]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Merge llvm trunk r321017 to contrib/llvm.
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_compat.h"
75 #include "opt_swap.h"
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/conf.h>
81 #include <sys/kernel.h>
82 #include <sys/priv.h>
83 #include <sys/proc.h>
84 #include <sys/bio.h>
85 #include <sys/buf.h>
86 #include <sys/disk.h>
87 #include <sys/fcntl.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/vnode.h>
91 #include <sys/malloc.h>
92 #include <sys/pctrie.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/blist.h>
101 #include <sys/lock.h>
102 #include <sys/sx.h>
103 #include <sys/vmmeter.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static vm_ooffset_t swap_total;
156 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
157     "Total amount of available swap storage.");
158 static vm_ooffset_t swap_reserved;
159 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
160     "Amount of swap storage needed to back all allocated anonymous memory.");
161 static int overcommit = 0;
162 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
163     "Configure virtual memory overcommit behavior. See tuning(7) "
164     "for details.");
165 static unsigned long swzone;
166 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
167     "Actual size of swap metadata zone");
168 static unsigned long swap_maxpages;
169 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
170     "Maximum amount of swap supported");
171
172 /* bits from overcommit */
173 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
174 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
175 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
176
177 int
178 swap_reserve(vm_ooffset_t incr)
179 {
180
181         return (swap_reserve_by_cred(incr, curthread->td_ucred));
182 }
183
184 int
185 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
186 {
187         vm_ooffset_t r, s;
188         int res, error;
189         static int curfail;
190         static struct timeval lastfail;
191         struct uidinfo *uip;
192
193         uip = cred->cr_ruidinfo;
194
195         if (incr & PAGE_MASK)
196                 panic("swap_reserve: & PAGE_MASK");
197
198 #ifdef RACCT
199         if (racct_enable) {
200                 PROC_LOCK(curproc);
201                 error = racct_add(curproc, RACCT_SWAP, incr);
202                 PROC_UNLOCK(curproc);
203                 if (error != 0)
204                         return (0);
205         }
206 #endif
207
208         res = 0;
209         mtx_lock(&sw_dev_mtx);
210         r = swap_reserved + incr;
211         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
212                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
213                 s *= PAGE_SIZE;
214         } else
215                 s = 0;
216         s += swap_total;
217         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219                 res = 1;
220                 swap_reserved = r;
221         }
222         mtx_unlock(&sw_dev_mtx);
223
224         if (res) {
225                 UIDINFO_VMSIZE_LOCK(uip);
226                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
227                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
228                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
229                         res = 0;
230                 else
231                         uip->ui_vmsize += incr;
232                 UIDINFO_VMSIZE_UNLOCK(uip);
233                 if (!res) {
234                         mtx_lock(&sw_dev_mtx);
235                         swap_reserved -= incr;
236                         mtx_unlock(&sw_dev_mtx);
237                 }
238         }
239         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
240                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
241                     uip->ui_uid, curproc->p_pid, incr);
242         }
243
244 #ifdef RACCT
245         if (!res) {
246                 PROC_LOCK(curproc);
247                 racct_sub(curproc, RACCT_SWAP, incr);
248                 PROC_UNLOCK(curproc);
249         }
250 #endif
251
252         return (res);
253 }
254
255 void
256 swap_reserve_force(vm_ooffset_t incr)
257 {
258         struct uidinfo *uip;
259
260         mtx_lock(&sw_dev_mtx);
261         swap_reserved += incr;
262         mtx_unlock(&sw_dev_mtx);
263
264 #ifdef RACCT
265         PROC_LOCK(curproc);
266         racct_add_force(curproc, RACCT_SWAP, incr);
267         PROC_UNLOCK(curproc);
268 #endif
269
270         uip = curthread->td_ucred->cr_ruidinfo;
271         PROC_LOCK(curproc);
272         UIDINFO_VMSIZE_LOCK(uip);
273         uip->ui_vmsize += incr;
274         UIDINFO_VMSIZE_UNLOCK(uip);
275         PROC_UNLOCK(curproc);
276 }
277
278 void
279 swap_release(vm_ooffset_t decr)
280 {
281         struct ucred *cred;
282
283         PROC_LOCK(curproc);
284         cred = curthread->td_ucred;
285         swap_release_by_cred(decr, cred);
286         PROC_UNLOCK(curproc);
287 }
288
289 void
290 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
291 {
292         struct uidinfo *uip;
293
294         uip = cred->cr_ruidinfo;
295
296         if (decr & PAGE_MASK)
297                 panic("swap_release: & PAGE_MASK");
298
299         mtx_lock(&sw_dev_mtx);
300         if (swap_reserved < decr)
301                 panic("swap_reserved < decr");
302         swap_reserved -= decr;
303         mtx_unlock(&sw_dev_mtx);
304
305         UIDINFO_VMSIZE_LOCK(uip);
306         if (uip->ui_vmsize < decr)
307                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
308         uip->ui_vmsize -= decr;
309         UIDINFO_VMSIZE_UNLOCK(uip);
310
311         racct_sub_cred(cred, RACCT_SWAP, decr);
312 }
313
314 #define SWM_FREE        0x02    /* free, period                 */
315 #define SWM_POP         0x04    /* pop out                      */
316
317 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
318 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
319 static int nsw_rcount;          /* free read buffers                    */
320 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
321 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
322 static int nsw_wcount_async_max;/* assigned maximum                     */
323 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
324
325 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
326 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
327     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
328     "Maximum running async swap ops");
329 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
330 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
331     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
332     "Swap Fragmentation Info");
333
334 static struct sx sw_alloc_sx;
335
336 /*
337  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
338  * of searching a named list by hashing it just a little.
339  */
340
341 #define NOBJLISTS               8
342
343 #define NOBJLIST(handle)        \
344         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
345
346 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
347 static uma_zone_t swblk_zone;
348 static uma_zone_t swpctrie_zone;
349
350 /*
351  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
352  * calls hooked from other parts of the VM system and do not appear here.
353  * (see vm/swap_pager.h).
354  */
355 static vm_object_t
356                 swap_pager_alloc(void *handle, vm_ooffset_t size,
357                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
358 static void     swap_pager_dealloc(vm_object_t object);
359 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
360     int *);
361 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
362     int *, pgo_getpages_iodone_t, void *);
363 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
364 static boolean_t
365                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
366 static void     swap_pager_init(void);
367 static void     swap_pager_unswapped(vm_page_t);
368 static void     swap_pager_swapoff(struct swdevt *sp);
369
370 struct pagerops swappagerops = {
371         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
372         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
373         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
374         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
375         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
376         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
377         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
378         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
379 };
380
381 /*
382  * swap_*() routines are externally accessible.  swp_*() routines are
383  * internal.
384  */
385 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
386 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
387
388 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
389     "Maximum size of a swap block in pages");
390
391 static void     swp_sizecheck(void);
392 static void     swp_pager_async_iodone(struct buf *bp);
393 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
394 static int      swapongeom(struct vnode *);
395 static int      swaponvp(struct thread *, struct vnode *, u_long);
396 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
397
398 /*
399  * Swap bitmap functions
400  */
401 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
402 static daddr_t  swp_pager_getswapspace(int npages);
403
404 /*
405  * Metadata functions
406  */
407 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
408 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
409 static void swp_pager_meta_free_all(vm_object_t);
410 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
411
412 static void *
413 swblk_trie_alloc(struct pctrie *ptree)
414 {
415
416         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
417             M_USE_RESERVE : 0)));
418 }
419
420 static void
421 swblk_trie_free(struct pctrie *ptree, void *node)
422 {
423
424         uma_zfree(swpctrie_zone, node);
425 }
426
427 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
428
429 /*
430  * SWP_SIZECHECK() -    update swap_pager_full indication
431  *
432  *      update the swap_pager_almost_full indication and warn when we are
433  *      about to run out of swap space, using lowat/hiwat hysteresis.
434  *
435  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
436  *
437  *      No restrictions on call
438  *      This routine may not block.
439  */
440 static void
441 swp_sizecheck(void)
442 {
443
444         if (swap_pager_avail < nswap_lowat) {
445                 if (swap_pager_almost_full == 0) {
446                         printf("swap_pager: out of swap space\n");
447                         swap_pager_almost_full = 1;
448                 }
449         } else {
450                 swap_pager_full = 0;
451                 if (swap_pager_avail > nswap_hiwat)
452                         swap_pager_almost_full = 0;
453         }
454 }
455
456 /*
457  * SWAP_PAGER_INIT() -  initialize the swap pager!
458  *
459  *      Expected to be started from system init.  NOTE:  This code is run
460  *      before much else so be careful what you depend on.  Most of the VM
461  *      system has yet to be initialized at this point.
462  */
463 static void
464 swap_pager_init(void)
465 {
466         /*
467          * Initialize object lists
468          */
469         int i;
470
471         for (i = 0; i < NOBJLISTS; ++i)
472                 TAILQ_INIT(&swap_pager_object_list[i]);
473         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
474         sx_init(&sw_alloc_sx, "swspsx");
475         sx_init(&swdev_syscall_lock, "swsysc");
476 }
477
478 /*
479  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
480  *
481  *      Expected to be started from pageout process once, prior to entering
482  *      its main loop.
483  */
484 void
485 swap_pager_swap_init(void)
486 {
487         unsigned long n, n2;
488
489         /*
490          * Number of in-transit swap bp operations.  Don't
491          * exhaust the pbufs completely.  Make sure we
492          * initialize workable values (0 will work for hysteresis
493          * but it isn't very efficient).
494          *
495          * The nsw_cluster_max is constrained by the bp->b_pages[]
496          * array (MAXPHYS/PAGE_SIZE) and our locally defined
497          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
498          * constrained by the swap device interleave stripe size.
499          *
500          * Currently we hardwire nsw_wcount_async to 4.  This limit is
501          * designed to prevent other I/O from having high latencies due to
502          * our pageout I/O.  The value 4 works well for one or two active swap
503          * devices but is probably a little low if you have more.  Even so,
504          * a higher value would probably generate only a limited improvement
505          * with three or four active swap devices since the system does not
506          * typically have to pageout at extreme bandwidths.   We will want
507          * at least 2 per swap devices, and 4 is a pretty good value if you
508          * have one NFS swap device due to the command/ack latency over NFS.
509          * So it all works out pretty well.
510          */
511         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
512
513         mtx_lock(&pbuf_mtx);
514         nsw_rcount = (nswbuf + 1) / 2;
515         nsw_wcount_sync = (nswbuf + 3) / 4;
516         nsw_wcount_async = 4;
517         nsw_wcount_async_max = nsw_wcount_async;
518         mtx_unlock(&pbuf_mtx);
519
520         /*
521          * Initialize our zone, guessing on the number we need based
522          * on the number of pages in the system.
523          */
524         n = vm_cnt.v_page_count / 2;
525         if (maxswzone && n > maxswzone / sizeof(struct swblk))
526                 n = maxswzone / sizeof(struct swblk);
527         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
528             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
529             UMA_ZONE_NOFREE | UMA_ZONE_VM);
530         if (swpctrie_zone == NULL)
531                 panic("failed to create swap pctrie zone.");
532         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
533             NULL, NULL, _Alignof(struct swblk) - 1,
534             UMA_ZONE_NOFREE | UMA_ZONE_VM);
535         if (swblk_zone == NULL)
536                 panic("failed to create swap blk zone.");
537         n2 = n;
538         do {
539                 if (uma_zone_reserve_kva(swblk_zone, n))
540                         break;
541                 /*
542                  * if the allocation failed, try a zone two thirds the
543                  * size of the previous attempt.
544                  */
545                 n -= ((n + 2) / 3);
546         } while (n > 0);
547
548         /*
549          * Often uma_zone_reserve_kva() cannot reserve exactly the
550          * requested size.  Account for the difference when
551          * calculating swap_maxpages.
552          */
553         n = uma_zone_get_max(swblk_zone);
554
555         if (n < n2)
556                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
557                     n2, n);
558         swap_maxpages = n * SWAP_META_PAGES;
559         swzone = n * sizeof(struct swblk);
560         if (!uma_zone_reserve_kva(swpctrie_zone, n))
561                 printf("Cannot reserve swap pctrie zone, "
562                     "reduce kern.maxswzone.\n");
563 }
564
565 static vm_object_t
566 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
567     vm_ooffset_t offset)
568 {
569         vm_object_t object;
570
571         if (cred != NULL) {
572                 if (!swap_reserve_by_cred(size, cred))
573                         return (NULL);
574                 crhold(cred);
575         }
576
577         /*
578          * The un_pager.swp.swp_blks trie is initialized by
579          * vm_object_allocate() to ensure the correct order of
580          * visibility to other threads.
581          */
582         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
583             PAGE_MASK + size));
584
585         object->handle = handle;
586         if (cred != NULL) {
587                 object->cred = cred;
588                 object->charge = size;
589         }
590         return (object);
591 }
592
593 /*
594  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
595  *                      its metadata structures.
596  *
597  *      This routine is called from the mmap and fork code to create a new
598  *      OBJT_SWAP object.
599  *
600  *      This routine must ensure that no live duplicate is created for
601  *      the named object request, which is protected against by
602  *      holding the sw_alloc_sx lock in case handle != NULL.
603  */
604 static vm_object_t
605 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
606     vm_ooffset_t offset, struct ucred *cred)
607 {
608         vm_object_t object;
609
610         if (handle != NULL) {
611                 /*
612                  * Reference existing named region or allocate new one.  There
613                  * should not be a race here against swp_pager_meta_build()
614                  * as called from vm_page_remove() in regards to the lookup
615                  * of the handle.
616                  */
617                 sx_xlock(&sw_alloc_sx);
618                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
619                 if (object == NULL) {
620                         object = swap_pager_alloc_init(handle, cred, size,
621                             offset);
622                         if (object != NULL) {
623                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
624                                     object, pager_object_list);
625                         }
626                 }
627                 sx_xunlock(&sw_alloc_sx);
628         } else {
629                 object = swap_pager_alloc_init(handle, cred, size, offset);
630         }
631         return (object);
632 }
633
634 /*
635  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
636  *
637  *      The swap backing for the object is destroyed.  The code is
638  *      designed such that we can reinstantiate it later, but this
639  *      routine is typically called only when the entire object is
640  *      about to be destroyed.
641  *
642  *      The object must be locked.
643  */
644 static void
645 swap_pager_dealloc(vm_object_t object)
646 {
647
648         VM_OBJECT_ASSERT_WLOCKED(object);
649         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
650
651         /*
652          * Remove from list right away so lookups will fail if we block for
653          * pageout completion.
654          */
655         if (object->handle != NULL) {
656                 VM_OBJECT_WUNLOCK(object);
657                 sx_xlock(&sw_alloc_sx);
658                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
659                     pager_object_list);
660                 sx_xunlock(&sw_alloc_sx);
661                 VM_OBJECT_WLOCK(object);
662         }
663
664         vm_object_pip_wait(object, "swpdea");
665
666         /*
667          * Free all remaining metadata.  We only bother to free it from
668          * the swap meta data.  We do not attempt to free swapblk's still
669          * associated with vm_page_t's for this object.  We do not care
670          * if paging is still in progress on some objects.
671          */
672         swp_pager_meta_free_all(object);
673         object->handle = NULL;
674         object->type = OBJT_DEAD;
675 }
676
677 /************************************************************************
678  *                      SWAP PAGER BITMAP ROUTINES                      *
679  ************************************************************************/
680
681 /*
682  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
683  *
684  *      Allocate swap for the requested number of pages.  The starting
685  *      swap block number (a page index) is returned or SWAPBLK_NONE
686  *      if the allocation failed.
687  *
688  *      Also has the side effect of advising that somebody made a mistake
689  *      when they configured swap and didn't configure enough.
690  *
691  *      This routine may not sleep.
692  *
693  *      We allocate in round-robin fashion from the configured devices.
694  */
695 static daddr_t
696 swp_pager_getswapspace(int npages)
697 {
698         daddr_t blk;
699         struct swdevt *sp;
700         int i;
701
702         blk = SWAPBLK_NONE;
703         mtx_lock(&sw_dev_mtx);
704         sp = swdevhd;
705         for (i = 0; i < nswapdev; i++) {
706                 if (sp == NULL)
707                         sp = TAILQ_FIRST(&swtailq);
708                 if (!(sp->sw_flags & SW_CLOSING)) {
709                         blk = blist_alloc(sp->sw_blist, npages);
710                         if (blk != SWAPBLK_NONE) {
711                                 blk += sp->sw_first;
712                                 sp->sw_used += npages;
713                                 swap_pager_avail -= npages;
714                                 swp_sizecheck();
715                                 swdevhd = TAILQ_NEXT(sp, sw_list);
716                                 goto done;
717                         }
718                 }
719                 sp = TAILQ_NEXT(sp, sw_list);
720         }
721         if (swap_pager_full != 2) {
722                 printf("swap_pager_getswapspace(%d): failed\n", npages);
723                 swap_pager_full = 2;
724                 swap_pager_almost_full = 1;
725         }
726         swdevhd = NULL;
727 done:
728         mtx_unlock(&sw_dev_mtx);
729         return (blk);
730 }
731
732 static int
733 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
734 {
735
736         return (blk >= sp->sw_first && blk < sp->sw_end);
737 }
738
739 static void
740 swp_pager_strategy(struct buf *bp)
741 {
742         struct swdevt *sp;
743
744         mtx_lock(&sw_dev_mtx);
745         TAILQ_FOREACH(sp, &swtailq, sw_list) {
746                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
747                         mtx_unlock(&sw_dev_mtx);
748                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
749                             unmapped_buf_allowed) {
750                                 bp->b_data = unmapped_buf;
751                                 bp->b_offset = 0;
752                         } else {
753                                 pmap_qenter((vm_offset_t)bp->b_data,
754                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
755                         }
756                         sp->sw_strategy(bp, sp);
757                         return;
758                 }
759         }
760         panic("Swapdev not found");
761 }
762
763
764 /*
765  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
766  *
767  *      This routine returns the specified swap blocks back to the bitmap.
768  *
769  *      This routine may not sleep.
770  */
771 static void
772 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
773 {
774         struct swdevt *sp;
775
776         if (npages == 0)
777                 return;
778         mtx_lock(&sw_dev_mtx);
779         TAILQ_FOREACH(sp, &swtailq, sw_list) {
780                 if (blk >= sp->sw_first && blk < sp->sw_end) {
781                         sp->sw_used -= npages;
782                         /*
783                          * If we are attempting to stop swapping on
784                          * this device, we don't want to mark any
785                          * blocks free lest they be reused.
786                          */
787                         if ((sp->sw_flags & SW_CLOSING) == 0) {
788                                 blist_free(sp->sw_blist, blk - sp->sw_first,
789                                     npages);
790                                 swap_pager_avail += npages;
791                                 swp_sizecheck();
792                         }
793                         mtx_unlock(&sw_dev_mtx);
794                         return;
795                 }
796         }
797         panic("Swapdev not found");
798 }
799
800 /*
801  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
802  */
803 static int
804 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
805 {
806         struct sbuf sbuf;
807         struct swdevt *sp;
808         const char *devname;
809         int error;
810
811         error = sysctl_wire_old_buffer(req, 0);
812         if (error != 0)
813                 return (error);
814         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
815         mtx_lock(&sw_dev_mtx);
816         TAILQ_FOREACH(sp, &swtailq, sw_list) {
817                 if (vn_isdisk(sp->sw_vp, NULL))
818                         devname = devtoname(sp->sw_vp->v_rdev);
819                 else
820                         devname = "[file]";
821                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
822                 blist_stats(sp->sw_blist, &sbuf);
823         }
824         mtx_unlock(&sw_dev_mtx);
825         error = sbuf_finish(&sbuf);
826         sbuf_delete(&sbuf);
827         return (error);
828 }
829
830 /*
831  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
832  *                              range within an object.
833  *
834  *      This is a globally accessible routine.
835  *
836  *      This routine removes swapblk assignments from swap metadata.
837  *
838  *      The external callers of this routine typically have already destroyed
839  *      or renamed vm_page_t's associated with this range in the object so
840  *      we should be ok.
841  *
842  *      The object must be locked.
843  */
844 void
845 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
846 {
847
848         swp_pager_meta_free(object, start, size);
849 }
850
851 /*
852  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
853  *
854  *      Assigns swap blocks to the specified range within the object.  The
855  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
856  *
857  *      Returns 0 on success, -1 on failure.
858  */
859 int
860 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
861 {
862         int n = 0;
863         daddr_t blk = SWAPBLK_NONE;
864         vm_pindex_t beg = start;        /* save start index */
865
866         VM_OBJECT_WLOCK(object);
867         while (size) {
868                 if (n == 0) {
869                         n = BLIST_MAX_ALLOC;
870                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
871                                 n >>= 1;
872                                 if (n == 0) {
873                                         swp_pager_meta_free(object, beg, start - beg);
874                                         VM_OBJECT_WUNLOCK(object);
875                                         return (-1);
876                                 }
877                         }
878                 }
879                 swp_pager_meta_build(object, start, blk);
880                 --size;
881                 ++start;
882                 ++blk;
883                 --n;
884         }
885         swp_pager_meta_free(object, start, n);
886         VM_OBJECT_WUNLOCK(object);
887         return (0);
888 }
889
890 /*
891  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
892  *                      and destroy the source.
893  *
894  *      Copy any valid swapblks from the source to the destination.  In
895  *      cases where both the source and destination have a valid swapblk,
896  *      we keep the destination's.
897  *
898  *      This routine is allowed to sleep.  It may sleep allocating metadata
899  *      indirectly through swp_pager_meta_build() or if paging is still in
900  *      progress on the source.
901  *
902  *      The source object contains no vm_page_t's (which is just as well)
903  *
904  *      The source object is of type OBJT_SWAP.
905  *
906  *      The source and destination objects must be locked.
907  *      Both object locks may temporarily be released.
908  */
909 void
910 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
911     vm_pindex_t offset, int destroysource)
912 {
913         vm_pindex_t i;
914
915         VM_OBJECT_ASSERT_WLOCKED(srcobject);
916         VM_OBJECT_ASSERT_WLOCKED(dstobject);
917
918         /*
919          * If destroysource is set, we remove the source object from the
920          * swap_pager internal queue now.
921          */
922         if (destroysource && srcobject->handle != NULL) {
923                 vm_object_pip_add(srcobject, 1);
924                 VM_OBJECT_WUNLOCK(srcobject);
925                 vm_object_pip_add(dstobject, 1);
926                 VM_OBJECT_WUNLOCK(dstobject);
927                 sx_xlock(&sw_alloc_sx);
928                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
929                     pager_object_list);
930                 sx_xunlock(&sw_alloc_sx);
931                 VM_OBJECT_WLOCK(dstobject);
932                 vm_object_pip_wakeup(dstobject);
933                 VM_OBJECT_WLOCK(srcobject);
934                 vm_object_pip_wakeup(srcobject);
935         }
936
937         /*
938          * transfer source to destination.
939          */
940         for (i = 0; i < dstobject->size; ++i) {
941                 daddr_t dstaddr;
942
943                 /*
944                  * Locate (without changing) the swapblk on the destination,
945                  * unless it is invalid in which case free it silently, or
946                  * if the destination is a resident page, in which case the
947                  * source is thrown away.
948                  */
949                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
950
951                 if (dstaddr == SWAPBLK_NONE) {
952                         /*
953                          * Destination has no swapblk and is not resident,
954                          * copy source.
955                          */
956                         daddr_t srcaddr;
957
958                         srcaddr = swp_pager_meta_ctl(
959                             srcobject,
960                             i + offset,
961                             SWM_POP
962                         );
963
964                         if (srcaddr != SWAPBLK_NONE) {
965                                 /*
966                                  * swp_pager_meta_build() can sleep.
967                                  */
968                                 vm_object_pip_add(srcobject, 1);
969                                 VM_OBJECT_WUNLOCK(srcobject);
970                                 vm_object_pip_add(dstobject, 1);
971                                 swp_pager_meta_build(dstobject, i, srcaddr);
972                                 vm_object_pip_wakeup(dstobject);
973                                 VM_OBJECT_WLOCK(srcobject);
974                                 vm_object_pip_wakeup(srcobject);
975                         }
976                 } else {
977                         /*
978                          * Destination has valid swapblk or it is represented
979                          * by a resident page.  We destroy the sourceblock.
980                          */
981
982                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
983                 }
984         }
985
986         /*
987          * Free left over swap blocks in source.
988          *
989          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
990          * double-remove the object from the swap queues.
991          */
992         if (destroysource) {
993                 swp_pager_meta_free_all(srcobject);
994                 /*
995                  * Reverting the type is not necessary, the caller is going
996                  * to destroy srcobject directly, but I'm doing it here
997                  * for consistency since we've removed the object from its
998                  * queues.
999                  */
1000                 srcobject->type = OBJT_DEFAULT;
1001         }
1002 }
1003
1004 /*
1005  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1006  *                              the requested page.
1007  *
1008  *      We determine whether good backing store exists for the requested
1009  *      page and return TRUE if it does, FALSE if it doesn't.
1010  *
1011  *      If TRUE, we also try to determine how much valid, contiguous backing
1012  *      store exists before and after the requested page.
1013  */
1014 static boolean_t
1015 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1016     int *after)
1017 {
1018         daddr_t blk, blk0;
1019         int i;
1020
1021         VM_OBJECT_ASSERT_LOCKED(object);
1022
1023         /*
1024          * do we have good backing store at the requested index ?
1025          */
1026         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1027         if (blk0 == SWAPBLK_NONE) {
1028                 if (before)
1029                         *before = 0;
1030                 if (after)
1031                         *after = 0;
1032                 return (FALSE);
1033         }
1034
1035         /*
1036          * find backwards-looking contiguous good backing store
1037          */
1038         if (before != NULL) {
1039                 for (i = 1; i < SWB_NPAGES; i++) {
1040                         if (i > pindex)
1041                                 break;
1042                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1043                         if (blk != blk0 - i)
1044                                 break;
1045                 }
1046                 *before = i - 1;
1047         }
1048
1049         /*
1050          * find forward-looking contiguous good backing store
1051          */
1052         if (after != NULL) {
1053                 for (i = 1; i < SWB_NPAGES; i++) {
1054                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1055                         if (blk != blk0 + i)
1056                                 break;
1057                 }
1058                 *after = i - 1;
1059         }
1060         return (TRUE);
1061 }
1062
1063 /*
1064  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1065  *
1066  *      This removes any associated swap backing store, whether valid or
1067  *      not, from the page.
1068  *
1069  *      This routine is typically called when a page is made dirty, at
1070  *      which point any associated swap can be freed.  MADV_FREE also
1071  *      calls us in a special-case situation
1072  *
1073  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1074  *      should make the page dirty before calling this routine.  This routine
1075  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1076  *      depends on it.
1077  *
1078  *      This routine may not sleep.
1079  *
1080  *      The object containing the page must be locked.
1081  */
1082 static void
1083 swap_pager_unswapped(vm_page_t m)
1084 {
1085
1086         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1087 }
1088
1089 /*
1090  * swap_pager_getpages() - bring pages in from swap
1091  *
1092  *      Attempt to page in the pages in array "m" of length "count".  The caller
1093  *      may optionally specify that additional pages preceding and succeeding
1094  *      the specified range be paged in.  The number of such pages is returned
1095  *      in the "rbehind" and "rahead" parameters, and they will be in the
1096  *      inactive queue upon return.
1097  *
1098  *      The pages in "m" must be busied and will remain busied upon return.
1099  */
1100 static int
1101 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1102     int *rahead)
1103 {
1104         struct buf *bp;
1105         vm_page_t mpred, msucc, p;
1106         vm_pindex_t pindex;
1107         daddr_t blk;
1108         int i, j, maxahead, maxbehind, reqcount, shift;
1109
1110         reqcount = count;
1111
1112         VM_OBJECT_WUNLOCK(object);
1113         bp = getpbuf(&nsw_rcount);
1114         VM_OBJECT_WLOCK(object);
1115
1116         if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) {
1117                 relpbuf(bp, &nsw_rcount);
1118                 return (VM_PAGER_FAIL);
1119         }
1120
1121         /*
1122          * Clip the readahead and readbehind ranges to exclude resident pages.
1123          */
1124         if (rahead != NULL) {
1125                 KASSERT(reqcount - 1 <= maxahead,
1126                     ("page count %d extends beyond swap block", reqcount));
1127                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1128                 pindex = m[reqcount - 1]->pindex;
1129                 msucc = TAILQ_NEXT(m[reqcount - 1], listq);
1130                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1131                         *rahead = msucc->pindex - pindex - 1;
1132         }
1133         if (rbehind != NULL) {
1134                 *rbehind = imin(*rbehind, maxbehind);
1135                 pindex = m[0]->pindex;
1136                 mpred = TAILQ_PREV(m[0], pglist, listq);
1137                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1138                         *rbehind = pindex - mpred->pindex - 1;
1139         }
1140
1141         /*
1142          * Allocate readahead and readbehind pages.
1143          */
1144         shift = rbehind != NULL ? *rbehind : 0;
1145         if (shift != 0) {
1146                 for (i = 1; i <= shift; i++) {
1147                         p = vm_page_alloc(object, m[0]->pindex - i,
1148                             VM_ALLOC_NORMAL);
1149                         if (p == NULL) {
1150                                 /* Shift allocated pages to the left. */
1151                                 for (j = 0; j < i - 1; j++)
1152                                         bp->b_pages[j] =
1153                                             bp->b_pages[j + shift - i + 1];
1154                                 break;
1155                         }
1156                         bp->b_pages[shift - i] = p;
1157                 }
1158                 shift = i - 1;
1159                 *rbehind = shift;
1160         }
1161         for (i = 0; i < reqcount; i++)
1162                 bp->b_pages[i + shift] = m[i];
1163         if (rahead != NULL) {
1164                 for (i = 0; i < *rahead; i++) {
1165                         p = vm_page_alloc(object,
1166                             m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1167                         if (p == NULL)
1168                                 break;
1169                         bp->b_pages[shift + reqcount + i] = p;
1170                 }
1171                 *rahead = i;
1172         }
1173         if (rbehind != NULL)
1174                 count += *rbehind;
1175         if (rahead != NULL)
1176                 count += *rahead;
1177
1178         vm_object_pip_add(object, count);
1179
1180         for (i = 0; i < count; i++)
1181                 bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1182
1183         pindex = bp->b_pages[0]->pindex;
1184         blk = swp_pager_meta_ctl(object, pindex, 0);
1185         KASSERT(blk != SWAPBLK_NONE,
1186             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1187
1188         VM_OBJECT_WUNLOCK(object);
1189
1190         bp->b_flags |= B_PAGING;
1191         bp->b_iocmd = BIO_READ;
1192         bp->b_iodone = swp_pager_async_iodone;
1193         bp->b_rcred = crhold(thread0.td_ucred);
1194         bp->b_wcred = crhold(thread0.td_ucred);
1195         bp->b_blkno = blk;
1196         bp->b_bcount = PAGE_SIZE * count;
1197         bp->b_bufsize = PAGE_SIZE * count;
1198         bp->b_npages = count;
1199         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1200         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1201
1202         VM_CNT_INC(v_swapin);
1203         VM_CNT_ADD(v_swappgsin, count);
1204
1205         /*
1206          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1207          * this point because we automatically release it on completion.
1208          * Instead, we look at the one page we are interested in which we
1209          * still hold a lock on even through the I/O completion.
1210          *
1211          * The other pages in our m[] array are also released on completion,
1212          * so we cannot assume they are valid anymore either.
1213          *
1214          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1215          */
1216         BUF_KERNPROC(bp);
1217         swp_pager_strategy(bp);
1218
1219         /*
1220          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1221          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1222          * is set in the metadata for each page in the request.
1223          */
1224         VM_OBJECT_WLOCK(object);
1225         while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1226                 m[0]->oflags |= VPO_SWAPSLEEP;
1227                 VM_CNT_INC(v_intrans);
1228                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1229                     "swread", hz * 20)) {
1230                         printf(
1231 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1232                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1233                 }
1234         }
1235
1236         /*
1237          * If we had an unrecoverable read error pages will not be valid.
1238          */
1239         for (i = 0; i < reqcount; i++)
1240                 if (m[i]->valid != VM_PAGE_BITS_ALL)
1241                         return (VM_PAGER_ERROR);
1242
1243         return (VM_PAGER_OK);
1244
1245         /*
1246          * A final note: in a low swap situation, we cannot deallocate swap
1247          * and mark a page dirty here because the caller is likely to mark
1248          * the page clean when we return, causing the page to possibly revert
1249          * to all-zero's later.
1250          */
1251 }
1252
1253 /*
1254  *      swap_pager_getpages_async():
1255  *
1256  *      Right now this is emulation of asynchronous operation on top of
1257  *      swap_pager_getpages().
1258  */
1259 static int
1260 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1261     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1262 {
1263         int r, error;
1264
1265         r = swap_pager_getpages(object, m, count, rbehind, rahead);
1266         VM_OBJECT_WUNLOCK(object);
1267         switch (r) {
1268         case VM_PAGER_OK:
1269                 error = 0;
1270                 break;
1271         case VM_PAGER_ERROR:
1272                 error = EIO;
1273                 break;
1274         case VM_PAGER_FAIL:
1275                 error = EINVAL;
1276                 break;
1277         default:
1278                 panic("unhandled swap_pager_getpages() error %d", r);
1279         }
1280         (iodone)(arg, m, count, error);
1281         VM_OBJECT_WLOCK(object);
1282
1283         return (r);
1284 }
1285
1286 /*
1287  *      swap_pager_putpages:
1288  *
1289  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1290  *
1291  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1292  *      are automatically converted to SWAP objects.
1293  *
1294  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1295  *      vm_page reservation system coupled with properly written VFS devices
1296  *      should ensure that no low-memory deadlock occurs.  This is an area
1297  *      which needs work.
1298  *
1299  *      The parent has N vm_object_pip_add() references prior to
1300  *      calling us and will remove references for rtvals[] that are
1301  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1302  *      completion.
1303  *
1304  *      The parent has soft-busy'd the pages it passes us and will unbusy
1305  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1306  *      We need to unbusy the rest on I/O completion.
1307  */
1308 static void
1309 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1310     int flags, int *rtvals)
1311 {
1312         int i, n;
1313         boolean_t sync;
1314
1315         if (count && m[0]->object != object) {
1316                 panic("swap_pager_putpages: object mismatch %p/%p",
1317                     object,
1318                     m[0]->object
1319                 );
1320         }
1321
1322         /*
1323          * Step 1
1324          *
1325          * Turn object into OBJT_SWAP
1326          * check for bogus sysops
1327          * force sync if not pageout process
1328          */
1329         if (object->type != OBJT_SWAP)
1330                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1331         VM_OBJECT_WUNLOCK(object);
1332
1333         n = 0;
1334         if (curproc != pageproc)
1335                 sync = TRUE;
1336         else
1337                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1338
1339         /*
1340          * Step 2
1341          *
1342          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1343          * The page is left dirty until the pageout operation completes
1344          * successfully.
1345          */
1346         for (i = 0; i < count; i += n) {
1347                 int j;
1348                 struct buf *bp;
1349                 daddr_t blk;
1350
1351                 /*
1352                  * Maximum I/O size is limited by a number of factors.
1353                  */
1354                 n = min(BLIST_MAX_ALLOC, count - i);
1355                 n = min(n, nsw_cluster_max);
1356
1357                 /*
1358                  * Get biggest block of swap we can.  If we fail, fall
1359                  * back and try to allocate a smaller block.  Don't go
1360                  * overboard trying to allocate space if it would overly
1361                  * fragment swap.
1362                  */
1363                 while (
1364                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1365                     n > 4
1366                 ) {
1367                         n >>= 1;
1368                 }
1369                 if (blk == SWAPBLK_NONE) {
1370                         for (j = 0; j < n; ++j)
1371                                 rtvals[i+j] = VM_PAGER_FAIL;
1372                         continue;
1373                 }
1374
1375                 /*
1376                  * All I/O parameters have been satisfied, build the I/O
1377                  * request and assign the swap space.
1378                  */
1379                 if (sync == TRUE) {
1380                         bp = getpbuf(&nsw_wcount_sync);
1381                 } else {
1382                         bp = getpbuf(&nsw_wcount_async);
1383                         bp->b_flags = B_ASYNC;
1384                 }
1385                 bp->b_flags |= B_PAGING;
1386                 bp->b_iocmd = BIO_WRITE;
1387
1388                 bp->b_rcred = crhold(thread0.td_ucred);
1389                 bp->b_wcred = crhold(thread0.td_ucred);
1390                 bp->b_bcount = PAGE_SIZE * n;
1391                 bp->b_bufsize = PAGE_SIZE * n;
1392                 bp->b_blkno = blk;
1393
1394                 VM_OBJECT_WLOCK(object);
1395                 for (j = 0; j < n; ++j) {
1396                         vm_page_t mreq = m[i+j];
1397
1398                         swp_pager_meta_build(
1399                             mreq->object,
1400                             mreq->pindex,
1401                             blk + j
1402                         );
1403                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1404                         mreq->oflags |= VPO_SWAPINPROG;
1405                         bp->b_pages[j] = mreq;
1406                 }
1407                 VM_OBJECT_WUNLOCK(object);
1408                 bp->b_npages = n;
1409                 /*
1410                  * Must set dirty range for NFS to work.
1411                  */
1412                 bp->b_dirtyoff = 0;
1413                 bp->b_dirtyend = bp->b_bcount;
1414
1415                 VM_CNT_INC(v_swapout);
1416                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1417
1418                 /*
1419                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1420                  * can call the async completion routine at the end of a
1421                  * synchronous I/O operation.  Otherwise, our caller would
1422                  * perform duplicate unbusy and wakeup operations on the page
1423                  * and object, respectively.
1424                  */
1425                 for (j = 0; j < n; j++)
1426                         rtvals[i + j] = VM_PAGER_PEND;
1427
1428                 /*
1429                  * asynchronous
1430                  *
1431                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1432                  */
1433                 if (sync == FALSE) {
1434                         bp->b_iodone = swp_pager_async_iodone;
1435                         BUF_KERNPROC(bp);
1436                         swp_pager_strategy(bp);
1437                         continue;
1438                 }
1439
1440                 /*
1441                  * synchronous
1442                  *
1443                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1444                  */
1445                 bp->b_iodone = bdone;
1446                 swp_pager_strategy(bp);
1447
1448                 /*
1449                  * Wait for the sync I/O to complete.
1450                  */
1451                 bwait(bp, PVM, "swwrt");
1452
1453                 /*
1454                  * Now that we are through with the bp, we can call the
1455                  * normal async completion, which frees everything up.
1456                  */
1457                 swp_pager_async_iodone(bp);
1458         }
1459         VM_OBJECT_WLOCK(object);
1460 }
1461
1462 /*
1463  *      swp_pager_async_iodone:
1464  *
1465  *      Completion routine for asynchronous reads and writes from/to swap.
1466  *      Also called manually by synchronous code to finish up a bp.
1467  *
1468  *      This routine may not sleep.
1469  */
1470 static void
1471 swp_pager_async_iodone(struct buf *bp)
1472 {
1473         int i;
1474         vm_object_t object = NULL;
1475
1476         /*
1477          * report error
1478          */
1479         if (bp->b_ioflags & BIO_ERROR) {
1480                 printf(
1481                     "swap_pager: I/O error - %s failed; blkno %ld,"
1482                         "size %ld, error %d\n",
1483                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1484                     (long)bp->b_blkno,
1485                     (long)bp->b_bcount,
1486                     bp->b_error
1487                 );
1488         }
1489
1490         /*
1491          * remove the mapping for kernel virtual
1492          */
1493         if (buf_mapped(bp))
1494                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1495         else
1496                 bp->b_data = bp->b_kvabase;
1497
1498         if (bp->b_npages) {
1499                 object = bp->b_pages[0]->object;
1500                 VM_OBJECT_WLOCK(object);
1501         }
1502
1503         /*
1504          * cleanup pages.  If an error occurs writing to swap, we are in
1505          * very serious trouble.  If it happens to be a disk error, though,
1506          * we may be able to recover by reassigning the swap later on.  So
1507          * in this case we remove the m->swapblk assignment for the page
1508          * but do not free it in the rlist.  The errornous block(s) are thus
1509          * never reallocated as swap.  Redirty the page and continue.
1510          */
1511         for (i = 0; i < bp->b_npages; ++i) {
1512                 vm_page_t m = bp->b_pages[i];
1513
1514                 m->oflags &= ~VPO_SWAPINPROG;
1515                 if (m->oflags & VPO_SWAPSLEEP) {
1516                         m->oflags &= ~VPO_SWAPSLEEP;
1517                         wakeup(&object->paging_in_progress);
1518                 }
1519
1520                 if (bp->b_ioflags & BIO_ERROR) {
1521                         /*
1522                          * If an error occurs I'd love to throw the swapblk
1523                          * away without freeing it back to swapspace, so it
1524                          * can never be used again.  But I can't from an
1525                          * interrupt.
1526                          */
1527                         if (bp->b_iocmd == BIO_READ) {
1528                                 /*
1529                                  * NOTE: for reads, m->dirty will probably
1530                                  * be overridden by the original caller of
1531                                  * getpages so don't play cute tricks here.
1532                                  */
1533                                 m->valid = 0;
1534                         } else {
1535                                 /*
1536                                  * If a write error occurs, reactivate page
1537                                  * so it doesn't clog the inactive list,
1538                                  * then finish the I/O.
1539                                  */
1540                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1541                                 vm_page_lock(m);
1542                                 vm_page_activate(m);
1543                                 vm_page_unlock(m);
1544                                 vm_page_sunbusy(m);
1545                         }
1546                 } else if (bp->b_iocmd == BIO_READ) {
1547                         /*
1548                          * NOTE: for reads, m->dirty will probably be
1549                          * overridden by the original caller of getpages so
1550                          * we cannot set them in order to free the underlying
1551                          * swap in a low-swap situation.  I don't think we'd
1552                          * want to do that anyway, but it was an optimization
1553                          * that existed in the old swapper for a time before
1554                          * it got ripped out due to precisely this problem.
1555                          */
1556                         KASSERT(!pmap_page_is_mapped(m),
1557                             ("swp_pager_async_iodone: page %p is mapped", m));
1558                         KASSERT(m->dirty == 0,
1559                             ("swp_pager_async_iodone: page %p is dirty", m));
1560
1561                         m->valid = VM_PAGE_BITS_ALL;
1562                         if (i < bp->b_pgbefore ||
1563                             i >= bp->b_npages - bp->b_pgafter)
1564                                 vm_page_readahead_finish(m);
1565                 } else {
1566                         /*
1567                          * For write success, clear the dirty
1568                          * status, then finish the I/O ( which decrements the
1569                          * busy count and possibly wakes waiter's up ).
1570                          * A page is only written to swap after a period of
1571                          * inactivity.  Therefore, we do not expect it to be
1572                          * reused.
1573                          */
1574                         KASSERT(!pmap_page_is_write_mapped(m),
1575                             ("swp_pager_async_iodone: page %p is not write"
1576                             " protected", m));
1577                         vm_page_undirty(m);
1578                         vm_page_lock(m);
1579                         vm_page_deactivate_noreuse(m);
1580                         vm_page_unlock(m);
1581                         vm_page_sunbusy(m);
1582                 }
1583         }
1584
1585         /*
1586          * adjust pip.  NOTE: the original parent may still have its own
1587          * pip refs on the object.
1588          */
1589         if (object != NULL) {
1590                 vm_object_pip_wakeupn(object, bp->b_npages);
1591                 VM_OBJECT_WUNLOCK(object);
1592         }
1593
1594         /*
1595          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1596          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1597          * trigger a KASSERT in relpbuf().
1598          */
1599         if (bp->b_vp) {
1600                     bp->b_vp = NULL;
1601                     bp->b_bufobj = NULL;
1602         }
1603         /*
1604          * release the physical I/O buffer
1605          */
1606         relpbuf(
1607             bp,
1608             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1609                 ((bp->b_flags & B_ASYNC) ?
1610                     &nsw_wcount_async :
1611                     &nsw_wcount_sync
1612                 )
1613             )
1614         );
1615 }
1616
1617 int
1618 swap_pager_nswapdev(void)
1619 {
1620
1621         return (nswapdev);
1622 }
1623
1624 /*
1625  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1626  *
1627  *      This routine dissociates the page at the given index within an object
1628  *      from its backing store, paging it in if it does not reside in memory.
1629  *      If the page is paged in, it is marked dirty and placed in the laundry
1630  *      queue.  The page is marked dirty because it no longer has backing
1631  *      store.  It is placed in the laundry queue because it has not been
1632  *      accessed recently.  Otherwise, it would already reside in memory.
1633  *
1634  *      We also attempt to swap in all other pages in the swap block.
1635  *      However, we only guarantee that the one at the specified index is
1636  *      paged in.
1637  *
1638  *      XXX - The code to page the whole block in doesn't work, so we
1639  *            revert to the one-by-one behavior for now.  Sigh.
1640  */
1641 static inline void
1642 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1643 {
1644         vm_page_t m;
1645
1646         vm_object_pip_add(object, 1);
1647         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1648         if (m->valid == VM_PAGE_BITS_ALL) {
1649                 vm_object_pip_wakeup(object);
1650                 vm_page_dirty(m);
1651 #ifdef INVARIANTS
1652                 vm_page_lock(m);
1653                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1654                         panic("page %p is neither wired nor queued", m);
1655                 vm_page_unlock(m);
1656 #endif
1657                 vm_page_xunbusy(m);
1658                 vm_pager_page_unswapped(m);
1659                 return;
1660         }
1661
1662         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1663                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1664         vm_object_pip_wakeup(object);
1665         vm_page_dirty(m);
1666         vm_page_lock(m);
1667         vm_page_launder(m);
1668         vm_page_unlock(m);
1669         vm_page_xunbusy(m);
1670         vm_pager_page_unswapped(m);
1671 }
1672
1673 /*
1674  *      swap_pager_swapoff:
1675  *
1676  *      Page in all of the pages that have been paged out to the
1677  *      given device.  The corresponding blocks in the bitmap must be
1678  *      marked as allocated and the device must be flagged SW_CLOSING.
1679  *      There may be no processes swapped out to the device.
1680  *
1681  *      This routine may block.
1682  */
1683 static void
1684 swap_pager_swapoff(struct swdevt *sp)
1685 {
1686         struct swblk *sb;
1687         vm_object_t object;
1688         vm_pindex_t pi;
1689         int i, retries;
1690
1691         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1692
1693         retries = 0;
1694 full_rescan:
1695         mtx_lock(&vm_object_list_mtx);
1696         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1697                 if (object->type != OBJT_SWAP)
1698                         continue;
1699                 mtx_unlock(&vm_object_list_mtx);
1700                 /* Depends on type-stability. */
1701                 VM_OBJECT_WLOCK(object);
1702
1703                 /*
1704                  * Dead objects are eventually terminated on their own.
1705                  */
1706                 if ((object->flags & OBJ_DEAD) != 0)
1707                         goto next_obj;
1708
1709                 /*
1710                  * Sync with fences placed after pctrie
1711                  * initialization.  We must not access pctrie below
1712                  * unless we checked that our object is swap and not
1713                  * dead.
1714                  */
1715                 atomic_thread_fence_acq();
1716                 if (object->type != OBJT_SWAP)
1717                         goto next_obj;
1718
1719                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1720                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1721                         pi = sb->p + SWAP_META_PAGES;
1722                         for (i = 0; i < SWAP_META_PAGES; i++) {
1723                                 if (sb->d[i] == SWAPBLK_NONE)
1724                                         continue;
1725                                 if (swp_pager_isondev(sb->d[i], sp))
1726                                         swp_pager_force_pagein(object,
1727                                             sb->p + i);
1728                         }
1729                 }
1730 next_obj:
1731                 VM_OBJECT_WUNLOCK(object);
1732                 mtx_lock(&vm_object_list_mtx);
1733         }
1734         mtx_unlock(&vm_object_list_mtx);
1735
1736         if (sp->sw_used) {
1737                 /*
1738                  * Objects may be locked or paging to the device being
1739                  * removed, so we will miss their pages and need to
1740                  * make another pass.  We have marked this device as
1741                  * SW_CLOSING, so the activity should finish soon.
1742                  */
1743                 retries++;
1744                 if (retries > 100) {
1745                         panic("swapoff: failed to locate %d swap blocks",
1746                             sp->sw_used);
1747                 }
1748                 pause("swpoff", hz / 20);
1749                 goto full_rescan;
1750         }
1751         EVENTHANDLER_INVOKE(swapoff, sp);
1752 }
1753
1754 /************************************************************************
1755  *                              SWAP META DATA                          *
1756  ************************************************************************
1757  *
1758  *      These routines manipulate the swap metadata stored in the
1759  *      OBJT_SWAP object.
1760  *
1761  *      Swap metadata is implemented with a global hash and not directly
1762  *      linked into the object.  Instead the object simply contains
1763  *      appropriate tracking counters.
1764  */
1765
1766 /*
1767  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1768  */
1769 static bool
1770 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1771 {
1772         int i;
1773
1774         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1775         for (i = start; i < limit; i++) {
1776                 if (sb->d[i] != SWAPBLK_NONE)
1777                         return (false);
1778         }
1779         return (true);
1780 }
1781    
1782 /*
1783  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1784  *
1785  *      We first convert the object to a swap object if it is a default
1786  *      object.
1787  *
1788  *      The specified swapblk is added to the object's swap metadata.  If
1789  *      the swapblk is not valid, it is freed instead.  Any previously
1790  *      assigned swapblk is freed.
1791  */
1792 static void
1793 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1794 {
1795         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1796         struct swblk *sb, *sb1;
1797         vm_pindex_t modpi, rdpi;
1798         int error, i;
1799
1800         VM_OBJECT_ASSERT_WLOCKED(object);
1801
1802         /*
1803          * Convert default object to swap object if necessary
1804          */
1805         if (object->type != OBJT_SWAP) {
1806                 pctrie_init(&object->un_pager.swp.swp_blks);
1807
1808                 /*
1809                  * Ensure that swap_pager_swapoff()'s iteration over
1810                  * object_list does not see a garbage pctrie.
1811                  */
1812                 atomic_thread_fence_rel();
1813
1814                 object->type = OBJT_SWAP;
1815                 KASSERT(object->handle == NULL, ("default pager with handle"));
1816         }
1817
1818         rdpi = rounddown(pindex, SWAP_META_PAGES);
1819         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1820         if (sb == NULL) {
1821                 if (swapblk == SWAPBLK_NONE)
1822                         return;
1823                 for (;;) {
1824                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1825                             pageproc ? M_USE_RESERVE : 0));
1826                         if (sb != NULL) {
1827                                 sb->p = rdpi;
1828                                 for (i = 0; i < SWAP_META_PAGES; i++)
1829                                         sb->d[i] = SWAPBLK_NONE;
1830                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1831                                     1, 0))
1832                                         printf("swblk zone ok\n");
1833                                 break;
1834                         }
1835                         VM_OBJECT_WUNLOCK(object);
1836                         if (uma_zone_exhausted(swblk_zone)) {
1837                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1838                                     0, 1))
1839                                         printf("swap blk zone exhausted, "
1840                                             "increase kern.maxswzone\n");
1841                                 vm_pageout_oom(VM_OOM_SWAPZ);
1842                                 pause("swzonxb", 10);
1843                         } else
1844                                 uma_zwait(swblk_zone);
1845                         VM_OBJECT_WLOCK(object);
1846                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1847                             rdpi);
1848                         if (sb != NULL)
1849                                 /*
1850                                  * Somebody swapped out a nearby page,
1851                                  * allocating swblk at the rdpi index,
1852                                  * while we dropped the object lock.
1853                                  */
1854                                 goto allocated;
1855                 }
1856                 for (;;) {
1857                         error = SWAP_PCTRIE_INSERT(
1858                             &object->un_pager.swp.swp_blks, sb);
1859                         if (error == 0) {
1860                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1861                                     1, 0))
1862                                         printf("swpctrie zone ok\n");
1863                                 break;
1864                         }
1865                         VM_OBJECT_WUNLOCK(object);
1866                         if (uma_zone_exhausted(swpctrie_zone)) {
1867                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1868                                     0, 1))
1869                                         printf("swap pctrie zone exhausted, "
1870                                             "increase kern.maxswzone\n");
1871                                 vm_pageout_oom(VM_OOM_SWAPZ);
1872                                 pause("swzonxp", 10);
1873                         } else
1874                                 uma_zwait(swpctrie_zone);
1875                         VM_OBJECT_WLOCK(object);
1876                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1877                             rdpi);
1878                         if (sb1 != NULL) {
1879                                 uma_zfree(swblk_zone, sb);
1880                                 sb = sb1;
1881                                 goto allocated;
1882                         }
1883                 }
1884         }
1885 allocated:
1886         MPASS(sb->p == rdpi);
1887
1888         modpi = pindex % SWAP_META_PAGES;
1889         /* Delete prior contents of metadata. */
1890         if (sb->d[modpi] != SWAPBLK_NONE)
1891                 swp_pager_freeswapspace(sb->d[modpi], 1);
1892         /* Enter block into metadata. */
1893         sb->d[modpi] = swapblk;
1894
1895         /*
1896          * Free the swblk if we end up with the empty page run.
1897          */
1898         if (swapblk == SWAPBLK_NONE &&
1899             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1900                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1901                 uma_zfree(swblk_zone, sb);
1902         }
1903 }
1904
1905 /*
1906  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1907  *
1908  *      The requested range of blocks is freed, with any associated swap
1909  *      returned to the swap bitmap.
1910  *
1911  *      This routine will free swap metadata structures as they are cleaned
1912  *      out.  This routine does *NOT* operate on swap metadata associated
1913  *      with resident pages.
1914  */
1915 static void
1916 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1917 {
1918         struct swblk *sb;
1919         daddr_t first_free, num_free;
1920         vm_pindex_t last;
1921         int i, limit, start;
1922
1923         VM_OBJECT_ASSERT_WLOCKED(object);
1924         if (object->type != OBJT_SWAP || count == 0)
1925                 return;
1926
1927         first_free = SWAPBLK_NONE;
1928         num_free = 0;
1929         last = pindex + count;
1930         for (;;) {
1931                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1932                     rounddown(pindex, SWAP_META_PAGES));
1933                 if (sb == NULL || sb->p >= last)
1934                         break;
1935                 start = pindex > sb->p ? pindex - sb->p : 0;
1936                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1937                     SWAP_META_PAGES;
1938                 for (i = start; i < limit; i++) {
1939                         if (sb->d[i] == SWAPBLK_NONE)
1940                                 continue;
1941                         if (first_free + num_free == sb->d[i])
1942                                 num_free++;
1943                         else {
1944                                 swp_pager_freeswapspace(first_free, num_free);
1945                                 first_free = sb->d[i];
1946                                 num_free = 1;
1947                         }
1948                         sb->d[i] = SWAPBLK_NONE;
1949                 }
1950                 if (swp_pager_swblk_empty(sb, 0, start) &&
1951                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1952                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1953                             sb->p);
1954                         uma_zfree(swblk_zone, sb);
1955                 }
1956                 pindex = sb->p + SWAP_META_PAGES;
1957         }
1958         swp_pager_freeswapspace(first_free, num_free);
1959 }
1960
1961 /*
1962  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1963  *
1964  *      This routine locates and destroys all swap metadata associated with
1965  *      an object.
1966  */
1967 static void
1968 swp_pager_meta_free_all(vm_object_t object)
1969 {
1970         struct swblk *sb;
1971         daddr_t first_free, num_free;
1972         vm_pindex_t pindex;
1973         int i;
1974
1975         VM_OBJECT_ASSERT_WLOCKED(object);
1976         if (object->type != OBJT_SWAP)
1977                 return;
1978
1979         first_free = SWAPBLK_NONE;
1980         num_free = 0;
1981         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1982             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1983                 pindex = sb->p + SWAP_META_PAGES;
1984                 for (i = 0; i < SWAP_META_PAGES; i++) {
1985                         if (sb->d[i] == SWAPBLK_NONE)
1986                                 continue;
1987                         if (first_free + num_free == sb->d[i])
1988                                 num_free++;
1989                         else {
1990                                 swp_pager_freeswapspace(first_free, num_free);
1991                                 first_free = sb->d[i];
1992                                 num_free = 1;
1993                         }
1994                 }
1995                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1996                 uma_zfree(swblk_zone, sb);
1997         }
1998         swp_pager_freeswapspace(first_free, num_free);
1999 }
2000
2001 /*
2002  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2003  *
2004  *      This routine is capable of looking up, popping, or freeing
2005  *      swapblk assignments in the swap meta data or in the vm_page_t.
2006  *      The routine typically returns the swapblk being looked-up, or popped,
2007  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2008  *      was invalid.  This routine will automatically free any invalid
2009  *      meta-data swapblks.
2010  *
2011  *      When acting on a busy resident page and paging is in progress, we
2012  *      have to wait until paging is complete but otherwise can act on the
2013  *      busy page.
2014  *
2015  *      SWM_FREE        remove and free swap block from metadata
2016  *      SWM_POP         remove from meta data but do not free.. pop it out
2017  */
2018 static daddr_t
2019 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2020 {
2021         struct swblk *sb;
2022         daddr_t r1;
2023
2024         if ((flags & (SWM_FREE | SWM_POP)) != 0)
2025                 VM_OBJECT_ASSERT_WLOCKED(object);
2026         else
2027                 VM_OBJECT_ASSERT_LOCKED(object);
2028
2029         /*
2030          * The meta data only exists if the object is OBJT_SWAP
2031          * and even then might not be allocated yet.
2032          */
2033         if (object->type != OBJT_SWAP)
2034                 return (SWAPBLK_NONE);
2035
2036         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2037             rounddown(pindex, SWAP_META_PAGES));
2038         if (sb == NULL)
2039                 return (SWAPBLK_NONE);
2040         r1 = sb->d[pindex % SWAP_META_PAGES];
2041         if (r1 == SWAPBLK_NONE)
2042                 return (SWAPBLK_NONE);
2043         if ((flags & (SWM_FREE | SWM_POP)) != 0) {
2044                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2045                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2046                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2047                             rounddown(pindex, SWAP_META_PAGES));
2048                         uma_zfree(swblk_zone, sb);
2049                 }
2050         }
2051         if ((flags & SWM_FREE) != 0) {
2052                 swp_pager_freeswapspace(r1, 1);
2053                 r1 = SWAPBLK_NONE;
2054         }
2055         return (r1);
2056 }
2057
2058 /*
2059  * Returns the least page index which is greater than or equal to the
2060  * parameter pindex and for which there is a swap block allocated.
2061  * Returns object's size if the object's type is not swap or if there
2062  * are no allocated swap blocks for the object after the requested
2063  * pindex.
2064  */
2065 vm_pindex_t
2066 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2067 {
2068         struct swblk *sb;
2069         int i;
2070
2071         VM_OBJECT_ASSERT_LOCKED(object);
2072         if (object->type != OBJT_SWAP)
2073                 return (object->size);
2074
2075         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2076             rounddown(pindex, SWAP_META_PAGES));
2077         if (sb == NULL)
2078                 return (object->size);
2079         if (sb->p < pindex) {
2080                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2081                         if (sb->d[i] != SWAPBLK_NONE)
2082                                 return (sb->p + i);
2083                 }
2084                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2085                     roundup(pindex, SWAP_META_PAGES));
2086                 if (sb == NULL)
2087                         return (object->size);
2088         }
2089         for (i = 0; i < SWAP_META_PAGES; i++) {
2090                 if (sb->d[i] != SWAPBLK_NONE)
2091                         return (sb->p + i);
2092         }
2093
2094         /*
2095          * We get here if a swblk is present in the trie but it
2096          * doesn't map any blocks.
2097          */
2098         MPASS(0);
2099         return (object->size);
2100 }
2101
2102 /*
2103  * System call swapon(name) enables swapping on device name,
2104  * which must be in the swdevsw.  Return EBUSY
2105  * if already swapping on this device.
2106  */
2107 #ifndef _SYS_SYSPROTO_H_
2108 struct swapon_args {
2109         char *name;
2110 };
2111 #endif
2112
2113 /*
2114  * MPSAFE
2115  */
2116 /* ARGSUSED */
2117 int
2118 sys_swapon(struct thread *td, struct swapon_args *uap)
2119 {
2120         struct vattr attr;
2121         struct vnode *vp;
2122         struct nameidata nd;
2123         int error;
2124
2125         error = priv_check(td, PRIV_SWAPON);
2126         if (error)
2127                 return (error);
2128
2129         sx_xlock(&swdev_syscall_lock);
2130
2131         /*
2132          * Swap metadata may not fit in the KVM if we have physical
2133          * memory of >1GB.
2134          */
2135         if (swblk_zone == NULL) {
2136                 error = ENOMEM;
2137                 goto done;
2138         }
2139
2140         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2141             uap->name, td);
2142         error = namei(&nd);
2143         if (error)
2144                 goto done;
2145
2146         NDFREE(&nd, NDF_ONLY_PNBUF);
2147         vp = nd.ni_vp;
2148
2149         if (vn_isdisk(vp, &error)) {
2150                 error = swapongeom(vp);
2151         } else if (vp->v_type == VREG &&
2152             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2153             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2154                 /*
2155                  * Allow direct swapping to NFS regular files in the same
2156                  * way that nfs_mountroot() sets up diskless swapping.
2157                  */
2158                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2159         }
2160
2161         if (error)
2162                 vrele(vp);
2163 done:
2164         sx_xunlock(&swdev_syscall_lock);
2165         return (error);
2166 }
2167
2168 /*
2169  * Check that the total amount of swap currently configured does not
2170  * exceed half the theoretical maximum.  If it does, print a warning
2171  * message.
2172  */
2173 static void
2174 swapon_check_swzone(void)
2175 {
2176         unsigned long maxpages, npages;
2177
2178         npages = swap_total / PAGE_SIZE;
2179         /* absolute maximum we can handle assuming 100% efficiency */
2180         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2181
2182         /* recommend using no more than half that amount */
2183         if (npages > maxpages / 2) {
2184                 printf("warning: total configured swap (%lu pages) "
2185                     "exceeds maximum recommended amount (%lu pages).\n",
2186                     npages, maxpages / 2);
2187                 printf("warning: increase kern.maxswzone "
2188                     "or reduce amount of swap.\n");
2189         }
2190 }
2191
2192 static void
2193 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2194     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2195 {
2196         struct swdevt *sp, *tsp;
2197         swblk_t dvbase;
2198         u_long mblocks;
2199
2200         /*
2201          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2202          * First chop nblks off to page-align it, then convert.
2203          *
2204          * sw->sw_nblks is in page-sized chunks now too.
2205          */
2206         nblks &= ~(ctodb(1) - 1);
2207         nblks = dbtoc(nblks);
2208
2209         /*
2210          * If we go beyond this, we get overflows in the radix
2211          * tree bitmap code.
2212          */
2213         mblocks = 0x40000000 / BLIST_META_RADIX;
2214         if (nblks > mblocks) {
2215                 printf(
2216     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2217                     mblocks / 1024 / 1024 * PAGE_SIZE);
2218                 nblks = mblocks;
2219         }
2220
2221         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2222         sp->sw_vp = vp;
2223         sp->sw_id = id;
2224         sp->sw_dev = dev;
2225         sp->sw_flags = 0;
2226         sp->sw_nblks = nblks;
2227         sp->sw_used = 0;
2228         sp->sw_strategy = strategy;
2229         sp->sw_close = close;
2230         sp->sw_flags = flags;
2231
2232         sp->sw_blist = blist_create(nblks, M_WAITOK);
2233         /*
2234          * Do not free the first two block in order to avoid overwriting
2235          * any bsd label at the front of the partition
2236          */
2237         blist_free(sp->sw_blist, 2, nblks - 2);
2238
2239         dvbase = 0;
2240         mtx_lock(&sw_dev_mtx);
2241         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2242                 if (tsp->sw_end >= dvbase) {
2243                         /*
2244                          * We put one uncovered page between the devices
2245                          * in order to definitively prevent any cross-device
2246                          * I/O requests
2247                          */
2248                         dvbase = tsp->sw_end + 1;
2249                 }
2250         }
2251         sp->sw_first = dvbase;
2252         sp->sw_end = dvbase + nblks;
2253         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2254         nswapdev++;
2255         swap_pager_avail += nblks - 2;
2256         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2257         swapon_check_swzone();
2258         swp_sizecheck();
2259         mtx_unlock(&sw_dev_mtx);
2260         EVENTHANDLER_INVOKE(swapon, sp);
2261 }
2262
2263 /*
2264  * SYSCALL: swapoff(devname)
2265  *
2266  * Disable swapping on the given device.
2267  *
2268  * XXX: Badly designed system call: it should use a device index
2269  * rather than filename as specification.  We keep sw_vp around
2270  * only to make this work.
2271  */
2272 #ifndef _SYS_SYSPROTO_H_
2273 struct swapoff_args {
2274         char *name;
2275 };
2276 #endif
2277
2278 /*
2279  * MPSAFE
2280  */
2281 /* ARGSUSED */
2282 int
2283 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2284 {
2285         struct vnode *vp;
2286         struct nameidata nd;
2287         struct swdevt *sp;
2288         int error;
2289
2290         error = priv_check(td, PRIV_SWAPOFF);
2291         if (error)
2292                 return (error);
2293
2294         sx_xlock(&swdev_syscall_lock);
2295
2296         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2297             td);
2298         error = namei(&nd);
2299         if (error)
2300                 goto done;
2301         NDFREE(&nd, NDF_ONLY_PNBUF);
2302         vp = nd.ni_vp;
2303
2304         mtx_lock(&sw_dev_mtx);
2305         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2306                 if (sp->sw_vp == vp)
2307                         break;
2308         }
2309         mtx_unlock(&sw_dev_mtx);
2310         if (sp == NULL) {
2311                 error = EINVAL;
2312                 goto done;
2313         }
2314         error = swapoff_one(sp, td->td_ucred);
2315 done:
2316         sx_xunlock(&swdev_syscall_lock);
2317         return (error);
2318 }
2319
2320 static int
2321 swapoff_one(struct swdevt *sp, struct ucred *cred)
2322 {
2323         u_long nblks;
2324 #ifdef MAC
2325         int error;
2326 #endif
2327
2328         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2329 #ifdef MAC
2330         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2331         error = mac_system_check_swapoff(cred, sp->sw_vp);
2332         (void) VOP_UNLOCK(sp->sw_vp, 0);
2333         if (error != 0)
2334                 return (error);
2335 #endif
2336         nblks = sp->sw_nblks;
2337
2338         /*
2339          * We can turn off this swap device safely only if the
2340          * available virtual memory in the system will fit the amount
2341          * of data we will have to page back in, plus an epsilon so
2342          * the system doesn't become critically low on swap space.
2343          */
2344         if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat)
2345                 return (ENOMEM);
2346
2347         /*
2348          * Prevent further allocations on this device.
2349          */
2350         mtx_lock(&sw_dev_mtx);
2351         sp->sw_flags |= SW_CLOSING;
2352         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2353         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2354         mtx_unlock(&sw_dev_mtx);
2355
2356         /*
2357          * Page in the contents of the device and close it.
2358          */
2359         swap_pager_swapoff(sp);
2360
2361         sp->sw_close(curthread, sp);
2362         mtx_lock(&sw_dev_mtx);
2363         sp->sw_id = NULL;
2364         TAILQ_REMOVE(&swtailq, sp, sw_list);
2365         nswapdev--;
2366         if (nswapdev == 0) {
2367                 swap_pager_full = 2;
2368                 swap_pager_almost_full = 1;
2369         }
2370         if (swdevhd == sp)
2371                 swdevhd = NULL;
2372         mtx_unlock(&sw_dev_mtx);
2373         blist_destroy(sp->sw_blist);
2374         free(sp, M_VMPGDATA);
2375         return (0);
2376 }
2377
2378 void
2379 swapoff_all(void)
2380 {
2381         struct swdevt *sp, *spt;
2382         const char *devname;
2383         int error;
2384
2385         sx_xlock(&swdev_syscall_lock);
2386
2387         mtx_lock(&sw_dev_mtx);
2388         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2389                 mtx_unlock(&sw_dev_mtx);
2390                 if (vn_isdisk(sp->sw_vp, NULL))
2391                         devname = devtoname(sp->sw_vp->v_rdev);
2392                 else
2393                         devname = "[file]";
2394                 error = swapoff_one(sp, thread0.td_ucred);
2395                 if (error != 0) {
2396                         printf("Cannot remove swap device %s (error=%d), "
2397                             "skipping.\n", devname, error);
2398                 } else if (bootverbose) {
2399                         printf("Swap device %s removed.\n", devname);
2400                 }
2401                 mtx_lock(&sw_dev_mtx);
2402         }
2403         mtx_unlock(&sw_dev_mtx);
2404
2405         sx_xunlock(&swdev_syscall_lock);
2406 }
2407
2408 void
2409 swap_pager_status(int *total, int *used)
2410 {
2411         struct swdevt *sp;
2412
2413         *total = 0;
2414         *used = 0;
2415         mtx_lock(&sw_dev_mtx);
2416         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2417                 *total += sp->sw_nblks;
2418                 *used += sp->sw_used;
2419         }
2420         mtx_unlock(&sw_dev_mtx);
2421 }
2422
2423 int
2424 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2425 {
2426         struct swdevt *sp;
2427         const char *tmp_devname;
2428         int error, n;
2429
2430         n = 0;
2431         error = ENOENT;
2432         mtx_lock(&sw_dev_mtx);
2433         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2434                 if (n != name) {
2435                         n++;
2436                         continue;
2437                 }
2438                 xs->xsw_version = XSWDEV_VERSION;
2439                 xs->xsw_dev = sp->sw_dev;
2440                 xs->xsw_flags = sp->sw_flags;
2441                 xs->xsw_nblks = sp->sw_nblks;
2442                 xs->xsw_used = sp->sw_used;
2443                 if (devname != NULL) {
2444                         if (vn_isdisk(sp->sw_vp, NULL))
2445                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2446                         else
2447                                 tmp_devname = "[file]";
2448                         strncpy(devname, tmp_devname, len);
2449                 }
2450                 error = 0;
2451                 break;
2452         }
2453         mtx_unlock(&sw_dev_mtx);
2454         return (error);
2455 }
2456
2457 #if defined(COMPAT_FREEBSD11)
2458 #define XSWDEV_VERSION_11       1
2459 struct xswdev11 {
2460         u_int   xsw_version;
2461         uint32_t xsw_dev;
2462         int     xsw_flags;
2463         int     xsw_nblks;
2464         int     xsw_used;
2465 };
2466 #endif
2467
2468 static int
2469 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2470 {
2471         struct xswdev xs;
2472 #if defined(COMPAT_FREEBSD11)
2473         struct xswdev11 xs11;
2474 #endif
2475         int error;
2476
2477         if (arg2 != 1)                  /* name length */
2478                 return (EINVAL);
2479         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2480         if (error != 0)
2481                 return (error);
2482 #if defined(COMPAT_FREEBSD11)
2483         if (req->oldlen == sizeof(xs11)) {
2484                 xs11.xsw_version = XSWDEV_VERSION_11;
2485                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2486                 xs11.xsw_flags = xs.xsw_flags;
2487                 xs11.xsw_nblks = xs.xsw_nblks;
2488                 xs11.xsw_used = xs.xsw_used;
2489                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2490         } else
2491 #endif
2492                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2493         return (error);
2494 }
2495
2496 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2497     "Number of swap devices");
2498 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2499     sysctl_vm_swap_info,
2500     "Swap statistics by device");
2501
2502 /*
2503  * Count the approximate swap usage in pages for a vmspace.  The
2504  * shadowed or not yet copied on write swap blocks are not accounted.
2505  * The map must be locked.
2506  */
2507 long
2508 vmspace_swap_count(struct vmspace *vmspace)
2509 {
2510         vm_map_t map;
2511         vm_map_entry_t cur;
2512         vm_object_t object;
2513         struct swblk *sb;
2514         vm_pindex_t e, pi;
2515         long count;
2516         int i;
2517
2518         map = &vmspace->vm_map;
2519         count = 0;
2520
2521         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2522                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2523                         continue;
2524                 object = cur->object.vm_object;
2525                 if (object == NULL || object->type != OBJT_SWAP)
2526                         continue;
2527                 VM_OBJECT_RLOCK(object);
2528                 if (object->type != OBJT_SWAP)
2529                         goto unlock;
2530                 pi = OFF_TO_IDX(cur->offset);
2531                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2532                 for (;; pi = sb->p + SWAP_META_PAGES) {
2533                         sb = SWAP_PCTRIE_LOOKUP_GE(
2534                             &object->un_pager.swp.swp_blks, pi);
2535                         if (sb == NULL || sb->p >= e)
2536                                 break;
2537                         for (i = 0; i < SWAP_META_PAGES; i++) {
2538                                 if (sb->p + i < e &&
2539                                     sb->d[i] != SWAPBLK_NONE)
2540                                         count++;
2541                         }
2542                 }
2543 unlock:
2544                 VM_OBJECT_RUNLOCK(object);
2545         }
2546         return (count);
2547 }
2548
2549 /*
2550  * GEOM backend
2551  *
2552  * Swapping onto disk devices.
2553  *
2554  */
2555
2556 static g_orphan_t swapgeom_orphan;
2557
2558 static struct g_class g_swap_class = {
2559         .name = "SWAP",
2560         .version = G_VERSION,
2561         .orphan = swapgeom_orphan,
2562 };
2563
2564 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2565
2566
2567 static void
2568 swapgeom_close_ev(void *arg, int flags)
2569 {
2570         struct g_consumer *cp;
2571
2572         cp = arg;
2573         g_access(cp, -1, -1, 0);
2574         g_detach(cp);
2575         g_destroy_consumer(cp);
2576 }
2577
2578 /*
2579  * Add a reference to the g_consumer for an inflight transaction.
2580  */
2581 static void
2582 swapgeom_acquire(struct g_consumer *cp)
2583 {
2584
2585         mtx_assert(&sw_dev_mtx, MA_OWNED);
2586         cp->index++;
2587 }
2588
2589 /*
2590  * Remove a reference from the g_consumer.  Post a close event if all
2591  * references go away, since the function might be called from the
2592  * biodone context.
2593  */
2594 static void
2595 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2596 {
2597
2598         mtx_assert(&sw_dev_mtx, MA_OWNED);
2599         cp->index--;
2600         if (cp->index == 0) {
2601                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2602                         sp->sw_id = NULL;
2603         }
2604 }
2605
2606 static void
2607 swapgeom_done(struct bio *bp2)
2608 {
2609         struct swdevt *sp;
2610         struct buf *bp;
2611         struct g_consumer *cp;
2612
2613         bp = bp2->bio_caller2;
2614         cp = bp2->bio_from;
2615         bp->b_ioflags = bp2->bio_flags;
2616         if (bp2->bio_error)
2617                 bp->b_ioflags |= BIO_ERROR;
2618         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2619         bp->b_error = bp2->bio_error;
2620         bufdone(bp);
2621         sp = bp2->bio_caller1;
2622         mtx_lock(&sw_dev_mtx);
2623         swapgeom_release(cp, sp);
2624         mtx_unlock(&sw_dev_mtx);
2625         g_destroy_bio(bp2);
2626 }
2627
2628 static void
2629 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2630 {
2631         struct bio *bio;
2632         struct g_consumer *cp;
2633
2634         mtx_lock(&sw_dev_mtx);
2635         cp = sp->sw_id;
2636         if (cp == NULL) {
2637                 mtx_unlock(&sw_dev_mtx);
2638                 bp->b_error = ENXIO;
2639                 bp->b_ioflags |= BIO_ERROR;
2640                 bufdone(bp);
2641                 return;
2642         }
2643         swapgeom_acquire(cp);
2644         mtx_unlock(&sw_dev_mtx);
2645         if (bp->b_iocmd == BIO_WRITE)
2646                 bio = g_new_bio();
2647         else
2648                 bio = g_alloc_bio();
2649         if (bio == NULL) {
2650                 mtx_lock(&sw_dev_mtx);
2651                 swapgeom_release(cp, sp);
2652                 mtx_unlock(&sw_dev_mtx);
2653                 bp->b_error = ENOMEM;
2654                 bp->b_ioflags |= BIO_ERROR;
2655                 bufdone(bp);
2656                 return;
2657         }
2658
2659         bio->bio_caller1 = sp;
2660         bio->bio_caller2 = bp;
2661         bio->bio_cmd = bp->b_iocmd;
2662         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2663         bio->bio_length = bp->b_bcount;
2664         bio->bio_done = swapgeom_done;
2665         if (!buf_mapped(bp)) {
2666                 bio->bio_ma = bp->b_pages;
2667                 bio->bio_data = unmapped_buf;
2668                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2669                 bio->bio_ma_n = bp->b_npages;
2670                 bio->bio_flags |= BIO_UNMAPPED;
2671         } else {
2672                 bio->bio_data = bp->b_data;
2673                 bio->bio_ma = NULL;
2674         }
2675         g_io_request(bio, cp);
2676         return;
2677 }
2678
2679 static void
2680 swapgeom_orphan(struct g_consumer *cp)
2681 {
2682         struct swdevt *sp;
2683         int destroy;
2684
2685         mtx_lock(&sw_dev_mtx);
2686         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2687                 if (sp->sw_id == cp) {
2688                         sp->sw_flags |= SW_CLOSING;
2689                         break;
2690                 }
2691         }
2692         /*
2693          * Drop reference we were created with. Do directly since we're in a
2694          * special context where we don't have to queue the call to
2695          * swapgeom_close_ev().
2696          */
2697         cp->index--;
2698         destroy = ((sp != NULL) && (cp->index == 0));
2699         if (destroy)
2700                 sp->sw_id = NULL;
2701         mtx_unlock(&sw_dev_mtx);
2702         if (destroy)
2703                 swapgeom_close_ev(cp, 0);
2704 }
2705
2706 static void
2707 swapgeom_close(struct thread *td, struct swdevt *sw)
2708 {
2709         struct g_consumer *cp;
2710
2711         mtx_lock(&sw_dev_mtx);
2712         cp = sw->sw_id;
2713         sw->sw_id = NULL;
2714         mtx_unlock(&sw_dev_mtx);
2715
2716         /*
2717          * swapgeom_close() may be called from the biodone context,
2718          * where we cannot perform topology changes.  Delegate the
2719          * work to the events thread.
2720          */
2721         if (cp != NULL)
2722                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2723 }
2724
2725 static int
2726 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2727 {
2728         struct g_provider *pp;
2729         struct g_consumer *cp;
2730         static struct g_geom *gp;
2731         struct swdevt *sp;
2732         u_long nblks;
2733         int error;
2734
2735         pp = g_dev_getprovider(dev);
2736         if (pp == NULL)
2737                 return (ENODEV);
2738         mtx_lock(&sw_dev_mtx);
2739         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2740                 cp = sp->sw_id;
2741                 if (cp != NULL && cp->provider == pp) {
2742                         mtx_unlock(&sw_dev_mtx);
2743                         return (EBUSY);
2744                 }
2745         }
2746         mtx_unlock(&sw_dev_mtx);
2747         if (gp == NULL)
2748                 gp = g_new_geomf(&g_swap_class, "swap");
2749         cp = g_new_consumer(gp);
2750         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2751         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2752         g_attach(cp, pp);
2753         /*
2754          * XXX: Every time you think you can improve the margin for
2755          * footshooting, somebody depends on the ability to do so:
2756          * savecore(8) wants to write to our swapdev so we cannot
2757          * set an exclusive count :-(
2758          */
2759         error = g_access(cp, 1, 1, 0);
2760         if (error != 0) {
2761                 g_detach(cp);
2762                 g_destroy_consumer(cp);
2763                 return (error);
2764         }
2765         nblks = pp->mediasize / DEV_BSIZE;
2766         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2767             swapgeom_close, dev2udev(dev),
2768             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2769         return (0);
2770 }
2771
2772 static int
2773 swapongeom(struct vnode *vp)
2774 {
2775         int error;
2776
2777         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2778         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2779                 error = ENOENT;
2780         } else {
2781                 g_topology_lock();
2782                 error = swapongeom_locked(vp->v_rdev, vp);
2783                 g_topology_unlock();
2784         }
2785         VOP_UNLOCK(vp, 0);
2786         return (error);
2787 }
2788
2789 /*
2790  * VNODE backend
2791  *
2792  * This is used mainly for network filesystem (read: probably only tested
2793  * with NFS) swapfiles.
2794  *
2795  */
2796
2797 static void
2798 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2799 {
2800         struct vnode *vp2;
2801
2802         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2803
2804         vp2 = sp->sw_id;
2805         vhold(vp2);
2806         if (bp->b_iocmd == BIO_WRITE) {
2807                 if (bp->b_bufobj)
2808                         bufobj_wdrop(bp->b_bufobj);
2809                 bufobj_wref(&vp2->v_bufobj);
2810         }
2811         if (bp->b_bufobj != &vp2->v_bufobj)
2812                 bp->b_bufobj = &vp2->v_bufobj;
2813         bp->b_vp = vp2;
2814         bp->b_iooffset = dbtob(bp->b_blkno);
2815         bstrategy(bp);
2816         return;
2817 }
2818
2819 static void
2820 swapdev_close(struct thread *td, struct swdevt *sp)
2821 {
2822
2823         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2824         vrele(sp->sw_vp);
2825 }
2826
2827
2828 static int
2829 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2830 {
2831         struct swdevt *sp;
2832         int error;
2833
2834         if (nblks == 0)
2835                 return (ENXIO);
2836         mtx_lock(&sw_dev_mtx);
2837         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2838                 if (sp->sw_id == vp) {
2839                         mtx_unlock(&sw_dev_mtx);
2840                         return (EBUSY);
2841                 }
2842         }
2843         mtx_unlock(&sw_dev_mtx);
2844
2845         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2846 #ifdef MAC
2847         error = mac_system_check_swapon(td->td_ucred, vp);
2848         if (error == 0)
2849 #endif
2850                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2851         (void) VOP_UNLOCK(vp, 0);
2852         if (error)
2853                 return (error);
2854
2855         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2856             NODEV, 0);
2857         return (0);
2858 }
2859
2860 static int
2861 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2862 {
2863         int error, new, n;
2864
2865         new = nsw_wcount_async_max;
2866         error = sysctl_handle_int(oidp, &new, 0, req);
2867         if (error != 0 || req->newptr == NULL)
2868                 return (error);
2869
2870         if (new > nswbuf / 2 || new < 1)
2871                 return (EINVAL);
2872
2873         mtx_lock(&pbuf_mtx);
2874         while (nsw_wcount_async_max != new) {
2875                 /*
2876                  * Adjust difference.  If the current async count is too low,
2877                  * we will need to sqeeze our update slowly in.  Sleep with a
2878                  * higher priority than getpbuf() to finish faster.
2879                  */
2880                 n = new - nsw_wcount_async_max;
2881                 if (nsw_wcount_async + n >= 0) {
2882                         nsw_wcount_async += n;
2883                         nsw_wcount_async_max += n;
2884                         wakeup(&nsw_wcount_async);
2885                 } else {
2886                         nsw_wcount_async_max -= nsw_wcount_async;
2887                         nsw_wcount_async = 0;
2888                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2889                             "swpsysctl", 0);
2890                 }
2891         }
2892         mtx_unlock(&pbuf_mtx);
2893
2894         return (0);
2895 }