter block into metadata. */
2061         sb->d[modpi] = swapblk;
2062
2063         /*
2064          * Free the swblk if we end up with the empty page run.
2065          */
2066         if (swapblk == SWAPBLK_NONE)
2067                 swp_pager_free_empty_swblk(object, sb);
2068         return (prev_swapblk);
2069 }
2070
2071 /*
2072  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2073  * metadata, or transfer it into dstobject.
2074  *
2075  *      This routine will free swap metadata structures as they are cleaned
2076  *      out.
2077  */
2078 static void
2079 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2080     vm_pindex_t pindex, vm_pindex_t count)
2081 {
2082         struct swblk *sb;
2083         daddr_t n_free, s_free;
2084         vm_pindex_t offset, last;
2085         int i, limit, start;
2086
2087         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2088         if (srcobject->type != OBJT_SWAP || count == 0)
2089                 return;
2090
2091         swp_pager_init_freerange(&s_free, &n_free);
2092         offset = pindex;
2093         last = pindex + count;
2094         for (;;) {
2095                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2096                     rounddown(pindex, SWAP_META_PAGES));
2097                 if (sb == NULL || sb->p >= last)
2098                         break;
2099                 start = pindex > sb->p ? pindex - sb->p : 0;
2100                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2101                     SWAP_META_PAGES;
2102                 for (i = start; i < limit; i++) {
2103                         if (sb->d[i] == SWAPBLK_NONE)
2104                                 continue;
2105                         if (dstobject == NULL ||
2106                             !swp_pager_xfer_source(srcobject, dstobject, 
2107                             sb->p + i - offset, sb->d[i])) {
2108                                 swp_pager_update_freerange(&s_free, &n_free,
2109                                     sb->d[i]);
2110                         }
2111                         sb->d[i] = SWAPBLK_NONE;
2112                 }
2113                 pindex = sb->p + SWAP_META_PAGES;
2114                 if (swp_pager_swblk_empty(sb, 0, start) &&
2115                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2116                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2117                             sb->p);
2118                         uma_zfree(swblk_zone, sb);
2119                 }
2120         }
2121         swp_pager_freeswapspace(s_free, n_free);
2122 }
2123
2124 /*
2125  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2126  *
2127  *      The requested range of blocks is freed, with any associated swap
2128  *      returned to the swap bitmap.
2129  *
2130  *      This routine will free swap metadata structures as they are cleaned
2131  *      out.  This routine does *NOT* operate on swap metadata associated
2132  *      with resident pages.
2133  */
2134 static void
2135 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2136 {
2137         swp_pager_meta_transfer(object, NULL, pindex, count);
2138 }
2139
2140 /*
2141  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2142  *
2143  *      This routine locates and destroys all swap metadata associated with
2144  *      an object.
2145  */
2146 static void
2147 swp_pager_meta_free_all(vm_object_t object)
2148 {
2149         struct swblk *sb;
2150         daddr_t n_free, s_free;
2151         vm_pindex_t pindex;
2152         int i;
2153
2154         VM_OBJECT_ASSERT_WLOCKED(object);
2155         if (object->type != OBJT_SWAP)
2156                 return;
2157
2158         swp_pager_init_freerange(&s_free, &n_free);
2159         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2160             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2161                 pindex = sb->p + SWAP_META_PAGES;
2162                 for (i = 0; i < SWAP_META_PAGES; i++) {
2163                         if (sb->d[i] == SWAPBLK_NONE)
2164                                 continue;
2165                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2166                 }
2167                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2168                 uma_zfree(swblk_zone, sb);
2169         }
2170         swp_pager_freeswapspace(s_free, n_free);
2171 }
2172
2173 /*
2174  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2175  *
2176  *      This routine is capable of looking up, or removing swapblk
2177  *      assignments in the swap meta data.  It returns the swapblk being
2178  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2179  *
2180  *      When acting on a busy resident page and paging is in progress, we
2181  *      have to wait until paging is complete but otherwise can act on the
2182  *      busy page.
2183  */
2184 static daddr_t
2185 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2186 {
2187         struct swblk *sb;
2188
2189         VM_OBJECT_ASSERT_LOCKED(object);
2190
2191         /*
2192          * The meta data only exists if the object is OBJT_SWAP
2193          * and even then might not be allocated yet.
2194          */
2195         KASSERT(object->type == OBJT_SWAP,
2196             ("Lookup object not swappable"));
2197
2198         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2199             rounddown(pindex, SWAP_META_PAGES));
2200         if (sb == NULL)
2201                 return (SWAPBLK_NONE);
2202         return (sb->d[pindex % SWAP_META_PAGES]);
2203 }
2204
2205 /*
2206  * Returns the least page index which is greater than or equal to the
2207  * parameter pindex and for which there is a swap block allocated.
2208  * Returns object's size if the object's type is not swap or if there
2209  * are no allocated swap blocks for the object after the requested
2210  * pindex.
2211  */
2212 vm_pindex_t
2213 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2214 {
2215         struct swblk *sb;
2216         int i;
2217
2218         VM_OBJECT_ASSERT_LOCKED(object);
2219         if (object->type != OBJT_SWAP)
2220                 return (object->size);
2221
2222         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2223             rounddown(pindex, SWAP_META_PAGES));
2224         if (sb == NULL)
2225                 return (object->size);
2226         if (sb->p < pindex) {
2227                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2228                         if (sb->d[i] != SWAPBLK_NONE)
2229                                 return (sb->p + i);
2230                 }
2231                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2232                     roundup(pindex, SWAP_META_PAGES));
2233                 if (sb == NULL)
2234                         return (object->size);
2235         }
2236         for (i = 0; i < SWAP_META_PAGES; i++) {
2237                 if (sb->d[i] != SWAPBLK_NONE)
2238                         return (sb->p + i);
2239         }
2240
2241         /*
2242          * We get here if a swblk is present in the trie but it
2243          * doesn't map any blocks.
2244          */
2245         MPASS(0);
2246         return (object->size);
2247 }
2248
2249 /*
2250  * System call swapon(name) enables swapping on device name,
2251  * which must be in the swdevsw.  Return EBUSY
2252  * if already swapping on this device.
2253  */
2254 #ifndef _SYS_SYSPROTO_H_
2255 struct swapon_args {
2256         char *name;
2257 };
2258 #endif
2259
2260 /*
2261  * MPSAFE
2262  */
2263 /* ARGSUSED */
2264 int
2265 sys_swapon(struct thread *td, struct swapon_args *uap)
2266 {
2267         struct vattr attr;
2268         struct vnode *vp;
2269         struct nameidata nd;
2270         int error;
2271
2272         error = priv_check(td, PRIV_SWAPON);
2273         if (error)
2274                 return (error);
2275
2276         sx_xlock(&swdev_syscall_lock);
2277
2278         /*
2279          * Swap metadata may not fit in the KVM if we have physical
2280          * memory of >1GB.
2281          */
2282         if (swblk_zone == NULL) {
2283                 error = ENOMEM;
2284                 goto done;
2285         }
2286
2287         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2288             uap->name, td);
2289         error = namei(&nd);
2290         if (error)
2291                 goto done;
2292
2293         NDFREE(&nd, NDF_ONLY_PNBUF);
2294         vp = nd.ni_vp;
2295
2296         if (vn_isdisk(vp, &error)) {
2297                 error = swapongeom(vp);
2298         } else if (vp->v_type == VREG &&
2299             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2300             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2301                 /*
2302                  * Allow direct swapping to NFS regular files in the same
2303                  * way that nfs_mountroot() sets up diskless swapping.
2304                  */
2305                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2306         }
2307
2308         if (error)
2309                 vrele(vp);
2310 done:
2311         sx_xunlock(&swdev_syscall_lock);
2312         return (error);
2313 }
2314
2315 /*
2316  * Check that the total amount of swap currently configured does not
2317  * exceed half the theoretical maximum.  If it does, print a warning
2318  * message.
2319  */
2320 static void
2321 swapon_check_swzone(void)
2322 {
2323
2324         /* recommend using no more than half that amount */
2325         if (swap_total > swap_maxpages / 2) {
2326                 printf("warning: total configured swap (%lu pages) "
2327                     "exceeds maximum recommended amount (%lu pages).\n",
2328                     swap_total, swap_maxpages / 2);
2329                 printf("warning: increase kern.maxswzone "
2330                     "or reduce amount of swap.\n");
2331         }
2332 }
2333
2334 static void
2335 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2336     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2337 {
2338         struct swdevt *sp, *tsp;
2339         daddr_t dvbase;
2340         u_long mblocks;
2341
2342         /*
2343          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2344          * First chop nblks off to page-align it, then convert.
2345          *
2346          * sw->sw_nblks is in page-sized chunks now too.
2347          */
2348         nblks &= ~(ctodb(1) - 1);
2349         nblks = dbtoc(nblks);
2350
2351         /*
2352          * If we go beyond this, we get overflows in the radix
2353          * tree bitmap code.
2354          */
2355         mblocks = 0x40000000 / BLIST_META_RADIX;
2356         if (nblks > mblocks) {
2357                 printf(
2358     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2359                     mblocks / 1024 / 1024 * PAGE_SIZE);
2360                 nblks = mblocks;
2361         }
2362
2363         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2364         sp->sw_vp = vp;
2365         sp->sw_id = id;
2366         sp->sw_dev = dev;
2367         sp->sw_nblks = nblks;
2368         sp->sw_used = 0;
2369         sp->sw_strategy = strategy;
2370         sp->sw_close = close;
2371         sp->sw_flags = flags;
2372
2373         sp->sw_blist = blist_create(nblks, M_WAITOK);
2374         /*
2375          * Do not free the first blocks in order to avoid overwriting
2376          * any bsd label at the front of the partition
2377          */
2378         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2379             nblks - howmany(BBSIZE, PAGE_SIZE));
2380
2381         dvbase = 0;
2382         mtx_lock(&sw_dev_mtx);
2383         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2384                 if (tsp->sw_end >= dvbase) {
2385                         /*
2386                          * We put one uncovered page between the devices
2387                          * in order to definitively prevent any cross-device
2388                          * I/O requests
2389                          */
2390                         dvbase = tsp->sw_end + 1;
2391                 }
2392         }
2393         sp->sw_first = dvbase;
2394         sp->sw_end = dvbase + nblks;
2395         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2396         nswapdev++;
2397         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2398         swap_total += nblks;
2399         swapon_check_swzone();
2400         swp_sizecheck();
2401         mtx_unlock(&sw_dev_mtx);
2402         EVENTHANDLER_INVOKE(swapon, sp);
2403 }
2404
2405 /*
2406  * SYSCALL: swapoff(devname)
2407  *
2408  * Disable swapping on the given device.
2409  *
2410  * XXX: Badly designed system call: it should use a device index
2411  * rather than filename as specification.  We keep sw_vp around
2412  * only to make this work.
2413  */
2414 #ifndef _SYS_SYSPROTO_H_
2415 struct swapoff_args {
2416         char *name;
2417 };
2418 #endif
2419
2420 /*
2421  * MPSAFE
2422  */
2423 /* ARGSUSED */
2424 int
2425 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2426 {
2427         struct vnode *vp;
2428         struct nameidata nd;
2429         struct swdevt *sp;
2430         int error;
2431
2432         error = priv_check(td, PRIV_SWAPOFF);
2433         if (error)
2434                 return (error);
2435
2436         sx_xlock(&swdev_syscall_lock);
2437
2438         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2439             td);
2440         error = namei(&nd);
2441         if (error)
2442                 goto done;
2443         NDFREE(&nd, NDF_ONLY_PNBUF);
2444         vp = nd.ni_vp;
2445
2446         mtx_lock(&sw_dev_mtx);
2447         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2448                 if (sp->sw_vp == vp)
2449                         break;
2450         }
2451         mtx_unlock(&sw_dev_mtx);
2452         if (sp == NULL) {
2453                 error = EINVAL;
2454                 goto done;
2455         }
2456         error = swapoff_one(sp, td->td_ucred);
2457 done:
2458         sx_xunlock(&swdev_syscall_lock);
2459         return (error);
2460 }
2461
2462 static int
2463 swapoff_one(struct swdevt *sp, struct ucred *cred)
2464 {
2465         u_long nblks;
2466 #ifdef MAC
2467         int error;
2468 #endif
2469
2470         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2471 #ifdef MAC
2472         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2473         error = mac_system_check_swapoff(cred, sp->sw_vp);
2474         (void) VOP_UNLOCK(sp->sw_vp);
2475         if (error != 0)
2476                 return (error);
2477 #endif
2478         nblks = sp->sw_nblks;
2479
2480         /*
2481          * We can turn off this swap device safely only if the
2482          * available virtual memory in the system will fit the amount
2483          * of data we will have to page back in, plus an epsilon so
2484          * the system doesn't become critically low on swap space.
2485          */
2486         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2487                 return (ENOMEM);
2488
2489         /*
2490          * Prevent further allocations on this device.
2491          */
2492         mtx_lock(&sw_dev_mtx);
2493         sp->sw_flags |= SW_CLOSING;
2494         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2495         swap_total -= nblks;
2496         mtx_unlock(&sw_dev_mtx);
2497
2498         /*
2499          * Page in the contents of the device and close it.
2500          */
2501         swap_pager_swapoff(sp);
2502
2503         sp->sw_close(curthread, sp);
2504         mtx_lock(&sw_dev_mtx);
2505         sp->sw_id = NULL;
2506         TAILQ_REMOVE(&swtailq, sp, sw_list);
2507         nswapdev--;
2508         if (nswapdev == 0) {
2509                 swap_pager_full = 2;
2510                 swap_pager_almost_full = 1;
2511         }
2512         if (swdevhd == sp)
2513                 swdevhd = NULL;
2514         mtx_unlock(&sw_dev_mtx);
2515         blist_destroy(sp->sw_blist);
2516         free(sp, M_VMPGDATA);
2517         return (0);
2518 }
2519
2520 void
2521 swapoff_all(void)
2522 {
2523         struct swdevt *sp, *spt;
2524         const char *devname;
2525         int error;
2526
2527         sx_xlock(&swdev_syscall_lock);
2528
2529         mtx_lock(&sw_dev_mtx);
2530         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2531                 mtx_unlock(&sw_dev_mtx);
2532                 if (vn_isdisk(sp->sw_vp, NULL))
2533                         devname = devtoname(sp->sw_vp->v_rdev);
2534                 else
2535                         devname = "[file]";
2536                 error = swapoff_one(sp, thread0.td_ucred);
2537                 if (error != 0) {
2538                         printf("Cannot remove swap device %s (error=%d), "
2539                             "skipping.\n", devname, error);
2540                 } else if (bootverbose) {
2541                         printf("Swap device %s removed.\n", devname);
2542                 }
2543                 mtx_lock(&sw_dev_mtx);
2544         }
2545         mtx_unlock(&sw_dev_mtx);
2546
2547         sx_xunlock(&swdev_syscall_lock);
2548 }
2549
2550 void
2551 swap_pager_status(int *total, int *used)
2552 {
2553         struct swdevt *sp;
2554
2555         *total = 0;
2556         *used = 0;
2557         mtx_lock(&sw_dev_mtx);
2558         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2559                 *total += sp->sw_nblks;
2560                 *used += sp->sw_used;
2561         }
2562         mtx_unlock(&sw_dev_mtx);
2563 }
2564
2565 int
2566 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2567 {
2568         struct swdevt *sp;
2569         const char *tmp_devname;
2570         int error, n;
2571
2572         n = 0;
2573         error = ENOENT;
2574         mtx_lock(&sw_dev_mtx);
2575         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2576                 if (n != name) {
2577                         n++;
2578                         continue;
2579                 }
2580                 xs->xsw_version = XSWDEV_VERSION;
2581                 xs->xsw_dev = sp->sw_dev;
2582                 xs->xsw_flags = sp->sw_flags;
2583                 xs->xsw_nblks = sp->sw_nblks;
2584                 xs->xsw_used = sp->sw_used;
2585                 if (devname != NULL) {
2586                         if (vn_isdisk(sp->sw_vp, NULL))
2587                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2588                         else
2589                                 tmp_devname = "[file]";
2590                         strncpy(devname, tmp_devname, len);
2591                 }
2592                 error = 0;
2593                 break;
2594         }
2595         mtx_unlock(&sw_dev_mtx);
2596         return (error);
2597 }
2598
2599 #if defined(COMPAT_FREEBSD11)
2600 #define XSWDEV_VERSION_11       1
2601 struct xswdev11 {
2602         u_int   xsw_version;
2603         uint32_t xsw_dev;
2604         int     xsw_flags;
2605         int     xsw_nblks;
2606         int     xsw_used;
2607 };
2608 #endif
2609
2610 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2611 struct xswdev32 {
2612         u_int   xsw_version;
2613         u_int   xsw_dev1, xsw_dev2;
2614         int     xsw_flags;
2615         int     xsw_nblks;
2616         int     xsw_used;
2617 };
2618 #endif
2619
2620 static int
2621 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2622 {
2623         struct xswdev xs;
2624 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2625         struct xswdev32 xs32;
2626 #endif
2627 #if defined(COMPAT_FREEBSD11)
2628         struct xswdev11 xs11;
2629 #endif
2630         int error;
2631
2632         if (arg2 != 1)                  /* name length */
2633                 return (EINVAL);
2634         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2635         if (error != 0)
2636                 return (error);
2637 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2638         if (req->oldlen == sizeof(xs32)) {
2639                 xs32.xsw_version = XSWDEV_VERSION;
2640                 xs32.xsw_dev1 = xs.xsw_dev;
2641                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2642                 xs32.xsw_flags = xs.xsw_flags;
2643                 xs32.xsw_nblks = xs.xsw_nblks;
2644                 xs32.xsw_used = xs.xsw_used;
2645                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2646                 return (error);
2647         }
2648 #endif
2649 #if defined(COMPAT_FREEBSD11)
2650         if (req->oldlen == sizeof(xs11)) {
2651                 xs11.xsw_version = XSWDEV_VERSION_11;
2652                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2653                 xs11.xsw_flags = xs.xsw_flags;
2654                 xs11.xsw_nblks = xs.xsw_nblks;
2655                 xs11.xsw_used = xs.xsw_used;
2656                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2657                 return (error);
2658         }
2659 #endif
2660         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2661         return (error);
2662 }
2663
2664 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2665     "Number of swap devices");
2666 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2667     sysctl_vm_swap_info,
2668     "Swap statistics by device");
2669
2670 /*
2671  * Count the approximate swap usage in pages for a vmspace.  The
2672  * shadowed or not yet copied on write swap blocks are not accounted.
2673  * The map must be locked.
2674  */
2675 long
2676 vmspace_swap_count(struct vmspace *vmspace)
2677 {
2678         vm_map_t map;
2679         vm_map_entry_t cur;
2680         vm_object_t object;
2681         struct swblk *sb;
2682         vm_pindex_t e, pi;
2683         long count;
2684         int i;
2685
2686         map = &vmspace->vm_map;
2687         count = 0;
2688
2689         VM_MAP_ENTRY_FOREACH(cur, map) {
2690                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2691                         continue;
2692                 object = cur->object.vm_object;
2693                 if (object == NULL || object->type != OBJT_SWAP)
2694                         continue;
2695                 VM_OBJECT_RLOCK(object);
2696                 if (object->type != OBJT_SWAP)
2697                         goto unlock;
2698                 pi = OFF_TO_IDX(cur->offset);
2699                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2700                 for (;; pi = sb->p + SWAP_META_PAGES) {
2701                         sb = SWAP_PCTRIE_LOOKUP_GE(
2702                             &object->un_pager.swp.swp_blks, pi);
2703                         if (sb == NULL || sb->p >= e)
2704                                 break;
2705                         for (i = 0; i < SWAP_META_PAGES; i++) {
2706                                 if (sb->p + i < e &&
2707                                     sb->d[i] != SWAPBLK_NONE)
2708                                         count++;
2709                         }
2710                 }
2711 unlock:
2712                 VM_OBJECT_RUNLOCK(object);
2713         }
2714         return (count);
2715 }
2716
2717 /*
2718  * GEOM backend
2719  *
2720  * Swapping onto disk devices.
2721  *
2722  */
2723
2724 static g_orphan_t swapgeom_orphan;
2725
2726 static struct g_class g_swap_class = {
2727         .name = "SWAP",
2728         .version = G_VERSION,
2729         .orphan = swapgeom_orphan,
2730 };
2731
2732 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2733
2734
2735 static void
2736 swapgeom_close_ev(void *arg, int flags)
2737 {
2738         struct g_consumer *cp;
2739
2740         cp = arg;
2741         g_access(cp, -1, -1, 0);
2742         g_detach(cp);
2743         g_destroy_consumer(cp);
2744 }
2745
2746 /*
2747  * Add a reference to the g_consumer for an inflight transaction.
2748  */
2749 static void
2750 swapgeom_acquire(struct g_consumer *cp)
2751 {
2752
2753         mtx_assert(&sw_dev_mtx, MA_OWNED);
2754         cp->index++;
2755 }
2756
2757 /*
2758  * Remove a reference from the g_consumer.  Post a close event if all
2759  * references go away, since the function might be called from the
2760  * biodone context.
2761  */
2762 static void
2763 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2764 {
2765
2766         mtx_assert(&sw_dev_mtx, MA_OWNED);
2767         cp->index--;
2768         if (cp->index == 0) {
2769                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2770                         sp->sw_id = NULL;
2771         }
2772 }
2773
2774 static void
2775 swapgeom_done(struct bio *bp2)
2776 {
2777         struct swdevt *sp;
2778         struct buf *bp;
2779         struct g_consumer *cp;
2780
2781         bp = bp2->bio_caller2;
2782         cp = bp2->bio_from;
2783         bp->b_ioflags = bp2->bio_flags;
2784         if (bp2->bio_error)
2785                 bp->b_ioflags |= BIO_ERROR;
2786         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2787         bp->b_error = bp2->bio_error;
2788         bp->b_caller1 = NULL;
2789         bufdone(bp);
2790         sp = bp2->bio_caller1;
2791         mtx_lock(&sw_dev_mtx);
2792         swapgeom_release(cp, sp);
2793         mtx_unlock(&sw_dev_mtx);
2794         g_destroy_bio(bp2);
2795 }
2796
2797 static void
2798 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2799 {
2800         struct bio *bio;
2801         struct g_consumer *cp;
2802
2803         mtx_lock(&sw_dev_mtx);
2804         cp = sp->sw_id;
2805         if (cp == NULL) {
2806                 mtx_unlock(&sw_dev_mtx);
2807                 bp->b_error = ENXIO;
2808                 bp->b_ioflags |= BIO_ERROR;
2809                 bufdone(bp);
2810                 return;
2811         }
2812         swapgeom_acquire(cp);
2813         mtx_unlock(&sw_dev_mtx);
2814         if (bp->b_iocmd == BIO_WRITE)
2815                 bio = g_new_bio();
2816         else
2817                 bio = g_alloc_bio();
2818         if (bio == NULL) {
2819                 mtx_lock(&sw_dev_mtx);
2820                 swapgeom_release(cp, sp);
2821                 mtx_unlock(&sw_dev_mtx);
2822                 bp->b_error = ENOMEM;
2823                 bp->b_ioflags |= BIO_ERROR;
2824                 printf("swap_pager: cannot allocate bio\n");
2825                 bufdone(bp);
2826                 return;
2827         }
2828
2829         bp->b_caller1 = bio;
2830         bio->bio_caller1 = sp;
2831         bio->bio_caller2 = bp;
2832         bio->bio_cmd = bp->b_iocmd;
2833         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2834         bio->bio_length = bp->b_bcount;
2835         bio->bio_done = swapgeom_done;
2836         if (!buf_mapped(bp)) {
2837                 bio->bio_ma = bp->b_pages;
2838                 bio->bio_data = unmapped_buf;
2839                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2840                 bio->bio_ma_n = bp->b_npages;
2841                 bio->bio_flags |= BIO_UNMAPPED;
2842         } else {
2843                 bio->bio_data = bp->b_data;
2844                 bio->bio_ma = NULL;
2845         }
2846         g_io_request(bio, cp);
2847         return;
2848 }
2849
2850 static void
2851 swapgeom_orphan(struct g_consumer *cp)
2852 {
2853         struct swdevt *sp;
2854         int destroy;
2855
2856         mtx_lock(&sw_dev_mtx);
2857         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2858                 if (sp->sw_id == cp) {
2859                         sp->sw_flags |= SW_CLOSING;
2860                         break;
2861                 }
2862         }
2863         /*
2864          * Drop reference we were created with. Do directly since we're in a
2865          * special context where we don't have to queue the call to
2866          * swapgeom_close_ev().
2867          */
2868         cp->index--;
2869         destroy = ((sp != NULL) && (cp->index == 0));
2870         if (destroy)
2871                 sp->sw_id = NULL;
2872         mtx_unlock(&sw_dev_mtx);
2873         if (destroy)
2874                 swapgeom_close_ev(cp, 0);
2875 }
2876
2877 static void
2878 swapgeom_close(struct thread *td, struct swdevt *sw)
2879 {
2880         struct g_consumer *cp;
2881
2882         mtx_lock(&sw_dev_mtx);
2883         cp = sw->sw_id;
2884         sw->sw_id = NULL;
2885         mtx_unlock(&sw_dev_mtx);
2886
2887         /*
2888          * swapgeom_close() may be called from the biodone context,
2889          * where we cannot perform topology changes.  Delegate the
2890          * work to the events thread.
2891          */
2892         if (cp != NULL)
2893                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2894 }
2895
2896 static int
2897 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2898 {
2899         struct g_provider *pp;
2900         struct g_consumer *cp;
2901         static struct g_geom *gp;
2902         struct swdevt *sp;
2903         u_long nblks;
2904         int error;
2905
2906         pp = g_dev_getprovider(dev);
2907         if (pp == NULL)
2908                 return (ENODEV);
2909         mtx_lock(&sw_dev_mtx);
2910         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2911                 cp = sp->sw_id;
2912                 if (cp != NULL && cp->provider == pp) {
2913                         mtx_unlock(&sw_dev_mtx);
2914                         return (EBUSY);
2915                 }
2916         }
2917         mtx_unlock(&sw_dev_mtx);
2918         if (gp == NULL)
2919                 gp = g_new_geomf(&g_swap_class, "swap");
2920         cp = g_new_consumer(gp);
2921         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2922         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2923         g_attach(cp, pp);
2924         /*
2925          * XXX: Every time you think you can improve the margin for
2926          * footshooting, somebody depends on the ability to do so:
2927          * savecore(8) wants to write to our swapdev so we cannot
2928          * set an exclusive count :-(
2929          */
2930         error = g_access(cp, 1, 1, 0);
2931         if (error != 0) {
2932                 g_detach(cp);
2933                 g_destroy_consumer(cp);
2934                 return (error);
2935         }
2936         nblks = pp->mediasize / DEV_BSIZE;
2937         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2938             swapgeom_close, dev2udev(dev),
2939             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2940         return (0);
2941 }
2942
2943 static int
2944 swapongeom(struct vnode *vp)
2945 {
2946         int error;
2947
2948         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2949         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2950                 error = ENOENT;
2951         } else {
2952                 g_topology_lock();
2953                 error = swapongeom_locked(vp->v_rdev, vp);
2954                 g_topology_unlock();
2955         }
2956         VOP_UNLOCK(vp);
2957         return (error);
2958 }
2959
2960 /*
2961  * VNODE backend
2962  *
2963  * This is used mainly for network filesystem (read: probably only tested
2964  * with NFS) swapfiles.
2965  *
2966  */
2967
2968 static void
2969 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2970 {
2971         struct vnode *vp2;
2972
2973         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2974
2975         vp2 = sp->sw_id;
2976         vhold(vp2);
2977         if (bp->b_iocmd == BIO_WRITE) {
2978                 if (bp->b_bufobj)
2979                         bufobj_wdrop(bp->b_bufobj);
2980                 bufobj_wref(&vp2->v_bufobj);
2981         }
2982         if (bp->b_bufobj != &vp2->v_bufobj)
2983                 bp->b_bufobj = &vp2->v_bufobj;
2984         bp->b_vp = vp2;
2985         bp->b_iooffset = dbtob(bp->b_blkno);
2986         bstrategy(bp);
2987         return;
2988 }
2989
2990 static void
2991 swapdev_close(struct thread *td, struct swdevt *sp)
2992 {
2993
2994         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2995         vrele(sp->sw_vp);
2996 }
2997
2998
2999 static int
3000 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3001 {
3002         struct swdevt *sp;
3003         int error;
3004
3005         if (nblks == 0)
3006                 return (ENXIO);
3007         mtx_lock(&sw_dev_mtx);
3008         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3009                 if (sp->sw_id == vp) {
3010                         mtx_unlock(&sw_dev_mtx);
3011                         return (EBUSY);
3012                 }
3013         }
3014         mtx_unlock(&sw_dev_mtx);
3015
3016         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3017 #ifdef MAC
3018         error = mac_system_check_swapon(td->td_ucred, vp);
3019         if (error == 0)
3020 #endif
3021                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3022         (void) VOP_UNLOCK(vp);
3023         if (error)
3024                 return (error);
3025
3026         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3027             NODEV, 0);
3028         return (0);
3029 }
3030
3031 static int
3032 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3033 {
3034         int error, new, n;
3035
3036         new = nsw_wcount_async_max;
3037         error = sysctl_handle_int(oidp, &new, 0, req);
3038         if (error != 0 || req->newptr == NULL)
3039                 return (error);
3040
3041         if (new > nswbuf / 2 || new < 1)
3042                 return (EINVAL);
3043
3044         mtx_lock(&swbuf_mtx);
3045         while (nsw_wcount_async_max != new) {
3046                 /*
3047                  * Adjust difference.  If the current async count is too low,
3048                  * we will need to sqeeze our update slowly in.  Sleep with a
3049                  * higher priority than getpbuf() to finish faster.
3050                  */
3051                 n = new - nsw_wcount_async_max;
3052                 if (nsw_wcount_async + n >= 0) {
3053                         nsw_wcount_async += n;
3054                         nsw_wcount_async_max += n;
3055                         wakeup(&nsw_wcount_async);
3056                 } else {
3057                         nsw_wcount_async_max -= nsw_wcount_async;
3058                         nsw_wcount_async = 0;
3059                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3060                             "swpsysctl", 0);
3061                 }
3062         }
3063         mtx_unlock(&swbuf_mtx);
3064
3065         return (0);
3066 }
3067
3068 static void
3069 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3070     vm_offset_t end)
3071 {
3072
3073         VM_OBJECT_WLOCK(object);
3074         KASSERT((object->flags & OBJ_ANON) == 0,
3075             ("Splittable object with writecount"));
3076         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3077         VM_OBJECT_WUNLOCK(object);
3078 }
3079
3080 static void
3081 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3082     vm_offset_t end)
3083 {
3084
3085         VM_OBJECT_WLOCK(object);
3086         KASSERT((object->flags & OBJ_ANON) == 0,
3087             ("Splittable object with writecount"));
3088         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3089         VM_OBJECT_WUNLOCK(object);
3090 }