]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Import 1.14.3
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *                              New Swap System
41  *                              Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *      - The new swapper uses the new radix bitmap code.  This should scale
46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
47  *        arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *      - on the fly reallocation of swap during putpages.  The new system
52  *        does not try to keep previously allocated swap blocks for dirty
53  *        pages.
54  *
55  *      - on the fly deallocation of swap
56  *
57  *      - No more garbage collection required.  Unnecessarily allocated swap
58  *        blocks only exist for dirty vm_page_t's now and these are already
59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *        removal of invalidated swap blocks when a page is destroyed
61  *        or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_compat.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/priv.h>
81 #include <sys/proc.h>
82 #include <sys/bio.h>
83 #include <sys/buf.h>
84 #include <sys/disk.h>
85 #include <sys/fcntl.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/vnode.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/racct.h>
92 #include <sys/resource.h>
93 #include <sys/resourcevar.h>
94 #include <sys/rwlock.h>
95 #include <sys/sbuf.h>
96 #include <sys/sysctl.h>
97 #include <sys/sysproto.h>
98 #include <sys/blist.h>
99 #include <sys/lock.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102
103 #include <security/mac/mac_framework.h>
104
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_pageout.h>
113 #include <vm/vm_param.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 #include <geom/geom.h>
119
120 /*
121  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
122  * The 64-page limit is due to the radix code (kern/subr_blist.c).
123  */
124 #ifndef MAX_PAGEOUT_CLUSTER
125 #define MAX_PAGEOUT_CLUSTER     32
126 #endif
127
128 #if !defined(SWB_NPAGES)
129 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
130 #endif
131
132 #define SWAP_META_PAGES         PCTRIE_COUNT
133
134 /*
135  * A swblk structure maps each page index within a
136  * SWAP_META_PAGES-aligned and sized range to the address of an
137  * on-disk swap block (or SWAPBLK_NONE). The collection of these
138  * mappings for an entire vm object is implemented as a pc-trie.
139  */
140 struct swblk {
141         vm_pindex_t     p;
142         daddr_t         d[SWAP_META_PAGES];
143 };
144
145 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
146 static struct mtx sw_dev_mtx;
147 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
148 static struct swdevt *swdevhd;  /* Allocate from here next */
149 static int nswapdev;            /* Number of swap devices */
150 int swap_pager_avail;
151 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
152
153 static vm_ooffset_t swap_total;
154 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
155     "Total amount of available swap storage.");
156 static vm_ooffset_t swap_reserved;
157 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
158     "Amount of swap storage needed to back all allocated anonymous memory.");
159 static int overcommit = 0;
160 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
161     "Configure virtual memory overcommit behavior. See tuning(7) "
162     "for details.");
163 static unsigned long swzone;
164 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
165     "Actual size of swap metadata zone");
166 static unsigned long swap_maxpages;
167 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
168     "Maximum amount of swap supported");
169
170 /* bits from overcommit */
171 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
172 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
173 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
174
175 int
176 swap_reserve(vm_ooffset_t incr)
177 {
178
179         return (swap_reserve_by_cred(incr, curthread->td_ucred));
180 }
181
182 int
183 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
184 {
185         vm_ooffset_t r, s;
186         int res, error;
187         static int curfail;
188         static struct timeval lastfail;
189         struct uidinfo *uip;
190
191         uip = cred->cr_ruidinfo;
192
193         if (incr & PAGE_MASK)
194                 panic("swap_reserve: & PAGE_MASK");
195
196 #ifdef RACCT
197         if (racct_enable) {
198                 PROC_LOCK(curproc);
199                 error = racct_add(curproc, RACCT_SWAP, incr);
200                 PROC_UNLOCK(curproc);
201                 if (error != 0)
202                         return (0);
203         }
204 #endif
205
206         res = 0;
207         mtx_lock(&sw_dev_mtx);
208         r = swap_reserved + incr;
209         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
210                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
211                 s *= PAGE_SIZE;
212         } else
213                 s = 0;
214         s += swap_total;
215         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
216             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
217                 res = 1;
218                 swap_reserved = r;
219         }
220         mtx_unlock(&sw_dev_mtx);
221
222         if (res) {
223                 UIDINFO_VMSIZE_LOCK(uip);
224                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
225                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
226                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
227                         res = 0;
228                 else
229                         uip->ui_vmsize += incr;
230                 UIDINFO_VMSIZE_UNLOCK(uip);
231                 if (!res) {
232                         mtx_lock(&sw_dev_mtx);
233                         swap_reserved -= incr;
234                         mtx_unlock(&sw_dev_mtx);
235                 }
236         }
237         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
238                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
239                     uip->ui_uid, curproc->p_pid, incr);
240         }
241
242 #ifdef RACCT
243         if (!res) {
244                 PROC_LOCK(curproc);
245                 racct_sub(curproc, RACCT_SWAP, incr);
246                 PROC_UNLOCK(curproc);
247         }
248 #endif
249
250         return (res);
251 }
252
253 void
254 swap_reserve_force(vm_ooffset_t incr)
255 {
256         struct uidinfo *uip;
257
258         mtx_lock(&sw_dev_mtx);
259         swap_reserved += incr;
260         mtx_unlock(&sw_dev_mtx);
261
262 #ifdef RACCT
263         PROC_LOCK(curproc);
264         racct_add_force(curproc, RACCT_SWAP, incr);
265         PROC_UNLOCK(curproc);
266 #endif
267
268         uip = curthread->td_ucred->cr_ruidinfo;
269         PROC_LOCK(curproc);
270         UIDINFO_VMSIZE_LOCK(uip);
271         uip->ui_vmsize += incr;
272         UIDINFO_VMSIZE_UNLOCK(uip);
273         PROC_UNLOCK(curproc);
274 }
275
276 void
277 swap_release(vm_ooffset_t decr)
278 {
279         struct ucred *cred;
280
281         PROC_LOCK(curproc);
282         cred = curthread->td_ucred;
283         swap_release_by_cred(decr, cred);
284         PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
289 {
290         struct uidinfo *uip;
291
292         uip = cred->cr_ruidinfo;
293
294         if (decr & PAGE_MASK)
295                 panic("swap_release: & PAGE_MASK");
296
297         mtx_lock(&sw_dev_mtx);
298         if (swap_reserved < decr)
299                 panic("swap_reserved < decr");
300         swap_reserved -= decr;
301         mtx_unlock(&sw_dev_mtx);
302
303         UIDINFO_VMSIZE_LOCK(uip);
304         if (uip->ui_vmsize < decr)
305                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
306         uip->ui_vmsize -= decr;
307         UIDINFO_VMSIZE_UNLOCK(uip);
308
309         racct_sub_cred(cred, RACCT_SWAP, decr);
310 }
311
312 #define SWM_FREE        0x02    /* free, period                 */
313 #define SWM_POP         0x04    /* pop out                      */
314
315 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
316 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
317 static int nsw_rcount;          /* free read buffers                    */
318 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
319 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
320 static int nsw_wcount_async_max;/* assigned maximum                     */
321 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
322
323 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
324 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
325     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
326     "Maximum running async swap ops");
327 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
328 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
329     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
330     "Swap Fragmentation Info");
331
332 static struct sx sw_alloc_sx;
333
334 /*
335  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
336  * of searching a named list by hashing it just a little.
337  */
338
339 #define NOBJLISTS               8
340
341 #define NOBJLIST(handle)        \
342         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
343
344 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
345 static uma_zone_t swblk_zone;
346 static uma_zone_t swpctrie_zone;
347
348 /*
349  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
350  * calls hooked from other parts of the VM system and do not appear here.
351  * (see vm/swap_pager.h).
352  */
353 static vm_object_t
354                 swap_pager_alloc(void *handle, vm_ooffset_t size,
355                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
356 static void     swap_pager_dealloc(vm_object_t object);
357 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
358     int *);
359 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
360     int *, pgo_getpages_iodone_t, void *);
361 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
362 static boolean_t
363                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
364 static void     swap_pager_init(void);
365 static void     swap_pager_unswapped(vm_page_t);
366 static void     swap_pager_swapoff(struct swdevt *sp);
367
368 struct pagerops swappagerops = {
369         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
370         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
371         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
372         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
373         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
374         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
375         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
376         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
377 };
378
379 /*
380  * swap_*() routines are externally accessible.  swp_*() routines are
381  * internal.
382  */
383 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
384 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
385
386 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
387     "Maximum size of a swap block in pages");
388
389 static void     swp_sizecheck(void);
390 static void     swp_pager_async_iodone(struct buf *bp);
391 static int      swapongeom(struct vnode *);
392 static int      swaponvp(struct thread *, struct vnode *, u_long);
393 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
394
395 /*
396  * Swap bitmap functions
397  */
398 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
399 static daddr_t  swp_pager_getswapspace(int npages);
400
401 /*
402  * Metadata functions
403  */
404 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
405 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
406 static void swp_pager_meta_free_all(vm_object_t);
407 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
408
409 static void *
410 swblk_trie_alloc(struct pctrie *ptree)
411 {
412
413         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
414             M_USE_RESERVE : 0)));
415 }
416
417 static void
418 swblk_trie_free(struct pctrie *ptree, void *node)
419 {
420
421         uma_zfree(swpctrie_zone, node);
422 }
423
424 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
425
426 /*
427  * SWP_SIZECHECK() -    update swap_pager_full indication
428  *
429  *      update the swap_pager_almost_full indication and warn when we are
430  *      about to run out of swap space, using lowat/hiwat hysteresis.
431  *
432  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
433  *
434  *      No restrictions on call
435  *      This routine may not block.
436  */
437 static void
438 swp_sizecheck(void)
439 {
440
441         if (swap_pager_avail < nswap_lowat) {
442                 if (swap_pager_almost_full == 0) {
443                         printf("swap_pager: out of swap space\n");
444                         swap_pager_almost_full = 1;
445                 }
446         } else {
447                 swap_pager_full = 0;
448                 if (swap_pager_avail > nswap_hiwat)
449                         swap_pager_almost_full = 0;
450         }
451 }
452
453 /*
454  * SWAP_PAGER_INIT() -  initialize the swap pager!
455  *
456  *      Expected to be started from system init.  NOTE:  This code is run
457  *      before much else so be careful what you depend on.  Most of the VM
458  *      system has yet to be initialized at this point.
459  */
460 static void
461 swap_pager_init(void)
462 {
463         /*
464          * Initialize object lists
465          */
466         int i;
467
468         for (i = 0; i < NOBJLISTS; ++i)
469                 TAILQ_INIT(&swap_pager_object_list[i]);
470         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
471         sx_init(&sw_alloc_sx, "swspsx");
472         sx_init(&swdev_syscall_lock, "swsysc");
473 }
474
475 /*
476  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
477  *
478  *      Expected to be started from pageout process once, prior to entering
479  *      its main loop.
480  */
481 void
482 swap_pager_swap_init(void)
483 {
484         unsigned long n, n2;
485
486         /*
487          * Number of in-transit swap bp operations.  Don't
488          * exhaust the pbufs completely.  Make sure we
489          * initialize workable values (0 will work for hysteresis
490          * but it isn't very efficient).
491          *
492          * The nsw_cluster_max is constrained by the bp->b_pages[]
493          * array (MAXPHYS/PAGE_SIZE) and our locally defined
494          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
495          * constrained by the swap device interleave stripe size.
496          *
497          * Currently we hardwire nsw_wcount_async to 4.  This limit is
498          * designed to prevent other I/O from having high latencies due to
499          * our pageout I/O.  The value 4 works well for one or two active swap
500          * devices but is probably a little low if you have more.  Even so,
501          * a higher value would probably generate only a limited improvement
502          * with three or four active swap devices since the system does not
503          * typically have to pageout at extreme bandwidths.   We will want
504          * at least 2 per swap devices, and 4 is a pretty good value if you
505          * have one NFS swap device due to the command/ack latency over NFS.
506          * So it all works out pretty well.
507          */
508         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
509
510         mtx_lock(&pbuf_mtx);
511         nsw_rcount = (nswbuf + 1) / 2;
512         nsw_wcount_sync = (nswbuf + 3) / 4;
513         nsw_wcount_async = 4;
514         nsw_wcount_async_max = nsw_wcount_async;
515         mtx_unlock(&pbuf_mtx);
516
517         /*
518          * Initialize our zone, guessing on the number we need based
519          * on the number of pages in the system.
520          */
521         n = vm_cnt.v_page_count / 2;
522         if (maxswzone && n > maxswzone / sizeof(struct swblk))
523                 n = maxswzone / sizeof(struct swblk);
524         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
525             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
526             UMA_ZONE_NOFREE | UMA_ZONE_VM);
527         if (swpctrie_zone == NULL)
528                 panic("failed to create swap pctrie zone.");
529         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
530             NULL, NULL, _Alignof(struct swblk) - 1,
531             UMA_ZONE_NOFREE | UMA_ZONE_VM);
532         if (swblk_zone == NULL)
533                 panic("failed to create swap blk zone.");
534         n2 = n;
535         do {
536                 if (uma_zone_reserve_kva(swblk_zone, n))
537                         break;
538                 /*
539                  * if the allocation failed, try a zone two thirds the
540                  * size of the previous attempt.
541                  */
542                 n -= ((n + 2) / 3);
543         } while (n > 0);
544         if (n2 != n)
545                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
546                     n2, n);
547         swap_maxpages = n * SWAP_META_PAGES;
548         swzone = n * sizeof(struct swblk);
549         if (!uma_zone_reserve_kva(swpctrie_zone, n))
550                 printf("Cannot reserve swap pctrie zone, "
551                     "reduce kern.maxswzone.\n");
552 }
553
554 static vm_object_t
555 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
556     vm_ooffset_t offset)
557 {
558         vm_object_t object;
559
560         if (cred != NULL) {
561                 if (!swap_reserve_by_cred(size, cred))
562                         return (NULL);
563                 crhold(cred);
564         }
565
566         /*
567          * The un_pager.swp.swp_blks trie is initialized by
568          * vm_object_allocate() to ensure the correct order of
569          * visibility to other threads.
570          */
571         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
572             PAGE_MASK + size));
573
574         object->handle = handle;
575         if (cred != NULL) {
576                 object->cred = cred;
577                 object->charge = size;
578         }
579         return (object);
580 }
581
582 /*
583  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
584  *                      its metadata structures.
585  *
586  *      This routine is called from the mmap and fork code to create a new
587  *      OBJT_SWAP object.
588  *
589  *      This routine must ensure that no live duplicate is created for
590  *      the named object request, which is protected against by
591  *      holding the sw_alloc_sx lock in case handle != NULL.
592  */
593 static vm_object_t
594 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
595     vm_ooffset_t offset, struct ucred *cred)
596 {
597         vm_object_t object;
598
599         if (handle != NULL) {
600                 /*
601                  * Reference existing named region or allocate new one.  There
602                  * should not be a race here against swp_pager_meta_build()
603                  * as called from vm_page_remove() in regards to the lookup
604                  * of the handle.
605                  */
606                 sx_xlock(&sw_alloc_sx);
607                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
608                 if (object == NULL) {
609                         object = swap_pager_alloc_init(handle, cred, size,
610                             offset);
611                         if (object != NULL) {
612                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
613                                     object, pager_object_list);
614                         }
615                 }
616                 sx_xunlock(&sw_alloc_sx);
617         } else {
618                 object = swap_pager_alloc_init(handle, cred, size, offset);
619         }
620         return (object);
621 }
622
623 /*
624  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
625  *
626  *      The swap backing for the object is destroyed.  The code is
627  *      designed such that we can reinstantiate it later, but this
628  *      routine is typically called only when the entire object is
629  *      about to be destroyed.
630  *
631  *      The object must be locked.
632  */
633 static void
634 swap_pager_dealloc(vm_object_t object)
635 {
636
637         VM_OBJECT_ASSERT_WLOCKED(object);
638         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
639
640         /*
641          * Remove from list right away so lookups will fail if we block for
642          * pageout completion.
643          */
644         if (object->handle != NULL) {
645                 VM_OBJECT_WUNLOCK(object);
646                 sx_xlock(&sw_alloc_sx);
647                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
648                     pager_object_list);
649                 sx_xunlock(&sw_alloc_sx);
650                 VM_OBJECT_WLOCK(object);
651         }
652
653         vm_object_pip_wait(object, "swpdea");
654
655         /*
656          * Free all remaining metadata.  We only bother to free it from
657          * the swap meta data.  We do not attempt to free swapblk's still
658          * associated with vm_page_t's for this object.  We do not care
659          * if paging is still in progress on some objects.
660          */
661         swp_pager_meta_free_all(object);
662         object->handle = NULL;
663         object->type = OBJT_DEAD;
664 }
665
666 /************************************************************************
667  *                      SWAP PAGER BITMAP ROUTINES                      *
668  ************************************************************************/
669
670 /*
671  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
672  *
673  *      Allocate swap for the requested number of pages.  The starting
674  *      swap block number (a page index) is returned or SWAPBLK_NONE
675  *      if the allocation failed.
676  *
677  *      Also has the side effect of advising that somebody made a mistake
678  *      when they configured swap and didn't configure enough.
679  *
680  *      This routine may not sleep.
681  *
682  *      We allocate in round-robin fashion from the configured devices.
683  */
684 static daddr_t
685 swp_pager_getswapspace(int npages)
686 {
687         daddr_t blk;
688         struct swdevt *sp;
689         int i;
690
691         blk = SWAPBLK_NONE;
692         mtx_lock(&sw_dev_mtx);
693         sp = swdevhd;
694         for (i = 0; i < nswapdev; i++) {
695                 if (sp == NULL)
696                         sp = TAILQ_FIRST(&swtailq);
697                 if (!(sp->sw_flags & SW_CLOSING)) {
698                         blk = blist_alloc(sp->sw_blist, npages);
699                         if (blk != SWAPBLK_NONE) {
700                                 blk += sp->sw_first;
701                                 sp->sw_used += npages;
702                                 swap_pager_avail -= npages;
703                                 swp_sizecheck();
704                                 swdevhd = TAILQ_NEXT(sp, sw_list);
705                                 goto done;
706                         }
707                 }
708                 sp = TAILQ_NEXT(sp, sw_list);
709         }
710         if (swap_pager_full != 2) {
711                 printf("swap_pager_getswapspace(%d): failed\n", npages);
712                 swap_pager_full = 2;
713                 swap_pager_almost_full = 1;
714         }
715         swdevhd = NULL;
716 done:
717         mtx_unlock(&sw_dev_mtx);
718         return (blk);
719 }
720
721 static int
722 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
723 {
724
725         return (blk >= sp->sw_first && blk < sp->sw_end);
726 }
727
728 static void
729 swp_pager_strategy(struct buf *bp)
730 {
731         struct swdevt *sp;
732
733         mtx_lock(&sw_dev_mtx);
734         TAILQ_FOREACH(sp, &swtailq, sw_list) {
735                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
736                         mtx_unlock(&sw_dev_mtx);
737                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
738                             unmapped_buf_allowed) {
739                                 bp->b_data = unmapped_buf;
740                                 bp->b_offset = 0;
741                         } else {
742                                 pmap_qenter((vm_offset_t)bp->b_data,
743                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
744                         }
745                         sp->sw_strategy(bp, sp);
746                         return;
747                 }
748         }
749         panic("Swapdev not found");
750 }
751
752
753 /*
754  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
755  *
756  *      This routine returns the specified swap blocks back to the bitmap.
757  *
758  *      This routine may not sleep.
759  */
760 static void
761 swp_pager_freeswapspace(daddr_t blk, int npages)
762 {
763         struct swdevt *sp;
764
765         mtx_lock(&sw_dev_mtx);
766         TAILQ_FOREACH(sp, &swtailq, sw_list) {
767                 if (blk >= sp->sw_first && blk < sp->sw_end) {
768                         sp->sw_used -= npages;
769                         /*
770                          * If we are attempting to stop swapping on
771                          * this device, we don't want to mark any
772                          * blocks free lest they be reused.
773                          */
774                         if ((sp->sw_flags & SW_CLOSING) == 0) {
775                                 blist_free(sp->sw_blist, blk - sp->sw_first,
776                                     npages);
777                                 swap_pager_avail += npages;
778                                 swp_sizecheck();
779                         }
780                         mtx_unlock(&sw_dev_mtx);
781                         return;
782                 }
783         }
784         panic("Swapdev not found");
785 }
786
787 /*
788  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
789  */
790 static int
791 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
792 {
793         struct sbuf sbuf;
794         struct swdevt *sp;
795         const char *devname;
796         int error;
797
798         error = sysctl_wire_old_buffer(req, 0);
799         if (error != 0)
800                 return (error);
801         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
802         mtx_lock(&sw_dev_mtx);
803         TAILQ_FOREACH(sp, &swtailq, sw_list) {
804                 if (vn_isdisk(sp->sw_vp, NULL))
805                         devname = devtoname(sp->sw_vp->v_rdev);
806                 else
807                         devname = "[file]";
808                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
809                 blist_stats(sp->sw_blist, &sbuf);
810         }
811         mtx_unlock(&sw_dev_mtx);
812         error = sbuf_finish(&sbuf);
813         sbuf_delete(&sbuf);
814         return (error);
815 }
816
817 /*
818  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
819  *                              range within an object.
820  *
821  *      This is a globally accessible routine.
822  *
823  *      This routine removes swapblk assignments from swap metadata.
824  *
825  *      The external callers of this routine typically have already destroyed
826  *      or renamed vm_page_t's associated with this range in the object so
827  *      we should be ok.
828  *
829  *      The object must be locked.
830  */
831 void
832 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
833 {
834
835         swp_pager_meta_free(object, start, size);
836 }
837
838 /*
839  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
840  *
841  *      Assigns swap blocks to the specified range within the object.  The
842  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
843  *
844  *      Returns 0 on success, -1 on failure.
845  */
846 int
847 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
848 {
849         int n = 0;
850         daddr_t blk = SWAPBLK_NONE;
851         vm_pindex_t beg = start;        /* save start index */
852
853         VM_OBJECT_WLOCK(object);
854         while (size) {
855                 if (n == 0) {
856                         n = BLIST_MAX_ALLOC;
857                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
858                                 n >>= 1;
859                                 if (n == 0) {
860                                         swp_pager_meta_free(object, beg, start - beg);
861                                         VM_OBJECT_WUNLOCK(object);
862                                         return (-1);
863                                 }
864                         }
865                 }
866                 swp_pager_meta_build(object, start, blk);
867                 --size;
868                 ++start;
869                 ++blk;
870                 --n;
871         }
872         swp_pager_meta_free(object, start, n);
873         VM_OBJECT_WUNLOCK(object);
874         return (0);
875 }
876
877 /*
878  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
879  *                      and destroy the source.
880  *
881  *      Copy any valid swapblks from the source to the destination.  In
882  *      cases where both the source and destination have a valid swapblk,
883  *      we keep the destination's.
884  *
885  *      This routine is allowed to sleep.  It may sleep allocating metadata
886  *      indirectly through swp_pager_meta_build() or if paging is still in
887  *      progress on the source.
888  *
889  *      The source object contains no vm_page_t's (which is just as well)
890  *
891  *      The source object is of type OBJT_SWAP.
892  *
893  *      The source and destination objects must be locked.
894  *      Both object locks may temporarily be released.
895  */
896 void
897 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
898     vm_pindex_t offset, int destroysource)
899 {
900         vm_pindex_t i;
901
902         VM_OBJECT_ASSERT_WLOCKED(srcobject);
903         VM_OBJECT_ASSERT_WLOCKED(dstobject);
904
905         /*
906          * If destroysource is set, we remove the source object from the
907          * swap_pager internal queue now.
908          */
909         if (destroysource && srcobject->handle != NULL) {
910                 vm_object_pip_add(srcobject, 1);
911                 VM_OBJECT_WUNLOCK(srcobject);
912                 vm_object_pip_add(dstobject, 1);
913                 VM_OBJECT_WUNLOCK(dstobject);
914                 sx_xlock(&sw_alloc_sx);
915                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
916                     pager_object_list);
917                 sx_xunlock(&sw_alloc_sx);
918                 VM_OBJECT_WLOCK(dstobject);
919                 vm_object_pip_wakeup(dstobject);
920                 VM_OBJECT_WLOCK(srcobject);
921                 vm_object_pip_wakeup(srcobject);
922         }
923
924         /*
925          * transfer source to destination.
926          */
927         for (i = 0; i < dstobject->size; ++i) {
928                 daddr_t dstaddr;
929
930                 /*
931                  * Locate (without changing) the swapblk on the destination,
932                  * unless it is invalid in which case free it silently, or
933                  * if the destination is a resident page, in which case the
934                  * source is thrown away.
935                  */
936                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
937
938                 if (dstaddr == SWAPBLK_NONE) {
939                         /*
940                          * Destination has no swapblk and is not resident,
941                          * copy source.
942                          */
943                         daddr_t srcaddr;
944
945                         srcaddr = swp_pager_meta_ctl(
946                             srcobject,
947                             i + offset,
948                             SWM_POP
949                         );
950
951                         if (srcaddr != SWAPBLK_NONE) {
952                                 /*
953                                  * swp_pager_meta_build() can sleep.
954                                  */
955                                 vm_object_pip_add(srcobject, 1);
956                                 VM_OBJECT_WUNLOCK(srcobject);
957                                 vm_object_pip_add(dstobject, 1);
958                                 swp_pager_meta_build(dstobject, i, srcaddr);
959                                 vm_object_pip_wakeup(dstobject);
960                                 VM_OBJECT_WLOCK(srcobject);
961                                 vm_object_pip_wakeup(srcobject);
962                         }
963                 } else {
964                         /*
965                          * Destination has valid swapblk or it is represented
966                          * by a resident page.  We destroy the sourceblock.
967                          */
968
969                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
970                 }
971         }
972
973         /*
974          * Free left over swap blocks in source.
975          *
976          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
977          * double-remove the object from the swap queues.
978          */
979         if (destroysource) {
980                 swp_pager_meta_free_all(srcobject);
981                 /*
982                  * Reverting the type is not necessary, the caller is going
983                  * to destroy srcobject directly, but I'm doing it here
984                  * for consistency since we've removed the object from its
985                  * queues.
986                  */
987                 srcobject->type = OBJT_DEFAULT;
988         }
989 }
990
991 /*
992  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
993  *                              the requested page.
994  *
995  *      We determine whether good backing store exists for the requested
996  *      page and return TRUE if it does, FALSE if it doesn't.
997  *
998  *      If TRUE, we also try to determine how much valid, contiguous backing
999  *      store exists before and after the requested page.
1000  */
1001 static boolean_t
1002 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1003     int *after)
1004 {
1005         daddr_t blk, blk0;
1006         int i;
1007
1008         VM_OBJECT_ASSERT_LOCKED(object);
1009
1010         /*
1011          * do we have good backing store at the requested index ?
1012          */
1013         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1014         if (blk0 == SWAPBLK_NONE) {
1015                 if (before)
1016                         *before = 0;
1017                 if (after)
1018                         *after = 0;
1019                 return (FALSE);
1020         }
1021
1022         /*
1023          * find backwards-looking contiguous good backing store
1024          */
1025         if (before != NULL) {
1026                 for (i = 1; i < SWB_NPAGES; i++) {
1027                         if (i > pindex)
1028                                 break;
1029                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1030                         if (blk != blk0 - i)
1031                                 break;
1032                 }
1033                 *before = i - 1;
1034         }
1035
1036         /*
1037          * find forward-looking contiguous good backing store
1038          */
1039         if (after != NULL) {
1040                 for (i = 1; i < SWB_NPAGES; i++) {
1041                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1042                         if (blk != blk0 + i)
1043                                 break;
1044                 }
1045                 *after = i - 1;
1046         }
1047         return (TRUE);
1048 }
1049
1050 /*
1051  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1052  *
1053  *      This removes any associated swap backing store, whether valid or
1054  *      not, from the page.
1055  *
1056  *      This routine is typically called when a page is made dirty, at
1057  *      which point any associated swap can be freed.  MADV_FREE also
1058  *      calls us in a special-case situation
1059  *
1060  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1061  *      should make the page dirty before calling this routine.  This routine
1062  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1063  *      depends on it.
1064  *
1065  *      This routine may not sleep.
1066  *
1067  *      The object containing the page must be locked.
1068  */
1069 static void
1070 swap_pager_unswapped(vm_page_t m)
1071 {
1072
1073         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1074 }
1075
1076 /*
1077  * swap_pager_getpages() - bring pages in from swap
1078  *
1079  *      Attempt to page in the pages in array "m" of length "count".  The caller
1080  *      may optionally specify that additional pages preceding and succeeding
1081  *      the specified range be paged in.  The number of such pages is returned
1082  *      in the "rbehind" and "rahead" parameters, and they will be in the
1083  *      inactive queue upon return.
1084  *
1085  *      The pages in "m" must be busied and will remain busied upon return.
1086  */
1087 static int
1088 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1089     int *rahead)
1090 {
1091         struct buf *bp;
1092         vm_page_t mpred, msucc, p;
1093         vm_pindex_t pindex;
1094         daddr_t blk;
1095         int i, j, maxahead, maxbehind, reqcount, shift;
1096
1097         reqcount = count;
1098
1099         VM_OBJECT_WUNLOCK(object);
1100         bp = getpbuf(&nsw_rcount);
1101         VM_OBJECT_WLOCK(object);
1102
1103         if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) {
1104                 relpbuf(bp, &nsw_rcount);
1105                 return (VM_PAGER_FAIL);
1106         }
1107
1108         /*
1109          * Clip the readahead and readbehind ranges to exclude resident pages.
1110          */
1111         if (rahead != NULL) {
1112                 KASSERT(reqcount - 1 <= maxahead,
1113                     ("page count %d extends beyond swap block", reqcount));
1114                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1115                 pindex = m[reqcount - 1]->pindex;
1116                 msucc = TAILQ_NEXT(m[reqcount - 1], listq);
1117                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1118                         *rahead = msucc->pindex - pindex - 1;
1119         }
1120         if (rbehind != NULL) {
1121                 *rbehind = imin(*rbehind, maxbehind);
1122                 pindex = m[0]->pindex;
1123                 mpred = TAILQ_PREV(m[0], pglist, listq);
1124                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1125                         *rbehind = pindex - mpred->pindex - 1;
1126         }
1127
1128         /*
1129          * Allocate readahead and readbehind pages.
1130          */
1131         shift = rbehind != NULL ? *rbehind : 0;
1132         if (shift != 0) {
1133                 for (i = 1; i <= shift; i++) {
1134                         p = vm_page_alloc(object, m[0]->pindex - i,
1135                             VM_ALLOC_NORMAL);
1136                         if (p == NULL) {
1137                                 /* Shift allocated pages to the left. */
1138                                 for (j = 0; j < i - 1; j++)
1139                                         bp->b_pages[j] =
1140                                             bp->b_pages[j + shift - i + 1];
1141                                 break;
1142                         }
1143                         bp->b_pages[shift - i] = p;
1144                 }
1145                 shift = i - 1;
1146                 *rbehind = shift;
1147         }
1148         for (i = 0; i < reqcount; i++)
1149                 bp->b_pages[i + shift] = m[i];
1150         if (rahead != NULL) {
1151                 for (i = 0; i < *rahead; i++) {
1152                         p = vm_page_alloc(object,
1153                             m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1154                         if (p == NULL)
1155                                 break;
1156                         bp->b_pages[shift + reqcount + i] = p;
1157                 }
1158                 *rahead = i;
1159         }
1160         if (rbehind != NULL)
1161                 count += *rbehind;
1162         if (rahead != NULL)
1163                 count += *rahead;
1164
1165         vm_object_pip_add(object, count);
1166
1167         for (i = 0; i < count; i++)
1168                 bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1169
1170         pindex = bp->b_pages[0]->pindex;
1171         blk = swp_pager_meta_ctl(object, pindex, 0);
1172         KASSERT(blk != SWAPBLK_NONE,
1173             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1174
1175         VM_OBJECT_WUNLOCK(object);
1176
1177         bp->b_flags |= B_PAGING;
1178         bp->b_iocmd = BIO_READ;
1179         bp->b_iodone = swp_pager_async_iodone;
1180         bp->b_rcred = crhold(thread0.td_ucred);
1181         bp->b_wcred = crhold(thread0.td_ucred);
1182         bp->b_blkno = blk;
1183         bp->b_bcount = PAGE_SIZE * count;
1184         bp->b_bufsize = PAGE_SIZE * count;
1185         bp->b_npages = count;
1186         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1187         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1188
1189         VM_CNT_INC(v_swapin);
1190         VM_CNT_ADD(v_swappgsin, count);
1191
1192         /*
1193          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1194          * this point because we automatically release it on completion.
1195          * Instead, we look at the one page we are interested in which we
1196          * still hold a lock on even through the I/O completion.
1197          *
1198          * The other pages in our m[] array are also released on completion,
1199          * so we cannot assume they are valid anymore either.
1200          *
1201          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1202          */
1203         BUF_KERNPROC(bp);
1204         swp_pager_strategy(bp);
1205
1206         /*
1207          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1208          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1209          * is set in the metadata for each page in the request.
1210          */
1211         VM_OBJECT_WLOCK(object);
1212         while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1213                 m[0]->oflags |= VPO_SWAPSLEEP;
1214                 VM_CNT_INC(v_intrans);
1215                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1216                     "swread", hz * 20)) {
1217                         printf(
1218 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1219                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1220                 }
1221         }
1222
1223         /*
1224          * If we had an unrecoverable read error pages will not be valid.
1225          */
1226         for (i = 0; i < reqcount; i++)
1227                 if (m[i]->valid != VM_PAGE_BITS_ALL)
1228                         return (VM_PAGER_ERROR);
1229
1230         return (VM_PAGER_OK);
1231
1232         /*
1233          * A final note: in a low swap situation, we cannot deallocate swap
1234          * and mark a page dirty here because the caller is likely to mark
1235          * the page clean when we return, causing the page to possibly revert
1236          * to all-zero's later.
1237          */
1238 }
1239
1240 /*
1241  *      swap_pager_getpages_async():
1242  *
1243  *      Right now this is emulation of asynchronous operation on top of
1244  *      swap_pager_getpages().
1245  */
1246 static int
1247 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1248     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1249 {
1250         int r, error;
1251
1252         r = swap_pager_getpages(object, m, count, rbehind, rahead);
1253         VM_OBJECT_WUNLOCK(object);
1254         switch (r) {
1255         case VM_PAGER_OK:
1256                 error = 0;
1257                 break;
1258         case VM_PAGER_ERROR:
1259                 error = EIO;
1260                 break;
1261         case VM_PAGER_FAIL:
1262                 error = EINVAL;
1263                 break;
1264         default:
1265                 panic("unhandled swap_pager_getpages() error %d", r);
1266         }
1267         (iodone)(arg, m, count, error);
1268         VM_OBJECT_WLOCK(object);
1269
1270         return (r);
1271 }
1272
1273 /*
1274  *      swap_pager_putpages:
1275  *
1276  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1277  *
1278  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1279  *      are automatically converted to SWAP objects.
1280  *
1281  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1282  *      vm_page reservation system coupled with properly written VFS devices
1283  *      should ensure that no low-memory deadlock occurs.  This is an area
1284  *      which needs work.
1285  *
1286  *      The parent has N vm_object_pip_add() references prior to
1287  *      calling us and will remove references for rtvals[] that are
1288  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1289  *      completion.
1290  *
1291  *      The parent has soft-busy'd the pages it passes us and will unbusy
1292  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1293  *      We need to unbusy the rest on I/O completion.
1294  */
1295 static void
1296 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1297     int flags, int *rtvals)
1298 {
1299         int i, n;
1300         boolean_t sync;
1301
1302         if (count && m[0]->object != object) {
1303                 panic("swap_pager_putpages: object mismatch %p/%p",
1304                     object,
1305                     m[0]->object
1306                 );
1307         }
1308
1309         /*
1310          * Step 1
1311          *
1312          * Turn object into OBJT_SWAP
1313          * check for bogus sysops
1314          * force sync if not pageout process
1315          */
1316         if (object->type != OBJT_SWAP)
1317                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1318         VM_OBJECT_WUNLOCK(object);
1319
1320         n = 0;
1321         if (curproc != pageproc)
1322                 sync = TRUE;
1323         else
1324                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1325
1326         /*
1327          * Step 2
1328          *
1329          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1330          * The page is left dirty until the pageout operation completes
1331          * successfully.
1332          */
1333         for (i = 0; i < count; i += n) {
1334                 int j;
1335                 struct buf *bp;
1336                 daddr_t blk;
1337
1338                 /*
1339                  * Maximum I/O size is limited by a number of factors.
1340                  */
1341                 n = min(BLIST_MAX_ALLOC, count - i);
1342                 n = min(n, nsw_cluster_max);
1343
1344                 /*
1345                  * Get biggest block of swap we can.  If we fail, fall
1346                  * back and try to allocate a smaller block.  Don't go
1347                  * overboard trying to allocate space if it would overly
1348                  * fragment swap.
1349                  */
1350                 while (
1351                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1352                     n > 4
1353                 ) {
1354                         n >>= 1;
1355                 }
1356                 if (blk == SWAPBLK_NONE) {
1357                         for (j = 0; j < n; ++j)
1358                                 rtvals[i+j] = VM_PAGER_FAIL;
1359                         continue;
1360                 }
1361
1362                 /*
1363                  * All I/O parameters have been satisfied, build the I/O
1364                  * request and assign the swap space.
1365                  */
1366                 if (sync == TRUE) {
1367                         bp = getpbuf(&nsw_wcount_sync);
1368                 } else {
1369                         bp = getpbuf(&nsw_wcount_async);
1370                         bp->b_flags = B_ASYNC;
1371                 }
1372                 bp->b_flags |= B_PAGING;
1373                 bp->b_iocmd = BIO_WRITE;
1374
1375                 bp->b_rcred = crhold(thread0.td_ucred);
1376                 bp->b_wcred = crhold(thread0.td_ucred);
1377                 bp->b_bcount = PAGE_SIZE * n;
1378                 bp->b_bufsize = PAGE_SIZE * n;
1379                 bp->b_blkno = blk;
1380
1381                 VM_OBJECT_WLOCK(object);
1382                 for (j = 0; j < n; ++j) {
1383                         vm_page_t mreq = m[i+j];
1384
1385                         swp_pager_meta_build(
1386                             mreq->object,
1387                             mreq->pindex,
1388                             blk + j
1389                         );
1390                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1391                         mreq->oflags |= VPO_SWAPINPROG;
1392                         bp->b_pages[j] = mreq;
1393                 }
1394                 VM_OBJECT_WUNLOCK(object);
1395                 bp->b_npages = n;
1396                 /*
1397                  * Must set dirty range for NFS to work.
1398                  */
1399                 bp->b_dirtyoff = 0;
1400                 bp->b_dirtyend = bp->b_bcount;
1401
1402                 VM_CNT_INC(v_swapout);
1403                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1404
1405                 /*
1406                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1407                  * can call the async completion routine at the end of a
1408                  * synchronous I/O operation.  Otherwise, our caller would
1409                  * perform duplicate unbusy and wakeup operations on the page
1410                  * and object, respectively.
1411                  */
1412                 for (j = 0; j < n; j++)
1413                         rtvals[i + j] = VM_PAGER_PEND;
1414
1415                 /*
1416                  * asynchronous
1417                  *
1418                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1419                  */
1420                 if (sync == FALSE) {
1421                         bp->b_iodone = swp_pager_async_iodone;
1422                         BUF_KERNPROC(bp);
1423                         swp_pager_strategy(bp);
1424                         continue;
1425                 }
1426
1427                 /*
1428                  * synchronous
1429                  *
1430                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1431                  */
1432                 bp->b_iodone = bdone;
1433                 swp_pager_strategy(bp);
1434
1435                 /*
1436                  * Wait for the sync I/O to complete.
1437                  */
1438                 bwait(bp, PVM, "swwrt");
1439
1440                 /*
1441                  * Now that we are through with the bp, we can call the
1442                  * normal async completion, which frees everything up.
1443                  */
1444                 swp_pager_async_iodone(bp);
1445         }
1446         VM_OBJECT_WLOCK(object);
1447 }
1448
1449 /*
1450  *      swp_pager_async_iodone:
1451  *
1452  *      Completion routine for asynchronous reads and writes from/to swap.
1453  *      Also called manually by synchronous code to finish up a bp.
1454  *
1455  *      This routine may not sleep.
1456  */
1457 static void
1458 swp_pager_async_iodone(struct buf *bp)
1459 {
1460         int i;
1461         vm_object_t object = NULL;
1462
1463         /*
1464          * report error
1465          */
1466         if (bp->b_ioflags & BIO_ERROR) {
1467                 printf(
1468                     "swap_pager: I/O error - %s failed; blkno %ld,"
1469                         "size %ld, error %d\n",
1470                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1471                     (long)bp->b_blkno,
1472                     (long)bp->b_bcount,
1473                     bp->b_error
1474                 );
1475         }
1476
1477         /*
1478          * remove the mapping for kernel virtual
1479          */
1480         if (buf_mapped(bp))
1481                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1482         else
1483                 bp->b_data = bp->b_kvabase;
1484
1485         if (bp->b_npages) {
1486                 object = bp->b_pages[0]->object;
1487                 VM_OBJECT_WLOCK(object);
1488         }
1489
1490         /*
1491          * cleanup pages.  If an error occurs writing to swap, we are in
1492          * very serious trouble.  If it happens to be a disk error, though,
1493          * we may be able to recover by reassigning the swap later on.  So
1494          * in this case we remove the m->swapblk assignment for the page
1495          * but do not free it in the rlist.  The errornous block(s) are thus
1496          * never reallocated as swap.  Redirty the page and continue.
1497          */
1498         for (i = 0; i < bp->b_npages; ++i) {
1499                 vm_page_t m = bp->b_pages[i];
1500
1501                 m->oflags &= ~VPO_SWAPINPROG;
1502                 if (m->oflags & VPO_SWAPSLEEP) {
1503                         m->oflags &= ~VPO_SWAPSLEEP;
1504                         wakeup(&object->paging_in_progress);
1505                 }
1506
1507                 if (bp->b_ioflags & BIO_ERROR) {
1508                         /*
1509                          * If an error occurs I'd love to throw the swapblk
1510                          * away without freeing it back to swapspace, so it
1511                          * can never be used again.  But I can't from an
1512                          * interrupt.
1513                          */
1514                         if (bp->b_iocmd == BIO_READ) {
1515                                 /*
1516                                  * NOTE: for reads, m->dirty will probably
1517                                  * be overridden by the original caller of
1518                                  * getpages so don't play cute tricks here.
1519                                  */
1520                                 m->valid = 0;
1521                         } else {
1522                                 /*
1523                                  * If a write error occurs, reactivate page
1524                                  * so it doesn't clog the inactive list,
1525                                  * then finish the I/O.
1526                                  */
1527                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1528                                 vm_page_lock(m);
1529                                 vm_page_activate(m);
1530                                 vm_page_unlock(m);
1531                                 vm_page_sunbusy(m);
1532                         }
1533                 } else if (bp->b_iocmd == BIO_READ) {
1534                         /*
1535                          * NOTE: for reads, m->dirty will probably be
1536                          * overridden by the original caller of getpages so
1537                          * we cannot set them in order to free the underlying
1538                          * swap in a low-swap situation.  I don't think we'd
1539                          * want to do that anyway, but it was an optimization
1540                          * that existed in the old swapper for a time before
1541                          * it got ripped out due to precisely this problem.
1542                          */
1543                         KASSERT(!pmap_page_is_mapped(m),
1544                             ("swp_pager_async_iodone: page %p is mapped", m));
1545                         KASSERT(m->dirty == 0,
1546                             ("swp_pager_async_iodone: page %p is dirty", m));
1547
1548                         m->valid = VM_PAGE_BITS_ALL;
1549                         if (i < bp->b_pgbefore ||
1550                             i >= bp->b_npages - bp->b_pgafter)
1551                                 vm_page_readahead_finish(m);
1552                 } else {
1553                         /*
1554                          * For write success, clear the dirty
1555                          * status, then finish the I/O ( which decrements the
1556                          * busy count and possibly wakes waiter's up ).
1557                          * A page is only written to swap after a period of
1558                          * inactivity.  Therefore, we do not expect it to be
1559                          * reused.
1560                          */
1561                         KASSERT(!pmap_page_is_write_mapped(m),
1562                             ("swp_pager_async_iodone: page %p is not write"
1563                             " protected", m));
1564                         vm_page_undirty(m);
1565                         vm_page_lock(m);
1566                         vm_page_deactivate_noreuse(m);
1567                         vm_page_unlock(m);
1568                         vm_page_sunbusy(m);
1569                 }
1570         }
1571
1572         /*
1573          * adjust pip.  NOTE: the original parent may still have its own
1574          * pip refs on the object.
1575          */
1576         if (object != NULL) {
1577                 vm_object_pip_wakeupn(object, bp->b_npages);
1578                 VM_OBJECT_WUNLOCK(object);
1579         }
1580
1581         /*
1582          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1583          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1584          * trigger a KASSERT in relpbuf().
1585          */
1586         if (bp->b_vp) {
1587                     bp->b_vp = NULL;
1588                     bp->b_bufobj = NULL;
1589         }
1590         /*
1591          * release the physical I/O buffer
1592          */
1593         relpbuf(
1594             bp,
1595             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1596                 ((bp->b_flags & B_ASYNC) ?
1597                     &nsw_wcount_async :
1598                     &nsw_wcount_sync
1599                 )
1600             )
1601         );
1602 }
1603
1604 int
1605 swap_pager_nswapdev(void)
1606 {
1607
1608         return (nswapdev);
1609 }
1610
1611 /*
1612  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1613  *
1614  *      This routine dissociates the page at the given index within an object
1615  *      from its backing store, paging it in if it does not reside in memory.
1616  *      If the page is paged in, it is marked dirty and placed in the laundry
1617  *      queue.  The page is marked dirty because it no longer has backing
1618  *      store.  It is placed in the laundry queue because it has not been
1619  *      accessed recently.  Otherwise, it would already reside in memory.
1620  *
1621  *      We also attempt to swap in all other pages in the swap block.
1622  *      However, we only guarantee that the one at the specified index is
1623  *      paged in.
1624  *
1625  *      XXX - The code to page the whole block in doesn't work, so we
1626  *            revert to the one-by-one behavior for now.  Sigh.
1627  */
1628 static inline void
1629 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1630 {
1631         vm_page_t m;
1632
1633         vm_object_pip_add(object, 1);
1634         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1635         if (m->valid == VM_PAGE_BITS_ALL) {
1636                 vm_object_pip_wakeup(object);
1637                 vm_page_dirty(m);
1638                 vm_page_lock(m);
1639                 vm_page_activate(m);
1640                 vm_page_unlock(m);
1641                 vm_page_xunbusy(m);
1642                 vm_pager_page_unswapped(m);
1643                 return;
1644         }
1645
1646         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1647                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1648         vm_object_pip_wakeup(object);
1649         vm_page_dirty(m);
1650         vm_page_lock(m);
1651         vm_page_launder(m);
1652         vm_page_unlock(m);
1653         vm_page_xunbusy(m);
1654         vm_pager_page_unswapped(m);
1655 }
1656
1657 /*
1658  *      swap_pager_swapoff:
1659  *
1660  *      Page in all of the pages that have been paged out to the
1661  *      given device.  The corresponding blocks in the bitmap must be
1662  *      marked as allocated and the device must be flagged SW_CLOSING.
1663  *      There may be no processes swapped out to the device.
1664  *
1665  *      This routine may block.
1666  */
1667 static void
1668 swap_pager_swapoff(struct swdevt *sp)
1669 {
1670         struct swblk *sb;
1671         vm_object_t object;
1672         vm_pindex_t pi;
1673         int i, retries;
1674
1675         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1676
1677         retries = 0;
1678 full_rescan:
1679         mtx_lock(&vm_object_list_mtx);
1680         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1681                 if (object->type != OBJT_SWAP)
1682                         continue;
1683                 mtx_unlock(&vm_object_list_mtx);
1684                 /* Depends on type-stability. */
1685                 VM_OBJECT_WLOCK(object);
1686
1687                 /*
1688                  * Dead objects are eventually terminated on their own.
1689                  */
1690                 if ((object->flags & OBJ_DEAD) != 0)
1691                         goto next_obj;
1692
1693                 /*
1694                  * Sync with fences placed after pctrie
1695                  * initialization.  We must not access pctrie below
1696                  * unless we checked that our object is swap and not
1697                  * dead.
1698                  */
1699                 atomic_thread_fence_acq();
1700                 if (object->type != OBJT_SWAP)
1701                         goto next_obj;
1702
1703                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1704                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1705                         pi = sb->p + SWAP_META_PAGES;
1706                         for (i = 0; i < SWAP_META_PAGES; i++) {
1707                                 if (sb->d[i] == SWAPBLK_NONE)
1708                                         continue;
1709                                 if (swp_pager_isondev(sb->d[i], sp))
1710                                         swp_pager_force_pagein(object,
1711                                             sb->p + i);
1712                         }
1713                 }
1714 next_obj:
1715                 VM_OBJECT_WUNLOCK(object);
1716                 mtx_lock(&vm_object_list_mtx);
1717         }
1718         mtx_unlock(&vm_object_list_mtx);
1719
1720         if (sp->sw_used) {
1721                 /*
1722                  * Objects may be locked or paging to the device being
1723                  * removed, so we will miss their pages and need to
1724                  * make another pass.  We have marked this device as
1725                  * SW_CLOSING, so the activity should finish soon.
1726                  */
1727                 retries++;
1728                 if (retries > 100) {
1729                         panic("swapoff: failed to locate %d swap blocks",
1730                             sp->sw_used);
1731                 }
1732                 pause("swpoff", hz / 20);
1733                 goto full_rescan;
1734         }
1735         EVENTHANDLER_INVOKE(swapoff, sp);
1736 }
1737
1738 /************************************************************************
1739  *                              SWAP META DATA                          *
1740  ************************************************************************
1741  *
1742  *      These routines manipulate the swap metadata stored in the
1743  *      OBJT_SWAP object.
1744  *
1745  *      Swap metadata is implemented with a global hash and not directly
1746  *      linked into the object.  Instead the object simply contains
1747  *      appropriate tracking counters.
1748  */
1749
1750 /*
1751  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1752  *
1753  *      We first convert the object to a swap object if it is a default
1754  *      object.
1755  *
1756  *      The specified swapblk is added to the object's swap metadata.  If
1757  *      the swapblk is not valid, it is freed instead.  Any previously
1758  *      assigned swapblk is freed.
1759  */
1760 static void
1761 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1762 {
1763         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1764         struct swblk *sb, *sb1;
1765         vm_pindex_t modpi, rdpi;
1766         int error, i;
1767
1768         VM_OBJECT_ASSERT_WLOCKED(object);
1769
1770         /*
1771          * Convert default object to swap object if necessary
1772          */
1773         if (object->type != OBJT_SWAP) {
1774                 pctrie_init(&object->un_pager.swp.swp_blks);
1775
1776                 /*
1777                  * Ensure that swap_pager_swapoff()'s iteration over
1778                  * object_list does not see a garbage pctrie.
1779                  */
1780                 atomic_thread_fence_rel();
1781
1782                 object->type = OBJT_SWAP;
1783                 KASSERT(object->handle == NULL, ("default pager with handle"));
1784         }
1785
1786         rdpi = rounddown(pindex, SWAP_META_PAGES);
1787         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1788         if (sb == NULL) {
1789                 if (swapblk == SWAPBLK_NONE)
1790                         return;
1791                 for (;;) {
1792                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1793                             pageproc ? M_USE_RESERVE : 0));
1794                         if (sb != NULL) {
1795                                 sb->p = rdpi;
1796                                 for (i = 0; i < SWAP_META_PAGES; i++)
1797                                         sb->d[i] = SWAPBLK_NONE;
1798                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1799                                     1, 0))
1800                                         printf("swblk zone ok\n");
1801                                 break;
1802                         }
1803                         VM_OBJECT_WUNLOCK(object);
1804                         if (uma_zone_exhausted(swblk_zone)) {
1805                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1806                                     0, 1))
1807                                         printf("swap blk zone exhausted, "
1808                                             "increase kern.maxswzone\n");
1809                                 vm_pageout_oom(VM_OOM_SWAPZ);
1810                                 pause("swzonxb", 10);
1811                         } else
1812                                 VM_WAIT;
1813                         VM_OBJECT_WLOCK(object);
1814                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1815                             rdpi);
1816                         if (sb != NULL)
1817                                 /*
1818                                  * Somebody swapped out a nearby page,
1819                                  * allocating swblk at the rdpi index,
1820                                  * while we dropped the object lock.
1821                                  */
1822                                 goto allocated;
1823                 }
1824                 for (;;) {
1825                         error = SWAP_PCTRIE_INSERT(
1826                             &object->un_pager.swp.swp_blks, sb);
1827                         if (error == 0) {
1828                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1829                                     1, 0))
1830                                         printf("swpctrie zone ok\n");
1831                                 break;
1832                         }
1833                         VM_OBJECT_WUNLOCK(object);
1834                         if (uma_zone_exhausted(swpctrie_zone)) {
1835                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1836                                     0, 1))
1837                                         printf("swap pctrie zone exhausted, "
1838                                             "increase kern.maxswzone\n");
1839                                 vm_pageout_oom(VM_OOM_SWAPZ);
1840                                 pause("swzonxp", 10);
1841                         } else
1842                                 VM_WAIT;
1843                         VM_OBJECT_WLOCK(object);
1844                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1845                             rdpi);
1846                         if (sb1 != NULL) {
1847                                 uma_zfree(swblk_zone, sb);
1848                                 sb = sb1;
1849                                 goto allocated;
1850                         }
1851                 }
1852         }
1853 allocated:
1854         MPASS(sb->p == rdpi);
1855
1856         modpi = pindex % SWAP_META_PAGES;
1857         /* Delete prior contents of metadata. */
1858         if (sb->d[modpi] != SWAPBLK_NONE)
1859                 swp_pager_freeswapspace(sb->d[modpi], 1);
1860         /* Enter block into metadata. */
1861         sb->d[modpi] = swapblk;
1862
1863         /*
1864          * Free the swblk if we end up with the empty page run.
1865          */
1866         if (swapblk == SWAPBLK_NONE) {
1867                 for (i = 0; i < SWAP_META_PAGES; i++) {
1868                         if (sb->d[i] != SWAPBLK_NONE)
1869                                 break;
1870                 }
1871                 if (i == SWAP_META_PAGES) {
1872                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1873                             rdpi);
1874                         uma_zfree(swblk_zone, sb);
1875                 }
1876         }
1877 }
1878
1879 /*
1880  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1881  *
1882  *      The requested range of blocks is freed, with any associated swap
1883  *      returned to the swap bitmap.
1884  *
1885  *      This routine will free swap metadata structures as they are cleaned
1886  *      out.  This routine does *NOT* operate on swap metadata associated
1887  *      with resident pages.
1888  */
1889 static void
1890 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1891 {
1892         struct swblk *sb;
1893         vm_pindex_t last;
1894         int i;
1895         bool empty;
1896
1897         VM_OBJECT_ASSERT_WLOCKED(object);
1898         if (object->type != OBJT_SWAP || count == 0)
1899                 return;
1900
1901         last = pindex + count - 1;
1902         for (;;) {
1903                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1904                     rounddown(pindex, SWAP_META_PAGES));
1905                 if (sb == NULL || sb->p > last)
1906                         break;
1907                 empty = true;
1908                 for (i = 0; i < SWAP_META_PAGES; i++) {
1909                         if (sb->d[i] == SWAPBLK_NONE)
1910                                 continue;
1911                         if (pindex <= sb->p + i && sb->p + i <= last) {
1912                                 swp_pager_freeswapspace(sb->d[i], 1);
1913                                 sb->d[i] = SWAPBLK_NONE;
1914                         } else
1915                                 empty = false;
1916                 }
1917                 pindex = sb->p + SWAP_META_PAGES;
1918                 if (empty) {
1919                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1920                             sb->p);
1921                         uma_zfree(swblk_zone, sb);
1922                 }
1923         }
1924 }
1925
1926 /*
1927  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1928  *
1929  *      This routine locates and destroys all swap metadata associated with
1930  *      an object.
1931  */
1932 static void
1933 swp_pager_meta_free_all(vm_object_t object)
1934 {
1935         struct swblk *sb;
1936         vm_pindex_t pindex;
1937         int i;
1938
1939         VM_OBJECT_ASSERT_WLOCKED(object);
1940         if (object->type != OBJT_SWAP)
1941                 return;
1942
1943         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1944             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1945                 pindex = sb->p + SWAP_META_PAGES;
1946                 for (i = 0; i < SWAP_META_PAGES; i++) {
1947                         if (sb->d[i] != SWAPBLK_NONE)
1948                                 swp_pager_freeswapspace(sb->d[i], 1);
1949                 }
1950                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1951                 uma_zfree(swblk_zone, sb);
1952         }
1953 }
1954
1955 /*
1956  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1957  *
1958  *      This routine is capable of looking up, popping, or freeing
1959  *      swapblk assignments in the swap meta data or in the vm_page_t.
1960  *      The routine typically returns the swapblk being looked-up, or popped,
1961  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1962  *      was invalid.  This routine will automatically free any invalid
1963  *      meta-data swapblks.
1964  *
1965  *      When acting on a busy resident page and paging is in progress, we
1966  *      have to wait until paging is complete but otherwise can act on the
1967  *      busy page.
1968  *
1969  *      SWM_FREE        remove and free swap block from metadata
1970  *      SWM_POP         remove from meta data but do not free.. pop it out
1971  */
1972 static daddr_t
1973 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1974 {
1975         struct swblk *sb;
1976         daddr_t r1;
1977         int i;
1978
1979         if ((flags & (SWM_FREE | SWM_POP)) != 0)
1980                 VM_OBJECT_ASSERT_WLOCKED(object);
1981         else
1982                 VM_OBJECT_ASSERT_LOCKED(object);
1983
1984         /*
1985          * The meta data only exists if the object is OBJT_SWAP
1986          * and even then might not be allocated yet.
1987          */
1988         if (object->type != OBJT_SWAP)
1989                 return (SWAPBLK_NONE);
1990
1991         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1992             rounddown(pindex, SWAP_META_PAGES));
1993         if (sb == NULL)
1994                 return (SWAPBLK_NONE);
1995         r1 = sb->d[pindex % SWAP_META_PAGES];
1996         if (r1 == SWAPBLK_NONE)
1997                 return (SWAPBLK_NONE);
1998         if ((flags & (SWM_FREE | SWM_POP)) != 0) {
1999                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2000                 for (i = 0; i < SWAP_META_PAGES; i++) {
2001                         if (sb->d[i] != SWAPBLK_NONE)
2002                                 break;
2003                 }
2004                 if (i == SWAP_META_PAGES) {
2005                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2006                             rounddown(pindex, SWAP_META_PAGES));
2007                         uma_zfree(swblk_zone, sb);
2008                 }
2009         }
2010         if ((flags & SWM_FREE) != 0) {
2011                 swp_pager_freeswapspace(r1, 1);
2012                 r1 = SWAPBLK_NONE;
2013         }
2014         return (r1);
2015 }
2016
2017 /*
2018  * Returns the least page index which is greater than or equal to the
2019  * parameter pindex and for which there is a swap block allocated.
2020  * Returns object's size if the object's type is not swap or if there
2021  * are no allocated swap blocks for the object after the requested
2022  * pindex.
2023  */
2024 vm_pindex_t
2025 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2026 {
2027         struct swblk *sb;
2028         int i;
2029
2030         VM_OBJECT_ASSERT_LOCKED(object);
2031         if (object->type != OBJT_SWAP)
2032                 return (object->size);
2033
2034         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2035             rounddown(pindex, SWAP_META_PAGES));
2036         if (sb == NULL)
2037                 return (object->size);
2038         if (sb->p < pindex) {
2039                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2040                         if (sb->d[i] != SWAPBLK_NONE)
2041                                 return (sb->p + i);
2042                 }
2043                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2044                     roundup(pindex, SWAP_META_PAGES));
2045                 if (sb == NULL)
2046                         return (object->size);
2047         }
2048         for (i = 0; i < SWAP_META_PAGES; i++) {
2049                 if (sb->d[i] != SWAPBLK_NONE)
2050                         return (sb->p + i);
2051         }
2052
2053         /*
2054          * We get here if a swblk is present in the trie but it
2055          * doesn't map any blocks.
2056          */
2057         MPASS(0);
2058         return (object->size);
2059 }
2060
2061 /*
2062  * System call swapon(name) enables swapping on device name,
2063  * which must be in the swdevsw.  Return EBUSY
2064  * if already swapping on this device.
2065  */
2066 #ifndef _SYS_SYSPROTO_H_
2067 struct swapon_args {
2068         char *name;
2069 };
2070 #endif
2071
2072 /*
2073  * MPSAFE
2074  */
2075 /* ARGSUSED */
2076 int
2077 sys_swapon(struct thread *td, struct swapon_args *uap)
2078 {
2079         struct vattr attr;
2080         struct vnode *vp;
2081         struct nameidata nd;
2082         int error;
2083
2084         error = priv_check(td, PRIV_SWAPON);
2085         if (error)
2086                 return (error);
2087
2088         sx_xlock(&swdev_syscall_lock);
2089
2090         /*
2091          * Swap metadata may not fit in the KVM if we have physical
2092          * memory of >1GB.
2093          */
2094         if (swblk_zone == NULL) {
2095                 error = ENOMEM;
2096                 goto done;
2097         }
2098
2099         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2100             uap->name, td);
2101         error = namei(&nd);
2102         if (error)
2103                 goto done;
2104
2105         NDFREE(&nd, NDF_ONLY_PNBUF);
2106         vp = nd.ni_vp;
2107
2108         if (vn_isdisk(vp, &error)) {
2109                 error = swapongeom(vp);
2110         } else if (vp->v_type == VREG &&
2111             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2112             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2113                 /*
2114                  * Allow direct swapping to NFS regular files in the same
2115                  * way that nfs_mountroot() sets up diskless swapping.
2116                  */
2117                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2118         }
2119
2120         if (error)
2121                 vrele(vp);
2122 done:
2123         sx_xunlock(&swdev_syscall_lock);
2124         return (error);
2125 }
2126
2127 /*
2128  * Check that the total amount of swap currently configured does not
2129  * exceed half the theoretical maximum.  If it does, print a warning
2130  * message.
2131  */
2132 static void
2133 swapon_check_swzone(void)
2134 {
2135         unsigned long maxpages, npages;
2136
2137         npages = swap_total / PAGE_SIZE;
2138         /* absolute maximum we can handle assuming 100% efficiency */
2139         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2140
2141         /* recommend using no more than half that amount */
2142         if (npages > maxpages / 2) {
2143                 printf("warning: total configured swap (%lu pages) "
2144                     "exceeds maximum recommended amount (%lu pages).\n",
2145                     npages, maxpages / 2);
2146                 printf("warning: increase kern.maxswzone "
2147                     "or reduce amount of swap.\n");
2148         }
2149 }
2150
2151 static void
2152 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2153     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2154 {
2155         struct swdevt *sp, *tsp;
2156         swblk_t dvbase;
2157         u_long mblocks;
2158
2159         /*
2160          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2161          * First chop nblks off to page-align it, then convert.
2162          *
2163          * sw->sw_nblks is in page-sized chunks now too.
2164          */
2165         nblks &= ~(ctodb(1) - 1);
2166         nblks = dbtoc(nblks);
2167
2168         /*
2169          * If we go beyond this, we get overflows in the radix
2170          * tree bitmap code.
2171          */
2172         mblocks = 0x40000000 / BLIST_META_RADIX;
2173         if (nblks > mblocks) {
2174                 printf(
2175     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2176                     mblocks / 1024 / 1024 * PAGE_SIZE);
2177                 nblks = mblocks;
2178         }
2179
2180         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2181         sp->sw_vp = vp;
2182         sp->sw_id = id;
2183         sp->sw_dev = dev;
2184         sp->sw_flags = 0;
2185         sp->sw_nblks = nblks;
2186         sp->sw_used = 0;
2187         sp->sw_strategy = strategy;
2188         sp->sw_close = close;
2189         sp->sw_flags = flags;
2190
2191         sp->sw_blist = blist_create(nblks, M_WAITOK);
2192         /*
2193          * Do not free the first two block in order to avoid overwriting
2194          * any bsd label at the front of the partition
2195          */
2196         blist_free(sp->sw_blist, 2, nblks - 2);
2197
2198         dvbase = 0;
2199         mtx_lock(&sw_dev_mtx);
2200         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2201                 if (tsp->sw_end >= dvbase) {
2202                         /*
2203                          * We put one uncovered page between the devices
2204                          * in order to definitively prevent any cross-device
2205                          * I/O requests
2206                          */
2207                         dvbase = tsp->sw_end + 1;
2208                 }
2209         }
2210         sp->sw_first = dvbase;
2211         sp->sw_end = dvbase + nblks;
2212         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2213         nswapdev++;
2214         swap_pager_avail += nblks - 2;
2215         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2216         swapon_check_swzone();
2217         swp_sizecheck();
2218         mtx_unlock(&sw_dev_mtx);
2219         EVENTHANDLER_INVOKE(swapon, sp);
2220 }
2221
2222 /*
2223  * SYSCALL: swapoff(devname)
2224  *
2225  * Disable swapping on the given device.
2226  *
2227  * XXX: Badly designed system call: it should use a device index
2228  * rather than filename as specification.  We keep sw_vp around
2229  * only to make this work.
2230  */
2231 #ifndef _SYS_SYSPROTO_H_
2232 struct swapoff_args {
2233         char *name;
2234 };
2235 #endif
2236
2237 /*
2238  * MPSAFE
2239  */
2240 /* ARGSUSED */
2241 int
2242 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2243 {
2244         struct vnode *vp;
2245         struct nameidata nd;
2246         struct swdevt *sp;
2247         int error;
2248
2249         error = priv_check(td, PRIV_SWAPOFF);
2250         if (error)
2251                 return (error);
2252
2253         sx_xlock(&swdev_syscall_lock);
2254
2255         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2256             td);
2257         error = namei(&nd);
2258         if (error)
2259                 goto done;
2260         NDFREE(&nd, NDF_ONLY_PNBUF);
2261         vp = nd.ni_vp;
2262
2263         mtx_lock(&sw_dev_mtx);
2264         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2265                 if (sp->sw_vp == vp)
2266                         break;
2267         }
2268         mtx_unlock(&sw_dev_mtx);
2269         if (sp == NULL) {
2270                 error = EINVAL;
2271                 goto done;
2272         }
2273         error = swapoff_one(sp, td->td_ucred);
2274 done:
2275         sx_xunlock(&swdev_syscall_lock);
2276         return (error);
2277 }
2278
2279 static int
2280 swapoff_one(struct swdevt *sp, struct ucred *cred)
2281 {
2282         u_long nblks;
2283 #ifdef MAC
2284         int error;
2285 #endif
2286
2287         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2288 #ifdef MAC
2289         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2290         error = mac_system_check_swapoff(cred, sp->sw_vp);
2291         (void) VOP_UNLOCK(sp->sw_vp, 0);
2292         if (error != 0)
2293                 return (error);
2294 #endif
2295         nblks = sp->sw_nblks;
2296
2297         /*
2298          * We can turn off this swap device safely only if the
2299          * available virtual memory in the system will fit the amount
2300          * of data we will have to page back in, plus an epsilon so
2301          * the system doesn't become critically low on swap space.
2302          */
2303         if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat)
2304                 return (ENOMEM);
2305
2306         /*
2307          * Prevent further allocations on this device.
2308          */
2309         mtx_lock(&sw_dev_mtx);
2310         sp->sw_flags |= SW_CLOSING;
2311         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2312         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2313         mtx_unlock(&sw_dev_mtx);
2314
2315         /*
2316          * Page in the contents of the device and close it.
2317          */
2318         swap_pager_swapoff(sp);
2319
2320         sp->sw_close(curthread, sp);
2321         mtx_lock(&sw_dev_mtx);
2322         sp->sw_id = NULL;
2323         TAILQ_REMOVE(&swtailq, sp, sw_list);
2324         nswapdev--;
2325         if (nswapdev == 0) {
2326                 swap_pager_full = 2;
2327                 swap_pager_almost_full = 1;
2328         }
2329         if (swdevhd == sp)
2330                 swdevhd = NULL;
2331         mtx_unlock(&sw_dev_mtx);
2332         blist_destroy(sp->sw_blist);
2333         free(sp, M_VMPGDATA);
2334         return (0);
2335 }
2336
2337 void
2338 swapoff_all(void)
2339 {
2340         struct swdevt *sp, *spt;
2341         const char *devname;
2342         int error;
2343
2344         sx_xlock(&swdev_syscall_lock);
2345
2346         mtx_lock(&sw_dev_mtx);
2347         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2348                 mtx_unlock(&sw_dev_mtx);
2349                 if (vn_isdisk(sp->sw_vp, NULL))
2350                         devname = devtoname(sp->sw_vp->v_rdev);
2351                 else
2352                         devname = "[file]";
2353                 error = swapoff_one(sp, thread0.td_ucred);
2354                 if (error != 0) {
2355                         printf("Cannot remove swap device %s (error=%d), "
2356                             "skipping.\n", devname, error);
2357                 } else if (bootverbose) {
2358                         printf("Swap device %s removed.\n", devname);
2359                 }
2360                 mtx_lock(&sw_dev_mtx);
2361         }
2362         mtx_unlock(&sw_dev_mtx);
2363
2364         sx_xunlock(&swdev_syscall_lock);
2365 }
2366
2367 void
2368 swap_pager_status(int *total, int *used)
2369 {
2370         struct swdevt *sp;
2371
2372         *total = 0;
2373         *used = 0;
2374         mtx_lock(&sw_dev_mtx);
2375         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2376                 *total += sp->sw_nblks;
2377                 *used += sp->sw_used;
2378         }
2379         mtx_unlock(&sw_dev_mtx);
2380 }
2381
2382 int
2383 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2384 {
2385         struct swdevt *sp;
2386         const char *tmp_devname;
2387         int error, n;
2388
2389         n = 0;
2390         error = ENOENT;
2391         mtx_lock(&sw_dev_mtx);
2392         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2393                 if (n != name) {
2394                         n++;
2395                         continue;
2396                 }
2397                 xs->xsw_version = XSWDEV_VERSION;
2398                 xs->xsw_dev = sp->sw_dev;
2399                 xs->xsw_flags = sp->sw_flags;
2400                 xs->xsw_nblks = sp->sw_nblks;
2401                 xs->xsw_used = sp->sw_used;
2402                 if (devname != NULL) {
2403                         if (vn_isdisk(sp->sw_vp, NULL))
2404                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2405                         else
2406                                 tmp_devname = "[file]";
2407                         strncpy(devname, tmp_devname, len);
2408                 }
2409                 error = 0;
2410                 break;
2411         }
2412         mtx_unlock(&sw_dev_mtx);
2413         return (error);
2414 }
2415
2416 #if defined(COMPAT_FREEBSD11)
2417 #define XSWDEV_VERSION_11       1
2418 struct xswdev11 {
2419         u_int   xsw_version;
2420         uint32_t xsw_dev;
2421         int     xsw_flags;
2422         int     xsw_nblks;
2423         int     xsw_used;
2424 };
2425 #endif
2426
2427 static int
2428 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2429 {
2430         struct xswdev xs;
2431 #if defined(COMPAT_FREEBSD11)
2432         struct xswdev11 xs11;
2433 #endif
2434         int error;
2435
2436         if (arg2 != 1)                  /* name length */
2437                 return (EINVAL);
2438         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2439         if (error != 0)
2440                 return (error);
2441 #if defined(COMPAT_FREEBSD11)
2442         if (req->oldlen == sizeof(xs11)) {
2443                 xs11.xsw_version = XSWDEV_VERSION_11;
2444                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2445                 xs11.xsw_flags = xs.xsw_flags;
2446                 xs11.xsw_nblks = xs.xsw_nblks;
2447                 xs11.xsw_used = xs.xsw_used;
2448                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2449         } else
2450 #endif
2451                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2452         return (error);
2453 }
2454
2455 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2456     "Number of swap devices");
2457 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2458     sysctl_vm_swap_info,
2459     "Swap statistics by device");
2460
2461 /*
2462  * Count the approximate swap usage in pages for a vmspace.  The
2463  * shadowed or not yet copied on write swap blocks are not accounted.
2464  * The map must be locked.
2465  */
2466 long
2467 vmspace_swap_count(struct vmspace *vmspace)
2468 {
2469         vm_map_t map;
2470         vm_map_entry_t cur;
2471         vm_object_t object;
2472         struct swblk *sb;
2473         vm_pindex_t e, pi;
2474         long count;
2475         int i;
2476
2477         map = &vmspace->vm_map;
2478         count = 0;
2479
2480         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2481                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2482                         continue;
2483                 object = cur->object.vm_object;
2484                 if (object == NULL || object->type != OBJT_SWAP)
2485                         continue;
2486                 VM_OBJECT_RLOCK(object);
2487                 if (object->type != OBJT_SWAP)
2488                         goto unlock;
2489                 pi = OFF_TO_IDX(cur->offset);
2490                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2491                 for (;; pi = sb->p + SWAP_META_PAGES) {
2492                         sb = SWAP_PCTRIE_LOOKUP_GE(
2493                             &object->un_pager.swp.swp_blks, pi);
2494                         if (sb == NULL || sb->p >= e)
2495                                 break;
2496                         for (i = 0; i < SWAP_META_PAGES; i++) {
2497                                 if (sb->p + i < e &&
2498                                     sb->d[i] != SWAPBLK_NONE)
2499                                         count++;
2500                         }
2501                 }
2502 unlock:
2503                 VM_OBJECT_RUNLOCK(object);
2504         }
2505         return (count);
2506 }
2507
2508 /*
2509  * GEOM backend
2510  *
2511  * Swapping onto disk devices.
2512  *
2513  */
2514
2515 static g_orphan_t swapgeom_orphan;
2516
2517 static struct g_class g_swap_class = {
2518         .name = "SWAP",
2519         .version = G_VERSION,
2520         .orphan = swapgeom_orphan,
2521 };
2522
2523 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2524
2525
2526 static void
2527 swapgeom_close_ev(void *arg, int flags)
2528 {
2529         struct g_consumer *cp;
2530
2531         cp = arg;
2532         g_access(cp, -1, -1, 0);
2533         g_detach(cp);
2534         g_destroy_consumer(cp);
2535 }
2536
2537 /*
2538  * Add a reference to the g_consumer for an inflight transaction.
2539  */
2540 static void
2541 swapgeom_acquire(struct g_consumer *cp)
2542 {
2543
2544         mtx_assert(&sw_dev_mtx, MA_OWNED);
2545         cp->index++;
2546 }
2547
2548 /*
2549  * Remove a reference from the g_consumer.  Post a close event if all
2550  * references go away, since the function might be called from the
2551  * biodone context.
2552  */
2553 static void
2554 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2555 {
2556
2557         mtx_assert(&sw_dev_mtx, MA_OWNED);
2558         cp->index--;
2559         if (cp->index == 0) {
2560                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2561                         sp->sw_id = NULL;
2562         }
2563 }
2564
2565 static void
2566 swapgeom_done(struct bio *bp2)
2567 {
2568         struct swdevt *sp;
2569         struct buf *bp;
2570         struct g_consumer *cp;
2571
2572         bp = bp2->bio_caller2;
2573         cp = bp2->bio_from;
2574         bp->b_ioflags = bp2->bio_flags;
2575         if (bp2->bio_error)
2576                 bp->b_ioflags |= BIO_ERROR;
2577         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2578         bp->b_error = bp2->bio_error;
2579         bufdone(bp);
2580         sp = bp2->bio_caller1;
2581         mtx_lock(&sw_dev_mtx);
2582         swapgeom_release(cp, sp);
2583         mtx_unlock(&sw_dev_mtx);
2584         g_destroy_bio(bp2);
2585 }
2586
2587 static void
2588 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2589 {
2590         struct bio *bio;
2591         struct g_consumer *cp;
2592
2593         mtx_lock(&sw_dev_mtx);
2594         cp = sp->sw_id;
2595         if (cp == NULL) {
2596                 mtx_unlock(&sw_dev_mtx);
2597                 bp->b_error = ENXIO;
2598                 bp->b_ioflags |= BIO_ERROR;
2599                 bufdone(bp);
2600                 return;
2601         }
2602         swapgeom_acquire(cp);
2603         mtx_unlock(&sw_dev_mtx);
2604         if (bp->b_iocmd == BIO_WRITE)
2605                 bio = g_new_bio();
2606         else
2607                 bio = g_alloc_bio();
2608         if (bio == NULL) {
2609                 mtx_lock(&sw_dev_mtx);
2610                 swapgeom_release(cp, sp);
2611                 mtx_unlock(&sw_dev_mtx);
2612                 bp->b_error = ENOMEM;
2613                 bp->b_ioflags |= BIO_ERROR;
2614                 bufdone(bp);
2615                 return;
2616         }
2617
2618         bio->bio_caller1 = sp;
2619         bio->bio_caller2 = bp;
2620         bio->bio_cmd = bp->b_iocmd;
2621         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2622         bio->bio_length = bp->b_bcount;
2623         bio->bio_done = swapgeom_done;
2624         if (!buf_mapped(bp)) {
2625                 bio->bio_ma = bp->b_pages;
2626                 bio->bio_data = unmapped_buf;
2627                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2628                 bio->bio_ma_n = bp->b_npages;
2629                 bio->bio_flags |= BIO_UNMAPPED;
2630         } else {
2631                 bio->bio_data = bp->b_data;
2632                 bio->bio_ma = NULL;
2633         }
2634         g_io_request(bio, cp);
2635         return;
2636 }
2637
2638 static void
2639 swapgeom_orphan(struct g_consumer *cp)
2640 {
2641         struct swdevt *sp;
2642         int destroy;
2643
2644         mtx_lock(&sw_dev_mtx);
2645         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2646                 if (sp->sw_id == cp) {
2647                         sp->sw_flags |= SW_CLOSING;
2648                         break;
2649                 }
2650         }
2651         /*
2652          * Drop reference we were created with. Do directly since we're in a
2653          * special context where we don't have to queue the call to
2654          * swapgeom_close_ev().
2655          */
2656         cp->index--;
2657         destroy = ((sp != NULL) && (cp->index == 0));
2658         if (destroy)
2659                 sp->sw_id = NULL;
2660         mtx_unlock(&sw_dev_mtx);
2661         if (destroy)
2662                 swapgeom_close_ev(cp, 0);
2663 }
2664
2665 static void
2666 swapgeom_close(struct thread *td, struct swdevt *sw)
2667 {
2668         struct g_consumer *cp;
2669
2670         mtx_lock(&sw_dev_mtx);
2671         cp = sw->sw_id;
2672         sw->sw_id = NULL;
2673         mtx_unlock(&sw_dev_mtx);
2674
2675         /*
2676          * swapgeom_close() may be called from the biodone context,
2677          * where we cannot perform topology changes.  Delegate the
2678          * work to the events thread.
2679          */
2680         if (cp != NULL)
2681                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2682 }
2683
2684 static int
2685 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2686 {
2687         struct g_provider *pp;
2688         struct g_consumer *cp;
2689         static struct g_geom *gp;
2690         struct swdevt *sp;
2691         u_long nblks;
2692         int error;
2693
2694         pp = g_dev_getprovider(dev);
2695         if (pp == NULL)
2696                 return (ENODEV);
2697         mtx_lock(&sw_dev_mtx);
2698         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2699                 cp = sp->sw_id;
2700                 if (cp != NULL && cp->provider == pp) {
2701                         mtx_unlock(&sw_dev_mtx);
2702                         return (EBUSY);
2703                 }
2704         }
2705         mtx_unlock(&sw_dev_mtx);
2706         if (gp == NULL)
2707                 gp = g_new_geomf(&g_swap_class, "swap");
2708         cp = g_new_consumer(gp);
2709         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2710         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2711         g_attach(cp, pp);
2712         /*
2713          * XXX: Every time you think you can improve the margin for
2714          * footshooting, somebody depends on the ability to do so:
2715          * savecore(8) wants to write to our swapdev so we cannot
2716          * set an exclusive count :-(
2717          */
2718         error = g_access(cp, 1, 1, 0);
2719         if (error != 0) {
2720                 g_detach(cp);
2721                 g_destroy_consumer(cp);
2722                 return (error);
2723         }
2724         nblks = pp->mediasize / DEV_BSIZE;
2725         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2726             swapgeom_close, dev2udev(dev),
2727             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2728         return (0);
2729 }
2730
2731 static int
2732 swapongeom(struct vnode *vp)
2733 {
2734         int error;
2735
2736         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2737         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2738                 error = ENOENT;
2739         } else {
2740                 g_topology_lock();
2741                 error = swapongeom_locked(vp->v_rdev, vp);
2742                 g_topology_unlock();
2743         }
2744         VOP_UNLOCK(vp, 0);
2745         return (error);
2746 }
2747
2748 /*
2749  * VNODE backend
2750  *
2751  * This is used mainly for network filesystem (read: probably only tested
2752  * with NFS) swapfiles.
2753  *
2754  */
2755
2756 static void
2757 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2758 {
2759         struct vnode *vp2;
2760
2761         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2762
2763         vp2 = sp->sw_id;
2764         vhold(vp2);
2765         if (bp->b_iocmd == BIO_WRITE) {
2766                 if (bp->b_bufobj)
2767                         bufobj_wdrop(bp->b_bufobj);
2768                 bufobj_wref(&vp2->v_bufobj);
2769         }
2770         if (bp->b_bufobj != &vp2->v_bufobj)
2771                 bp->b_bufobj = &vp2->v_bufobj;
2772         bp->b_vp = vp2;
2773         bp->b_iooffset = dbtob(bp->b_blkno);
2774         bstrategy(bp);
2775         return;
2776 }
2777
2778 static void
2779 swapdev_close(struct thread *td, struct swdevt *sp)
2780 {
2781
2782         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2783         vrele(sp->sw_vp);
2784 }
2785
2786
2787 static int
2788 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2789 {
2790         struct swdevt *sp;
2791         int error;
2792
2793         if (nblks == 0)
2794                 return (ENXIO);
2795         mtx_lock(&sw_dev_mtx);
2796         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2797                 if (sp->sw_id == vp) {
2798                         mtx_unlock(&sw_dev_mtx);
2799                         return (EBUSY);
2800                 }
2801         }
2802         mtx_unlock(&sw_dev_mtx);
2803
2804         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2805 #ifdef MAC
2806         error = mac_system_check_swapon(td->td_ucred, vp);
2807         if (error == 0)
2808 #endif
2809                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2810         (void) VOP_UNLOCK(vp, 0);
2811         if (error)
2812                 return (error);
2813
2814         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2815             NODEV, 0);
2816         return (0);
2817 }
2818
2819 static int
2820 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2821 {
2822         int error, new, n;
2823
2824         new = nsw_wcount_async_max;
2825         error = sysctl_handle_int(oidp, &new, 0, req);
2826         if (error != 0 || req->newptr == NULL)
2827                 return (error);
2828
2829         if (new > nswbuf / 2 || new < 1)
2830                 return (EINVAL);
2831
2832         mtx_lock(&pbuf_mtx);
2833         while (nsw_wcount_async_max != new) {
2834                 /*
2835                  * Adjust difference.  If the current async count is too low,
2836                  * we will need to sqeeze our update slowly in.  Sleep with a
2837                  * higher priority than getpbuf() to finish faster.
2838                  */
2839                 n = new - nsw_wcount_async_max;
2840                 if (nsw_wcount_async + n >= 0) {
2841                         nsw_wcount_async += n;
2842                         nsw_wcount_async_max += n;
2843                         wakeup(&nsw_wcount_async);
2844                 } else {
2845                         nsw_wcount_async_max -= nsw_wcount_async;
2846                         nsw_wcount_async = 0;
2847                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2848                             "swpsysctl", 0);
2849                 }
2850         }
2851         mtx_unlock(&pbuf_mtx);
2852
2853         return (0);
2854 }