]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFHead @r350386
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/eventhandler.h>
83 #include <sys/fcntl.h>
84 #include <sys/lock.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/malloc.h>
89 #include <sys/pctrie.h>
90 #include <sys/priv.h>
91 #include <sys/proc.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/systm.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158     &swap_reserved, 0, sysctl_page_shift, "A", 
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161     &swap_total, 0, sysctl_page_shift, "A", 
162     "Total amount of available swap storage.");
163
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170     "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173     "Maximum amount of swap supported");
174
175 /* bits from overcommit */
176 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
177 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
178 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
179
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183         uint64_t newval;
184         u_long value = *(u_long *)arg1;
185
186         newval = ((uint64_t)value) << PAGE_SHIFT;
187         return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193
194         return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200         u_long r, s, prev, pincr;
201         int res, error;
202         static int curfail;
203         static struct timeval lastfail;
204         struct uidinfo *uip;
205
206         uip = cred->cr_ruidinfo;
207
208         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209             (uintmax_t)incr));
210
211 #ifdef RACCT
212         if (racct_enable) {
213                 PROC_LOCK(curproc);
214                 error = racct_add(curproc, RACCT_SWAP, incr);
215                 PROC_UNLOCK(curproc);
216                 if (error != 0)
217                         return (0);
218         }
219 #endif
220
221         pincr = atop(incr);
222         res = 0;
223         prev = atomic_fetchadd_long(&swap_reserved, pincr);
224         r = prev + pincr;
225         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227                     vm_wire_count();
228         } else
229                 s = 0;
230         s += swap_total;
231         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233                 res = 1;
234         } else {
235                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236                 if (prev < pincr)
237                         panic("swap_reserved < incr on overcommit fail");
238         }
239         if (res) {
240                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244                         res = 0;
245                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246                         if (prev < pincr)
247                                 panic("uip->ui_vmsize < incr on overcommit fail");
248                 }
249         }
250         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252                     uip->ui_uid, curproc->p_pid, incr);
253         }
254
255 #ifdef RACCT
256         if (racct_enable && !res) {
257                 PROC_LOCK(curproc);
258                 racct_sub(curproc, RACCT_SWAP, incr);
259                 PROC_UNLOCK(curproc);
260         }
261 #endif
262
263         return (res);
264 }
265
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269         struct uidinfo *uip;
270         u_long pincr;
271
272         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273             (uintmax_t)incr));
274
275         PROC_LOCK(curproc);
276 #ifdef RACCT
277         if (racct_enable)
278                 racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280         pincr = atop(incr);
281         atomic_add_long(&swap_reserved, pincr);
282         uip = curproc->p_ucred->cr_ruidinfo;
283         atomic_add_long(&uip->ui_vmsize, pincr);
284         PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290         struct ucred *cred;
291
292         PROC_LOCK(curproc);
293         cred = curproc->p_ucred;
294         swap_release_by_cred(decr, cred);
295         PROC_UNLOCK(curproc);
296 }
297
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301         u_long prev, pdecr;
302         struct uidinfo *uip;
303
304         uip = cred->cr_ruidinfo;
305
306         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307             (uintmax_t)decr));
308
309         pdecr = atop(decr);
310         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311         if (prev < pdecr)
312                 panic("swap_reserved < decr");
313
314         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315         if (prev < pdecr)
316                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318         if (racct_enable)
319                 racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322
323 #define SWM_POP         0x01    /* pop out                      */
324
325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
328 static int nsw_wcount_async;    /* limit async write buffers */
329 static int nsw_wcount_async_max;/* assigned maximum                     */
330 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
331
332 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
333 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
334     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
335     "Maximum running async swap ops");
336 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
337 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
338     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
339     "Swap Fragmentation Info");
340
341 static struct sx sw_alloc_sx;
342
343 /*
344  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
345  * of searching a named list by hashing it just a little.
346  */
347
348 #define NOBJLISTS               8
349
350 #define NOBJLIST(handle)        \
351         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
352
353 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
354 static uma_zone_t swwbuf_zone;
355 static uma_zone_t swrbuf_zone;
356 static uma_zone_t swblk_zone;
357 static uma_zone_t swpctrie_zone;
358
359 /*
360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
361  * calls hooked from other parts of the VM system and do not appear here.
362  * (see vm/swap_pager.h).
363  */
364 static vm_object_t
365                 swap_pager_alloc(void *handle, vm_ooffset_t size,
366                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
367 static void     swap_pager_dealloc(vm_object_t object);
368 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
369     int *);
370 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
371     int *, pgo_getpages_iodone_t, void *);
372 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
373 static boolean_t
374                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
375 static void     swap_pager_init(void);
376 static void     swap_pager_unswapped(vm_page_t);
377 static void     swap_pager_swapoff(struct swdevt *sp);
378
379 struct pagerops swappagerops = {
380         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
381         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
382         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
383         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
384         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
385         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
386         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
387         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
388 };
389
390 /*
391  * swap_*() routines are externally accessible.  swp_*() routines are
392  * internal.
393  */
394 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
395 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
396
397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
398     "Maximum size of a swap block in pages");
399
400 static void     swp_sizecheck(void);
401 static void     swp_pager_async_iodone(struct buf *bp);
402 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
403 static int      swapongeom(struct vnode *);
404 static int      swaponvp(struct thread *, struct vnode *, u_long);
405 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
406
407 /*
408  * Swap bitmap functions
409  */
410 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
411 static daddr_t  swp_pager_getswapspace(int *npages, int limit);
412
413 /*
414  * Metadata functions
415  */
416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
418 static void swp_pager_meta_free_all(vm_object_t);
419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
420
421 static void
422 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
423 {
424
425         *start = SWAPBLK_NONE;
426         *num = 0;
427 }
428
429 static void
430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
431 {
432
433         if (*start + *num == addr) {
434                 (*num)++;
435         } else {
436                 swp_pager_freeswapspace(*start, *num);
437                 *start = addr;
438                 *num = 1;
439         }
440 }
441
442 static void *
443 swblk_trie_alloc(struct pctrie *ptree)
444 {
445
446         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
447             M_USE_RESERVE : 0)));
448 }
449
450 static void
451 swblk_trie_free(struct pctrie *ptree, void *node)
452 {
453
454         uma_zfree(swpctrie_zone, node);
455 }
456
457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
458
459 /*
460  * SWP_SIZECHECK() -    update swap_pager_full indication
461  *
462  *      update the swap_pager_almost_full indication and warn when we are
463  *      about to run out of swap space, using lowat/hiwat hysteresis.
464  *
465  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
466  *
467  *      No restrictions on call
468  *      This routine may not block.
469  */
470 static void
471 swp_sizecheck(void)
472 {
473
474         if (swap_pager_avail < nswap_lowat) {
475                 if (swap_pager_almost_full == 0) {
476                         printf("swap_pager: out of swap space\n");
477                         swap_pager_almost_full = 1;
478                 }
479         } else {
480                 swap_pager_full = 0;
481                 if (swap_pager_avail > nswap_hiwat)
482                         swap_pager_almost_full = 0;
483         }
484 }
485
486 /*
487  * SWAP_PAGER_INIT() -  initialize the swap pager!
488  *
489  *      Expected to be started from system init.  NOTE:  This code is run
490  *      before much else so be careful what you depend on.  Most of the VM
491  *      system has yet to be initialized at this point.
492  */
493 static void
494 swap_pager_init(void)
495 {
496         /*
497          * Initialize object lists
498          */
499         int i;
500
501         for (i = 0; i < NOBJLISTS; ++i)
502                 TAILQ_INIT(&swap_pager_object_list[i]);
503         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
504         sx_init(&sw_alloc_sx, "swspsx");
505         sx_init(&swdev_syscall_lock, "swsysc");
506 }
507
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *      Expected to be started from pageout process once, prior to entering
512  *      its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517         unsigned long n, n2;
518
519         /*
520          * Number of in-transit swap bp operations.  Don't
521          * exhaust the pbufs completely.  Make sure we
522          * initialize workable values (0 will work for hysteresis
523          * but it isn't very efficient).
524          *
525          * The nsw_cluster_max is constrained by the bp->b_pages[]
526          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
527          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528          * constrained by the swap device interleave stripe size.
529          *
530          * Currently we hardwire nsw_wcount_async to 4.  This limit is
531          * designed to prevent other I/O from having high latencies due to
532          * our pageout I/O.  The value 4 works well for one or two active swap
533          * devices but is probably a little low if you have more.  Even so,
534          * a higher value would probably generate only a limited improvement
535          * with three or four active swap devices since the system does not
536          * typically have to pageout at extreme bandwidths.   We will want
537          * at least 2 per swap devices, and 4 is a pretty good value if you
538          * have one NFS swap device due to the command/ack latency over NFS.
539          * So it all works out pretty well.
540          */
541         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
542
543         nsw_wcount_async = 4;
544         nsw_wcount_async_max = nsw_wcount_async;
545         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
546
547         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
548         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
549
550         /*
551          * Initialize our zone, taking the user's requested size or
552          * estimating the number we need based on the number of pages
553          * in the system.
554          */
555         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
556             vm_cnt.v_page_count / 2;
557         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
558             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
559         if (swpctrie_zone == NULL)
560                 panic("failed to create swap pctrie zone.");
561         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
562             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
563         if (swblk_zone == NULL)
564                 panic("failed to create swap blk zone.");
565         n2 = n;
566         do {
567                 if (uma_zone_reserve_kva(swblk_zone, n))
568                         break;
569                 /*
570                  * if the allocation failed, try a zone two thirds the
571                  * size of the previous attempt.
572                  */
573                 n -= ((n + 2) / 3);
574         } while (n > 0);
575
576         /*
577          * Often uma_zone_reserve_kva() cannot reserve exactly the
578          * requested size.  Account for the difference when
579          * calculating swap_maxpages.
580          */
581         n = uma_zone_get_max(swblk_zone);
582
583         if (n < n2)
584                 printf("Swap blk zone entries changed from %lu to %lu.\n",
585                     n2, n);
586         swap_maxpages = n * SWAP_META_PAGES;
587         swzone = n * sizeof(struct swblk);
588         if (!uma_zone_reserve_kva(swpctrie_zone, n))
589                 printf("Cannot reserve swap pctrie zone, "
590                     "reduce kern.maxswzone.\n");
591 }
592
593 static vm_object_t
594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
595     vm_ooffset_t offset)
596 {
597         vm_object_t object;
598
599         if (cred != NULL) {
600                 if (!swap_reserve_by_cred(size, cred))
601                         return (NULL);
602                 crhold(cred);
603         }
604
605         /*
606          * The un_pager.swp.swp_blks trie is initialized by
607          * vm_object_allocate() to ensure the correct order of
608          * visibility to other threads.
609          */
610         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
611             PAGE_MASK + size));
612
613         object->handle = handle;
614         if (cred != NULL) {
615                 object->cred = cred;
616                 object->charge = size;
617         }
618         return (object);
619 }
620
621 /*
622  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
623  *                      its metadata structures.
624  *
625  *      This routine is called from the mmap and fork code to create a new
626  *      OBJT_SWAP object.
627  *
628  *      This routine must ensure that no live duplicate is created for
629  *      the named object request, which is protected against by
630  *      holding the sw_alloc_sx lock in case handle != NULL.
631  */
632 static vm_object_t
633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
634     vm_ooffset_t offset, struct ucred *cred)
635 {
636         vm_object_t object;
637
638         if (handle != NULL) {
639                 /*
640                  * Reference existing named region or allocate new one.  There
641                  * should not be a race here against swp_pager_meta_build()
642                  * as called from vm_page_remove() in regards to the lookup
643                  * of the handle.
644                  */
645                 sx_xlock(&sw_alloc_sx);
646                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
647                 if (object == NULL) {
648                         object = swap_pager_alloc_init(handle, cred, size,
649                             offset);
650                         if (object != NULL) {
651                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
652                                     object, pager_object_list);
653                         }
654                 }
655                 sx_xunlock(&sw_alloc_sx);
656         } else {
657                 object = swap_pager_alloc_init(handle, cred, size, offset);
658         }
659         return (object);
660 }
661
662 /*
663  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
664  *
665  *      The swap backing for the object is destroyed.  The code is
666  *      designed such that we can reinstantiate it later, but this
667  *      routine is typically called only when the entire object is
668  *      about to be destroyed.
669  *
670  *      The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675
676         VM_OBJECT_ASSERT_WLOCKED(object);
677         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
678
679         /*
680          * Remove from list right away so lookups will fail if we block for
681          * pageout completion.
682          */
683         if (object->handle != NULL) {
684                 VM_OBJECT_WUNLOCK(object);
685                 sx_xlock(&sw_alloc_sx);
686                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
687                     pager_object_list);
688                 sx_xunlock(&sw_alloc_sx);
689                 VM_OBJECT_WLOCK(object);
690         }
691
692         vm_object_pip_wait(object, "swpdea");
693
694         /*
695          * Free all remaining metadata.  We only bother to free it from
696          * the swap meta data.  We do not attempt to free swapblk's still
697          * associated with vm_page_t's for this object.  We do not care
698          * if paging is still in progress on some objects.
699          */
700         swp_pager_meta_free_all(object);
701         object->handle = NULL;
702         object->type = OBJT_DEAD;
703 }
704
705 /************************************************************************
706  *                      SWAP PAGER BITMAP ROUTINES                      *
707  ************************************************************************/
708
709 /*
710  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
711  *
712  *      Allocate swap for up to the requested number of pages, and at
713  *      least a minimum number of pages.  The starting swap block number
714  *      (a page index) is returned or SWAPBLK_NONE if the allocation
715  *      failed.
716  *
717  *      Also has the side effect of advising that somebody made a mistake
718  *      when they configured swap and didn't configure enough.
719  *
720  *      This routine may not sleep.
721  *
722  *      We allocate in round-robin fashion from the configured devices.
723  */
724 static daddr_t
725 swp_pager_getswapspace(int *io_npages, int limit)
726 {
727         daddr_t blk;
728         struct swdevt *sp;
729         int mpages, npages;
730
731         blk = SWAPBLK_NONE;
732         mpages = *io_npages;
733         npages = imin(BLIST_MAX_ALLOC, mpages);
734         mtx_lock(&sw_dev_mtx);
735         sp = swdevhd;
736         while (!TAILQ_EMPTY(&swtailq)) {
737                 if (sp == NULL)
738                         sp = TAILQ_FIRST(&swtailq);
739                 if ((sp->sw_flags & SW_CLOSING) == 0)
740                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
741                 if (blk != SWAPBLK_NONE)
742                         break;
743                 sp = TAILQ_NEXT(sp, sw_list);
744                 if (swdevhd == sp) {
745                         if (npages <= limit)
746                                 break;
747                         mpages = npages - 1;
748                         npages >>= 1;
749                 }
750         }
751         if (blk != SWAPBLK_NONE) {
752                 *io_npages = npages;
753                 blk += sp->sw_first;
754                 sp->sw_used += npages;
755                 swap_pager_avail -= npages;
756                 swp_sizecheck();
757                 swdevhd = TAILQ_NEXT(sp, sw_list);
758         } else {
759                 if (swap_pager_full != 2) {
760                         printf("swp_pager_getswapspace(%d): failed\n",
761                             *io_npages);
762                         swap_pager_full = 2;
763                         swap_pager_almost_full = 1;
764                 }
765                 swdevhd = NULL;
766         }
767         mtx_unlock(&sw_dev_mtx);
768         return (blk);
769 }
770
771 static bool
772 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
773 {
774
775         return (blk >= sp->sw_first && blk < sp->sw_end);
776 }
777
778 static void
779 swp_pager_strategy(struct buf *bp)
780 {
781         struct swdevt *sp;
782
783         mtx_lock(&sw_dev_mtx);
784         TAILQ_FOREACH(sp, &swtailq, sw_list) {
785                 if (swp_pager_isondev(bp->b_blkno, sp)) {
786                         mtx_unlock(&sw_dev_mtx);
787                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
788                             unmapped_buf_allowed) {
789                                 bp->b_data = unmapped_buf;
790                                 bp->b_offset = 0;
791                         } else {
792                                 pmap_qenter((vm_offset_t)bp->b_data,
793                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
794                         }
795                         sp->sw_strategy(bp, sp);
796                         return;
797                 }
798         }
799         panic("Swapdev not found");
800 }
801
802
803 /*
804  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
805  *
806  *      This routine returns the specified swap blocks back to the bitmap.
807  *
808  *      This routine may not sleep.
809  */
810 static void
811 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
812 {
813         struct swdevt *sp;
814
815         if (npages == 0)
816                 return;
817         mtx_lock(&sw_dev_mtx);
818         TAILQ_FOREACH(sp, &swtailq, sw_list) {
819                 if (swp_pager_isondev(blk, sp)) {
820                         sp->sw_used -= npages;
821                         /*
822                          * If we are attempting to stop swapping on
823                          * this device, we don't want to mark any
824                          * blocks free lest they be reused.
825                          */
826                         if ((sp->sw_flags & SW_CLOSING) == 0) {
827                                 blist_free(sp->sw_blist, blk - sp->sw_first,
828                                     npages);
829                                 swap_pager_avail += npages;
830                                 swp_sizecheck();
831                         }
832                         mtx_unlock(&sw_dev_mtx);
833                         return;
834                 }
835         }
836         panic("Swapdev not found");
837 }
838
839 /*
840  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
841  */
842 static int
843 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
844 {
845         struct sbuf sbuf;
846         struct swdevt *sp;
847         const char *devname;
848         int error;
849
850         error = sysctl_wire_old_buffer(req, 0);
851         if (error != 0)
852                 return (error);
853         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
854         mtx_lock(&sw_dev_mtx);
855         TAILQ_FOREACH(sp, &swtailq, sw_list) {
856                 if (vn_isdisk(sp->sw_vp, NULL))
857                         devname = devtoname(sp->sw_vp->v_rdev);
858                 else
859                         devname = "[file]";
860                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
861                 blist_stats(sp->sw_blist, &sbuf);
862         }
863         mtx_unlock(&sw_dev_mtx);
864         error = sbuf_finish(&sbuf);
865         sbuf_delete(&sbuf);
866         return (error);
867 }
868
869 /*
870  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
871  *                              range within an object.
872  *
873  *      This is a globally accessible routine.
874  *
875  *      This routine removes swapblk assignments from swap metadata.
876  *
877  *      The external callers of this routine typically have already destroyed
878  *      or renamed vm_page_t's associated with this range in the object so
879  *      we should be ok.
880  *
881  *      The object must be locked.
882  */
883 void
884 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
885 {
886
887         swp_pager_meta_free(object, start, size);
888 }
889
890 /*
891  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
892  *
893  *      Assigns swap blocks to the specified range within the object.  The
894  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
895  *
896  *      Returns 0 on success, -1 on failure.
897  */
898 int
899 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
900 {
901         daddr_t addr, blk, n_free, s_free;
902         int i, j, n;
903
904         swp_pager_init_freerange(&s_free, &n_free);
905         VM_OBJECT_WLOCK(object);
906         for (i = 0; i < size; i += n) {
907                 n = size - i;
908                 blk = swp_pager_getswapspace(&n, 1);
909                 if (blk == SWAPBLK_NONE) {
910                         swp_pager_meta_free(object, start, i);
911                         VM_OBJECT_WUNLOCK(object);
912                         return (-1);
913                 }
914                 for (j = 0; j < n; ++j) {
915                         addr = swp_pager_meta_build(object,
916                             start + i + j, blk + j);
917                         if (addr != SWAPBLK_NONE)
918                                 swp_pager_update_freerange(&s_free, &n_free,
919                                     addr);
920                 }
921         }
922         swp_pager_freeswapspace(s_free, n_free);
923         VM_OBJECT_WUNLOCK(object);
924         return (0);
925 }
926
927 /*
928  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
929  *                      and destroy the source.
930  *
931  *      Copy any valid swapblks from the source to the destination.  In
932  *      cases where both the source and destination have a valid swapblk,
933  *      we keep the destination's.
934  *
935  *      This routine is allowed to sleep.  It may sleep allocating metadata
936  *      indirectly through swp_pager_meta_build() or if paging is still in
937  *      progress on the source.
938  *
939  *      The source object contains no vm_page_t's (which is just as well)
940  *
941  *      The source object is of type OBJT_SWAP.
942  *
943  *      The source and destination objects must be locked.
944  *      Both object locks may temporarily be released.
945  */
946 void
947 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
948     vm_pindex_t offset, int destroysource)
949 {
950         vm_pindex_t i;
951         daddr_t dstaddr, n_free, s_free, srcaddr;
952
953         VM_OBJECT_ASSERT_WLOCKED(srcobject);
954         VM_OBJECT_ASSERT_WLOCKED(dstobject);
955
956         /*
957          * If destroysource is set, we remove the source object from the
958          * swap_pager internal queue now.
959          */
960         if (destroysource && srcobject->handle != NULL) {
961                 vm_object_pip_add(srcobject, 1);
962                 VM_OBJECT_WUNLOCK(srcobject);
963                 vm_object_pip_add(dstobject, 1);
964                 VM_OBJECT_WUNLOCK(dstobject);
965                 sx_xlock(&sw_alloc_sx);
966                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
967                     pager_object_list);
968                 sx_xunlock(&sw_alloc_sx);
969                 VM_OBJECT_WLOCK(dstobject);
970                 vm_object_pip_wakeup(dstobject);
971                 VM_OBJECT_WLOCK(srcobject);
972                 vm_object_pip_wakeup(srcobject);
973         }
974
975         /*
976          * Transfer source to destination.
977          */
978         swp_pager_init_freerange(&s_free, &n_free);
979         for (i = 0; i < dstobject->size; ++i) {
980                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
981                 if (srcaddr == SWAPBLK_NONE)
982                         continue;
983                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
984                 if (dstaddr != SWAPBLK_NONE) {
985                         /*
986                          * Destination has valid swapblk or it is represented
987                          * by a resident page.  We destroy the source block.
988                          */
989                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
990                         continue;
991                 }
992
993                 /*
994                  * Destination has no swapblk and is not resident,
995                  * copy source.
996                  *
997                  * swp_pager_meta_build() can sleep.
998                  */
999                 vm_object_pip_add(srcobject, 1);
1000                 VM_OBJECT_WUNLOCK(srcobject);
1001                 vm_object_pip_add(dstobject, 1);
1002                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1003                 KASSERT(dstaddr == SWAPBLK_NONE,
1004                     ("Unexpected destination swapblk"));
1005                 vm_object_pip_wakeup(dstobject);
1006                 VM_OBJECT_WLOCK(srcobject);
1007                 vm_object_pip_wakeup(srcobject);
1008         }
1009         swp_pager_freeswapspace(s_free, n_free);
1010
1011         /*
1012          * Free left over swap blocks in source.
1013          *
1014          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1015          * double-remove the object from the swap queues.
1016          */
1017         if (destroysource) {
1018                 swp_pager_meta_free_all(srcobject);
1019                 /*
1020                  * Reverting the type is not necessary, the caller is going
1021                  * to destroy srcobject directly, but I'm doing it here
1022                  * for consistency since we've removed the object from its
1023                  * queues.
1024                  */
1025                 srcobject->type = OBJT_DEFAULT;
1026         }
1027 }
1028
1029 /*
1030  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1031  *                              the requested page.
1032  *
1033  *      We determine whether good backing store exists for the requested
1034  *      page and return TRUE if it does, FALSE if it doesn't.
1035  *
1036  *      If TRUE, we also try to determine how much valid, contiguous backing
1037  *      store exists before and after the requested page.
1038  */
1039 static boolean_t
1040 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1041     int *after)
1042 {
1043         daddr_t blk, blk0;
1044         int i;
1045
1046         VM_OBJECT_ASSERT_LOCKED(object);
1047
1048         /*
1049          * do we have good backing store at the requested index ?
1050          */
1051         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1052         if (blk0 == SWAPBLK_NONE) {
1053                 if (before)
1054                         *before = 0;
1055                 if (after)
1056                         *after = 0;
1057                 return (FALSE);
1058         }
1059
1060         /*
1061          * find backwards-looking contiguous good backing store
1062          */
1063         if (before != NULL) {
1064                 for (i = 1; i < SWB_NPAGES; i++) {
1065                         if (i > pindex)
1066                                 break;
1067                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1068                         if (blk != blk0 - i)
1069                                 break;
1070                 }
1071                 *before = i - 1;
1072         }
1073
1074         /*
1075          * find forward-looking contiguous good backing store
1076          */
1077         if (after != NULL) {
1078                 for (i = 1; i < SWB_NPAGES; i++) {
1079                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1080                         if (blk != blk0 + i)
1081                                 break;
1082                 }
1083                 *after = i - 1;
1084         }
1085         return (TRUE);
1086 }
1087
1088 /*
1089  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1090  *
1091  *      This removes any associated swap backing store, whether valid or
1092  *      not, from the page.
1093  *
1094  *      This routine is typically called when a page is made dirty, at
1095  *      which point any associated swap can be freed.  MADV_FREE also
1096  *      calls us in a special-case situation
1097  *
1098  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1099  *      should make the page dirty before calling this routine.  This routine
1100  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1101  *      depends on it.
1102  *
1103  *      This routine may not sleep.
1104  *
1105  *      The object containing the page must be locked.
1106  */
1107 static void
1108 swap_pager_unswapped(vm_page_t m)
1109 {
1110         daddr_t srcaddr;
1111
1112         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1113         if (srcaddr != SWAPBLK_NONE)
1114                 swp_pager_freeswapspace(srcaddr, 1);
1115 }
1116
1117 /*
1118  * swap_pager_getpages() - bring pages in from swap
1119  *
1120  *      Attempt to page in the pages in array "ma" of length "count".  The
1121  *      caller may optionally specify that additional pages preceding and
1122  *      succeeding the specified range be paged in.  The number of such pages
1123  *      is returned in the "rbehind" and "rahead" parameters, and they will
1124  *      be in the inactive queue upon return.
1125  *
1126  *      The pages in "ma" must be busied and will remain busied upon return.
1127  */
1128 static int
1129 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1130     int *rahead)
1131 {
1132         struct buf *bp;
1133         vm_page_t bm, mpred, msucc, p;
1134         vm_pindex_t pindex;
1135         daddr_t blk;
1136         int i, maxahead, maxbehind, reqcount;
1137
1138         reqcount = count;
1139
1140         /*
1141          * Determine the final number of read-behind pages and
1142          * allocate them BEFORE releasing the object lock.  Otherwise,
1143          * there can be a problematic race with vm_object_split().
1144          * Specifically, vm_object_split() might first transfer pages
1145          * that precede ma[0] in the current object to a new object,
1146          * and then this function incorrectly recreates those pages as
1147          * read-behind pages in the current object.
1148          */
1149         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1150                 return (VM_PAGER_FAIL);
1151
1152         /*
1153          * Clip the readahead and readbehind ranges to exclude resident pages.
1154          */
1155         if (rahead != NULL) {
1156                 KASSERT(reqcount - 1 <= maxahead,
1157                     ("page count %d extends beyond swap block", reqcount));
1158                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1159                 pindex = ma[reqcount - 1]->pindex;
1160                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1161                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1162                         *rahead = msucc->pindex - pindex - 1;
1163         }
1164         if (rbehind != NULL) {
1165                 *rbehind = imin(*rbehind, maxbehind);
1166                 pindex = ma[0]->pindex;
1167                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1168                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1169                         *rbehind = pindex - mpred->pindex - 1;
1170         }
1171
1172         bm = ma[0];
1173         for (i = 0; i < count; i++)
1174                 ma[i]->oflags |= VPO_SWAPINPROG;
1175
1176         /*
1177          * Allocate readahead and readbehind pages.
1178          */
1179         if (rbehind != NULL) {
1180                 for (i = 1; i <= *rbehind; i++) {
1181                         p = vm_page_alloc(object, ma[0]->pindex - i,
1182                             VM_ALLOC_NORMAL);
1183                         if (p == NULL)
1184                                 break;
1185                         p->oflags |= VPO_SWAPINPROG;
1186                         bm = p;
1187                 }
1188                 *rbehind = i - 1;
1189         }
1190         if (rahead != NULL) {
1191                 for (i = 0; i < *rahead; i++) {
1192                         p = vm_page_alloc(object,
1193                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1194                         if (p == NULL)
1195                                 break;
1196                         p->oflags |= VPO_SWAPINPROG;
1197                 }
1198                 *rahead = i;
1199         }
1200         if (rbehind != NULL)
1201                 count += *rbehind;
1202         if (rahead != NULL)
1203                 count += *rahead;
1204
1205         vm_object_pip_add(object, count);
1206
1207         pindex = bm->pindex;
1208         blk = swp_pager_meta_ctl(object, pindex, 0);
1209         KASSERT(blk != SWAPBLK_NONE,
1210             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1211
1212         VM_OBJECT_WUNLOCK(object);
1213         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1214         /* Pages cannot leave the object while busy. */
1215         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1216                 MPASS(p->pindex == bm->pindex + i);
1217                 bp->b_pages[i] = p;
1218         }
1219
1220         bp->b_flags |= B_PAGING;
1221         bp->b_iocmd = BIO_READ;
1222         bp->b_iodone = swp_pager_async_iodone;
1223         bp->b_rcred = crhold(thread0.td_ucred);
1224         bp->b_wcred = crhold(thread0.td_ucred);
1225         bp->b_blkno = blk;
1226         bp->b_bcount = PAGE_SIZE * count;
1227         bp->b_bufsize = PAGE_SIZE * count;
1228         bp->b_npages = count;
1229         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1230         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1231
1232         VM_CNT_INC(v_swapin);
1233         VM_CNT_ADD(v_swappgsin, count);
1234
1235         /*
1236          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1237          * this point because we automatically release it on completion.
1238          * Instead, we look at the one page we are interested in which we
1239          * still hold a lock on even through the I/O completion.
1240          *
1241          * The other pages in our ma[] array are also released on completion,
1242          * so we cannot assume they are valid anymore either.
1243          *
1244          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1245          */
1246         BUF_KERNPROC(bp);
1247         swp_pager_strategy(bp);
1248
1249         /*
1250          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1251          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1252          * is set in the metadata for each page in the request.
1253          */
1254         VM_OBJECT_WLOCK(object);
1255         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1256                 ma[0]->oflags |= VPO_SWAPSLEEP;
1257                 VM_CNT_INC(v_intrans);
1258                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1259                     "swread", hz * 20)) {
1260                         printf(
1261 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1262                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1263                 }
1264         }
1265
1266         /*
1267          * If we had an unrecoverable read error pages will not be valid.
1268          */
1269         for (i = 0; i < reqcount; i++)
1270                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1271                         return (VM_PAGER_ERROR);
1272
1273         return (VM_PAGER_OK);
1274
1275         /*
1276          * A final note: in a low swap situation, we cannot deallocate swap
1277          * and mark a page dirty here because the caller is likely to mark
1278          * the page clean when we return, causing the page to possibly revert
1279          * to all-zero's later.
1280          */
1281 }
1282
1283 /*
1284  *      swap_pager_getpages_async():
1285  *
1286  *      Right now this is emulation of asynchronous operation on top of
1287  *      swap_pager_getpages().
1288  */
1289 static int
1290 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1291     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1292 {
1293         int r, error;
1294
1295         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1296         VM_OBJECT_WUNLOCK(object);
1297         switch (r) {
1298         case VM_PAGER_OK:
1299                 error = 0;
1300                 break;
1301         case VM_PAGER_ERROR:
1302                 error = EIO;
1303                 break;
1304         case VM_PAGER_FAIL:
1305                 error = EINVAL;
1306                 break;
1307         default:
1308                 panic("unhandled swap_pager_getpages() error %d", r);
1309         }
1310         (iodone)(arg, ma, count, error);
1311         VM_OBJECT_WLOCK(object);
1312
1313         return (r);
1314 }
1315
1316 /*
1317  *      swap_pager_putpages:
1318  *
1319  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1320  *
1321  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1322  *      are automatically converted to SWAP objects.
1323  *
1324  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1325  *      vm_page reservation system coupled with properly written VFS devices
1326  *      should ensure that no low-memory deadlock occurs.  This is an area
1327  *      which needs work.
1328  *
1329  *      The parent has N vm_object_pip_add() references prior to
1330  *      calling us and will remove references for rtvals[] that are
1331  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1332  *      completion.
1333  *
1334  *      The parent has soft-busy'd the pages it passes us and will unbusy
1335  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1336  *      We need to unbusy the rest on I/O completion.
1337  */
1338 static void
1339 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1340     int flags, int *rtvals)
1341 {
1342         int i, n;
1343         boolean_t sync;
1344         daddr_t addr, n_free, s_free;
1345
1346         swp_pager_init_freerange(&s_free, &n_free);
1347         if (count && ma[0]->object != object) {
1348                 panic("swap_pager_putpages: object mismatch %p/%p",
1349                     object,
1350                     ma[0]->object
1351                 );
1352         }
1353
1354         /*
1355          * Step 1
1356          *
1357          * Turn object into OBJT_SWAP
1358          * check for bogus sysops
1359          * force sync if not pageout process
1360          */
1361         if (object->type != OBJT_SWAP) {
1362                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1363                 KASSERT(addr == SWAPBLK_NONE,
1364                     ("unexpected object swap block"));
1365         }
1366         VM_OBJECT_WUNLOCK(object);
1367
1368         n = 0;
1369         if (curproc != pageproc)
1370                 sync = TRUE;
1371         else
1372                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1373
1374         /*
1375          * Step 2
1376          *
1377          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1378          * The page is left dirty until the pageout operation completes
1379          * successfully.
1380          */
1381         for (i = 0; i < count; i += n) {
1382                 int j;
1383                 struct buf *bp;
1384                 daddr_t blk;
1385
1386                 /* Maximum I/O size is limited by maximum swap block size. */
1387                 n = min(count - i, nsw_cluster_max);
1388
1389                 /* Get a block of swap of size up to size n. */
1390                 blk = swp_pager_getswapspace(&n, 4);
1391                 if (blk == SWAPBLK_NONE) {
1392                         for (j = 0; j < n; ++j)
1393                                 rtvals[i+j] = VM_PAGER_FAIL;
1394                         continue;
1395                 }
1396
1397                 /*
1398                  * All I/O parameters have been satisfied, build the I/O
1399                  * request and assign the swap space.
1400                  */
1401                 if (sync != TRUE) {
1402                         mtx_lock(&swbuf_mtx);
1403                         while (nsw_wcount_async == 0)
1404                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1405                                     "swbufa", 0);
1406                         nsw_wcount_async--;
1407                         mtx_unlock(&swbuf_mtx);
1408                 }
1409                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1410                 if (sync != TRUE)
1411                         bp->b_flags = B_ASYNC;
1412                 bp->b_flags |= B_PAGING;
1413                 bp->b_iocmd = BIO_WRITE;
1414
1415                 bp->b_rcred = crhold(thread0.td_ucred);
1416                 bp->b_wcred = crhold(thread0.td_ucred);
1417                 bp->b_bcount = PAGE_SIZE * n;
1418                 bp->b_bufsize = PAGE_SIZE * n;
1419                 bp->b_blkno = blk;
1420
1421                 VM_OBJECT_WLOCK(object);
1422                 for (j = 0; j < n; ++j) {
1423                         vm_page_t mreq = ma[i+j];
1424
1425                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1426                             blk + j);
1427                         if (addr != SWAPBLK_NONE)
1428                                 swp_pager_update_freerange(&s_free, &n_free,
1429                                     addr);
1430                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1431                         mreq->oflags |= VPO_SWAPINPROG;
1432                         bp->b_pages[j] = mreq;
1433                 }
1434                 VM_OBJECT_WUNLOCK(object);
1435                 bp->b_npages = n;
1436                 /*
1437                  * Must set dirty range for NFS to work.
1438                  */
1439                 bp->b_dirtyoff = 0;
1440                 bp->b_dirtyend = bp->b_bcount;
1441
1442                 VM_CNT_INC(v_swapout);
1443                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1444
1445                 /*
1446                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1447                  * can call the async completion routine at the end of a
1448                  * synchronous I/O operation.  Otherwise, our caller would
1449                  * perform duplicate unbusy and wakeup operations on the page
1450                  * and object, respectively.
1451                  */
1452                 for (j = 0; j < n; j++)
1453                         rtvals[i + j] = VM_PAGER_PEND;
1454
1455                 /*
1456                  * asynchronous
1457                  *
1458                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1459                  */
1460                 if (sync == FALSE) {
1461                         bp->b_iodone = swp_pager_async_iodone;
1462                         BUF_KERNPROC(bp);
1463                         swp_pager_strategy(bp);
1464                         continue;
1465                 }
1466
1467                 /*
1468                  * synchronous
1469                  *
1470                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1471                  */
1472                 bp->b_iodone = bdone;
1473                 swp_pager_strategy(bp);
1474
1475                 /*
1476                  * Wait for the sync I/O to complete.
1477                  */
1478                 bwait(bp, PVM, "swwrt");
1479
1480                 /*
1481                  * Now that we are through with the bp, we can call the
1482                  * normal async completion, which frees everything up.
1483                  */
1484                 swp_pager_async_iodone(bp);
1485         }
1486         VM_OBJECT_WLOCK(object);
1487         swp_pager_freeswapspace(s_free, n_free);
1488 }
1489
1490 /*
1491  *      swp_pager_async_iodone:
1492  *
1493  *      Completion routine for asynchronous reads and writes from/to swap.
1494  *      Also called manually by synchronous code to finish up a bp.
1495  *
1496  *      This routine may not sleep.
1497  */
1498 static void
1499 swp_pager_async_iodone(struct buf *bp)
1500 {
1501         int i;
1502         vm_object_t object = NULL;
1503
1504         /*
1505          * Report error - unless we ran out of memory, in which case
1506          * we've already logged it in swapgeom_strategy().
1507          */
1508         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1509                 printf(
1510                     "swap_pager: I/O error - %s failed; blkno %ld,"
1511                         "size %ld, error %d\n",
1512                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1513                     (long)bp->b_blkno,
1514                     (long)bp->b_bcount,
1515                     bp->b_error
1516                 );
1517         }
1518
1519         /*
1520          * remove the mapping for kernel virtual
1521          */
1522         if (buf_mapped(bp))
1523                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1524         else
1525                 bp->b_data = bp->b_kvabase;
1526
1527         if (bp->b_npages) {
1528                 object = bp->b_pages[0]->object;
1529                 VM_OBJECT_WLOCK(object);
1530         }
1531
1532         /*
1533          * cleanup pages.  If an error occurs writing to swap, we are in
1534          * very serious trouble.  If it happens to be a disk error, though,
1535          * we may be able to recover by reassigning the swap later on.  So
1536          * in this case we remove the m->swapblk assignment for the page
1537          * but do not free it in the rlist.  The errornous block(s) are thus
1538          * never reallocated as swap.  Redirty the page and continue.
1539          */
1540         for (i = 0; i < bp->b_npages; ++i) {
1541                 vm_page_t m = bp->b_pages[i];
1542
1543                 m->oflags &= ~VPO_SWAPINPROG;
1544                 if (m->oflags & VPO_SWAPSLEEP) {
1545                         m->oflags &= ~VPO_SWAPSLEEP;
1546                         wakeup(&object->paging_in_progress);
1547                 }
1548
1549                 if (bp->b_ioflags & BIO_ERROR) {
1550                         /*
1551                          * If an error occurs I'd love to throw the swapblk
1552                          * away without freeing it back to swapspace, so it
1553                          * can never be used again.  But I can't from an
1554                          * interrupt.
1555                          */
1556                         if (bp->b_iocmd == BIO_READ) {
1557                                 /*
1558                                  * NOTE: for reads, m->dirty will probably
1559                                  * be overridden by the original caller of
1560                                  * getpages so don't play cute tricks here.
1561                                  */
1562                                 m->valid = 0;
1563                         } else {
1564                                 /*
1565                                  * If a write error occurs, reactivate page
1566                                  * so it doesn't clog the inactive list,
1567                                  * then finish the I/O.
1568                                  */
1569                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1570                                 vm_page_lock(m);
1571                                 vm_page_activate(m);
1572                                 vm_page_unlock(m);
1573                                 vm_page_sunbusy(m);
1574                         }
1575                 } else if (bp->b_iocmd == BIO_READ) {
1576                         /*
1577                          * NOTE: for reads, m->dirty will probably be
1578                          * overridden by the original caller of getpages so
1579                          * we cannot set them in order to free the underlying
1580                          * swap in a low-swap situation.  I don't think we'd
1581                          * want to do that anyway, but it was an optimization
1582                          * that existed in the old swapper for a time before
1583                          * it got ripped out due to precisely this problem.
1584                          */
1585                         KASSERT(!pmap_page_is_mapped(m),
1586                             ("swp_pager_async_iodone: page %p is mapped", m));
1587                         KASSERT(m->dirty == 0,
1588                             ("swp_pager_async_iodone: page %p is dirty", m));
1589
1590                         m->valid = VM_PAGE_BITS_ALL;
1591                         if (i < bp->b_pgbefore ||
1592                             i >= bp->b_npages - bp->b_pgafter)
1593                                 vm_page_readahead_finish(m);
1594                 } else {
1595                         /*
1596                          * For write success, clear the dirty
1597                          * status, then finish the I/O ( which decrements the
1598                          * busy count and possibly wakes waiter's up ).
1599                          * A page is only written to swap after a period of
1600                          * inactivity.  Therefore, we do not expect it to be
1601                          * reused.
1602                          */
1603                         KASSERT(!pmap_page_is_write_mapped(m),
1604                             ("swp_pager_async_iodone: page %p is not write"
1605                             " protected", m));
1606                         vm_page_undirty(m);
1607                         vm_page_lock(m);
1608                         vm_page_deactivate_noreuse(m);
1609                         vm_page_unlock(m);
1610                         vm_page_sunbusy(m);
1611                 }
1612         }
1613
1614         /*
1615          * adjust pip.  NOTE: the original parent may still have its own
1616          * pip refs on the object.
1617          */
1618         if (object != NULL) {
1619                 vm_object_pip_wakeupn(object, bp->b_npages);
1620                 VM_OBJECT_WUNLOCK(object);
1621         }
1622
1623         /*
1624          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1625          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1626          * trigger a KASSERT in relpbuf().
1627          */
1628         if (bp->b_vp) {
1629                     bp->b_vp = NULL;
1630                     bp->b_bufobj = NULL;
1631         }
1632         /*
1633          * release the physical I/O buffer
1634          */
1635         if (bp->b_flags & B_ASYNC) {
1636                 mtx_lock(&swbuf_mtx);
1637                 if (++nsw_wcount_async == 1)
1638                         wakeup(&nsw_wcount_async);
1639                 mtx_unlock(&swbuf_mtx);
1640         }
1641         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1642 }
1643
1644 int
1645 swap_pager_nswapdev(void)
1646 {
1647
1648         return (nswapdev);
1649 }
1650
1651 static void
1652 swp_pager_force_dirty(vm_page_t m)
1653 {
1654
1655         vm_page_dirty(m);
1656 #ifdef INVARIANTS
1657         vm_page_lock(m);
1658         if (!vm_page_wired(m) && m->queue == PQ_NONE)
1659                 panic("page %p is neither wired nor queued", m);
1660         vm_page_unlock(m);
1661 #endif
1662         vm_page_xunbusy(m);
1663         swap_pager_unswapped(m);
1664 }
1665
1666 static void
1667 swp_pager_force_launder(vm_page_t m)
1668 {
1669
1670         vm_page_dirty(m);
1671         vm_page_lock(m);
1672         vm_page_launder(m);
1673         vm_page_unlock(m);
1674         vm_page_xunbusy(m);
1675         swap_pager_unswapped(m);
1676 }
1677
1678 /*
1679  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1680  *
1681  *      This routine dissociates pages starting at the given index within an
1682  *      object from their backing store, paging them in if they do not reside
1683  *      in memory.  Pages that are paged in are marked dirty and placed in the
1684  *      laundry queue.  Pages are marked dirty because they no longer have
1685  *      backing store.  They are placed in the laundry queue because they have
1686  *      not been accessed recently.  Otherwise, they would already reside in
1687  *      memory.
1688  */
1689 static void
1690 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1691 {
1692         vm_page_t ma[npages];
1693         int i, j;
1694
1695         KASSERT(npages > 0, ("%s: No pages", __func__));
1696         KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1697             ("%s: Too many pages: %d", __func__, npages));
1698         vm_object_pip_add(object, npages);
1699         vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1700         for (i = j = 0;; i++) {
1701                 /* Count nonresident pages, to page-in all at once. */
1702                 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1703                         continue;
1704                 if (j < i) {
1705                         /* Page-in nonresident pages. Mark for laundering. */
1706                         if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1707                             NULL) != VM_PAGER_OK)
1708                                 panic("%s: read from swap failed", __func__);
1709                         do {
1710                                 swp_pager_force_launder(ma[j]);
1711                         } while (++j < i);
1712                 }
1713                 if (i == npages)
1714                         break;
1715                 /* Mark dirty a resident page. */
1716                 swp_pager_force_dirty(ma[j++]);
1717         }
1718         vm_object_pip_wakeupn(object, npages);
1719 }
1720
1721 /*
1722  *      swap_pager_swapoff_object:
1723  *
1724  *      Page in all of the pages that have been paged out for an object
1725  *      to a swap device.
1726  */
1727 static void
1728 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1729 {
1730         struct swblk *sb;
1731         vm_pindex_t pi, s_pindex;
1732         daddr_t blk, n_blks, s_blk;
1733         int i;
1734
1735         n_blks = 0;
1736         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1737             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1738                 for (i = 0; i < SWAP_META_PAGES; i++) {
1739                         blk = sb->d[i];
1740                         if (!swp_pager_isondev(blk, sp))
1741                                 blk = SWAPBLK_NONE;
1742
1743                         /*
1744                          * If there are no blocks/pages accumulated, start a new
1745                          * accumulation here.
1746                          */
1747                         if (n_blks == 0) {
1748                                 if (blk != SWAPBLK_NONE) {
1749                                         s_blk = blk;
1750                                         s_pindex = sb->p + i;
1751                                         n_blks = 1;
1752                                 }
1753                                 continue;
1754                         }
1755
1756                         /*
1757                          * If the accumulation can be extended without breaking
1758                          * the sequence of consecutive blocks and pages that
1759                          * swp_pager_force_pagein() depends on, do so.
1760                          */
1761                         if (n_blks < MAXPHYS / PAGE_SIZE &&
1762                             s_blk + n_blks == blk &&
1763                             s_pindex + n_blks == sb->p + i) {
1764                                 ++n_blks;
1765                                 continue;
1766                         }
1767
1768                         /*
1769                          * The sequence of consecutive blocks and pages cannot
1770                          * be extended, so page them all in here.  Then,
1771                          * because doing so involves releasing and reacquiring
1772                          * a lock that protects the swap block pctrie, do not
1773                          * rely on the current swap block.  Break this loop and
1774                          * re-fetch the same pindex from the pctrie again.
1775                          */
1776                         swp_pager_force_pagein(object, s_pindex, n_blks);
1777                         n_blks = 0;
1778                         break;
1779                 }
1780                 if (i == SWAP_META_PAGES)
1781                         pi = sb->p + SWAP_META_PAGES;
1782         }
1783         if (n_blks > 0)
1784                 swp_pager_force_pagein(object, s_pindex, n_blks);
1785 }
1786
1787 /*
1788  *      swap_pager_swapoff:
1789  *
1790  *      Page in all of the pages that have been paged out to the
1791  *      given device.  The corresponding blocks in the bitmap must be
1792  *      marked as allocated and the device must be flagged SW_CLOSING.
1793  *      There may be no processes swapped out to the device.
1794  *
1795  *      This routine may block.
1796  */
1797 static void
1798 swap_pager_swapoff(struct swdevt *sp)
1799 {
1800         vm_object_t object;
1801         int retries;
1802
1803         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1804
1805         retries = 0;
1806 full_rescan:
1807         mtx_lock(&vm_object_list_mtx);
1808         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1809                 if (object->type != OBJT_SWAP)
1810                         continue;
1811                 mtx_unlock(&vm_object_list_mtx);
1812                 /* Depends on type-stability. */
1813                 VM_OBJECT_WLOCK(object);
1814
1815                 /*
1816                  * Dead objects are eventually terminated on their own.
1817                  */
1818                 if ((object->flags & OBJ_DEAD) != 0)
1819                         goto next_obj;
1820
1821                 /*
1822                  * Sync with fences placed after pctrie
1823                  * initialization.  We must not access pctrie below
1824                  * unless we checked that our object is swap and not
1825                  * dead.
1826                  */
1827                 atomic_thread_fence_acq();
1828                 if (object->type != OBJT_SWAP)
1829                         goto next_obj;
1830
1831                 swap_pager_swapoff_object(sp, object);
1832 next_obj:
1833                 VM_OBJECT_WUNLOCK(object);
1834                 mtx_lock(&vm_object_list_mtx);
1835         }
1836         mtx_unlock(&vm_object_list_mtx);
1837
1838         if (sp->sw_used) {
1839                 /*
1840                  * Objects may be locked or paging to the device being
1841                  * removed, so we will miss their pages and need to
1842                  * make another pass.  We have marked this device as
1843                  * SW_CLOSING, so the activity should finish soon.
1844                  */
1845                 retries++;
1846                 if (retries > 100) {
1847                         panic("swapoff: failed to locate %d swap blocks",
1848                             sp->sw_used);
1849                 }
1850                 pause("swpoff", hz / 20);
1851                 goto full_rescan;
1852         }
1853         EVENTHANDLER_INVOKE(swapoff, sp);
1854 }
1855
1856 /************************************************************************
1857  *                              SWAP META DATA                          *
1858  ************************************************************************
1859  *
1860  *      These routines manipulate the swap metadata stored in the
1861  *      OBJT_SWAP object.
1862  *
1863  *      Swap metadata is implemented with a global hash and not directly
1864  *      linked into the object.  Instead the object simply contains
1865  *      appropriate tracking counters.
1866  */
1867
1868 /*
1869  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1870  */
1871 static bool
1872 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1873 {
1874         int i;
1875
1876         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1877         for (i = start; i < limit; i++) {
1878                 if (sb->d[i] != SWAPBLK_NONE)
1879                         return (false);
1880         }
1881         return (true);
1882 }
1883    
1884 /*
1885  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1886  *
1887  *      We first convert the object to a swap object if it is a default
1888  *      object.
1889  *
1890  *      The specified swapblk is added to the object's swap metadata.  If
1891  *      the swapblk is not valid, it is freed instead.  Any previously
1892  *      assigned swapblk is returned.
1893  */
1894 static daddr_t
1895 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1896 {
1897         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1898         struct swblk *sb, *sb1;
1899         vm_pindex_t modpi, rdpi;
1900         daddr_t prev_swapblk;
1901         int error, i;
1902
1903         VM_OBJECT_ASSERT_WLOCKED(object);
1904
1905         /*
1906          * Convert default object to swap object if necessary
1907          */
1908         if (object->type != OBJT_SWAP) {
1909                 pctrie_init(&object->un_pager.swp.swp_blks);
1910
1911                 /*
1912                  * Ensure that swap_pager_swapoff()'s iteration over
1913                  * object_list does not see a garbage pctrie.
1914                  */
1915                 atomic_thread_fence_rel();
1916
1917                 object->type = OBJT_SWAP;
1918                 KASSERT(object->handle == NULL, ("default pager with handle"));
1919         }
1920
1921         rdpi = rounddown(pindex, SWAP_META_PAGES);
1922         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1923         if (sb == NULL) {
1924                 if (swapblk == SWAPBLK_NONE)
1925                         return (SWAPBLK_NONE);
1926                 for (;;) {
1927                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1928                             pageproc ? M_USE_RESERVE : 0));
1929                         if (sb != NULL) {
1930                                 sb->p = rdpi;
1931                                 for (i = 0; i < SWAP_META_PAGES; i++)
1932                                         sb->d[i] = SWAPBLK_NONE;
1933                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1934                                     1, 0))
1935                                         printf("swblk zone ok\n");
1936                                 break;
1937                         }
1938                         VM_OBJECT_WUNLOCK(object);
1939                         if (uma_zone_exhausted(swblk_zone)) {
1940                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1941                                     0, 1))
1942                                         printf("swap blk zone exhausted, "
1943                                             "increase kern.maxswzone\n");
1944                                 vm_pageout_oom(VM_OOM_SWAPZ);
1945                                 pause("swzonxb", 10);
1946                         } else
1947                                 uma_zwait(swblk_zone);
1948                         VM_OBJECT_WLOCK(object);
1949                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1950                             rdpi);
1951                         if (sb != NULL)
1952                                 /*
1953                                  * Somebody swapped out a nearby page,
1954                                  * allocating swblk at the rdpi index,
1955                                  * while we dropped the object lock.
1956                                  */
1957                                 goto allocated;
1958                 }
1959                 for (;;) {
1960                         error = SWAP_PCTRIE_INSERT(
1961                             &object->un_pager.swp.swp_blks, sb);
1962                         if (error == 0) {
1963                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1964                                     1, 0))
1965                                         printf("swpctrie zone ok\n");
1966                                 break;
1967                         }
1968                         VM_OBJECT_WUNLOCK(object);
1969                         if (uma_zone_exhausted(swpctrie_zone)) {
1970                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1971                                     0, 1))
1972                                         printf("swap pctrie zone exhausted, "
1973                                             "increase kern.maxswzone\n");
1974                                 vm_pageout_oom(VM_OOM_SWAPZ);
1975                                 pause("swzonxp", 10);
1976                         } else
1977                                 uma_zwait(swpctrie_zone);
1978                         VM_OBJECT_WLOCK(object);
1979                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1980                             rdpi);
1981                         if (sb1 != NULL) {
1982                                 uma_zfree(swblk_zone, sb);
1983                                 sb = sb1;
1984                                 goto allocated;
1985                         }
1986                 }
1987         }
1988 allocated:
1989         MPASS(sb->p == rdpi);
1990
1991         modpi = pindex % SWAP_META_PAGES;
1992         /* Return prior contents of metadata. */
1993         prev_swapblk = sb->d[modpi];
1994         /* Enter block into metadata. */
1995         sb->d[modpi] = swapblk;
1996
1997         /*
1998          * Free the swblk if we end up with the empty page run.
1999          */
2000         if (swapblk == SWAPBLK_NONE &&
2001             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2002                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
2003                 uma_zfree(swblk_zone, sb);
2004         }
2005         return (prev_swapblk);
2006 }
2007
2008 /*
2009  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2010  *
2011  *      The requested range of blocks is freed, with any associated swap
2012  *      returned to the swap bitmap.
2013  *
2014  *      This routine will free swap metadata structures as they are cleaned
2015  *      out.  This routine does *NOT* operate on swap metadata associated
2016  *      with resident pages.
2017  */
2018 static void
2019 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2020 {
2021         struct swblk *sb;
2022         daddr_t n_free, s_free;
2023         vm_pindex_t last;
2024         int i, limit, start;
2025
2026         VM_OBJECT_ASSERT_WLOCKED(object);
2027         if (object->type != OBJT_SWAP || count == 0)
2028                 return;
2029
2030         swp_pager_init_freerange(&s_free, &n_free);
2031         last = pindex + count;
2032         for (;;) {
2033                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2034                     rounddown(pindex, SWAP_META_PAGES));
2035                 if (sb == NULL || sb->p >= last)
2036                         break;
2037                 start = pindex > sb->p ? pindex - sb->p : 0;
2038                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2039                     SWAP_META_PAGES;
2040                 for (i = start; i < limit; i++) {
2041                         if (sb->d[i] == SWAPBLK_NONE)
2042                                 continue;
2043                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2044                         sb->d[i] = SWAPBLK_NONE;
2045                 }
2046                 pindex = sb->p + SWAP_META_PAGES;
2047                 if (swp_pager_swblk_empty(sb, 0, start) &&
2048                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2049                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2050                             sb->p);
2051                         uma_zfree(swblk_zone, sb);
2052                 }
2053         }
2054         swp_pager_freeswapspace(s_free, n_free);
2055 }
2056
2057 /*
2058  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2059  *
2060  *      This routine locates and destroys all swap metadata associated with
2061  *      an object.
2062  */
2063 static void
2064 swp_pager_meta_free_all(vm_object_t object)
2065 {
2066         struct swblk *sb;
2067         daddr_t n_free, s_free;
2068         vm_pindex_t pindex;
2069         int i;
2070
2071         VM_OBJECT_ASSERT_WLOCKED(object);
2072         if (object->type != OBJT_SWAP)
2073                 return;
2074
2075         swp_pager_init_freerange(&s_free, &n_free);
2076         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2077             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2078                 pindex = sb->p + SWAP_META_PAGES;
2079                 for (i = 0; i < SWAP_META_PAGES; i++) {
2080                         if (sb->d[i] == SWAPBLK_NONE)
2081                                 continue;
2082                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2083                 }
2084                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2085                 uma_zfree(swblk_zone, sb);
2086         }
2087         swp_pager_freeswapspace(s_free, n_free);
2088 }
2089
2090 /*
2091  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2092  *
2093  *      This routine is capable of looking up, or removing swapblk
2094  *      assignments in the swap meta data.  It returns the swapblk being
2095  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2096  *
2097  *      When acting on a busy resident page and paging is in progress, we
2098  *      have to wait until paging is complete but otherwise can act on the
2099  *      busy page.
2100  *
2101  *      SWM_POP         remove from meta data but do not free it
2102  */
2103 static daddr_t
2104 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2105 {
2106         struct swblk *sb;
2107         daddr_t r1;
2108
2109         if ((flags & SWM_POP) != 0)
2110                 VM_OBJECT_ASSERT_WLOCKED(object);
2111         else
2112                 VM_OBJECT_ASSERT_LOCKED(object);
2113
2114         /*
2115          * The meta data only exists if the object is OBJT_SWAP
2116          * and even then might not be allocated yet.
2117          */
2118         if (object->type != OBJT_SWAP)
2119                 return (SWAPBLK_NONE);
2120
2121         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2122             rounddown(pindex, SWAP_META_PAGES));
2123         if (sb == NULL)
2124                 return (SWAPBLK_NONE);
2125         r1 = sb->d[pindex % SWAP_META_PAGES];
2126         if (r1 == SWAPBLK_NONE)
2127                 return (SWAPBLK_NONE);
2128         if ((flags & SWM_POP) != 0) {
2129                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2130                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2131                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2132                             rounddown(pindex, SWAP_META_PAGES));
2133                         uma_zfree(swblk_zone, sb);
2134                 }
2135         }
2136         return (r1);
2137 }
2138
2139 /*
2140  * Returns the least page index which is greater than or equal to the
2141  * parameter pindex and for which there is a swap block allocated.
2142  * Returns object's size if the object's type is not swap or if there
2143  * are no allocated swap blocks for the object after the requested
2144  * pindex.
2145  */
2146 vm_pindex_t
2147 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2148 {
2149         struct swblk *sb;
2150         int i;
2151
2152         VM_OBJECT_ASSERT_LOCKED(object);
2153         if (object->type != OBJT_SWAP)
2154                 return (object->size);
2155
2156         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2157             rounddown(pindex, SWAP_META_PAGES));
2158         if (sb == NULL)
2159                 return (object->size);
2160         if (sb->p < pindex) {
2161                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2162                         if (sb->d[i] != SWAPBLK_NONE)
2163                                 return (sb->p + i);
2164                 }
2165                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2166                     roundup(pindex, SWAP_META_PAGES));
2167                 if (sb == NULL)
2168                         return (object->size);
2169         }
2170         for (i = 0; i < SWAP_META_PAGES; i++) {
2171                 if (sb->d[i] != SWAPBLK_NONE)
2172                         return (sb->p + i);
2173         }
2174
2175         /*
2176          * We get here if a swblk is present in the trie but it
2177          * doesn't map any blocks.
2178          */
2179         MPASS(0);
2180         return (object->size);
2181 }
2182
2183 /*
2184  * System call swapon(name) enables swapping on device name,
2185  * which must be in the swdevsw.  Return EBUSY
2186  * if already swapping on this device.
2187  */
2188 #ifndef _SYS_SYSPROTO_H_
2189 struct swapon_args {
2190         char *name;
2191 };
2192 #endif
2193
2194 /*
2195  * MPSAFE
2196  */
2197 /* ARGSUSED */
2198 int
2199 sys_swapon(struct thread *td, struct swapon_args *uap)
2200 {
2201         struct vattr attr;
2202         struct vnode *vp;
2203         struct nameidata nd;
2204         int error;
2205
2206         error = priv_check(td, PRIV_SWAPON);
2207         if (error)
2208                 return (error);
2209
2210         sx_xlock(&swdev_syscall_lock);
2211
2212         /*
2213          * Swap metadata may not fit in the KVM if we have physical
2214          * memory of >1GB.
2215          */
2216         if (swblk_zone == NULL) {
2217                 error = ENOMEM;
2218                 goto done;
2219         }
2220
2221         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2222             uap->name, td);
2223         error = namei(&nd);
2224         if (error)
2225                 goto done;
2226
2227         NDFREE(&nd, NDF_ONLY_PNBUF);
2228         vp = nd.ni_vp;
2229
2230         if (vn_isdisk(vp, &error)) {
2231                 error = swapongeom(vp);
2232         } else if (vp->v_type == VREG &&
2233             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2234             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2235                 /*
2236                  * Allow direct swapping to NFS regular files in the same
2237                  * way that nfs_mountroot() sets up diskless swapping.
2238                  */
2239                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2240         }
2241
2242         if (error)
2243                 vrele(vp);
2244 done:
2245         sx_xunlock(&swdev_syscall_lock);
2246         return (error);
2247 }
2248
2249 /*
2250  * Check that the total amount of swap currently configured does not
2251  * exceed half the theoretical maximum.  If it does, print a warning
2252  * message.
2253  */
2254 static void
2255 swapon_check_swzone(void)
2256 {
2257         unsigned long maxpages, npages;
2258
2259         npages = swap_total;
2260         /* absolute maximum we can handle assuming 100% efficiency */
2261         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2262
2263         /* recommend using no more than half that amount */
2264         if (npages > maxpages / 2) {
2265                 printf("warning: total configured swap (%lu pages) "
2266                     "exceeds maximum recommended amount (%lu pages).\n",
2267                     npages, maxpages / 2);
2268                 printf("warning: increase kern.maxswzone "
2269                     "or reduce amount of swap.\n");
2270         }
2271 }
2272
2273 static void
2274 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2275     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2276 {
2277         struct swdevt *sp, *tsp;
2278         swblk_t dvbase;
2279         u_long mblocks;
2280
2281         /*
2282          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2283          * First chop nblks off to page-align it, then convert.
2284          *
2285          * sw->sw_nblks is in page-sized chunks now too.
2286          */
2287         nblks &= ~(ctodb(1) - 1);
2288         nblks = dbtoc(nblks);
2289
2290         /*
2291          * If we go beyond this, we get overflows in the radix
2292          * tree bitmap code.
2293          */
2294         mblocks = 0x40000000 / BLIST_META_RADIX;
2295         if (nblks > mblocks) {
2296                 printf(
2297     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2298                     mblocks / 1024 / 1024 * PAGE_SIZE);
2299                 nblks = mblocks;
2300         }
2301
2302         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2303         sp->sw_vp = vp;
2304         sp->sw_id = id;
2305         sp->sw_dev = dev;
2306         sp->sw_nblks = nblks;
2307         sp->sw_used = 0;
2308         sp->sw_strategy = strategy;
2309         sp->sw_close = close;
2310         sp->sw_flags = flags;
2311
2312         sp->sw_blist = blist_create(nblks, M_WAITOK);
2313         /*
2314          * Do not free the first two block in order to avoid overwriting
2315          * any bsd label at the front of the partition
2316          */
2317         blist_free(sp->sw_blist, 2, nblks - 2);
2318
2319         dvbase = 0;
2320         mtx_lock(&sw_dev_mtx);
2321         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2322                 if (tsp->sw_end >= dvbase) {
2323                         /*
2324                          * We put one uncovered page between the devices
2325                          * in order to definitively prevent any cross-device
2326                          * I/O requests
2327                          */
2328                         dvbase = tsp->sw_end + 1;
2329                 }
2330         }
2331         sp->sw_first = dvbase;
2332         sp->sw_end = dvbase + nblks;
2333         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2334         nswapdev++;
2335         swap_pager_avail += nblks - 2;
2336         swap_total += nblks;
2337         swapon_check_swzone();
2338         swp_sizecheck();
2339         mtx_unlock(&sw_dev_mtx);
2340         EVENTHANDLER_INVOKE(swapon, sp);
2341 }
2342
2343 /*
2344  * SYSCALL: swapoff(devname)
2345  *
2346  * Disable swapping on the given device.
2347  *
2348  * XXX: Badly designed system call: it should use a device index
2349  * rather than filename as specification.  We keep sw_vp around
2350  * only to make this work.
2351  */
2352 #ifndef _SYS_SYSPROTO_H_
2353 struct swapoff_args {
2354         char *name;
2355 };
2356 #endif
2357
2358 /*
2359  * MPSAFE
2360  */
2361 /* ARGSUSED */
2362 int
2363 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2364 {
2365         struct vnode *vp;
2366         struct nameidata nd;
2367         struct swdevt *sp;
2368         int error;
2369
2370         error = priv_check(td, PRIV_SWAPOFF);
2371         if (error)
2372                 return (error);
2373
2374         sx_xlock(&swdev_syscall_lock);
2375
2376         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2377             td);
2378         error = namei(&nd);
2379         if (error)
2380                 goto done;
2381         NDFREE(&nd, NDF_ONLY_PNBUF);
2382         vp = nd.ni_vp;
2383
2384         mtx_lock(&sw_dev_mtx);
2385         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2386                 if (sp->sw_vp == vp)
2387                         break;
2388         }
2389         mtx_unlock(&sw_dev_mtx);
2390         if (sp == NULL) {
2391                 error = EINVAL;
2392                 goto done;
2393         }
2394         error = swapoff_one(sp, td->td_ucred);
2395 done:
2396         sx_xunlock(&swdev_syscall_lock);
2397         return (error);
2398 }
2399
2400 static int
2401 swapoff_one(struct swdevt *sp, struct ucred *cred)
2402 {
2403         u_long nblks;
2404 #ifdef MAC
2405         int error;
2406 #endif
2407
2408         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2409 #ifdef MAC
2410         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2411         error = mac_system_check_swapoff(cred, sp->sw_vp);
2412         (void) VOP_UNLOCK(sp->sw_vp, 0);
2413         if (error != 0)
2414                 return (error);
2415 #endif
2416         nblks = sp->sw_nblks;
2417
2418         /*
2419          * We can turn off this swap device safely only if the
2420          * available virtual memory in the system will fit the amount
2421          * of data we will have to page back in, plus an epsilon so
2422          * the system doesn't become critically low on swap space.
2423          */
2424         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2425                 return (ENOMEM);
2426
2427         /*
2428          * Prevent further allocations on this device.
2429          */
2430         mtx_lock(&sw_dev_mtx);
2431         sp->sw_flags |= SW_CLOSING;
2432         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2433         swap_total -= nblks;
2434         mtx_unlock(&sw_dev_mtx);
2435
2436         /*
2437          * Page in the contents of the device and close it.
2438          */
2439         swap_pager_swapoff(sp);
2440
2441         sp->sw_close(curthread, sp);
2442         mtx_lock(&sw_dev_mtx);
2443         sp->sw_id = NULL;
2444         TAILQ_REMOVE(&swtailq, sp, sw_list);
2445         nswapdev--;
2446         if (nswapdev == 0) {
2447                 swap_pager_full = 2;
2448                 swap_pager_almost_full = 1;
2449         }
2450         if (swdevhd == sp)
2451                 swdevhd = NULL;
2452         mtx_unlock(&sw_dev_mtx);
2453         blist_destroy(sp->sw_blist);
2454         free(sp, M_VMPGDATA);
2455         return (0);
2456 }
2457
2458 void
2459 swapoff_all(void)
2460 {
2461         struct swdevt *sp, *spt;
2462         const char *devname;
2463         int error;
2464
2465         sx_xlock(&swdev_syscall_lock);
2466
2467         mtx_lock(&sw_dev_mtx);
2468         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2469                 mtx_unlock(&sw_dev_mtx);
2470                 if (vn_isdisk(sp->sw_vp, NULL))
2471                         devname = devtoname(sp->sw_vp->v_rdev);
2472                 else
2473                         devname = "[file]";
2474                 error = swapoff_one(sp, thread0.td_ucred);
2475                 if (error != 0) {
2476                         printf("Cannot remove swap device %s (error=%d), "
2477                             "skipping.\n", devname, error);
2478                 } else if (bootverbose) {
2479                         printf("Swap device %s removed.\n", devname);
2480                 }
2481                 mtx_lock(&sw_dev_mtx);
2482         }
2483         mtx_unlock(&sw_dev_mtx);
2484
2485         sx_xunlock(&swdev_syscall_lock);
2486 }
2487
2488 void
2489 swap_pager_status(int *total, int *used)
2490 {
2491         struct swdevt *sp;
2492
2493         *total = 0;
2494         *used = 0;
2495         mtx_lock(&sw_dev_mtx);
2496         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2497                 *total += sp->sw_nblks;
2498                 *used += sp->sw_used;
2499         }
2500         mtx_unlock(&sw_dev_mtx);
2501 }
2502
2503 int
2504 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2505 {
2506         struct swdevt *sp;
2507         const char *tmp_devname;
2508         int error, n;
2509
2510         n = 0;
2511         error = ENOENT;
2512         mtx_lock(&sw_dev_mtx);
2513         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2514                 if (n != name) {
2515                         n++;
2516                         continue;
2517                 }
2518                 xs->xsw_version = XSWDEV_VERSION;
2519                 xs->xsw_dev = sp->sw_dev;
2520                 xs->xsw_flags = sp->sw_flags;
2521                 xs->xsw_nblks = sp->sw_nblks;
2522                 xs->xsw_used = sp->sw_used;
2523                 if (devname != NULL) {
2524                         if (vn_isdisk(sp->sw_vp, NULL))
2525                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2526                         else
2527                                 tmp_devname = "[file]";
2528                         strncpy(devname, tmp_devname, len);
2529                 }
2530                 error = 0;
2531                 break;
2532         }
2533         mtx_unlock(&sw_dev_mtx);
2534         return (error);
2535 }
2536
2537 #if defined(COMPAT_FREEBSD11)
2538 #define XSWDEV_VERSION_11       1
2539 struct xswdev11 {
2540         u_int   xsw_version;
2541         uint32_t xsw_dev;
2542         int     xsw_flags;
2543         int     xsw_nblks;
2544         int     xsw_used;
2545 };
2546 #endif
2547
2548 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2549 struct xswdev32 {
2550         u_int   xsw_version;
2551         u_int   xsw_dev1, xsw_dev2;
2552         int     xsw_flags;
2553         int     xsw_nblks;
2554         int     xsw_used;
2555 };
2556 #endif
2557
2558 static int
2559 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2560 {
2561         struct xswdev xs;
2562 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2563         struct xswdev32 xs32;
2564 #endif
2565 #if defined(COMPAT_FREEBSD11)
2566         struct xswdev11 xs11;
2567 #endif
2568         int error;
2569
2570         if (arg2 != 1)                  /* name length */
2571                 return (EINVAL);
2572         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2573         if (error != 0)
2574                 return (error);
2575 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2576         if (req->oldlen == sizeof(xs32)) {
2577                 xs32.xsw_version = XSWDEV_VERSION;
2578                 xs32.xsw_dev1 = xs.xsw_dev;
2579                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2580                 xs32.xsw_flags = xs.xsw_flags;
2581                 xs32.xsw_nblks = xs.xsw_nblks;
2582                 xs32.xsw_used = xs.xsw_used;
2583                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2584                 return (error);
2585         }
2586 #endif
2587 #if defined(COMPAT_FREEBSD11)
2588         if (req->oldlen == sizeof(xs11)) {
2589                 xs11.xsw_version = XSWDEV_VERSION_11;
2590                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2591                 xs11.xsw_flags = xs.xsw_flags;
2592                 xs11.xsw_nblks = xs.xsw_nblks;
2593                 xs11.xsw_used = xs.xsw_used;
2594                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2595                 return (error);
2596         }
2597 #endif
2598         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2599         return (error);
2600 }
2601
2602 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2603     "Number of swap devices");
2604 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2605     sysctl_vm_swap_info,
2606     "Swap statistics by device");
2607
2608 /*
2609  * Count the approximate swap usage in pages for a vmspace.  The
2610  * shadowed or not yet copied on write swap blocks are not accounted.
2611  * The map must be locked.
2612  */
2613 long
2614 vmspace_swap_count(struct vmspace *vmspace)
2615 {
2616         vm_map_t map;
2617         vm_map_entry_t cur;
2618         vm_object_t object;
2619         struct swblk *sb;
2620         vm_pindex_t e, pi;
2621         long count;
2622         int i;
2623
2624         map = &vmspace->vm_map;
2625         count = 0;
2626
2627         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2628                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2629                         continue;
2630                 object = cur->object.vm_object;
2631                 if (object == NULL || object->type != OBJT_SWAP)
2632                         continue;
2633                 VM_OBJECT_RLOCK(object);
2634                 if (object->type != OBJT_SWAP)
2635                         goto unlock;
2636                 pi = OFF_TO_IDX(cur->offset);
2637                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2638                 for (;; pi = sb->p + SWAP_META_PAGES) {
2639                         sb = SWAP_PCTRIE_LOOKUP_GE(
2640                             &object->un_pager.swp.swp_blks, pi);
2641                         if (sb == NULL || sb->p >= e)
2642                                 break;
2643                         for (i = 0; i < SWAP_META_PAGES; i++) {
2644                                 if (sb->p + i < e &&
2645                                     sb->d[i] != SWAPBLK_NONE)
2646                                         count++;
2647                         }
2648                 }
2649 unlock:
2650                 VM_OBJECT_RUNLOCK(object);
2651         }
2652         return (count);
2653 }
2654
2655 /*
2656  * GEOM backend
2657  *
2658  * Swapping onto disk devices.
2659  *
2660  */
2661
2662 static g_orphan_t swapgeom_orphan;
2663
2664 static struct g_class g_swap_class = {
2665         .name = "SWAP",
2666         .version = G_VERSION,
2667         .orphan = swapgeom_orphan,
2668 };
2669
2670 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2671
2672
2673 static void
2674 swapgeom_close_ev(void *arg, int flags)
2675 {
2676         struct g_consumer *cp;
2677
2678         cp = arg;
2679         g_access(cp, -1, -1, 0);
2680         g_detach(cp);
2681         g_destroy_consumer(cp);
2682 }
2683
2684 /*
2685  * Add a reference to the g_consumer for an inflight transaction.
2686  */
2687 static void
2688 swapgeom_acquire(struct g_consumer *cp)
2689 {
2690
2691         mtx_assert(&sw_dev_mtx, MA_OWNED);
2692         cp->index++;
2693 }
2694
2695 /*
2696  * Remove a reference from the g_consumer.  Post a close event if all
2697  * references go away, since the function might be called from the
2698  * biodone context.
2699  */
2700 static void
2701 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2702 {
2703
2704         mtx_assert(&sw_dev_mtx, MA_OWNED);
2705         cp->index--;
2706         if (cp->index == 0) {
2707                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2708                         sp->sw_id = NULL;
2709         }
2710 }
2711
2712 static void
2713 swapgeom_done(struct bio *bp2)
2714 {
2715         struct swdevt *sp;
2716         struct buf *bp;
2717         struct g_consumer *cp;
2718
2719         bp = bp2->bio_caller2;
2720         cp = bp2->bio_from;
2721         bp->b_ioflags = bp2->bio_flags;
2722         if (bp2->bio_error)
2723                 bp->b_ioflags |= BIO_ERROR;
2724         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2725         bp->b_error = bp2->bio_error;
2726         bp->b_caller1 = NULL;
2727         bufdone(bp);
2728         sp = bp2->bio_caller1;
2729         mtx_lock(&sw_dev_mtx);
2730         swapgeom_release(cp, sp);
2731         mtx_unlock(&sw_dev_mtx);
2732         g_destroy_bio(bp2);
2733 }
2734
2735 static void
2736 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2737 {
2738         struct bio *bio;
2739         struct g_consumer *cp;
2740
2741         mtx_lock(&sw_dev_mtx);
2742         cp = sp->sw_id;
2743         if (cp == NULL) {
2744                 mtx_unlock(&sw_dev_mtx);
2745                 bp->b_error = ENXIO;
2746                 bp->b_ioflags |= BIO_ERROR;
2747                 bufdone(bp);
2748                 return;
2749         }
2750         swapgeom_acquire(cp);
2751         mtx_unlock(&sw_dev_mtx);
2752         if (bp->b_iocmd == BIO_WRITE)
2753                 bio = g_new_bio();
2754         else
2755                 bio = g_alloc_bio();
2756         if (bio == NULL) {
2757                 mtx_lock(&sw_dev_mtx);
2758                 swapgeom_release(cp, sp);
2759                 mtx_unlock(&sw_dev_mtx);
2760                 bp->b_error = ENOMEM;
2761                 bp->b_ioflags |= BIO_ERROR;
2762                 printf("swap_pager: cannot allocate bio\n");
2763                 bufdone(bp);
2764                 return;
2765         }
2766
2767         bp->b_caller1 = bio;
2768         bio->bio_caller1 = sp;
2769         bio->bio_caller2 = bp;
2770         bio->bio_cmd = bp->b_iocmd;
2771         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2772         bio->bio_length = bp->b_bcount;
2773         bio->bio_done = swapgeom_done;
2774         if (!buf_mapped(bp)) {
2775                 bio->bio_ma = bp->b_pages;
2776                 bio->bio_data = unmapped_buf;
2777                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2778                 bio->bio_ma_n = bp->b_npages;
2779                 bio->bio_flags |= BIO_UNMAPPED;
2780         } else {
2781                 bio->bio_data = bp->b_data;
2782                 bio->bio_ma = NULL;
2783         }
2784         g_io_request(bio, cp);
2785         return;
2786 }
2787
2788 static void
2789 swapgeom_orphan(struct g_consumer *cp)
2790 {
2791         struct swdevt *sp;
2792         int destroy;
2793
2794         mtx_lock(&sw_dev_mtx);
2795         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2796                 if (sp->sw_id == cp) {
2797                         sp->sw_flags |= SW_CLOSING;
2798                         break;
2799                 }
2800         }
2801         /*
2802          * Drop reference we were created with. Do directly since we're in a
2803          * special context where we don't have to queue the call to
2804          * swapgeom_close_ev().
2805          */
2806         cp->index--;
2807         destroy = ((sp != NULL) && (cp->index == 0));
2808         if (destroy)
2809                 sp->sw_id = NULL;
2810         mtx_unlock(&sw_dev_mtx);
2811         if (destroy)
2812                 swapgeom_close_ev(cp, 0);
2813 }
2814
2815 static void
2816 swapgeom_close(struct thread *td, struct swdevt *sw)
2817 {
2818         struct g_consumer *cp;
2819
2820         mtx_lock(&sw_dev_mtx);
2821         cp = sw->sw_id;
2822         sw->sw_id = NULL;
2823         mtx_unlock(&sw_dev_mtx);
2824
2825         /*
2826          * swapgeom_close() may be called from the biodone context,
2827          * where we cannot perform topology changes.  Delegate the
2828          * work to the events thread.
2829          */
2830         if (cp != NULL)
2831                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2832 }
2833
2834 static int
2835 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2836 {
2837         struct g_provider *pp;
2838         struct g_consumer *cp;
2839         static struct g_geom *gp;
2840         struct swdevt *sp;
2841         u_long nblks;
2842         int error;
2843
2844         pp = g_dev_getprovider(dev);
2845         if (pp == NULL)
2846                 return (ENODEV);
2847         mtx_lock(&sw_dev_mtx);
2848         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2849                 cp = sp->sw_id;
2850                 if (cp != NULL && cp->provider == pp) {
2851                         mtx_unlock(&sw_dev_mtx);
2852                         return (EBUSY);
2853                 }
2854         }
2855         mtx_unlock(&sw_dev_mtx);
2856         if (gp == NULL)
2857                 gp = g_new_geomf(&g_swap_class, "swap");
2858         cp = g_new_consumer(gp);
2859         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2860         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2861         g_attach(cp, pp);
2862         /*
2863          * XXX: Every time you think you can improve the margin for
2864          * footshooting, somebody depends on the ability to do so:
2865          * savecore(8) wants to write to our swapdev so we cannot
2866          * set an exclusive count :-(
2867          */
2868         error = g_access(cp, 1, 1, 0);
2869         if (error != 0) {
2870                 g_detach(cp);
2871                 g_destroy_consumer(cp);
2872                 return (error);
2873         }
2874         nblks = pp->mediasize / DEV_BSIZE;
2875         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2876             swapgeom_close, dev2udev(dev),
2877             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2878         return (0);
2879 }
2880
2881 static int
2882 swapongeom(struct vnode *vp)
2883 {
2884         int error;
2885
2886         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2887         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2888                 error = ENOENT;
2889         } else {
2890                 g_topology_lock();
2891                 error = swapongeom_locked(vp->v_rdev, vp);
2892                 g_topology_unlock();
2893         }
2894         VOP_UNLOCK(vp, 0);
2895         return (error);
2896 }
2897
2898 /*
2899  * VNODE backend
2900  *
2901  * This is used mainly for network filesystem (read: probably only tested
2902  * with NFS) swapfiles.
2903  *
2904  */
2905
2906 static void
2907 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2908 {
2909         struct vnode *vp2;
2910
2911         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2912
2913         vp2 = sp->sw_id;
2914         vhold(vp2);
2915         if (bp->b_iocmd == BIO_WRITE) {
2916                 if (bp->b_bufobj)
2917                         bufobj_wdrop(bp->b_bufobj);
2918                 bufobj_wref(&vp2->v_bufobj);
2919         }
2920         if (bp->b_bufobj != &vp2->v_bufobj)
2921                 bp->b_bufobj = &vp2->v_bufobj;
2922         bp->b_vp = vp2;
2923         bp->b_iooffset = dbtob(bp->b_blkno);
2924         bstrategy(bp);
2925         return;
2926 }
2927
2928 static void
2929 swapdev_close(struct thread *td, struct swdevt *sp)
2930 {
2931
2932         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2933         vrele(sp->sw_vp);
2934 }
2935
2936
2937 static int
2938 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2939 {
2940         struct swdevt *sp;
2941         int error;
2942
2943         if (nblks == 0)
2944                 return (ENXIO);
2945         mtx_lock(&sw_dev_mtx);
2946         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2947                 if (sp->sw_id == vp) {
2948                         mtx_unlock(&sw_dev_mtx);
2949                         return (EBUSY);
2950                 }
2951         }
2952         mtx_unlock(&sw_dev_mtx);
2953
2954         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2955 #ifdef MAC
2956         error = mac_system_check_swapon(td->td_ucred, vp);
2957         if (error == 0)
2958 #endif
2959                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2960         (void) VOP_UNLOCK(vp, 0);
2961         if (error)
2962                 return (error);
2963
2964         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2965             NODEV, 0);
2966         return (0);
2967 }
2968
2969 static int
2970 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2971 {
2972         int error, new, n;
2973
2974         new = nsw_wcount_async_max;
2975         error = sysctl_handle_int(oidp, &new, 0, req);
2976         if (error != 0 || req->newptr == NULL)
2977                 return (error);
2978
2979         if (new > nswbuf / 2 || new < 1)
2980                 return (EINVAL);
2981
2982         mtx_lock(&swbuf_mtx);
2983         while (nsw_wcount_async_max != new) {
2984                 /*
2985                  * Adjust difference.  If the current async count is too low,
2986                  * we will need to sqeeze our update slowly in.  Sleep with a
2987                  * higher priority than getpbuf() to finish faster.
2988                  */
2989                 n = new - nsw_wcount_async_max;
2990                 if (nsw_wcount_async + n >= 0) {
2991                         nsw_wcount_async += n;
2992                         nsw_wcount_async_max += n;
2993                         wakeup(&nsw_wcount_async);
2994                 } else {
2995                         nsw_wcount_async_max -= nsw_wcount_async;
2996                         nsw_wcount_async = 0;
2997                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2998                             "swpsysctl", 0);
2999                 }
3000         }
3001         mtx_unlock(&swbuf_mtx);
3002
3003         return (0);
3004 }