]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Add pgo_getvp method
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static __exclusive_cache_line u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A", 
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A", 
167     "Total amount of available swap storage.");
168
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189
190 /* bits from overcommit */
191 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
192 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
193 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
194
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198         uint64_t newval;
199         u_long value = *(u_long *)arg1;
200
201         newval = ((uint64_t)value) << PAGE_SHIFT;
202         return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204
205 static bool
206 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
207 {
208         struct uidinfo *uip;
209         u_long prev;
210
211         uip = cred->cr_ruidinfo;
212
213         prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
214         if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215             prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
216             priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
217                 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
218                 KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
219                 return (false);
220         }
221         return (true);
222 }
223
224 static void
225 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
226 {
227         struct uidinfo *uip;
228 #ifdef INVARIANTS
229         u_long prev;
230 #endif
231
232         uip = cred->cr_ruidinfo;
233
234 #ifdef INVARIANTS
235         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
236         KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
237 #else
238         atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245         struct uidinfo *uip;
246
247         uip = cred->cr_ruidinfo;
248         atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254
255         return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261         u_long r, s, prev, pincr;
262 #ifdef RACCT
263         int error;
264 #endif
265         int oc;
266         static int curfail;
267         static struct timeval lastfail;
268
269         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
270             (uintmax_t)incr));
271
272 #ifdef RACCT
273         if (RACCT_ENABLED()) {
274                 PROC_LOCK(curproc);
275                 error = racct_add(curproc, RACCT_SWAP, incr);
276                 PROC_UNLOCK(curproc);
277                 if (error != 0)
278                         return (false);
279         }
280 #endif
281
282         pincr = atop(incr);
283         prev = atomic_fetchadd_long(&swap_reserved, pincr);
284         r = prev + pincr;
285         s = swap_total;
286         oc = atomic_load_int(&overcommit);
287         if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288                 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289                     vm_wire_count();
290         }
291         if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292             priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
295                 goto out_error;
296         }
297
298         if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
299                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
301                 goto out_error;
302         }
303
304         return (true);
305
306 out_error:
307         if (ppsratecheck(&lastfail, &curfail, 1)) {
308                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
309                     cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
310         }
311 #ifdef RACCT
312         if (RACCT_ENABLED()) {
313                 PROC_LOCK(curproc);
314                 racct_sub(curproc, RACCT_SWAP, incr);
315                 PROC_UNLOCK(curproc);
316         }
317 #endif
318
319         return (false);
320 }
321
322 void
323 swap_reserve_force(vm_ooffset_t incr)
324 {
325         u_long pincr;
326
327         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
328             (uintmax_t)incr));
329
330 #ifdef RACCT
331         if (RACCT_ENABLED()) {
332                 PROC_LOCK(curproc);
333                 racct_add_force(curproc, RACCT_SWAP, incr);
334                 PROC_UNLOCK(curproc);
335         }
336 #endif
337         pincr = atop(incr);
338         atomic_add_long(&swap_reserved, pincr);
339         swap_reserve_force_rlimit(pincr, curthread->td_ucred);
340 }
341
342 void
343 swap_release(vm_ooffset_t decr)
344 {
345         struct ucred *cred;
346
347         PROC_LOCK(curproc);
348         cred = curproc->p_ucred;
349         swap_release_by_cred(decr, cred);
350         PROC_UNLOCK(curproc);
351 }
352
353 void
354 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
355 {
356         u_long pdecr;
357 #ifdef INVARIANTS
358         u_long prev;
359 #endif
360
361         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
362             (uintmax_t)decr));
363
364         pdecr = atop(decr);
365 #ifdef INVARIANTS
366         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
367         KASSERT(prev >= pdecr, ("swap_reserved < decr"));
368 #else
369         atomic_subtract_long(&swap_reserved, pdecr);
370 #endif
371
372         swap_release_by_cred_rlimit(pdecr, cred);
373 #ifdef RACCT
374         if (racct_enable)
375                 racct_sub_cred(cred, RACCT_SWAP, decr);
376 #endif
377 }
378
379 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
380 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
381 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
382 static int nsw_wcount_async;    /* limit async write buffers */
383 static int nsw_wcount_async_max;/* assigned maximum                     */
384 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
385
386 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
387 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
388     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
389     "Maximum running async swap ops");
390 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
391 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
392     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
393     "Swap Fragmentation Info");
394
395 static struct sx sw_alloc_sx;
396
397 /*
398  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
399  * of searching a named list by hashing it just a little.
400  */
401
402 #define NOBJLISTS               8
403
404 #define NOBJLIST(handle)        \
405         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
406
407 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
408 static uma_zone_t swwbuf_zone;
409 static uma_zone_t swrbuf_zone;
410 static uma_zone_t swblk_zone;
411 static uma_zone_t swpctrie_zone;
412
413 /*
414  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
415  * calls hooked from other parts of the VM system and do not appear here.
416  * (see vm/swap_pager.h).
417  */
418 static vm_object_t
419                 swap_pager_alloc(void *handle, vm_ooffset_t size,
420                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
421 static void     swap_pager_dealloc(vm_object_t object);
422 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
423     int *);
424 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
425     int *, pgo_getpages_iodone_t, void *);
426 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
427 static boolean_t
428                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
429 static void     swap_pager_init(void);
430 static void     swap_pager_unswapped(vm_page_t);
431 static void     swap_pager_swapoff(struct swdevt *sp);
432 static void     swap_pager_update_writecount(vm_object_t object,
433     vm_offset_t start, vm_offset_t end);
434 static void     swap_pager_release_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 static void     swap_pager_set_writeable_dirty(vm_object_t object);
437 static bool     swap_pager_mightbedirty(vm_object_t object);
438 static void     swap_pager_getvp(vm_object_t object, struct vnode **vpp,
439     bool *vp_heldp);
440
441 struct pagerops swappagerops = {
442         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
443         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object */
444         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object */
445         .pgo_getpages = swap_pager_getpages,    /* pagein */
446         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
447         .pgo_putpages = swap_pager_putpages,    /* pageout */
448         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page */
449         .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
450         .pgo_update_writecount = swap_pager_update_writecount,
451         .pgo_release_writecount = swap_pager_release_writecount,
452         .pgo_set_writeable_dirty = swap_pager_set_writeable_dirty,
453         .pgo_mightbedirty = swap_pager_mightbedirty,
454         .pgo_getvp = swap_pager_getvp,
455 };
456
457 /*
458  * swap_*() routines are externally accessible.  swp_*() routines are
459  * internal.
460  */
461 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
462 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
463
464 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
465     "Maximum size of a swap block in pages");
466
467 static void     swp_sizecheck(void);
468 static void     swp_pager_async_iodone(struct buf *bp);
469 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
470 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
471 static int      swapongeom(struct vnode *);
472 static int      swaponvp(struct thread *, struct vnode *, u_long);
473 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
474
475 /*
476  * Swap bitmap functions
477  */
478 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
479 static daddr_t  swp_pager_getswapspace(int *npages);
480
481 /*
482  * Metadata functions
483  */
484 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
485 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
486 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
487     vm_pindex_t pindex, vm_pindex_t count);
488 static void swp_pager_meta_free_all(vm_object_t);
489 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
490
491 static void
492 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
493 {
494
495         *start = SWAPBLK_NONE;
496         *num = 0;
497 }
498
499 static void
500 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
501 {
502
503         if (*start + *num == addr) {
504                 (*num)++;
505         } else {
506                 swp_pager_freeswapspace(*start, *num);
507                 *start = addr;
508                 *num = 1;
509         }
510 }
511
512 static void *
513 swblk_trie_alloc(struct pctrie *ptree)
514 {
515
516         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
517             M_USE_RESERVE : 0)));
518 }
519
520 static void
521 swblk_trie_free(struct pctrie *ptree, void *node)
522 {
523
524         uma_zfree(swpctrie_zone, node);
525 }
526
527 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
528
529 /*
530  * SWP_SIZECHECK() -    update swap_pager_full indication
531  *
532  *      update the swap_pager_almost_full indication and warn when we are
533  *      about to run out of swap space, using lowat/hiwat hysteresis.
534  *
535  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
536  *
537  *      No restrictions on call
538  *      This routine may not block.
539  */
540 static void
541 swp_sizecheck(void)
542 {
543
544         if (swap_pager_avail < nswap_lowat) {
545                 if (swap_pager_almost_full == 0) {
546                         printf("swap_pager: out of swap space\n");
547                         swap_pager_almost_full = 1;
548                 }
549         } else {
550                 swap_pager_full = 0;
551                 if (swap_pager_avail > nswap_hiwat)
552                         swap_pager_almost_full = 0;
553         }
554 }
555
556 /*
557  * SWAP_PAGER_INIT() -  initialize the swap pager!
558  *
559  *      Expected to be started from system init.  NOTE:  This code is run
560  *      before much else so be careful what you depend on.  Most of the VM
561  *      system has yet to be initialized at this point.
562  */
563 static void
564 swap_pager_init(void)
565 {
566         /*
567          * Initialize object lists
568          */
569         int i;
570
571         for (i = 0; i < NOBJLISTS; ++i)
572                 TAILQ_INIT(&swap_pager_object_list[i]);
573         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
574         sx_init(&sw_alloc_sx, "swspsx");
575         sx_init(&swdev_syscall_lock, "swsysc");
576 }
577
578 /*
579  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
580  *
581  *      Expected to be started from pageout process once, prior to entering
582  *      its main loop.
583  */
584 void
585 swap_pager_swap_init(void)
586 {
587         unsigned long n, n2;
588
589         /*
590          * Number of in-transit swap bp operations.  Don't
591          * exhaust the pbufs completely.  Make sure we
592          * initialize workable values (0 will work for hysteresis
593          * but it isn't very efficient).
594          *
595          * The nsw_cluster_max is constrained by the bp->b_pages[]
596          * array, which has maxphys / PAGE_SIZE entries, and our locally
597          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
598          * constrained by the swap device interleave stripe size.
599          *
600          * Currently we hardwire nsw_wcount_async to 4.  This limit is
601          * designed to prevent other I/O from having high latencies due to
602          * our pageout I/O.  The value 4 works well for one or two active swap
603          * devices but is probably a little low if you have more.  Even so,
604          * a higher value would probably generate only a limited improvement
605          * with three or four active swap devices since the system does not
606          * typically have to pageout at extreme bandwidths.   We will want
607          * at least 2 per swap devices, and 4 is a pretty good value if you
608          * have one NFS swap device due to the command/ack latency over NFS.
609          * So it all works out pretty well.
610          */
611         nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
612
613         nsw_wcount_async = 4;
614         nsw_wcount_async_max = nsw_wcount_async;
615         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
616
617         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
618         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
619
620         /*
621          * Initialize our zone, taking the user's requested size or
622          * estimating the number we need based on the number of pages
623          * in the system.
624          */
625         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
626             vm_cnt.v_page_count / 2;
627         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
628             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
629         if (swpctrie_zone == NULL)
630                 panic("failed to create swap pctrie zone.");
631         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
632             NULL, NULL, _Alignof(struct swblk) - 1, 0);
633         if (swblk_zone == NULL)
634                 panic("failed to create swap blk zone.");
635         n2 = n;
636         do {
637                 if (uma_zone_reserve_kva(swblk_zone, n))
638                         break;
639                 /*
640                  * if the allocation failed, try a zone two thirds the
641                  * size of the previous attempt.
642                  */
643                 n -= ((n + 2) / 3);
644         } while (n > 0);
645
646         /*
647          * Often uma_zone_reserve_kva() cannot reserve exactly the
648          * requested size.  Account for the difference when
649          * calculating swap_maxpages.
650          */
651         n = uma_zone_get_max(swblk_zone);
652
653         if (n < n2)
654                 printf("Swap blk zone entries changed from %lu to %lu.\n",
655                     n2, n);
656         /* absolute maximum we can handle assuming 100% efficiency */
657         swap_maxpages = n * SWAP_META_PAGES;
658         swzone = n * sizeof(struct swblk);
659         if (!uma_zone_reserve_kva(swpctrie_zone, n))
660                 printf("Cannot reserve swap pctrie zone, "
661                     "reduce kern.maxswzone.\n");
662 }
663
664 static vm_object_t
665 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
666     vm_ooffset_t offset)
667 {
668         vm_object_t object;
669
670         if (cred != NULL) {
671                 if (!swap_reserve_by_cred(size, cred))
672                         return (NULL);
673                 crhold(cred);
674         }
675
676         /*
677          * The un_pager.swp.swp_blks trie is initialized by
678          * vm_object_allocate() to ensure the correct order of
679          * visibility to other threads.
680          */
681         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
682             PAGE_MASK + size));
683
684         object->un_pager.swp.writemappings = 0;
685         object->handle = handle;
686         if (cred != NULL) {
687                 object->cred = cred;
688                 object->charge = size;
689         }
690         return (object);
691 }
692
693 /*
694  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
695  *                      its metadata structures.
696  *
697  *      This routine is called from the mmap and fork code to create a new
698  *      OBJT_SWAP object.
699  *
700  *      This routine must ensure that no live duplicate is created for
701  *      the named object request, which is protected against by
702  *      holding the sw_alloc_sx lock in case handle != NULL.
703  */
704 static vm_object_t
705 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
706     vm_ooffset_t offset, struct ucred *cred)
707 {
708         vm_object_t object;
709
710         if (handle != NULL) {
711                 /*
712                  * Reference existing named region or allocate new one.  There
713                  * should not be a race here against swp_pager_meta_build()
714                  * as called from vm_page_remove() in regards to the lookup
715                  * of the handle.
716                  */
717                 sx_xlock(&sw_alloc_sx);
718                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
719                 if (object == NULL) {
720                         object = swap_pager_alloc_init(handle, cred, size,
721                             offset);
722                         if (object != NULL) {
723                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
724                                     object, pager_object_list);
725                         }
726                 }
727                 sx_xunlock(&sw_alloc_sx);
728         } else {
729                 object = swap_pager_alloc_init(handle, cred, size, offset);
730         }
731         return (object);
732 }
733
734 /*
735  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
736  *
737  *      The swap backing for the object is destroyed.  The code is
738  *      designed such that we can reinstantiate it later, but this
739  *      routine is typically called only when the entire object is
740  *      about to be destroyed.
741  *
742  *      The object must be locked.
743  */
744 static void
745 swap_pager_dealloc(vm_object_t object)
746 {
747
748         VM_OBJECT_ASSERT_WLOCKED(object);
749         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
750
751         /*
752          * Remove from list right away so lookups will fail if we block for
753          * pageout completion.
754          */
755         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
756                 VM_OBJECT_WUNLOCK(object);
757                 sx_xlock(&sw_alloc_sx);
758                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
759                     pager_object_list);
760                 sx_xunlock(&sw_alloc_sx);
761                 VM_OBJECT_WLOCK(object);
762         }
763
764         vm_object_pip_wait(object, "swpdea");
765
766         /*
767          * Free all remaining metadata.  We only bother to free it from
768          * the swap meta data.  We do not attempt to free swapblk's still
769          * associated with vm_page_t's for this object.  We do not care
770          * if paging is still in progress on some objects.
771          */
772         swp_pager_meta_free_all(object);
773         object->handle = NULL;
774         object->type = OBJT_DEAD;
775 }
776
777 /************************************************************************
778  *                      SWAP PAGER BITMAP ROUTINES                      *
779  ************************************************************************/
780
781 /*
782  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
783  *
784  *      Allocate swap for up to the requested number of pages.  The
785  *      starting swap block number (a page index) is returned or
786  *      SWAPBLK_NONE if the allocation failed.
787  *
788  *      Also has the side effect of advising that somebody made a mistake
789  *      when they configured swap and didn't configure enough.
790  *
791  *      This routine may not sleep.
792  *
793  *      We allocate in round-robin fashion from the configured devices.
794  */
795 static daddr_t
796 swp_pager_getswapspace(int *io_npages)
797 {
798         daddr_t blk;
799         struct swdevt *sp;
800         int mpages, npages;
801
802         KASSERT(*io_npages >= 1,
803             ("%s: npages not positive", __func__));
804         blk = SWAPBLK_NONE;
805         mpages = *io_npages;
806         npages = imin(BLIST_MAX_ALLOC, mpages);
807         mtx_lock(&sw_dev_mtx);
808         sp = swdevhd;
809         while (!TAILQ_EMPTY(&swtailq)) {
810                 if (sp == NULL)
811                         sp = TAILQ_FIRST(&swtailq);
812                 if ((sp->sw_flags & SW_CLOSING) == 0)
813                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
814                 if (blk != SWAPBLK_NONE)
815                         break;
816                 sp = TAILQ_NEXT(sp, sw_list);
817                 if (swdevhd == sp) {
818                         if (npages == 1)
819                                 break;
820                         mpages = npages - 1;
821                         npages >>= 1;
822                 }
823         }
824         if (blk != SWAPBLK_NONE) {
825                 *io_npages = npages;
826                 blk += sp->sw_first;
827                 sp->sw_used += npages;
828                 swap_pager_avail -= npages;
829                 swp_sizecheck();
830                 swdevhd = TAILQ_NEXT(sp, sw_list);
831         } else {
832                 if (swap_pager_full != 2) {
833                         printf("swp_pager_getswapspace(%d): failed\n",
834                             *io_npages);
835                         swap_pager_full = 2;
836                         swap_pager_almost_full = 1;
837                 }
838                 swdevhd = NULL;
839         }
840         mtx_unlock(&sw_dev_mtx);
841         return (blk);
842 }
843
844 static bool
845 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
846 {
847
848         return (blk >= sp->sw_first && blk < sp->sw_end);
849 }
850
851 static void
852 swp_pager_strategy(struct buf *bp)
853 {
854         struct swdevt *sp;
855
856         mtx_lock(&sw_dev_mtx);
857         TAILQ_FOREACH(sp, &swtailq, sw_list) {
858                 if (swp_pager_isondev(bp->b_blkno, sp)) {
859                         mtx_unlock(&sw_dev_mtx);
860                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
861                             unmapped_buf_allowed) {
862                                 bp->b_data = unmapped_buf;
863                                 bp->b_offset = 0;
864                         } else {
865                                 pmap_qenter((vm_offset_t)bp->b_data,
866                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
867                         }
868                         sp->sw_strategy(bp, sp);
869                         return;
870                 }
871         }
872         panic("Swapdev not found");
873 }
874
875 /*
876  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
877  *
878  *      This routine returns the specified swap blocks back to the bitmap.
879  *
880  *      This routine may not sleep.
881  */
882 static void
883 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
884 {
885         struct swdevt *sp;
886
887         if (npages == 0)
888                 return;
889         mtx_lock(&sw_dev_mtx);
890         TAILQ_FOREACH(sp, &swtailq, sw_list) {
891                 if (swp_pager_isondev(blk, sp)) {
892                         sp->sw_used -= npages;
893                         /*
894                          * If we are attempting to stop swapping on
895                          * this device, we don't want to mark any
896                          * blocks free lest they be reused.
897                          */
898                         if ((sp->sw_flags & SW_CLOSING) == 0) {
899                                 blist_free(sp->sw_blist, blk - sp->sw_first,
900                                     npages);
901                                 swap_pager_avail += npages;
902                                 swp_sizecheck();
903                         }
904                         mtx_unlock(&sw_dev_mtx);
905                         return;
906                 }
907         }
908         panic("Swapdev not found");
909 }
910
911 /*
912  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
913  */
914 static int
915 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
916 {
917         struct sbuf sbuf;
918         struct swdevt *sp;
919         const char *devname;
920         int error;
921
922         error = sysctl_wire_old_buffer(req, 0);
923         if (error != 0)
924                 return (error);
925         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
926         mtx_lock(&sw_dev_mtx);
927         TAILQ_FOREACH(sp, &swtailq, sw_list) {
928                 if (vn_isdisk(sp->sw_vp))
929                         devname = devtoname(sp->sw_vp->v_rdev);
930                 else
931                         devname = "[file]";
932                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
933                 blist_stats(sp->sw_blist, &sbuf);
934         }
935         mtx_unlock(&sw_dev_mtx);
936         error = sbuf_finish(&sbuf);
937         sbuf_delete(&sbuf);
938         return (error);
939 }
940
941 /*
942  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
943  *                              range within an object.
944  *
945  *      This is a globally accessible routine.
946  *
947  *      This routine removes swapblk assignments from swap metadata.
948  *
949  *      The external callers of this routine typically have already destroyed
950  *      or renamed vm_page_t's associated with this range in the object so
951  *      we should be ok.
952  *
953  *      The object must be locked.
954  */
955 void
956 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
957 {
958
959         swp_pager_meta_free(object, start, size);
960 }
961
962 /*
963  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
964  *
965  *      Assigns swap blocks to the specified range within the object.  The
966  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
967  *
968  *      Returns 0 on success, -1 on failure.
969  */
970 int
971 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
972 {
973         daddr_t addr, blk, n_free, s_free;
974         int i, j, n;
975
976         swp_pager_init_freerange(&s_free, &n_free);
977         VM_OBJECT_WLOCK(object);
978         for (i = 0; i < size; i += n) {
979                 n = size - i;
980                 blk = swp_pager_getswapspace(&n);
981                 if (blk == SWAPBLK_NONE) {
982                         swp_pager_meta_free(object, start, i);
983                         VM_OBJECT_WUNLOCK(object);
984                         return (-1);
985                 }
986                 for (j = 0; j < n; ++j) {
987                         addr = swp_pager_meta_build(object,
988                             start + i + j, blk + j);
989                         if (addr != SWAPBLK_NONE)
990                                 swp_pager_update_freerange(&s_free, &n_free,
991                                     addr);
992                 }
993         }
994         swp_pager_freeswapspace(s_free, n_free);
995         VM_OBJECT_WUNLOCK(object);
996         return (0);
997 }
998
999 static bool
1000 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1001     vm_pindex_t pindex, daddr_t addr)
1002 {
1003         daddr_t dstaddr;
1004
1005         KASSERT(srcobject->type == OBJT_SWAP,
1006             ("%s: Srcobject not swappable", __func__));
1007         if (dstobject->type == OBJT_SWAP &&
1008             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1009                 /* Caller should destroy the source block. */
1010                 return (false);
1011         }
1012
1013         /*
1014          * Destination has no swapblk and is not resident, transfer source.
1015          * swp_pager_meta_build() can sleep.
1016          */
1017         VM_OBJECT_WUNLOCK(srcobject);
1018         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1019         KASSERT(dstaddr == SWAPBLK_NONE,
1020             ("Unexpected destination swapblk"));
1021         VM_OBJECT_WLOCK(srcobject);
1022
1023         return (true);
1024 }
1025
1026 /*
1027  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1028  *                      and destroy the source.
1029  *
1030  *      Copy any valid swapblks from the source to the destination.  In
1031  *      cases where both the source and destination have a valid swapblk,
1032  *      we keep the destination's.
1033  *
1034  *      This routine is allowed to sleep.  It may sleep allocating metadata
1035  *      indirectly through swp_pager_meta_build().
1036  *
1037  *      The source object contains no vm_page_t's (which is just as well)
1038  *
1039  *      The source object is of type OBJT_SWAP.
1040  *
1041  *      The source and destination objects must be locked.
1042  *      Both object locks may temporarily be released.
1043  */
1044 void
1045 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1046     vm_pindex_t offset, int destroysource)
1047 {
1048
1049         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1050         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1051
1052         /*
1053          * If destroysource is set, we remove the source object from the
1054          * swap_pager internal queue now.
1055          */
1056         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1057             srcobject->handle != NULL) {
1058                 VM_OBJECT_WUNLOCK(srcobject);
1059                 VM_OBJECT_WUNLOCK(dstobject);
1060                 sx_xlock(&sw_alloc_sx);
1061                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1062                     pager_object_list);
1063                 sx_xunlock(&sw_alloc_sx);
1064                 VM_OBJECT_WLOCK(dstobject);
1065                 VM_OBJECT_WLOCK(srcobject);
1066         }
1067
1068         /*
1069          * Transfer source to destination.
1070          */
1071         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1072
1073         /*
1074          * Free left over swap blocks in source.
1075          *
1076          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1077          * double-remove the object from the swap queues.
1078          */
1079         if (destroysource) {
1080                 swp_pager_meta_free_all(srcobject);
1081                 /*
1082                  * Reverting the type is not necessary, the caller is going
1083                  * to destroy srcobject directly, but I'm doing it here
1084                  * for consistency since we've removed the object from its
1085                  * queues.
1086                  */
1087                 srcobject->type = OBJT_DEFAULT;
1088         }
1089 }
1090
1091 /*
1092  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1093  *                              the requested page.
1094  *
1095  *      We determine whether good backing store exists for the requested
1096  *      page and return TRUE if it does, FALSE if it doesn't.
1097  *
1098  *      If TRUE, we also try to determine how much valid, contiguous backing
1099  *      store exists before and after the requested page.
1100  */
1101 static boolean_t
1102 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1103     int *after)
1104 {
1105         daddr_t blk, blk0;
1106         int i;
1107
1108         VM_OBJECT_ASSERT_LOCKED(object);
1109         KASSERT(object->type == OBJT_SWAP,
1110             ("%s: object not swappable", __func__));
1111
1112         /*
1113          * do we have good backing store at the requested index ?
1114          */
1115         blk0 = swp_pager_meta_lookup(object, pindex);
1116         if (blk0 == SWAPBLK_NONE) {
1117                 if (before)
1118                         *before = 0;
1119                 if (after)
1120                         *after = 0;
1121                 return (FALSE);
1122         }
1123
1124         /*
1125          * find backwards-looking contiguous good backing store
1126          */
1127         if (before != NULL) {
1128                 for (i = 1; i < SWB_NPAGES; i++) {
1129                         if (i > pindex)
1130                                 break;
1131                         blk = swp_pager_meta_lookup(object, pindex - i);
1132                         if (blk != blk0 - i)
1133                                 break;
1134                 }
1135                 *before = i - 1;
1136         }
1137
1138         /*
1139          * find forward-looking contiguous good backing store
1140          */
1141         if (after != NULL) {
1142                 for (i = 1; i < SWB_NPAGES; i++) {
1143                         blk = swp_pager_meta_lookup(object, pindex + i);
1144                         if (blk != blk0 + i)
1145                                 break;
1146                 }
1147                 *after = i - 1;
1148         }
1149         return (TRUE);
1150 }
1151
1152 /*
1153  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1154  *
1155  *      This removes any associated swap backing store, whether valid or
1156  *      not, from the page.
1157  *
1158  *      This routine is typically called when a page is made dirty, at
1159  *      which point any associated swap can be freed.  MADV_FREE also
1160  *      calls us in a special-case situation
1161  *
1162  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1163  *      should make the page dirty before calling this routine.  This routine
1164  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1165  *      depends on it.
1166  *
1167  *      This routine may not sleep.
1168  *
1169  *      The object containing the page may be locked.
1170  */
1171 static void
1172 swap_pager_unswapped(vm_page_t m)
1173 {
1174         struct swblk *sb;
1175         vm_object_t obj;
1176
1177         /*
1178          * Handle enqueing deferred frees first.  If we do not have the
1179          * object lock we wait for the page daemon to clear the space.
1180          */
1181         obj = m->object;
1182         if (!VM_OBJECT_WOWNED(obj)) {
1183                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1184                 /*
1185                  * The caller is responsible for synchronization but we
1186                  * will harmlessly handle races.  This is typically provided
1187                  * by only calling unswapped() when a page transitions from
1188                  * clean to dirty.
1189                  */
1190                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1191                     PGA_SWAP_SPACE) {
1192                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1193                         counter_u64_add(swap_free_deferred, 1);
1194                 }
1195                 return;
1196         }
1197         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1198                 counter_u64_add(swap_free_completed, 1);
1199         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1200
1201         /*
1202          * The meta data only exists if the object is OBJT_SWAP
1203          * and even then might not be allocated yet.
1204          */
1205         KASSERT(m->object->type == OBJT_SWAP,
1206             ("Free object not swappable"));
1207
1208         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1209             rounddown(m->pindex, SWAP_META_PAGES));
1210         if (sb == NULL)
1211                 return;
1212         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1213                 return;
1214         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1215         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1216         swp_pager_free_empty_swblk(m->object, sb);
1217 }
1218
1219 /*
1220  * swap_pager_getpages() - bring pages in from swap
1221  *
1222  *      Attempt to page in the pages in array "ma" of length "count".  The
1223  *      caller may optionally specify that additional pages preceding and
1224  *      succeeding the specified range be paged in.  The number of such pages
1225  *      is returned in the "rbehind" and "rahead" parameters, and they will
1226  *      be in the inactive queue upon return.
1227  *
1228  *      The pages in "ma" must be busied and will remain busied upon return.
1229  */
1230 static int
1231 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1232     int *rbehind, int *rahead)
1233 {
1234         struct buf *bp;
1235         vm_page_t bm, mpred, msucc, p;
1236         vm_pindex_t pindex;
1237         daddr_t blk;
1238         int i, maxahead, maxbehind, reqcount;
1239
1240         VM_OBJECT_ASSERT_WLOCKED(object);
1241         reqcount = count;
1242
1243         KASSERT(object->type == OBJT_SWAP,
1244             ("%s: object not swappable", __func__));
1245         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1246                 VM_OBJECT_WUNLOCK(object);
1247                 return (VM_PAGER_FAIL);
1248         }
1249
1250         KASSERT(reqcount - 1 <= maxahead,
1251             ("page count %d extends beyond swap block", reqcount));
1252
1253         /*
1254          * Do not transfer any pages other than those that are xbusied
1255          * when running during a split or collapse operation.  This
1256          * prevents clustering from re-creating pages which are being
1257          * moved into another object.
1258          */
1259         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1260                 maxahead = reqcount - 1;
1261                 maxbehind = 0;
1262         }
1263
1264         /*
1265          * Clip the readahead and readbehind ranges to exclude resident pages.
1266          */
1267         if (rahead != NULL) {
1268                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1269                 pindex = ma[reqcount - 1]->pindex;
1270                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1271                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1272                         *rahead = msucc->pindex - pindex - 1;
1273         }
1274         if (rbehind != NULL) {
1275                 *rbehind = imin(*rbehind, maxbehind);
1276                 pindex = ma[0]->pindex;
1277                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1278                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1279                         *rbehind = pindex - mpred->pindex - 1;
1280         }
1281
1282         bm = ma[0];
1283         for (i = 0; i < count; i++)
1284                 ma[i]->oflags |= VPO_SWAPINPROG;
1285
1286         /*
1287          * Allocate readahead and readbehind pages.
1288          */
1289         if (rbehind != NULL) {
1290                 for (i = 1; i <= *rbehind; i++) {
1291                         p = vm_page_alloc(object, ma[0]->pindex - i,
1292                             VM_ALLOC_NORMAL);
1293                         if (p == NULL)
1294                                 break;
1295                         p->oflags |= VPO_SWAPINPROG;
1296                         bm = p;
1297                 }
1298                 *rbehind = i - 1;
1299         }
1300         if (rahead != NULL) {
1301                 for (i = 0; i < *rahead; i++) {
1302                         p = vm_page_alloc(object,
1303                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1304                         if (p == NULL)
1305                                 break;
1306                         p->oflags |= VPO_SWAPINPROG;
1307                 }
1308                 *rahead = i;
1309         }
1310         if (rbehind != NULL)
1311                 count += *rbehind;
1312         if (rahead != NULL)
1313                 count += *rahead;
1314
1315         vm_object_pip_add(object, count);
1316
1317         pindex = bm->pindex;
1318         blk = swp_pager_meta_lookup(object, pindex);
1319         KASSERT(blk != SWAPBLK_NONE,
1320             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1321
1322         VM_OBJECT_WUNLOCK(object);
1323         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1324         MPASS((bp->b_flags & B_MAXPHYS) != 0);
1325         /* Pages cannot leave the object while busy. */
1326         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1327                 MPASS(p->pindex == bm->pindex + i);
1328                 bp->b_pages[i] = p;
1329         }
1330
1331         bp->b_flags |= B_PAGING;
1332         bp->b_iocmd = BIO_READ;
1333         bp->b_iodone = swp_pager_async_iodone;
1334         bp->b_rcred = crhold(thread0.td_ucred);
1335         bp->b_wcred = crhold(thread0.td_ucred);
1336         bp->b_blkno = blk;
1337         bp->b_bcount = PAGE_SIZE * count;
1338         bp->b_bufsize = PAGE_SIZE * count;
1339         bp->b_npages = count;
1340         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1341         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1342
1343         VM_CNT_INC(v_swapin);
1344         VM_CNT_ADD(v_swappgsin, count);
1345
1346         /*
1347          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1348          * this point because we automatically release it on completion.
1349          * Instead, we look at the one page we are interested in which we
1350          * still hold a lock on even through the I/O completion.
1351          *
1352          * The other pages in our ma[] array are also released on completion,
1353          * so we cannot assume they are valid anymore either.
1354          *
1355          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1356          */
1357         BUF_KERNPROC(bp);
1358         swp_pager_strategy(bp);
1359
1360         /*
1361          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1362          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1363          * is set in the metadata for each page in the request.
1364          */
1365         VM_OBJECT_WLOCK(object);
1366         /* This could be implemented more efficiently with aflags */
1367         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1368                 ma[0]->oflags |= VPO_SWAPSLEEP;
1369                 VM_CNT_INC(v_intrans);
1370                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1371                     "swread", hz * 20)) {
1372                         printf(
1373 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1374                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1375                 }
1376         }
1377         VM_OBJECT_WUNLOCK(object);
1378
1379         /*
1380          * If we had an unrecoverable read error pages will not be valid.
1381          */
1382         for (i = 0; i < reqcount; i++)
1383                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1384                         return (VM_PAGER_ERROR);
1385
1386         return (VM_PAGER_OK);
1387
1388         /*
1389          * A final note: in a low swap situation, we cannot deallocate swap
1390          * and mark a page dirty here because the caller is likely to mark
1391          * the page clean when we return, causing the page to possibly revert
1392          * to all-zero's later.
1393          */
1394 }
1395
1396 static int
1397 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1398     int *rbehind, int *rahead)
1399 {
1400
1401         VM_OBJECT_WLOCK(object);
1402         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1403 }
1404
1405 /*
1406  *      swap_pager_getpages_async():
1407  *
1408  *      Right now this is emulation of asynchronous operation on top of
1409  *      swap_pager_getpages().
1410  */
1411 static int
1412 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1413     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1414 {
1415         int r, error;
1416
1417         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1418         switch (r) {
1419         case VM_PAGER_OK:
1420                 error = 0;
1421                 break;
1422         case VM_PAGER_ERROR:
1423                 error = EIO;
1424                 break;
1425         case VM_PAGER_FAIL:
1426                 error = EINVAL;
1427                 break;
1428         default:
1429                 panic("unhandled swap_pager_getpages() error %d", r);
1430         }
1431         (iodone)(arg, ma, count, error);
1432
1433         return (r);
1434 }
1435
1436 /*
1437  *      swap_pager_putpages:
1438  *
1439  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1440  *
1441  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1442  *      are automatically converted to SWAP objects.
1443  *
1444  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1445  *      vm_page reservation system coupled with properly written VFS devices
1446  *      should ensure that no low-memory deadlock occurs.  This is an area
1447  *      which needs work.
1448  *
1449  *      The parent has N vm_object_pip_add() references prior to
1450  *      calling us and will remove references for rtvals[] that are
1451  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1452  *      completion.
1453  *
1454  *      The parent has soft-busy'd the pages it passes us and will unbusy
1455  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1456  *      We need to unbusy the rest on I/O completion.
1457  */
1458 static void
1459 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1460     int flags, int *rtvals)
1461 {
1462         struct buf *bp;
1463         daddr_t addr, blk, n_free, s_free;
1464         vm_page_t mreq;
1465         int i, j, n;
1466         bool async;
1467
1468         KASSERT(count == 0 || ma[0]->object == object,
1469             ("%s: object mismatch %p/%p",
1470             __func__, object, ma[0]->object));
1471
1472         /*
1473          * Step 1
1474          *
1475          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1476          */
1477         if (object->type != OBJT_SWAP) {
1478                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1479                 KASSERT(addr == SWAPBLK_NONE,
1480                     ("unexpected object swap block"));
1481         }
1482         VM_OBJECT_WUNLOCK(object);
1483         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1484         swp_pager_init_freerange(&s_free, &n_free);
1485
1486         /*
1487          * Step 2
1488          *
1489          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1490          * The page is left dirty until the pageout operation completes
1491          * successfully.
1492          */
1493         for (i = 0; i < count; i += n) {
1494                 /* Maximum I/O size is limited by maximum swap block size. */
1495                 n = min(count - i, nsw_cluster_max);
1496
1497                 if (async) {
1498                         mtx_lock(&swbuf_mtx);
1499                         while (nsw_wcount_async == 0)
1500                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1501                                     "swbufa", 0);
1502                         nsw_wcount_async--;
1503                         mtx_unlock(&swbuf_mtx);
1504                 }
1505
1506                 /* Get a block of swap of size up to size n. */
1507                 VM_OBJECT_WLOCK(object);
1508                 blk = swp_pager_getswapspace(&n);
1509                 if (blk == SWAPBLK_NONE) {
1510                         VM_OBJECT_WUNLOCK(object);
1511                         mtx_lock(&swbuf_mtx);
1512                         if (++nsw_wcount_async == 1)
1513                                 wakeup(&nsw_wcount_async);
1514                         mtx_unlock(&swbuf_mtx);
1515                         for (j = 0; j < n; ++j)
1516                                 rtvals[i + j] = VM_PAGER_FAIL;
1517                         continue;
1518                 }
1519                 for (j = 0; j < n; ++j) {
1520                         mreq = ma[i + j];
1521                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1522                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1523                             blk + j);
1524                         if (addr != SWAPBLK_NONE)
1525                                 swp_pager_update_freerange(&s_free, &n_free,
1526                                     addr);
1527                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1528                         mreq->oflags |= VPO_SWAPINPROG;
1529                 }
1530                 VM_OBJECT_WUNLOCK(object);
1531
1532                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1533                 MPASS((bp->b_flags & B_MAXPHYS) != 0);
1534                 if (async)
1535                         bp->b_flags |= B_ASYNC;
1536                 bp->b_flags |= B_PAGING;
1537                 bp->b_iocmd = BIO_WRITE;
1538
1539                 bp->b_rcred = crhold(thread0.td_ucred);
1540                 bp->b_wcred = crhold(thread0.td_ucred);
1541                 bp->b_bcount = PAGE_SIZE * n;
1542                 bp->b_bufsize = PAGE_SIZE * n;
1543                 bp->b_blkno = blk;
1544                 for (j = 0; j < n; j++)
1545                         bp->b_pages[j] = ma[i + j];
1546                 bp->b_npages = n;
1547
1548                 /*
1549                  * Must set dirty range for NFS to work.
1550                  */
1551                 bp->b_dirtyoff = 0;
1552                 bp->b_dirtyend = bp->b_bcount;
1553
1554                 VM_CNT_INC(v_swapout);
1555                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1556
1557                 /*
1558                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1559                  * can call the async completion routine at the end of a
1560                  * synchronous I/O operation.  Otherwise, our caller would
1561                  * perform duplicate unbusy and wakeup operations on the page
1562                  * and object, respectively.
1563                  */
1564                 for (j = 0; j < n; j++)
1565                         rtvals[i + j] = VM_PAGER_PEND;
1566
1567                 /*
1568                  * asynchronous
1569                  *
1570                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1571                  */
1572                 if (async) {
1573                         bp->b_iodone = swp_pager_async_iodone;
1574                         BUF_KERNPROC(bp);
1575                         swp_pager_strategy(bp);
1576                         continue;
1577                 }
1578
1579                 /*
1580                  * synchronous
1581                  *
1582                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1583                  */
1584                 bp->b_iodone = bdone;
1585                 swp_pager_strategy(bp);
1586
1587                 /*
1588                  * Wait for the sync I/O to complete.
1589                  */
1590                 bwait(bp, PVM, "swwrt");
1591
1592                 /*
1593                  * Now that we are through with the bp, we can call the
1594                  * normal async completion, which frees everything up.
1595                  */
1596                 swp_pager_async_iodone(bp);
1597         }
1598         swp_pager_freeswapspace(s_free, n_free);
1599         VM_OBJECT_WLOCK(object);
1600 }
1601
1602 /*
1603  *      swp_pager_async_iodone:
1604  *
1605  *      Completion routine for asynchronous reads and writes from/to swap.
1606  *      Also called manually by synchronous code to finish up a bp.
1607  *
1608  *      This routine may not sleep.
1609  */
1610 static void
1611 swp_pager_async_iodone(struct buf *bp)
1612 {
1613         int i;
1614         vm_object_t object = NULL;
1615
1616         /*
1617          * Report error - unless we ran out of memory, in which case
1618          * we've already logged it in swapgeom_strategy().
1619          */
1620         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1621                 printf(
1622                     "swap_pager: I/O error - %s failed; blkno %ld,"
1623                         "size %ld, error %d\n",
1624                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1625                     (long)bp->b_blkno,
1626                     (long)bp->b_bcount,
1627                     bp->b_error
1628                 );
1629         }
1630
1631         /*
1632          * remove the mapping for kernel virtual
1633          */
1634         if (buf_mapped(bp))
1635                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1636         else
1637                 bp->b_data = bp->b_kvabase;
1638
1639         if (bp->b_npages) {
1640                 object = bp->b_pages[0]->object;
1641                 VM_OBJECT_WLOCK(object);
1642         }
1643
1644         /*
1645          * cleanup pages.  If an error occurs writing to swap, we are in
1646          * very serious trouble.  If it happens to be a disk error, though,
1647          * we may be able to recover by reassigning the swap later on.  So
1648          * in this case we remove the m->swapblk assignment for the page
1649          * but do not free it in the rlist.  The errornous block(s) are thus
1650          * never reallocated as swap.  Redirty the page and continue.
1651          */
1652         for (i = 0; i < bp->b_npages; ++i) {
1653                 vm_page_t m = bp->b_pages[i];
1654
1655                 m->oflags &= ~VPO_SWAPINPROG;
1656                 if (m->oflags & VPO_SWAPSLEEP) {
1657                         m->oflags &= ~VPO_SWAPSLEEP;
1658                         wakeup(&object->handle);
1659                 }
1660
1661                 /* We always have space after I/O, successful or not. */
1662                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1663
1664                 if (bp->b_ioflags & BIO_ERROR) {
1665                         /*
1666                          * If an error occurs I'd love to throw the swapblk
1667                          * away without freeing it back to swapspace, so it
1668                          * can never be used again.  But I can't from an
1669                          * interrupt.
1670                          */
1671                         if (bp->b_iocmd == BIO_READ) {
1672                                 /*
1673                                  * NOTE: for reads, m->dirty will probably
1674                                  * be overridden by the original caller of
1675                                  * getpages so don't play cute tricks here.
1676                                  */
1677                                 vm_page_invalid(m);
1678                         } else {
1679                                 /*
1680                                  * If a write error occurs, reactivate page
1681                                  * so it doesn't clog the inactive list,
1682                                  * then finish the I/O.
1683                                  */
1684                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1685
1686                                 /* PQ_UNSWAPPABLE? */
1687                                 vm_page_activate(m);
1688                                 vm_page_sunbusy(m);
1689                         }
1690                 } else if (bp->b_iocmd == BIO_READ) {
1691                         /*
1692                          * NOTE: for reads, m->dirty will probably be
1693                          * overridden by the original caller of getpages so
1694                          * we cannot set them in order to free the underlying
1695                          * swap in a low-swap situation.  I don't think we'd
1696                          * want to do that anyway, but it was an optimization
1697                          * that existed in the old swapper for a time before
1698                          * it got ripped out due to precisely this problem.
1699                          */
1700                         KASSERT(!pmap_page_is_mapped(m),
1701                             ("swp_pager_async_iodone: page %p is mapped", m));
1702                         KASSERT(m->dirty == 0,
1703                             ("swp_pager_async_iodone: page %p is dirty", m));
1704
1705                         vm_page_valid(m);
1706                         if (i < bp->b_pgbefore ||
1707                             i >= bp->b_npages - bp->b_pgafter)
1708                                 vm_page_readahead_finish(m);
1709                 } else {
1710                         /*
1711                          * For write success, clear the dirty
1712                          * status, then finish the I/O ( which decrements the
1713                          * busy count and possibly wakes waiter's up ).
1714                          * A page is only written to swap after a period of
1715                          * inactivity.  Therefore, we do not expect it to be
1716                          * reused.
1717                          */
1718                         KASSERT(!pmap_page_is_write_mapped(m),
1719                             ("swp_pager_async_iodone: page %p is not write"
1720                             " protected", m));
1721                         vm_page_undirty(m);
1722                         vm_page_deactivate_noreuse(m);
1723                         vm_page_sunbusy(m);
1724                 }
1725         }
1726
1727         /*
1728          * adjust pip.  NOTE: the original parent may still have its own
1729          * pip refs on the object.
1730          */
1731         if (object != NULL) {
1732                 vm_object_pip_wakeupn(object, bp->b_npages);
1733                 VM_OBJECT_WUNLOCK(object);
1734         }
1735
1736         /*
1737          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1738          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1739          * trigger a KASSERT in relpbuf().
1740          */
1741         if (bp->b_vp) {
1742                     bp->b_vp = NULL;
1743                     bp->b_bufobj = NULL;
1744         }
1745         /*
1746          * release the physical I/O buffer
1747          */
1748         if (bp->b_flags & B_ASYNC) {
1749                 mtx_lock(&swbuf_mtx);
1750                 if (++nsw_wcount_async == 1)
1751                         wakeup(&nsw_wcount_async);
1752                 mtx_unlock(&swbuf_mtx);
1753         }
1754         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1755 }
1756
1757 int
1758 swap_pager_nswapdev(void)
1759 {
1760
1761         return (nswapdev);
1762 }
1763
1764 static void
1765 swp_pager_force_dirty(vm_page_t m)
1766 {
1767
1768         vm_page_dirty(m);
1769         swap_pager_unswapped(m);
1770         vm_page_launder(m);
1771 }
1772
1773 u_long
1774 swap_pager_swapped_pages(vm_object_t object)
1775 {
1776         struct swblk *sb;
1777         vm_pindex_t pi;
1778         u_long res;
1779         int i;
1780
1781         VM_OBJECT_ASSERT_LOCKED(object);
1782         if (object->type != OBJT_SWAP)
1783                 return (0);
1784
1785         for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1786             &object->un_pager.swp.swp_blks, pi)) != NULL;
1787             pi = sb->p + SWAP_META_PAGES) {
1788                 for (i = 0; i < SWAP_META_PAGES; i++) {
1789                         if (sb->d[i] != SWAPBLK_NONE)
1790                                 res++;
1791                 }
1792         }
1793         return (res);
1794 }
1795
1796 /*
1797  *      swap_pager_swapoff_object:
1798  *
1799  *      Page in all of the pages that have been paged out for an object
1800  *      to a swap device.
1801  */
1802 static void
1803 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1804 {
1805         struct swblk *sb;
1806         vm_page_t m;
1807         vm_pindex_t pi;
1808         daddr_t blk;
1809         int i, nv, rahead, rv;
1810
1811         KASSERT(object->type == OBJT_SWAP,
1812             ("%s: Object not swappable", __func__));
1813
1814         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1815             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1816                 if ((object->flags & OBJ_DEAD) != 0) {
1817                         /*
1818                          * Make sure that pending writes finish before
1819                          * returning.
1820                          */
1821                         vm_object_pip_wait(object, "swpoff");
1822                         swp_pager_meta_free_all(object);
1823                         break;
1824                 }
1825                 for (i = 0; i < SWAP_META_PAGES; i++) {
1826                         /*
1827                          * Count the number of contiguous valid blocks.
1828                          */
1829                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1830                                 blk = sb->d[i + nv];
1831                                 if (!swp_pager_isondev(blk, sp) ||
1832                                     blk == SWAPBLK_NONE)
1833                                         break;
1834                         }
1835                         if (nv == 0)
1836                                 continue;
1837
1838                         /*
1839                          * Look for a page corresponding to the first
1840                          * valid block and ensure that any pending paging
1841                          * operations on it are complete.  If the page is valid,
1842                          * mark it dirty and free the swap block.  Try to batch
1843                          * this operation since it may cause sp to be freed,
1844                          * meaning that we must restart the scan.  Avoid busying
1845                          * valid pages since we may block forever on kernel
1846                          * stack pages.
1847                          */
1848                         m = vm_page_lookup(object, sb->p + i);
1849                         if (m == NULL) {
1850                                 m = vm_page_alloc(object, sb->p + i,
1851                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1852                                 if (m == NULL)
1853                                         break;
1854                         } else {
1855                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1856                                         m->oflags |= VPO_SWAPSLEEP;
1857                                         VM_OBJECT_SLEEP(object, &object->handle,
1858                                             PSWP, "swpoff", 0);
1859                                         break;
1860                                 }
1861                                 if (vm_page_all_valid(m)) {
1862                                         do {
1863                                                 swp_pager_force_dirty(m);
1864                                         } while (--nv > 0 &&
1865                                             (m = vm_page_next(m)) != NULL &&
1866                                             vm_page_all_valid(m) &&
1867                                             (m->oflags & VPO_SWAPINPROG) == 0);
1868                                         break;
1869                                 }
1870                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1871                                         break;
1872                         }
1873
1874                         vm_object_pip_add(object, 1);
1875                         rahead = SWAP_META_PAGES;
1876                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1877                             &rahead);
1878                         if (rv != VM_PAGER_OK)
1879                                 panic("%s: read from swap failed: %d",
1880                                     __func__, rv);
1881                         vm_object_pip_wakeupn(object, 1);
1882                         VM_OBJECT_WLOCK(object);
1883                         vm_page_xunbusy(m);
1884
1885                         /*
1886                          * The object lock was dropped so we must restart the
1887                          * scan of this swap block.  Pages paged in during this
1888                          * iteration will be marked dirty in a future iteration.
1889                          */
1890                         break;
1891                 }
1892                 if (i == SWAP_META_PAGES)
1893                         pi = sb->p + SWAP_META_PAGES;
1894         }
1895 }
1896
1897 /*
1898  *      swap_pager_swapoff:
1899  *
1900  *      Page in all of the pages that have been paged out to the
1901  *      given device.  The corresponding blocks in the bitmap must be
1902  *      marked as allocated and the device must be flagged SW_CLOSING.
1903  *      There may be no processes swapped out to the device.
1904  *
1905  *      This routine may block.
1906  */
1907 static void
1908 swap_pager_swapoff(struct swdevt *sp)
1909 {
1910         vm_object_t object;
1911         int retries;
1912
1913         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1914
1915         retries = 0;
1916 full_rescan:
1917         mtx_lock(&vm_object_list_mtx);
1918         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1919                 if (object->type != OBJT_SWAP)
1920                         continue;
1921                 mtx_unlock(&vm_object_list_mtx);
1922                 /* Depends on type-stability. */
1923                 VM_OBJECT_WLOCK(object);
1924
1925                 /*
1926                  * Dead objects are eventually terminated on their own.
1927                  */
1928                 if ((object->flags & OBJ_DEAD) != 0)
1929                         goto next_obj;
1930
1931                 /*
1932                  * Sync with fences placed after pctrie
1933                  * initialization.  We must not access pctrie below
1934                  * unless we checked that our object is swap and not
1935                  * dead.
1936                  */
1937                 atomic_thread_fence_acq();
1938                 if (object->type != OBJT_SWAP)
1939                         goto next_obj;
1940
1941                 swap_pager_swapoff_object(sp, object);
1942 next_obj:
1943                 VM_OBJECT_WUNLOCK(object);
1944                 mtx_lock(&vm_object_list_mtx);
1945         }
1946         mtx_unlock(&vm_object_list_mtx);
1947
1948         if (sp->sw_used) {
1949                 /*
1950                  * Objects may be locked or paging to the device being
1951                  * removed, so we will miss their pages and need to
1952                  * make another pass.  We have marked this device as
1953                  * SW_CLOSING, so the activity should finish soon.
1954                  */
1955                 retries++;
1956                 if (retries > 100) {
1957                         panic("swapoff: failed to locate %d swap blocks",
1958                             sp->sw_used);
1959                 }
1960                 pause("swpoff", hz / 20);
1961                 goto full_rescan;
1962         }
1963         EVENTHANDLER_INVOKE(swapoff, sp);
1964 }
1965
1966 /************************************************************************
1967  *                              SWAP META DATA                          *
1968  ************************************************************************
1969  *
1970  *      These routines manipulate the swap metadata stored in the
1971  *      OBJT_SWAP object.
1972  *
1973  *      Swap metadata is implemented with a global hash and not directly
1974  *      linked into the object.  Instead the object simply contains
1975  *      appropriate tracking counters.
1976  */
1977
1978 /*
1979  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1980  */
1981 static bool
1982 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1983 {
1984         int i;
1985
1986         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1987         for (i = start; i < limit; i++) {
1988                 if (sb->d[i] != SWAPBLK_NONE)
1989                         return (false);
1990         }
1991         return (true);
1992 }
1993
1994 /*
1995  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1996  *
1997  *  Nothing is done if the block is still in use.
1998  */
1999 static void
2000 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2001 {
2002
2003         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2004                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2005                 uma_zfree(swblk_zone, sb);
2006         }
2007 }
2008    
2009 /*
2010  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
2011  *
2012  *      We first convert the object to a swap object if it is a default
2013  *      object.
2014  *
2015  *      The specified swapblk is added to the object's swap metadata.  If
2016  *      the swapblk is not valid, it is freed instead.  Any previously
2017  *      assigned swapblk is returned.
2018  */
2019 static daddr_t
2020 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2021 {
2022         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2023         struct swblk *sb, *sb1;
2024         vm_pindex_t modpi, rdpi;
2025         daddr_t prev_swapblk;
2026         int error, i;
2027
2028         VM_OBJECT_ASSERT_WLOCKED(object);
2029
2030         /*
2031          * Convert default object to swap object if necessary
2032          */
2033         if (object->type != OBJT_SWAP) {
2034                 pctrie_init(&object->un_pager.swp.swp_blks);
2035
2036                 /*
2037                  * Ensure that swap_pager_swapoff()'s iteration over
2038                  * object_list does not see a garbage pctrie.
2039                  */
2040                 atomic_thread_fence_rel();
2041
2042                 object->type = OBJT_SWAP;
2043                 object->un_pager.swp.writemappings = 0;
2044                 KASSERT((object->flags & OBJ_ANON) != 0 ||
2045                     object->handle == NULL,
2046                     ("default pager %p with handle %p",
2047                     object, object->handle));
2048         }
2049
2050         rdpi = rounddown(pindex, SWAP_META_PAGES);
2051         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2052         if (sb == NULL) {
2053                 if (swapblk == SWAPBLK_NONE)
2054                         return (SWAPBLK_NONE);
2055                 for (;;) {
2056                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2057                             pageproc ? M_USE_RESERVE : 0));
2058                         if (sb != NULL) {
2059                                 sb->p = rdpi;
2060                                 for (i = 0; i < SWAP_META_PAGES; i++)
2061                                         sb->d[i] = SWAPBLK_NONE;
2062                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2063                                     1, 0))
2064                                         printf("swblk zone ok\n");
2065                                 break;
2066                         }
2067                         VM_OBJECT_WUNLOCK(object);
2068                         if (uma_zone_exhausted(swblk_zone)) {
2069                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2070                                     0, 1))
2071                                         printf("swap blk zone exhausted, "
2072                                             "increase kern.maxswzone\n");
2073                                 vm_pageout_oom(VM_OOM_SWAPZ);
2074                                 pause("swzonxb", 10);
2075                         } else
2076                                 uma_zwait(swblk_zone);
2077                         VM_OBJECT_WLOCK(object);
2078                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2079                             rdpi);
2080                         if (sb != NULL)
2081                                 /*
2082                                  * Somebody swapped out a nearby page,
2083                                  * allocating swblk at the rdpi index,
2084                                  * while we dropped the object lock.
2085                                  */
2086                                 goto allocated;
2087                 }
2088                 for (;;) {
2089                         error = SWAP_PCTRIE_INSERT(
2090                             &object->un_pager.swp.swp_blks, sb);
2091                         if (error == 0) {
2092                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2093                                     1, 0))
2094                                         printf("swpctrie zone ok\n");
2095                                 break;
2096                         }
2097                         VM_OBJECT_WUNLOCK(object);
2098                         if (uma_zone_exhausted(swpctrie_zone)) {
2099                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2100                                     0, 1))
2101                                         printf("swap pctrie zone exhausted, "
2102                                             "increase kern.maxswzone\n");
2103                                 vm_pageout_oom(VM_OOM_SWAPZ);
2104                                 pause("swzonxp", 10);
2105                         } else
2106                                 uma_zwait(swpctrie_zone);
2107                         VM_OBJECT_WLOCK(object);
2108                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2109                             rdpi);
2110                         if (sb1 != NULL) {
2111                                 uma_zfree(swblk_zone, sb);
2112                                 sb = sb1;
2113                                 goto allocated;
2114                         }
2115                 }
2116         }
2117 allocated:
2118         MPASS(sb->p == rdpi);
2119
2120         modpi = pindex % SWAP_META_PAGES;
2121         /* Return prior contents of metadata. */
2122         prev_swapblk = sb->d[modpi];
2123         /* Enter block into metadata. */
2124         sb->d[modpi] = swapblk;
2125
2126         /*
2127          * Free the swblk if we end up with the empty page run.
2128          */
2129         if (swapblk == SWAPBLK_NONE)
2130                 swp_pager_free_empty_swblk(object, sb);
2131         return (prev_swapblk);
2132 }
2133
2134 /*
2135  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2136  * metadata, or transfer it into dstobject.
2137  *
2138  *      This routine will free swap metadata structures as they are cleaned
2139  *      out.
2140  */
2141 static void
2142 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2143     vm_pindex_t pindex, vm_pindex_t count)
2144 {
2145         struct swblk *sb;
2146         daddr_t n_free, s_free;
2147         vm_pindex_t offset, last;
2148         int i, limit, start;
2149
2150         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2151         if (srcobject->type != OBJT_SWAP || count == 0)
2152                 return;
2153
2154         swp_pager_init_freerange(&s_free, &n_free);
2155         offset = pindex;
2156         last = pindex + count;
2157         for (;;) {
2158                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2159                     rounddown(pindex, SWAP_META_PAGES));
2160                 if (sb == NULL || sb->p >= last)
2161                         break;
2162                 start = pindex > sb->p ? pindex - sb->p : 0;
2163                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2164                     SWAP_META_PAGES;
2165                 for (i = start; i < limit; i++) {
2166                         if (sb->d[i] == SWAPBLK_NONE)
2167                                 continue;
2168                         if (dstobject == NULL ||
2169                             !swp_pager_xfer_source(srcobject, dstobject, 
2170                             sb->p + i - offset, sb->d[i])) {
2171                                 swp_pager_update_freerange(&s_free, &n_free,
2172                                     sb->d[i]);
2173                         }
2174                         sb->d[i] = SWAPBLK_NONE;
2175                 }
2176                 pindex = sb->p + SWAP_META_PAGES;
2177                 if (swp_pager_swblk_empty(sb, 0, start) &&
2178                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2179                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2180                             sb->p);
2181                         uma_zfree(swblk_zone, sb);
2182                 }
2183         }
2184         swp_pager_freeswapspace(s_free, n_free);
2185 }
2186
2187 /*
2188  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2189  *
2190  *      The requested range of blocks is freed, with any associated swap
2191  *      returned to the swap bitmap.
2192  *
2193  *      This routine will free swap metadata structures as they are cleaned
2194  *      out.  This routine does *NOT* operate on swap metadata associated
2195  *      with resident pages.
2196  */
2197 static void
2198 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2199 {
2200         swp_pager_meta_transfer(object, NULL, pindex, count);
2201 }
2202
2203 /*
2204  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2205  *
2206  *      This routine locates and destroys all swap metadata associated with
2207  *      an object.
2208  */
2209 static void
2210 swp_pager_meta_free_all(vm_object_t object)
2211 {
2212         struct swblk *sb;
2213         daddr_t n_free, s_free;
2214         vm_pindex_t pindex;
2215         int i;
2216
2217         VM_OBJECT_ASSERT_WLOCKED(object);
2218         if (object->type != OBJT_SWAP)
2219                 return;
2220
2221         swp_pager_init_freerange(&s_free, &n_free);
2222         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2223             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2224                 pindex = sb->p + SWAP_META_PAGES;
2225                 for (i = 0; i < SWAP_META_PAGES; i++) {
2226                         if (sb->d[i] == SWAPBLK_NONE)
2227                                 continue;
2228                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2229                 }
2230                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2231                 uma_zfree(swblk_zone, sb);
2232         }
2233         swp_pager_freeswapspace(s_free, n_free);
2234 }
2235
2236 /*
2237  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2238  *
2239  *      This routine is capable of looking up, or removing swapblk
2240  *      assignments in the swap meta data.  It returns the swapblk being
2241  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2242  *
2243  *      When acting on a busy resident page and paging is in progress, we
2244  *      have to wait until paging is complete but otherwise can act on the
2245  *      busy page.
2246  */
2247 static daddr_t
2248 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2249 {
2250         struct swblk *sb;
2251
2252         VM_OBJECT_ASSERT_LOCKED(object);
2253
2254         /*
2255          * The meta data only exists if the object is OBJT_SWAP
2256          * and even then might not be allocated yet.
2257          */
2258         KASSERT(object->type == OBJT_SWAP,
2259             ("Lookup object not swappable"));
2260
2261         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2262             rounddown(pindex, SWAP_META_PAGES));
2263         if (sb == NULL)
2264                 return (SWAPBLK_NONE);
2265         return (sb->d[pindex % SWAP_META_PAGES]);
2266 }
2267
2268 /*
2269  * Returns the least page index which is greater than or equal to the
2270  * parameter pindex and for which there is a swap block allocated.
2271  * Returns object's size if the object's type is not swap or if there
2272  * are no allocated swap blocks for the object after the requested
2273  * pindex.
2274  */
2275 vm_pindex_t
2276 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2277 {
2278         struct swblk *sb;
2279         int i;
2280
2281         VM_OBJECT_ASSERT_LOCKED(object);
2282         if (object->type != OBJT_SWAP)
2283                 return (object->size);
2284
2285         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2286             rounddown(pindex, SWAP_META_PAGES));
2287         if (sb == NULL)
2288                 return (object->size);
2289         if (sb->p < pindex) {
2290                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2291                         if (sb->d[i] != SWAPBLK_NONE)
2292                                 return (sb->p + i);
2293                 }
2294                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2295                     roundup(pindex, SWAP_META_PAGES));
2296                 if (sb == NULL)
2297                         return (object->size);
2298         }
2299         for (i = 0; i < SWAP_META_PAGES; i++) {
2300                 if (sb->d[i] != SWAPBLK_NONE)
2301                         return (sb->p + i);
2302         }
2303
2304         /*
2305          * We get here if a swblk is present in the trie but it
2306          * doesn't map any blocks.
2307          */
2308         MPASS(0);
2309         return (object->size);
2310 }
2311
2312 /*
2313  * System call swapon(name) enables swapping on device name,
2314  * which must be in the swdevsw.  Return EBUSY
2315  * if already swapping on this device.
2316  */
2317 #ifndef _SYS_SYSPROTO_H_
2318 struct swapon_args {
2319         char *name;
2320 };
2321 #endif
2322
2323 /*
2324  * MPSAFE
2325  */
2326 /* ARGSUSED */
2327 int
2328 sys_swapon(struct thread *td, struct swapon_args *uap)
2329 {
2330         struct vattr attr;
2331         struct vnode *vp;
2332         struct nameidata nd;
2333         int error;
2334
2335         error = priv_check(td, PRIV_SWAPON);
2336         if (error)
2337                 return (error);
2338
2339         sx_xlock(&swdev_syscall_lock);
2340
2341         /*
2342          * Swap metadata may not fit in the KVM if we have physical
2343          * memory of >1GB.
2344          */
2345         if (swblk_zone == NULL) {
2346                 error = ENOMEM;
2347                 goto done;
2348         }
2349
2350         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2351             uap->name, td);
2352         error = namei(&nd);
2353         if (error)
2354                 goto done;
2355
2356         NDFREE(&nd, NDF_ONLY_PNBUF);
2357         vp = nd.ni_vp;
2358
2359         if (vn_isdisk_error(vp, &error)) {
2360                 error = swapongeom(vp);
2361         } else if (vp->v_type == VREG &&
2362             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2363             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2364                 /*
2365                  * Allow direct swapping to NFS regular files in the same
2366                  * way that nfs_mountroot() sets up diskless swapping.
2367                  */
2368                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2369         }
2370
2371         if (error)
2372                 vrele(vp);
2373 done:
2374         sx_xunlock(&swdev_syscall_lock);
2375         return (error);
2376 }
2377
2378 /*
2379  * Check that the total amount of swap currently configured does not
2380  * exceed half the theoretical maximum.  If it does, print a warning
2381  * message.
2382  */
2383 static void
2384 swapon_check_swzone(void)
2385 {
2386
2387         /* recommend using no more than half that amount */
2388         if (swap_total > swap_maxpages / 2) {
2389                 printf("warning: total configured swap (%lu pages) "
2390                     "exceeds maximum recommended amount (%lu pages).\n",
2391                     swap_total, swap_maxpages / 2);
2392                 printf("warning: increase kern.maxswzone "
2393                     "or reduce amount of swap.\n");
2394         }
2395 }
2396
2397 static void
2398 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2399     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2400 {
2401         struct swdevt *sp, *tsp;
2402         daddr_t dvbase;
2403
2404         /*
2405          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2406          * First chop nblks off to page-align it, then convert.
2407          *
2408          * sw->sw_nblks is in page-sized chunks now too.
2409          */
2410         nblks &= ~(ctodb(1) - 1);
2411         nblks = dbtoc(nblks);
2412
2413         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2414         sp->sw_blist = blist_create(nblks, M_WAITOK);
2415         sp->sw_vp = vp;
2416         sp->sw_id = id;
2417         sp->sw_dev = dev;
2418         sp->sw_nblks = nblks;
2419         sp->sw_used = 0;
2420         sp->sw_strategy = strategy;
2421         sp->sw_close = close;
2422         sp->sw_flags = flags;
2423
2424         /*
2425          * Do not free the first blocks in order to avoid overwriting
2426          * any bsd label at the front of the partition
2427          */
2428         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2429             nblks - howmany(BBSIZE, PAGE_SIZE));
2430
2431         dvbase = 0;
2432         mtx_lock(&sw_dev_mtx);
2433         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2434                 if (tsp->sw_end >= dvbase) {
2435                         /*
2436                          * We put one uncovered page between the devices
2437                          * in order to definitively prevent any cross-device
2438                          * I/O requests
2439                          */
2440                         dvbase = tsp->sw_end + 1;
2441                 }
2442         }
2443         sp->sw_first = dvbase;
2444         sp->sw_end = dvbase + nblks;
2445         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2446         nswapdev++;
2447         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2448         swap_total += nblks;
2449         swapon_check_swzone();
2450         swp_sizecheck();
2451         mtx_unlock(&sw_dev_mtx);
2452         EVENTHANDLER_INVOKE(swapon, sp);
2453 }
2454
2455 /*
2456  * SYSCALL: swapoff(devname)
2457  *
2458  * Disable swapping on the given device.
2459  *
2460  * XXX: Badly designed system call: it should use a device index
2461  * rather than filename as specification.  We keep sw_vp around
2462  * only to make this work.
2463  */
2464 #ifndef _SYS_SYSPROTO_H_
2465 struct swapoff_args {
2466         char *name;
2467 };
2468 #endif
2469
2470 /*
2471  * MPSAFE
2472  */
2473 /* ARGSUSED */
2474 int
2475 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2476 {
2477         struct vnode *vp;
2478         struct nameidata nd;
2479         struct swdevt *sp;
2480         int error;
2481
2482         error = priv_check(td, PRIV_SWAPOFF);
2483         if (error)
2484                 return (error);
2485
2486         sx_xlock(&swdev_syscall_lock);
2487
2488         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2489             td);
2490         error = namei(&nd);
2491         if (error)
2492                 goto done;
2493         NDFREE(&nd, NDF_ONLY_PNBUF);
2494         vp = nd.ni_vp;
2495
2496         mtx_lock(&sw_dev_mtx);
2497         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2498                 if (sp->sw_vp == vp)
2499                         break;
2500         }
2501         mtx_unlock(&sw_dev_mtx);
2502         if (sp == NULL) {
2503                 error = EINVAL;
2504                 goto done;
2505         }
2506         error = swapoff_one(sp, td->td_ucred);
2507 done:
2508         sx_xunlock(&swdev_syscall_lock);
2509         return (error);
2510 }
2511
2512 static int
2513 swapoff_one(struct swdevt *sp, struct ucred *cred)
2514 {
2515         u_long nblks;
2516 #ifdef MAC
2517         int error;
2518 #endif
2519
2520         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2521 #ifdef MAC
2522         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2523         error = mac_system_check_swapoff(cred, sp->sw_vp);
2524         (void) VOP_UNLOCK(sp->sw_vp);
2525         if (error != 0)
2526                 return (error);
2527 #endif
2528         nblks = sp->sw_nblks;
2529
2530         /*
2531          * We can turn off this swap device safely only if the
2532          * available virtual memory in the system will fit the amount
2533          * of data we will have to page back in, plus an epsilon so
2534          * the system doesn't become critically low on swap space.
2535          */
2536         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2537                 return (ENOMEM);
2538
2539         /*
2540          * Prevent further allocations on this device.
2541          */
2542         mtx_lock(&sw_dev_mtx);
2543         sp->sw_flags |= SW_CLOSING;
2544         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2545         swap_total -= nblks;
2546         mtx_unlock(&sw_dev_mtx);
2547
2548         /*
2549          * Page in the contents of the device and close it.
2550          */
2551         swap_pager_swapoff(sp);
2552
2553         sp->sw_close(curthread, sp);
2554         mtx_lock(&sw_dev_mtx);
2555         sp->sw_id = NULL;
2556         TAILQ_REMOVE(&swtailq, sp, sw_list);
2557         nswapdev--;
2558         if (nswapdev == 0) {
2559                 swap_pager_full = 2;
2560                 swap_pager_almost_full = 1;
2561         }
2562         if (swdevhd == sp)
2563                 swdevhd = NULL;
2564         mtx_unlock(&sw_dev_mtx);
2565         blist_destroy(sp->sw_blist);
2566         free(sp, M_VMPGDATA);
2567         return (0);
2568 }
2569
2570 void
2571 swapoff_all(void)
2572 {
2573         struct swdevt *sp, *spt;
2574         const char *devname;
2575         int error;
2576
2577         sx_xlock(&swdev_syscall_lock);
2578
2579         mtx_lock(&sw_dev_mtx);
2580         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2581                 mtx_unlock(&sw_dev_mtx);
2582                 if (vn_isdisk(sp->sw_vp))
2583                         devname = devtoname(sp->sw_vp->v_rdev);
2584                 else
2585                         devname = "[file]";
2586                 error = swapoff_one(sp, thread0.td_ucred);
2587                 if (error != 0) {
2588                         printf("Cannot remove swap device %s (error=%d), "
2589                             "skipping.\n", devname, error);
2590                 } else if (bootverbose) {
2591                         printf("Swap device %s removed.\n", devname);
2592                 }
2593                 mtx_lock(&sw_dev_mtx);
2594         }
2595         mtx_unlock(&sw_dev_mtx);
2596
2597         sx_xunlock(&swdev_syscall_lock);
2598 }
2599
2600 void
2601 swap_pager_status(int *total, int *used)
2602 {
2603
2604         *total = swap_total;
2605         *used = swap_total - swap_pager_avail -
2606             nswapdev * howmany(BBSIZE, PAGE_SIZE);
2607 }
2608
2609 int
2610 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2611 {
2612         struct swdevt *sp;
2613         const char *tmp_devname;
2614         int error, n;
2615
2616         n = 0;
2617         error = ENOENT;
2618         mtx_lock(&sw_dev_mtx);
2619         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2620                 if (n != name) {
2621                         n++;
2622                         continue;
2623                 }
2624                 xs->xsw_version = XSWDEV_VERSION;
2625                 xs->xsw_dev = sp->sw_dev;
2626                 xs->xsw_flags = sp->sw_flags;
2627                 xs->xsw_nblks = sp->sw_nblks;
2628                 xs->xsw_used = sp->sw_used;
2629                 if (devname != NULL) {
2630                         if (vn_isdisk(sp->sw_vp))
2631                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2632                         else
2633                                 tmp_devname = "[file]";
2634                         strncpy(devname, tmp_devname, len);
2635                 }
2636                 error = 0;
2637                 break;
2638         }
2639         mtx_unlock(&sw_dev_mtx);
2640         return (error);
2641 }
2642
2643 #if defined(COMPAT_FREEBSD11)
2644 #define XSWDEV_VERSION_11       1
2645 struct xswdev11 {
2646         u_int   xsw_version;
2647         uint32_t xsw_dev;
2648         int     xsw_flags;
2649         int     xsw_nblks;
2650         int     xsw_used;
2651 };
2652 #endif
2653
2654 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2655 struct xswdev32 {
2656         u_int   xsw_version;
2657         u_int   xsw_dev1, xsw_dev2;
2658         int     xsw_flags;
2659         int     xsw_nblks;
2660         int     xsw_used;
2661 };
2662 #endif
2663
2664 static int
2665 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2666 {
2667         struct xswdev xs;
2668 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2669         struct xswdev32 xs32;
2670 #endif
2671 #if defined(COMPAT_FREEBSD11)
2672         struct xswdev11 xs11;
2673 #endif
2674         int error;
2675
2676         if (arg2 != 1)                  /* name length */
2677                 return (EINVAL);
2678
2679         memset(&xs, 0, sizeof(xs));
2680         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2681         if (error != 0)
2682                 return (error);
2683 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2684         if (req->oldlen == sizeof(xs32)) {
2685                 memset(&xs32, 0, sizeof(xs32));
2686                 xs32.xsw_version = XSWDEV_VERSION;
2687                 xs32.xsw_dev1 = xs.xsw_dev;
2688                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2689                 xs32.xsw_flags = xs.xsw_flags;
2690                 xs32.xsw_nblks = xs.xsw_nblks;
2691                 xs32.xsw_used = xs.xsw_used;
2692                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2693                 return (error);
2694         }
2695 #endif
2696 #if defined(COMPAT_FREEBSD11)
2697         if (req->oldlen == sizeof(xs11)) {
2698                 memset(&xs11, 0, sizeof(xs11));
2699                 xs11.xsw_version = XSWDEV_VERSION_11;
2700                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2701                 xs11.xsw_flags = xs.xsw_flags;
2702                 xs11.xsw_nblks = xs.xsw_nblks;
2703                 xs11.xsw_used = xs.xsw_used;
2704                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2705                 return (error);
2706         }
2707 #endif
2708         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2709         return (error);
2710 }
2711
2712 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2713     "Number of swap devices");
2714 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2715     sysctl_vm_swap_info,
2716     "Swap statistics by device");
2717
2718 /*
2719  * Count the approximate swap usage in pages for a vmspace.  The
2720  * shadowed or not yet copied on write swap blocks are not accounted.
2721  * The map must be locked.
2722  */
2723 long
2724 vmspace_swap_count(struct vmspace *vmspace)
2725 {
2726         vm_map_t map;
2727         vm_map_entry_t cur;
2728         vm_object_t object;
2729         struct swblk *sb;
2730         vm_pindex_t e, pi;
2731         long count;
2732         int i;
2733
2734         map = &vmspace->vm_map;
2735         count = 0;
2736
2737         VM_MAP_ENTRY_FOREACH(cur, map) {
2738                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2739                         continue;
2740                 object = cur->object.vm_object;
2741                 if (object == NULL || object->type != OBJT_SWAP)
2742                         continue;
2743                 VM_OBJECT_RLOCK(object);
2744                 if (object->type != OBJT_SWAP)
2745                         goto unlock;
2746                 pi = OFF_TO_IDX(cur->offset);
2747                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2748                 for (;; pi = sb->p + SWAP_META_PAGES) {
2749                         sb = SWAP_PCTRIE_LOOKUP_GE(
2750                             &object->un_pager.swp.swp_blks, pi);
2751                         if (sb == NULL || sb->p >= e)
2752                                 break;
2753                         for (i = 0; i < SWAP_META_PAGES; i++) {
2754                                 if (sb->p + i < e &&
2755                                     sb->d[i] != SWAPBLK_NONE)
2756                                         count++;
2757                         }
2758                 }
2759 unlock:
2760                 VM_OBJECT_RUNLOCK(object);
2761         }
2762         return (count);
2763 }
2764
2765 /*
2766  * GEOM backend
2767  *
2768  * Swapping onto disk devices.
2769  *
2770  */
2771
2772 static g_orphan_t swapgeom_orphan;
2773
2774 static struct g_class g_swap_class = {
2775         .name = "SWAP",
2776         .version = G_VERSION,
2777         .orphan = swapgeom_orphan,
2778 };
2779
2780 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2781
2782 static void
2783 swapgeom_close_ev(void *arg, int flags)
2784 {
2785         struct g_consumer *cp;
2786
2787         cp = arg;
2788         g_access(cp, -1, -1, 0);
2789         g_detach(cp);
2790         g_destroy_consumer(cp);
2791 }
2792
2793 /*
2794  * Add a reference to the g_consumer for an inflight transaction.
2795  */
2796 static void
2797 swapgeom_acquire(struct g_consumer *cp)
2798 {
2799
2800         mtx_assert(&sw_dev_mtx, MA_OWNED);
2801         cp->index++;
2802 }
2803
2804 /*
2805  * Remove a reference from the g_consumer.  Post a close event if all
2806  * references go away, since the function might be called from the
2807  * biodone context.
2808  */
2809 static void
2810 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2811 {
2812
2813         mtx_assert(&sw_dev_mtx, MA_OWNED);
2814         cp->index--;
2815         if (cp->index == 0) {
2816                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2817                         sp->sw_id = NULL;
2818         }
2819 }
2820
2821 static void
2822 swapgeom_done(struct bio *bp2)
2823 {
2824         struct swdevt *sp;
2825         struct buf *bp;
2826         struct g_consumer *cp;
2827
2828         bp = bp2->bio_caller2;
2829         cp = bp2->bio_from;
2830         bp->b_ioflags = bp2->bio_flags;
2831         if (bp2->bio_error)
2832                 bp->b_ioflags |= BIO_ERROR;
2833         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2834         bp->b_error = bp2->bio_error;
2835         bp->b_caller1 = NULL;
2836         bufdone(bp);
2837         sp = bp2->bio_caller1;
2838         mtx_lock(&sw_dev_mtx);
2839         swapgeom_release(cp, sp);
2840         mtx_unlock(&sw_dev_mtx);
2841         g_destroy_bio(bp2);
2842 }
2843
2844 static void
2845 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2846 {
2847         struct bio *bio;
2848         struct g_consumer *cp;
2849
2850         mtx_lock(&sw_dev_mtx);
2851         cp = sp->sw_id;
2852         if (cp == NULL) {
2853                 mtx_unlock(&sw_dev_mtx);
2854                 bp->b_error = ENXIO;
2855                 bp->b_ioflags |= BIO_ERROR;
2856                 bufdone(bp);
2857                 return;
2858         }
2859         swapgeom_acquire(cp);
2860         mtx_unlock(&sw_dev_mtx);
2861         if (bp->b_iocmd == BIO_WRITE)
2862                 bio = g_new_bio();
2863         else
2864                 bio = g_alloc_bio();
2865         if (bio == NULL) {
2866                 mtx_lock(&sw_dev_mtx);
2867                 swapgeom_release(cp, sp);
2868                 mtx_unlock(&sw_dev_mtx);
2869                 bp->b_error = ENOMEM;
2870                 bp->b_ioflags |= BIO_ERROR;
2871                 printf("swap_pager: cannot allocate bio\n");
2872                 bufdone(bp);
2873                 return;
2874         }
2875
2876         bp->b_caller1 = bio;
2877         bio->bio_caller1 = sp;
2878         bio->bio_caller2 = bp;
2879         bio->bio_cmd = bp->b_iocmd;
2880         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2881         bio->bio_length = bp->b_bcount;
2882         bio->bio_done = swapgeom_done;
2883         if (!buf_mapped(bp)) {
2884                 bio->bio_ma = bp->b_pages;
2885                 bio->bio_data = unmapped_buf;
2886                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2887                 bio->bio_ma_n = bp->b_npages;
2888                 bio->bio_flags |= BIO_UNMAPPED;
2889         } else {
2890                 bio->bio_data = bp->b_data;
2891                 bio->bio_ma = NULL;
2892         }
2893         g_io_request(bio, cp);
2894         return;
2895 }
2896
2897 static void
2898 swapgeom_orphan(struct g_consumer *cp)
2899 {
2900         struct swdevt *sp;
2901         int destroy;
2902
2903         mtx_lock(&sw_dev_mtx);
2904         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2905                 if (sp->sw_id == cp) {
2906                         sp->sw_flags |= SW_CLOSING;
2907                         break;
2908                 }
2909         }
2910         /*
2911          * Drop reference we were created with. Do directly since we're in a
2912          * special context where we don't have to queue the call to
2913          * swapgeom_close_ev().
2914          */
2915         cp->index--;
2916         destroy = ((sp != NULL) && (cp->index == 0));
2917         if (destroy)
2918                 sp->sw_id = NULL;
2919         mtx_unlock(&sw_dev_mtx);
2920         if (destroy)
2921                 swapgeom_close_ev(cp, 0);
2922 }
2923
2924 static void
2925 swapgeom_close(struct thread *td, struct swdevt *sw)
2926 {
2927         struct g_consumer *cp;
2928
2929         mtx_lock(&sw_dev_mtx);
2930         cp = sw->sw_id;
2931         sw->sw_id = NULL;
2932         mtx_unlock(&sw_dev_mtx);
2933
2934         /*
2935          * swapgeom_close() may be called from the biodone context,
2936          * where we cannot perform topology changes.  Delegate the
2937          * work to the events thread.
2938          */
2939         if (cp != NULL)
2940                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2941 }
2942
2943 static int
2944 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2945 {
2946         struct g_provider *pp;
2947         struct g_consumer *cp;
2948         static struct g_geom *gp;
2949         struct swdevt *sp;
2950         u_long nblks;
2951         int error;
2952
2953         pp = g_dev_getprovider(dev);
2954         if (pp == NULL)
2955                 return (ENODEV);
2956         mtx_lock(&sw_dev_mtx);
2957         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2958                 cp = sp->sw_id;
2959                 if (cp != NULL && cp->provider == pp) {
2960                         mtx_unlock(&sw_dev_mtx);
2961                         return (EBUSY);
2962                 }
2963         }
2964         mtx_unlock(&sw_dev_mtx);
2965         if (gp == NULL)
2966                 gp = g_new_geomf(&g_swap_class, "swap");
2967         cp = g_new_consumer(gp);
2968         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2969         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2970         g_attach(cp, pp);
2971         /*
2972          * XXX: Every time you think you can improve the margin for
2973          * footshooting, somebody depends on the ability to do so:
2974          * savecore(8) wants to write to our swapdev so we cannot
2975          * set an exclusive count :-(
2976          */
2977         error = g_access(cp, 1, 1, 0);
2978         if (error != 0) {
2979                 g_detach(cp);
2980                 g_destroy_consumer(cp);
2981                 return (error);
2982         }
2983         nblks = pp->mediasize / DEV_BSIZE;
2984         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2985             swapgeom_close, dev2udev(dev),
2986             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2987         return (0);
2988 }
2989
2990 static int
2991 swapongeom(struct vnode *vp)
2992 {
2993         int error;
2994
2995         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2996         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2997                 error = ENOENT;
2998         } else {
2999                 g_topology_lock();
3000                 error = swapongeom_locked(vp->v_rdev, vp);
3001                 g_topology_unlock();
3002         }
3003         VOP_UNLOCK(vp);
3004         return (error);
3005 }
3006
3007 /*
3008  * VNODE backend
3009  *
3010  * This is used mainly for network filesystem (read: probably only tested
3011  * with NFS) swapfiles.
3012  *
3013  */
3014
3015 static void
3016 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3017 {
3018         struct vnode *vp2;
3019
3020         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3021
3022         vp2 = sp->sw_id;
3023         vhold(vp2);
3024         if (bp->b_iocmd == BIO_WRITE) {
3025                 if (bp->b_bufobj)
3026                         bufobj_wdrop(bp->b_bufobj);
3027                 bufobj_wref(&vp2->v_bufobj);
3028         }
3029         if (bp->b_bufobj != &vp2->v_bufobj)
3030                 bp->b_bufobj = &vp2->v_bufobj;
3031         bp->b_vp = vp2;
3032         bp->b_iooffset = dbtob(bp->b_blkno);
3033         bstrategy(bp);
3034         return;
3035 }
3036
3037 static void
3038 swapdev_close(struct thread *td, struct swdevt *sp)
3039 {
3040
3041         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3042         vrele(sp->sw_vp);
3043 }
3044
3045 static int
3046 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3047 {
3048         struct swdevt *sp;
3049         int error;
3050
3051         if (nblks == 0)
3052                 return (ENXIO);
3053         mtx_lock(&sw_dev_mtx);
3054         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3055                 if (sp->sw_id == vp) {
3056                         mtx_unlock(&sw_dev_mtx);
3057                         return (EBUSY);
3058                 }
3059         }
3060         mtx_unlock(&sw_dev_mtx);
3061
3062         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3063 #ifdef MAC
3064         error = mac_system_check_swapon(td->td_ucred, vp);
3065         if (error == 0)
3066 #endif
3067                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3068         (void) VOP_UNLOCK(vp);
3069         if (error)
3070                 return (error);
3071
3072         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3073             NODEV, 0);
3074         return (0);
3075 }
3076
3077 static int
3078 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3079 {
3080         int error, new, n;
3081
3082         new = nsw_wcount_async_max;
3083         error = sysctl_handle_int(oidp, &new, 0, req);
3084         if (error != 0 || req->newptr == NULL)
3085                 return (error);
3086
3087         if (new > nswbuf / 2 || new < 1)
3088                 return (EINVAL);
3089
3090         mtx_lock(&swbuf_mtx);
3091         while (nsw_wcount_async_max != new) {
3092                 /*
3093                  * Adjust difference.  If the current async count is too low,
3094                  * we will need to sqeeze our update slowly in.  Sleep with a
3095                  * higher priority than getpbuf() to finish faster.
3096                  */
3097                 n = new - nsw_wcount_async_max;
3098                 if (nsw_wcount_async + n >= 0) {
3099                         nsw_wcount_async += n;
3100                         nsw_wcount_async_max += n;
3101                         wakeup(&nsw_wcount_async);
3102                 } else {
3103                         nsw_wcount_async_max -= nsw_wcount_async;
3104                         nsw_wcount_async = 0;
3105                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3106                             "swpsysctl", 0);
3107                 }
3108         }
3109         mtx_unlock(&swbuf_mtx);
3110
3111         return (0);
3112 }
3113
3114 static void
3115 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3116     vm_offset_t end)
3117 {
3118
3119         VM_OBJECT_WLOCK(object);
3120         KASSERT((object->flags & OBJ_ANON) == 0,
3121             ("Splittable object with writecount"));
3122         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3123         VM_OBJECT_WUNLOCK(object);
3124 }
3125
3126 static void
3127 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3128     vm_offset_t end)
3129 {
3130
3131         VM_OBJECT_WLOCK(object);
3132         KASSERT((object->flags & OBJ_ANON) == 0,
3133             ("Splittable object with writecount"));
3134         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3135         VM_OBJECT_WUNLOCK(object);
3136 }
3137
3138 static void
3139 swap_pager_set_writeable_dirty(vm_object_t object)
3140 {
3141         if ((object->flags & OBJ_TMPFS_NODE) != 0)
3142                 vm_object_set_writeable_dirty_(object);
3143 }
3144
3145 static bool
3146 swap_pager_mightbedirty(vm_object_t object)
3147 {
3148         if ((object->flags & OBJ_TMPFS_NODE) != 0)
3149                 return (vm_object_mightbedirty_(object));
3150         return (false);
3151 }
3152
3153 static void
3154 swap_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
3155 {
3156         struct vnode *vp;
3157
3158         KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
3159             ("swap_pager_getvp: swap and !TMPFS obj %p", object));
3160
3161         /*
3162          * Tmpfs VREG node, which was reclaimed, has
3163          * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
3164          * this case there is no v_writecount to adjust.
3165          */
3166         VM_OBJECT_RLOCK(object);
3167         if ((object->flags & OBJ_TMPFS) != 0) {
3168                 vp = object->un_pager.swp.swp_tmpfs;
3169                 if (vp != NULL) {
3170                         vhold(vp);
3171                         *vpp = vp;
3172                         *vp_heldp = true;
3173                 }
3174         }
3175         VM_OBJECT_RUNLOCK(object);
3176 }