]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFV r337744:
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_swap.h"
75 #include "opt_vm.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/conf.h>
80 #include <sys/kernel.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/bio.h>
84 #include <sys/buf.h>
85 #include <sys/disk.h>
86 #include <sys/fcntl.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/vnode.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/blist.h>
100 #include <sys/lock.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static vm_ooffset_t swap_total;
155 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
156     "Total amount of available swap storage.");
157 static vm_ooffset_t swap_reserved;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 static int overcommit = 0;
161 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
162     "Configure virtual memory overcommit behavior. See tuning(7) "
163     "for details.");
164 static unsigned long swzone;
165 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
166     "Actual size of swap metadata zone");
167 static unsigned long swap_maxpages;
168 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
169     "Maximum amount of swap supported");
170
171 /* bits from overcommit */
172 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
173 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
174 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
175
176 int
177 swap_reserve(vm_ooffset_t incr)
178 {
179
180         return (swap_reserve_by_cred(incr, curthread->td_ucred));
181 }
182
183 int
184 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
185 {
186         vm_ooffset_t r, s;
187         int res, error;
188         static int curfail;
189         static struct timeval lastfail;
190         struct uidinfo *uip;
191
192         uip = cred->cr_ruidinfo;
193
194         if (incr & PAGE_MASK)
195                 panic("swap_reserve: & PAGE_MASK");
196
197 #ifdef RACCT
198         if (racct_enable) {
199                 PROC_LOCK(curproc);
200                 error = racct_add(curproc, RACCT_SWAP, incr);
201                 PROC_UNLOCK(curproc);
202                 if (error != 0)
203                         return (0);
204         }
205 #endif
206
207         res = 0;
208         mtx_lock(&sw_dev_mtx);
209         r = swap_reserved + incr;
210         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
211                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
212                     vm_wire_count();
213                 s *= PAGE_SIZE;
214         } else
215                 s = 0;
216         s += swap_total;
217         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219                 res = 1;
220                 swap_reserved = r;
221         }
222         mtx_unlock(&sw_dev_mtx);
223
224         if (res) {
225                 UIDINFO_VMSIZE_LOCK(uip);
226                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
227                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
228                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
229                         res = 0;
230                 else
231                         uip->ui_vmsize += incr;
232                 UIDINFO_VMSIZE_UNLOCK(uip);
233                 if (!res) {
234                         mtx_lock(&sw_dev_mtx);
235                         swap_reserved -= incr;
236                         mtx_unlock(&sw_dev_mtx);
237                 }
238         }
239         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
240                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
241                     uip->ui_uid, curproc->p_pid, incr);
242         }
243
244 #ifdef RACCT
245         if (!res) {
246                 PROC_LOCK(curproc);
247                 racct_sub(curproc, RACCT_SWAP, incr);
248                 PROC_UNLOCK(curproc);
249         }
250 #endif
251
252         return (res);
253 }
254
255 void
256 swap_reserve_force(vm_ooffset_t incr)
257 {
258         struct uidinfo *uip;
259
260         mtx_lock(&sw_dev_mtx);
261         swap_reserved += incr;
262         mtx_unlock(&sw_dev_mtx);
263
264 #ifdef RACCT
265         PROC_LOCK(curproc);
266         racct_add_force(curproc, RACCT_SWAP, incr);
267         PROC_UNLOCK(curproc);
268 #endif
269
270         uip = curthread->td_ucred->cr_ruidinfo;
271         PROC_LOCK(curproc);
272         UIDINFO_VMSIZE_LOCK(uip);
273         uip->ui_vmsize += incr;
274         UIDINFO_VMSIZE_UNLOCK(uip);
275         PROC_UNLOCK(curproc);
276 }
277
278 void
279 swap_release(vm_ooffset_t decr)
280 {
281         struct ucred *cred;
282
283         PROC_LOCK(curproc);
284         cred = curthread->td_ucred;
285         swap_release_by_cred(decr, cred);
286         PROC_UNLOCK(curproc);
287 }
288
289 void
290 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
291 {
292         struct uidinfo *uip;
293
294         uip = cred->cr_ruidinfo;
295
296         if (decr & PAGE_MASK)
297                 panic("swap_release: & PAGE_MASK");
298
299         mtx_lock(&sw_dev_mtx);
300         if (swap_reserved < decr)
301                 panic("swap_reserved < decr");
302         swap_reserved -= decr;
303         mtx_unlock(&sw_dev_mtx);
304
305         UIDINFO_VMSIZE_LOCK(uip);
306         if (uip->ui_vmsize < decr)
307                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
308         uip->ui_vmsize -= decr;
309         UIDINFO_VMSIZE_UNLOCK(uip);
310
311         racct_sub_cred(cred, RACCT_SWAP, decr);
312 }
313
314 #define SWM_POP         0x01    /* pop out                      */
315
316 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
317 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
318 static int nsw_rcount;          /* free read buffers                    */
319 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
320 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
321 static int nsw_wcount_async_max;/* assigned maximum                     */
322 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
323
324 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
325 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
326     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
327     "Maximum running async swap ops");
328 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
329 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
330     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
331     "Swap Fragmentation Info");
332
333 static struct sx sw_alloc_sx;
334
335 /*
336  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
337  * of searching a named list by hashing it just a little.
338  */
339
340 #define NOBJLISTS               8
341
342 #define NOBJLIST(handle)        \
343         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
344
345 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
346 static uma_zone_t swblk_zone;
347 static uma_zone_t swpctrie_zone;
348
349 /*
350  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
351  * calls hooked from other parts of the VM system and do not appear here.
352  * (see vm/swap_pager.h).
353  */
354 static vm_object_t
355                 swap_pager_alloc(void *handle, vm_ooffset_t size,
356                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
357 static void     swap_pager_dealloc(vm_object_t object);
358 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
359     int *);
360 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
361     int *, pgo_getpages_iodone_t, void *);
362 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
363 static boolean_t
364                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
365 static void     swap_pager_init(void);
366 static void     swap_pager_unswapped(vm_page_t);
367 static void     swap_pager_swapoff(struct swdevt *sp);
368
369 struct pagerops swappagerops = {
370         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
371         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
372         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
373         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
374         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
375         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
376         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
377         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
378 };
379
380 /*
381  * swap_*() routines are externally accessible.  swp_*() routines are
382  * internal.
383  */
384 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
385 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
386
387 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
388     "Maximum size of a swap block in pages");
389
390 static void     swp_sizecheck(void);
391 static void     swp_pager_async_iodone(struct buf *bp);
392 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
393 static int      swapongeom(struct vnode *);
394 static int      swaponvp(struct thread *, struct vnode *, u_long);
395 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
396
397 /*
398  * Swap bitmap functions
399  */
400 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
401 static daddr_t  swp_pager_getswapspace(int npages);
402
403 /*
404  * Metadata functions
405  */
406 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
407 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
408 static void swp_pager_meta_free_all(vm_object_t);
409 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
410
411 static void
412 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
413 {
414
415         *start = SWAPBLK_NONE;
416         *num = 0;
417 }
418
419 static void
420 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
421 {
422
423         if (*start + *num == addr) {
424                 (*num)++;
425         } else {
426                 swp_pager_freeswapspace(*start, *num);
427                 *start = addr;
428                 *num = 1;
429         }
430 }
431
432 static void *
433 swblk_trie_alloc(struct pctrie *ptree)
434 {
435
436         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
437             M_USE_RESERVE : 0)));
438 }
439
440 static void
441 swblk_trie_free(struct pctrie *ptree, void *node)
442 {
443
444         uma_zfree(swpctrie_zone, node);
445 }
446
447 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
448
449 /*
450  * SWP_SIZECHECK() -    update swap_pager_full indication
451  *
452  *      update the swap_pager_almost_full indication and warn when we are
453  *      about to run out of swap space, using lowat/hiwat hysteresis.
454  *
455  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
456  *
457  *      No restrictions on call
458  *      This routine may not block.
459  */
460 static void
461 swp_sizecheck(void)
462 {
463
464         if (swap_pager_avail < nswap_lowat) {
465                 if (swap_pager_almost_full == 0) {
466                         printf("swap_pager: out of swap space\n");
467                         swap_pager_almost_full = 1;
468                 }
469         } else {
470                 swap_pager_full = 0;
471                 if (swap_pager_avail > nswap_hiwat)
472                         swap_pager_almost_full = 0;
473         }
474 }
475
476 /*
477  * SWAP_PAGER_INIT() -  initialize the swap pager!
478  *
479  *      Expected to be started from system init.  NOTE:  This code is run
480  *      before much else so be careful what you depend on.  Most of the VM
481  *      system has yet to be initialized at this point.
482  */
483 static void
484 swap_pager_init(void)
485 {
486         /*
487          * Initialize object lists
488          */
489         int i;
490
491         for (i = 0; i < NOBJLISTS; ++i)
492                 TAILQ_INIT(&swap_pager_object_list[i]);
493         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
494         sx_init(&sw_alloc_sx, "swspsx");
495         sx_init(&swdev_syscall_lock, "swsysc");
496 }
497
498 /*
499  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
500  *
501  *      Expected to be started from pageout process once, prior to entering
502  *      its main loop.
503  */
504 void
505 swap_pager_swap_init(void)
506 {
507         unsigned long n, n2;
508
509         /*
510          * Number of in-transit swap bp operations.  Don't
511          * exhaust the pbufs completely.  Make sure we
512          * initialize workable values (0 will work for hysteresis
513          * but it isn't very efficient).
514          *
515          * The nsw_cluster_max is constrained by the bp->b_pages[]
516          * array (MAXPHYS/PAGE_SIZE) and our locally defined
517          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
518          * constrained by the swap device interleave stripe size.
519          *
520          * Currently we hardwire nsw_wcount_async to 4.  This limit is
521          * designed to prevent other I/O from having high latencies due to
522          * our pageout I/O.  The value 4 works well for one or two active swap
523          * devices but is probably a little low if you have more.  Even so,
524          * a higher value would probably generate only a limited improvement
525          * with three or four active swap devices since the system does not
526          * typically have to pageout at extreme bandwidths.   We will want
527          * at least 2 per swap devices, and 4 is a pretty good value if you
528          * have one NFS swap device due to the command/ack latency over NFS.
529          * So it all works out pretty well.
530          */
531         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
532
533         mtx_lock(&pbuf_mtx);
534         nsw_rcount = (nswbuf + 1) / 2;
535         nsw_wcount_sync = (nswbuf + 3) / 4;
536         nsw_wcount_async = 4;
537         nsw_wcount_async_max = nsw_wcount_async;
538         mtx_unlock(&pbuf_mtx);
539
540         /*
541          * Initialize our zone, guessing on the number we need based
542          * on the number of pages in the system.
543          */
544         n = vm_cnt.v_page_count / 2;
545         if (maxswzone && n > maxswzone / sizeof(struct swblk))
546                 n = maxswzone / sizeof(struct swblk);
547         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
548             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
549             UMA_ZONE_NOFREE | UMA_ZONE_VM);
550         if (swpctrie_zone == NULL)
551                 panic("failed to create swap pctrie zone.");
552         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
553             NULL, NULL, _Alignof(struct swblk) - 1,
554             UMA_ZONE_NOFREE | UMA_ZONE_VM);
555         if (swblk_zone == NULL)
556                 panic("failed to create swap blk zone.");
557         n2 = n;
558         do {
559                 if (uma_zone_reserve_kva(swblk_zone, n))
560                         break;
561                 /*
562                  * if the allocation failed, try a zone two thirds the
563                  * size of the previous attempt.
564                  */
565                 n -= ((n + 2) / 3);
566         } while (n > 0);
567
568         /*
569          * Often uma_zone_reserve_kva() cannot reserve exactly the
570          * requested size.  Account for the difference when
571          * calculating swap_maxpages.
572          */
573         n = uma_zone_get_max(swblk_zone);
574
575         if (n < n2)
576                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
577                     n2, n);
578         swap_maxpages = n * SWAP_META_PAGES;
579         swzone = n * sizeof(struct swblk);
580         if (!uma_zone_reserve_kva(swpctrie_zone, n))
581                 printf("Cannot reserve swap pctrie zone, "
582                     "reduce kern.maxswzone.\n");
583 }
584
585 static vm_object_t
586 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
587     vm_ooffset_t offset)
588 {
589         vm_object_t object;
590
591         if (cred != NULL) {
592                 if (!swap_reserve_by_cred(size, cred))
593                         return (NULL);
594                 crhold(cred);
595         }
596
597         /*
598          * The un_pager.swp.swp_blks trie is initialized by
599          * vm_object_allocate() to ensure the correct order of
600          * visibility to other threads.
601          */
602         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
603             PAGE_MASK + size));
604
605         object->handle = handle;
606         if (cred != NULL) {
607                 object->cred = cred;
608                 object->charge = size;
609         }
610         return (object);
611 }
612
613 /*
614  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
615  *                      its metadata structures.
616  *
617  *      This routine is called from the mmap and fork code to create a new
618  *      OBJT_SWAP object.
619  *
620  *      This routine must ensure that no live duplicate is created for
621  *      the named object request, which is protected against by
622  *      holding the sw_alloc_sx lock in case handle != NULL.
623  */
624 static vm_object_t
625 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
626     vm_ooffset_t offset, struct ucred *cred)
627 {
628         vm_object_t object;
629
630         if (handle != NULL) {
631                 /*
632                  * Reference existing named region or allocate new one.  There
633                  * should not be a race here against swp_pager_meta_build()
634                  * as called from vm_page_remove() in regards to the lookup
635                  * of the handle.
636                  */
637                 sx_xlock(&sw_alloc_sx);
638                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
639                 if (object == NULL) {
640                         object = swap_pager_alloc_init(handle, cred, size,
641                             offset);
642                         if (object != NULL) {
643                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
644                                     object, pager_object_list);
645                         }
646                 }
647                 sx_xunlock(&sw_alloc_sx);
648         } else {
649                 object = swap_pager_alloc_init(handle, cred, size, offset);
650         }
651         return (object);
652 }
653
654 /*
655  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
656  *
657  *      The swap backing for the object is destroyed.  The code is
658  *      designed such that we can reinstantiate it later, but this
659  *      routine is typically called only when the entire object is
660  *      about to be destroyed.
661  *
662  *      The object must be locked.
663  */
664 static void
665 swap_pager_dealloc(vm_object_t object)
666 {
667
668         VM_OBJECT_ASSERT_WLOCKED(object);
669         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
670
671         /*
672          * Remove from list right away so lookups will fail if we block for
673          * pageout completion.
674          */
675         if (object->handle != NULL) {
676                 VM_OBJECT_WUNLOCK(object);
677                 sx_xlock(&sw_alloc_sx);
678                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
679                     pager_object_list);
680                 sx_xunlock(&sw_alloc_sx);
681                 VM_OBJECT_WLOCK(object);
682         }
683
684         vm_object_pip_wait(object, "swpdea");
685
686         /*
687          * Free all remaining metadata.  We only bother to free it from
688          * the swap meta data.  We do not attempt to free swapblk's still
689          * associated with vm_page_t's for this object.  We do not care
690          * if paging is still in progress on some objects.
691          */
692         swp_pager_meta_free_all(object);
693         object->handle = NULL;
694         object->type = OBJT_DEAD;
695 }
696
697 /************************************************************************
698  *                      SWAP PAGER BITMAP ROUTINES                      *
699  ************************************************************************/
700
701 /*
702  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
703  *
704  *      Allocate swap for the requested number of pages.  The starting
705  *      swap block number (a page index) is returned or SWAPBLK_NONE
706  *      if the allocation failed.
707  *
708  *      Also has the side effect of advising that somebody made a mistake
709  *      when they configured swap and didn't configure enough.
710  *
711  *      This routine may not sleep.
712  *
713  *      We allocate in round-robin fashion from the configured devices.
714  */
715 static daddr_t
716 swp_pager_getswapspace(int npages)
717 {
718         daddr_t blk;
719         struct swdevt *sp;
720         int i;
721
722         blk = SWAPBLK_NONE;
723         mtx_lock(&sw_dev_mtx);
724         sp = swdevhd;
725         for (i = 0; i < nswapdev; i++) {
726                 if (sp == NULL)
727                         sp = TAILQ_FIRST(&swtailq);
728                 if (!(sp->sw_flags & SW_CLOSING)) {
729                         blk = blist_alloc(sp->sw_blist, npages);
730                         if (blk != SWAPBLK_NONE) {
731                                 blk += sp->sw_first;
732                                 sp->sw_used += npages;
733                                 swap_pager_avail -= npages;
734                                 swp_sizecheck();
735                                 swdevhd = TAILQ_NEXT(sp, sw_list);
736                                 goto done;
737                         }
738                 }
739                 sp = TAILQ_NEXT(sp, sw_list);
740         }
741         if (swap_pager_full != 2) {
742                 printf("swap_pager_getswapspace(%d): failed\n", npages);
743                 swap_pager_full = 2;
744                 swap_pager_almost_full = 1;
745         }
746         swdevhd = NULL;
747 done:
748         mtx_unlock(&sw_dev_mtx);
749         return (blk);
750 }
751
752 static int
753 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
754 {
755
756         return (blk >= sp->sw_first && blk < sp->sw_end);
757 }
758
759 static void
760 swp_pager_strategy(struct buf *bp)
761 {
762         struct swdevt *sp;
763
764         mtx_lock(&sw_dev_mtx);
765         TAILQ_FOREACH(sp, &swtailq, sw_list) {
766                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
767                         mtx_unlock(&sw_dev_mtx);
768                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
769                             unmapped_buf_allowed) {
770                                 bp->b_data = unmapped_buf;
771                                 bp->b_offset = 0;
772                         } else {
773                                 pmap_qenter((vm_offset_t)bp->b_data,
774                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
775                         }
776                         sp->sw_strategy(bp, sp);
777                         return;
778                 }
779         }
780         panic("Swapdev not found");
781 }
782
783
784 /*
785  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
786  *
787  *      This routine returns the specified swap blocks back to the bitmap.
788  *
789  *      This routine may not sleep.
790  */
791 static void
792 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
793 {
794         struct swdevt *sp;
795
796         if (npages == 0)
797                 return;
798         mtx_lock(&sw_dev_mtx);
799         TAILQ_FOREACH(sp, &swtailq, sw_list) {
800                 if (blk >= sp->sw_first && blk < sp->sw_end) {
801                         sp->sw_used -= npages;
802                         /*
803                          * If we are attempting to stop swapping on
804                          * this device, we don't want to mark any
805                          * blocks free lest they be reused.
806                          */
807                         if ((sp->sw_flags & SW_CLOSING) == 0) {
808                                 blist_free(sp->sw_blist, blk - sp->sw_first,
809                                     npages);
810                                 swap_pager_avail += npages;
811                                 swp_sizecheck();
812                         }
813                         mtx_unlock(&sw_dev_mtx);
814                         return;
815                 }
816         }
817         panic("Swapdev not found");
818 }
819
820 /*
821  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
822  */
823 static int
824 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
825 {
826         struct sbuf sbuf;
827         struct swdevt *sp;
828         const char *devname;
829         int error;
830
831         error = sysctl_wire_old_buffer(req, 0);
832         if (error != 0)
833                 return (error);
834         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
835         mtx_lock(&sw_dev_mtx);
836         TAILQ_FOREACH(sp, &swtailq, sw_list) {
837                 if (vn_isdisk(sp->sw_vp, NULL))
838                         devname = devtoname(sp->sw_vp->v_rdev);
839                 else
840                         devname = "[file]";
841                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
842                 blist_stats(sp->sw_blist, &sbuf);
843         }
844         mtx_unlock(&sw_dev_mtx);
845         error = sbuf_finish(&sbuf);
846         sbuf_delete(&sbuf);
847         return (error);
848 }
849
850 /*
851  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
852  *                              range within an object.
853  *
854  *      This is a globally accessible routine.
855  *
856  *      This routine removes swapblk assignments from swap metadata.
857  *
858  *      The external callers of this routine typically have already destroyed
859  *      or renamed vm_page_t's associated with this range in the object so
860  *      we should be ok.
861  *
862  *      The object must be locked.
863  */
864 void
865 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
866 {
867
868         swp_pager_meta_free(object, start, size);
869 }
870
871 /*
872  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
873  *
874  *      Assigns swap blocks to the specified range within the object.  The
875  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
876  *
877  *      Returns 0 on success, -1 on failure.
878  */
879 int
880 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
881 {
882         int n = 0;
883         daddr_t blk = SWAPBLK_NONE;
884         vm_pindex_t beg = start;        /* save start index */
885         daddr_t addr, n_free, s_free;
886
887         swp_pager_init_freerange(&s_free, &n_free);
888         VM_OBJECT_WLOCK(object);
889         while (size) {
890                 if (n == 0) {
891                         n = BLIST_MAX_ALLOC;
892                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
893                                 n >>= 1;
894                                 if (n == 0) {
895                                         swp_pager_meta_free(object, beg, start - beg);
896                                         VM_OBJECT_WUNLOCK(object);
897                                         return (-1);
898                                 }
899                         }
900                 }
901                 addr = swp_pager_meta_build(object, start, blk);
902                 if (addr != SWAPBLK_NONE)
903                         swp_pager_update_freerange(&s_free, &n_free, addr);
904                 --size;
905                 ++start;
906                 ++blk;
907                 --n;
908         }
909         swp_pager_freeswapspace(s_free, n_free);
910         swp_pager_meta_free(object, start, n);
911         VM_OBJECT_WUNLOCK(object);
912         return (0);
913 }
914
915 /*
916  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
917  *                      and destroy the source.
918  *
919  *      Copy any valid swapblks from the source to the destination.  In
920  *      cases where both the source and destination have a valid swapblk,
921  *      we keep the destination's.
922  *
923  *      This routine is allowed to sleep.  It may sleep allocating metadata
924  *      indirectly through swp_pager_meta_build() or if paging is still in
925  *      progress on the source.
926  *
927  *      The source object contains no vm_page_t's (which is just as well)
928  *
929  *      The source object is of type OBJT_SWAP.
930  *
931  *      The source and destination objects must be locked.
932  *      Both object locks may temporarily be released.
933  */
934 void
935 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
936     vm_pindex_t offset, int destroysource)
937 {
938         vm_pindex_t i;
939         daddr_t dstaddr, n_free, s_free, srcaddr;
940
941         VM_OBJECT_ASSERT_WLOCKED(srcobject);
942         VM_OBJECT_ASSERT_WLOCKED(dstobject);
943
944         /*
945          * If destroysource is set, we remove the source object from the
946          * swap_pager internal queue now.
947          */
948         if (destroysource && srcobject->handle != NULL) {
949                 vm_object_pip_add(srcobject, 1);
950                 VM_OBJECT_WUNLOCK(srcobject);
951                 vm_object_pip_add(dstobject, 1);
952                 VM_OBJECT_WUNLOCK(dstobject);
953                 sx_xlock(&sw_alloc_sx);
954                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
955                     pager_object_list);
956                 sx_xunlock(&sw_alloc_sx);
957                 VM_OBJECT_WLOCK(dstobject);
958                 vm_object_pip_wakeup(dstobject);
959                 VM_OBJECT_WLOCK(srcobject);
960                 vm_object_pip_wakeup(srcobject);
961         }
962
963         /*
964          * Transfer source to destination.
965          */
966         swp_pager_init_freerange(&s_free, &n_free);
967         for (i = 0; i < dstobject->size; ++i) {
968                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
969                 if (srcaddr == SWAPBLK_NONE)
970                         continue;
971                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
972                 if (dstaddr != SWAPBLK_NONE) {
973                         /*
974                          * Destination has valid swapblk or it is represented
975                          * by a resident page.  We destroy the source block.
976                          */
977                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
978                         continue;
979                 }
980
981                 /*
982                  * Destination has no swapblk and is not resident,
983                  * copy source.
984                  *
985                  * swp_pager_meta_build() can sleep.
986                  */
987                 vm_object_pip_add(srcobject, 1);
988                 VM_OBJECT_WUNLOCK(srcobject);
989                 vm_object_pip_add(dstobject, 1);
990                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
991                 KASSERT(dstaddr == SWAPBLK_NONE,
992                     ("Unexpected destination swapblk"));
993                 vm_object_pip_wakeup(dstobject);
994                 VM_OBJECT_WLOCK(srcobject);
995                 vm_object_pip_wakeup(srcobject);
996         }
997         swp_pager_freeswapspace(s_free, n_free);
998
999         /*
1000          * Free left over swap blocks in source.
1001          *
1002          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1003          * double-remove the object from the swap queues.
1004          */
1005         if (destroysource) {
1006                 swp_pager_meta_free_all(srcobject);
1007                 /*
1008                  * Reverting the type is not necessary, the caller is going
1009                  * to destroy srcobject directly, but I'm doing it here
1010                  * for consistency since we've removed the object from its
1011                  * queues.
1012                  */
1013                 srcobject->type = OBJT_DEFAULT;
1014         }
1015 }
1016
1017 /*
1018  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1019  *                              the requested page.
1020  *
1021  *      We determine whether good backing store exists for the requested
1022  *      page and return TRUE if it does, FALSE if it doesn't.
1023  *
1024  *      If TRUE, we also try to determine how much valid, contiguous backing
1025  *      store exists before and after the requested page.
1026  */
1027 static boolean_t
1028 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1029     int *after)
1030 {
1031         daddr_t blk, blk0;
1032         int i;
1033
1034         VM_OBJECT_ASSERT_LOCKED(object);
1035
1036         /*
1037          * do we have good backing store at the requested index ?
1038          */
1039         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1040         if (blk0 == SWAPBLK_NONE) {
1041                 if (before)
1042                         *before = 0;
1043                 if (after)
1044                         *after = 0;
1045                 return (FALSE);
1046         }
1047
1048         /*
1049          * find backwards-looking contiguous good backing store
1050          */
1051         if (before != NULL) {
1052                 for (i = 1; i < SWB_NPAGES; i++) {
1053                         if (i > pindex)
1054                                 break;
1055                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1056                         if (blk != blk0 - i)
1057                                 break;
1058                 }
1059                 *before = i - 1;
1060         }
1061
1062         /*
1063          * find forward-looking contiguous good backing store
1064          */
1065         if (after != NULL) {
1066                 for (i = 1; i < SWB_NPAGES; i++) {
1067                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1068                         if (blk != blk0 + i)
1069                                 break;
1070                 }
1071                 *after = i - 1;
1072         }
1073         return (TRUE);
1074 }
1075
1076 /*
1077  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1078  *
1079  *      This removes any associated swap backing store, whether valid or
1080  *      not, from the page.
1081  *
1082  *      This routine is typically called when a page is made dirty, at
1083  *      which point any associated swap can be freed.  MADV_FREE also
1084  *      calls us in a special-case situation
1085  *
1086  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1087  *      should make the page dirty before calling this routine.  This routine
1088  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1089  *      depends on it.
1090  *
1091  *      This routine may not sleep.
1092  *
1093  *      The object containing the page must be locked.
1094  */
1095 static void
1096 swap_pager_unswapped(vm_page_t m)
1097 {
1098         daddr_t srcaddr;
1099
1100         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1101         if (srcaddr != SWAPBLK_NONE)
1102                 swp_pager_freeswapspace(srcaddr, 1);
1103 }
1104
1105 /*
1106  * swap_pager_getpages() - bring pages in from swap
1107  *
1108  *      Attempt to page in the pages in array "ma" of length "count".  The
1109  *      caller may optionally specify that additional pages preceding and
1110  *      succeeding the specified range be paged in.  The number of such pages
1111  *      is returned in the "rbehind" and "rahead" parameters, and they will
1112  *      be in the inactive queue upon return.
1113  *
1114  *      The pages in "ma" must be busied and will remain busied upon return.
1115  */
1116 static int
1117 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1118     int *rahead)
1119 {
1120         struct buf *bp;
1121         vm_page_t bm, mpred, msucc, p;
1122         vm_pindex_t pindex;
1123         daddr_t blk;
1124         int i, maxahead, maxbehind, reqcount;
1125
1126         reqcount = count;
1127
1128         /*
1129          * Determine the final number of read-behind pages and
1130          * allocate them BEFORE releasing the object lock.  Otherwise,
1131          * there can be a problematic race with vm_object_split().
1132          * Specifically, vm_object_split() might first transfer pages
1133          * that precede ma[0] in the current object to a new object,
1134          * and then this function incorrectly recreates those pages as
1135          * read-behind pages in the current object.
1136          */
1137         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1138                 return (VM_PAGER_FAIL);
1139
1140         /*
1141          * Clip the readahead and readbehind ranges to exclude resident pages.
1142          */
1143         if (rahead != NULL) {
1144                 KASSERT(reqcount - 1 <= maxahead,
1145                     ("page count %d extends beyond swap block", reqcount));
1146                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1147                 pindex = ma[reqcount - 1]->pindex;
1148                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1149                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1150                         *rahead = msucc->pindex - pindex - 1;
1151         }
1152         if (rbehind != NULL) {
1153                 *rbehind = imin(*rbehind, maxbehind);
1154                 pindex = ma[0]->pindex;
1155                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1156                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1157                         *rbehind = pindex - mpred->pindex - 1;
1158         }
1159
1160         bm = ma[0];
1161         for (i = 0; i < count; i++)
1162                 ma[i]->oflags |= VPO_SWAPINPROG;
1163
1164         /*
1165          * Allocate readahead and readbehind pages.
1166          */
1167         if (rbehind != NULL) {
1168                 for (i = 1; i <= *rbehind; i++) {
1169                         p = vm_page_alloc(object, ma[0]->pindex - i,
1170                             VM_ALLOC_NORMAL);
1171                         if (p == NULL)
1172                                 break;
1173                         p->oflags |= VPO_SWAPINPROG;
1174                         bm = p;
1175                 }
1176                 *rbehind = i - 1;
1177         }
1178         if (rahead != NULL) {
1179                 for (i = 0; i < *rahead; i++) {
1180                         p = vm_page_alloc(object,
1181                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1182                         if (p == NULL)
1183                                 break;
1184                         p->oflags |= VPO_SWAPINPROG;
1185                 }
1186                 *rahead = i;
1187         }
1188         if (rbehind != NULL)
1189                 count += *rbehind;
1190         if (rahead != NULL)
1191                 count += *rahead;
1192
1193         vm_object_pip_add(object, count);
1194
1195         pindex = bm->pindex;
1196         blk = swp_pager_meta_ctl(object, pindex, 0);
1197         KASSERT(blk != SWAPBLK_NONE,
1198             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1199
1200         VM_OBJECT_WUNLOCK(object);
1201         bp = getpbuf(&nsw_rcount);
1202         /* Pages cannot leave the object while busy. */
1203         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1204                 MPASS(p->pindex == bm->pindex + i);
1205                 bp->b_pages[i] = p;
1206         }
1207
1208         bp->b_flags |= B_PAGING;
1209         bp->b_iocmd = BIO_READ;
1210         bp->b_iodone = swp_pager_async_iodone;
1211         bp->b_rcred = crhold(thread0.td_ucred);
1212         bp->b_wcred = crhold(thread0.td_ucred);
1213         bp->b_blkno = blk;
1214         bp->b_bcount = PAGE_SIZE * count;
1215         bp->b_bufsize = PAGE_SIZE * count;
1216         bp->b_npages = count;
1217         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1218         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1219
1220         VM_CNT_INC(v_swapin);
1221         VM_CNT_ADD(v_swappgsin, count);
1222
1223         /*
1224          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1225          * this point because we automatically release it on completion.
1226          * Instead, we look at the one page we are interested in which we
1227          * still hold a lock on even through the I/O completion.
1228          *
1229          * The other pages in our ma[] array are also released on completion,
1230          * so we cannot assume they are valid anymore either.
1231          *
1232          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1233          */
1234         BUF_KERNPROC(bp);
1235         swp_pager_strategy(bp);
1236
1237         /*
1238          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1239          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1240          * is set in the metadata for each page in the request.
1241          */
1242         VM_OBJECT_WLOCK(object);
1243         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1244                 ma[0]->oflags |= VPO_SWAPSLEEP;
1245                 VM_CNT_INC(v_intrans);
1246                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1247                     "swread", hz * 20)) {
1248                         printf(
1249 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1250                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1251                 }
1252         }
1253
1254         /*
1255          * If we had an unrecoverable read error pages will not be valid.
1256          */
1257         for (i = 0; i < reqcount; i++)
1258                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1259                         return (VM_PAGER_ERROR);
1260
1261         return (VM_PAGER_OK);
1262
1263         /*
1264          * A final note: in a low swap situation, we cannot deallocate swap
1265          * and mark a page dirty here because the caller is likely to mark
1266          * the page clean when we return, causing the page to possibly revert
1267          * to all-zero's later.
1268          */
1269 }
1270
1271 /*
1272  *      swap_pager_getpages_async():
1273  *
1274  *      Right now this is emulation of asynchronous operation on top of
1275  *      swap_pager_getpages().
1276  */
1277 static int
1278 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1279     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1280 {
1281         int r, error;
1282
1283         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1284         VM_OBJECT_WUNLOCK(object);
1285         switch (r) {
1286         case VM_PAGER_OK:
1287                 error = 0;
1288                 break;
1289         case VM_PAGER_ERROR:
1290                 error = EIO;
1291                 break;
1292         case VM_PAGER_FAIL:
1293                 error = EINVAL;
1294                 break;
1295         default:
1296                 panic("unhandled swap_pager_getpages() error %d", r);
1297         }
1298         (iodone)(arg, ma, count, error);
1299         VM_OBJECT_WLOCK(object);
1300
1301         return (r);
1302 }
1303
1304 /*
1305  *      swap_pager_putpages:
1306  *
1307  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1308  *
1309  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1310  *      are automatically converted to SWAP objects.
1311  *
1312  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1313  *      vm_page reservation system coupled with properly written VFS devices
1314  *      should ensure that no low-memory deadlock occurs.  This is an area
1315  *      which needs work.
1316  *
1317  *      The parent has N vm_object_pip_add() references prior to
1318  *      calling us and will remove references for rtvals[] that are
1319  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1320  *      completion.
1321  *
1322  *      The parent has soft-busy'd the pages it passes us and will unbusy
1323  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1324  *      We need to unbusy the rest on I/O completion.
1325  */
1326 static void
1327 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1328     int flags, int *rtvals)
1329 {
1330         int i, n;
1331         boolean_t sync;
1332         daddr_t addr, n_free, s_free;
1333
1334         swp_pager_init_freerange(&s_free, &n_free);
1335         if (count && ma[0]->object != object) {
1336                 panic("swap_pager_putpages: object mismatch %p/%p",
1337                     object,
1338                     ma[0]->object
1339                 );
1340         }
1341
1342         /*
1343          * Step 1
1344          *
1345          * Turn object into OBJT_SWAP
1346          * check for bogus sysops
1347          * force sync if not pageout process
1348          */
1349         if (object->type != OBJT_SWAP) {
1350                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1351                 KASSERT(addr == SWAPBLK_NONE,
1352                     ("unexpected object swap block"));
1353         }
1354         VM_OBJECT_WUNLOCK(object);
1355
1356         n = 0;
1357         if (curproc != pageproc)
1358                 sync = TRUE;
1359         else
1360                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1361
1362         /*
1363          * Step 2
1364          *
1365          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1366          * The page is left dirty until the pageout operation completes
1367          * successfully.
1368          */
1369         for (i = 0; i < count; i += n) {
1370                 int j;
1371                 struct buf *bp;
1372                 daddr_t blk;
1373
1374                 /*
1375                  * Maximum I/O size is limited by a number of factors.
1376                  */
1377                 n = min(BLIST_MAX_ALLOC, count - i);
1378                 n = min(n, nsw_cluster_max);
1379
1380                 /*
1381                  * Get biggest block of swap we can.  If we fail, fall
1382                  * back and try to allocate a smaller block.  Don't go
1383                  * overboard trying to allocate space if it would overly
1384                  * fragment swap.
1385                  */
1386                 while (
1387                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1388                     n > 4
1389                 ) {
1390                         n >>= 1;
1391                 }
1392                 if (blk == SWAPBLK_NONE) {
1393                         for (j = 0; j < n; ++j)
1394                                 rtvals[i+j] = VM_PAGER_FAIL;
1395                         continue;
1396                 }
1397
1398                 /*
1399                  * All I/O parameters have been satisfied, build the I/O
1400                  * request and assign the swap space.
1401                  */
1402                 if (sync == TRUE) {
1403                         bp = getpbuf(&nsw_wcount_sync);
1404                 } else {
1405                         bp = getpbuf(&nsw_wcount_async);
1406                         bp->b_flags = B_ASYNC;
1407                 }
1408                 bp->b_flags |= B_PAGING;
1409                 bp->b_iocmd = BIO_WRITE;
1410
1411                 bp->b_rcred = crhold(thread0.td_ucred);
1412                 bp->b_wcred = crhold(thread0.td_ucred);
1413                 bp->b_bcount = PAGE_SIZE * n;
1414                 bp->b_bufsize = PAGE_SIZE * n;
1415                 bp->b_blkno = blk;
1416
1417                 VM_OBJECT_WLOCK(object);
1418                 for (j = 0; j < n; ++j) {
1419                         vm_page_t mreq = ma[i+j];
1420
1421                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1422                             blk + j);
1423                         if (addr != SWAPBLK_NONE)
1424                                 swp_pager_update_freerange(&s_free, &n_free,
1425                                     addr);
1426                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1427                         mreq->oflags |= VPO_SWAPINPROG;
1428                         bp->b_pages[j] = mreq;
1429                 }
1430                 VM_OBJECT_WUNLOCK(object);
1431                 bp->b_npages = n;
1432                 /*
1433                  * Must set dirty range for NFS to work.
1434                  */
1435                 bp->b_dirtyoff = 0;
1436                 bp->b_dirtyend = bp->b_bcount;
1437
1438                 VM_CNT_INC(v_swapout);
1439                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1440
1441                 /*
1442                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1443                  * can call the async completion routine at the end of a
1444                  * synchronous I/O operation.  Otherwise, our caller would
1445                  * perform duplicate unbusy and wakeup operations on the page
1446                  * and object, respectively.
1447                  */
1448                 for (j = 0; j < n; j++)
1449                         rtvals[i + j] = VM_PAGER_PEND;
1450
1451                 /*
1452                  * asynchronous
1453                  *
1454                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1455                  */
1456                 if (sync == FALSE) {
1457                         bp->b_iodone = swp_pager_async_iodone;
1458                         BUF_KERNPROC(bp);
1459                         swp_pager_strategy(bp);
1460                         continue;
1461                 }
1462
1463                 /*
1464                  * synchronous
1465                  *
1466                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1467                  */
1468                 bp->b_iodone = bdone;
1469                 swp_pager_strategy(bp);
1470
1471                 /*
1472                  * Wait for the sync I/O to complete.
1473                  */
1474                 bwait(bp, PVM, "swwrt");
1475
1476                 /*
1477                  * Now that we are through with the bp, we can call the
1478                  * normal async completion, which frees everything up.
1479                  */
1480                 swp_pager_async_iodone(bp);
1481         }
1482         VM_OBJECT_WLOCK(object);
1483         swp_pager_freeswapspace(s_free, n_free);
1484 }
1485
1486 /*
1487  *      swp_pager_async_iodone:
1488  *
1489  *      Completion routine for asynchronous reads and writes from/to swap.
1490  *      Also called manually by synchronous code to finish up a bp.
1491  *
1492  *      This routine may not sleep.
1493  */
1494 static void
1495 swp_pager_async_iodone(struct buf *bp)
1496 {
1497         int i;
1498         vm_object_t object = NULL;
1499
1500         /*
1501          * report error
1502          */
1503         if (bp->b_ioflags & BIO_ERROR) {
1504                 printf(
1505                     "swap_pager: I/O error - %s failed; blkno %ld,"
1506                         "size %ld, error %d\n",
1507                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1508                     (long)bp->b_blkno,
1509                     (long)bp->b_bcount,
1510                     bp->b_error
1511                 );
1512         }
1513
1514         /*
1515          * remove the mapping for kernel virtual
1516          */
1517         if (buf_mapped(bp))
1518                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1519         else
1520                 bp->b_data = bp->b_kvabase;
1521
1522         if (bp->b_npages) {
1523                 object = bp->b_pages[0]->object;
1524                 VM_OBJECT_WLOCK(object);
1525         }
1526
1527         /*
1528          * cleanup pages.  If an error occurs writing to swap, we are in
1529          * very serious trouble.  If it happens to be a disk error, though,
1530          * we may be able to recover by reassigning the swap later on.  So
1531          * in this case we remove the m->swapblk assignment for the page
1532          * but do not free it in the rlist.  The errornous block(s) are thus
1533          * never reallocated as swap.  Redirty the page and continue.
1534          */
1535         for (i = 0; i < bp->b_npages; ++i) {
1536                 vm_page_t m = bp->b_pages[i];
1537
1538                 m->oflags &= ~VPO_SWAPINPROG;
1539                 if (m->oflags & VPO_SWAPSLEEP) {
1540                         m->oflags &= ~VPO_SWAPSLEEP;
1541                         wakeup(&object->paging_in_progress);
1542                 }
1543
1544                 if (bp->b_ioflags & BIO_ERROR) {
1545                         /*
1546                          * If an error occurs I'd love to throw the swapblk
1547                          * away without freeing it back to swapspace, so it
1548                          * can never be used again.  But I can't from an
1549                          * interrupt.
1550                          */
1551                         if (bp->b_iocmd == BIO_READ) {
1552                                 /*
1553                                  * NOTE: for reads, m->dirty will probably
1554                                  * be overridden by the original caller of
1555                                  * getpages so don't play cute tricks here.
1556                                  */
1557                                 m->valid = 0;
1558                         } else {
1559                                 /*
1560                                  * If a write error occurs, reactivate page
1561                                  * so it doesn't clog the inactive list,
1562                                  * then finish the I/O.
1563                                  */
1564                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1565                                 vm_page_lock(m);
1566                                 vm_page_activate(m);
1567                                 vm_page_unlock(m);
1568                                 vm_page_sunbusy(m);
1569                         }
1570                 } else if (bp->b_iocmd == BIO_READ) {
1571                         /*
1572                          * NOTE: for reads, m->dirty will probably be
1573                          * overridden by the original caller of getpages so
1574                          * we cannot set them in order to free the underlying
1575                          * swap in a low-swap situation.  I don't think we'd
1576                          * want to do that anyway, but it was an optimization
1577                          * that existed in the old swapper for a time before
1578                          * it got ripped out due to precisely this problem.
1579                          */
1580                         KASSERT(!pmap_page_is_mapped(m),
1581                             ("swp_pager_async_iodone: page %p is mapped", m));
1582                         KASSERT(m->dirty == 0,
1583                             ("swp_pager_async_iodone: page %p is dirty", m));
1584
1585                         m->valid = VM_PAGE_BITS_ALL;
1586                         if (i < bp->b_pgbefore ||
1587                             i >= bp->b_npages - bp->b_pgafter)
1588                                 vm_page_readahead_finish(m);
1589                 } else {
1590                         /*
1591                          * For write success, clear the dirty
1592                          * status, then finish the I/O ( which decrements the
1593                          * busy count and possibly wakes waiter's up ).
1594                          * A page is only written to swap after a period of
1595                          * inactivity.  Therefore, we do not expect it to be
1596                          * reused.
1597                          */
1598                         KASSERT(!pmap_page_is_write_mapped(m),
1599                             ("swp_pager_async_iodone: page %p is not write"
1600                             " protected", m));
1601                         vm_page_undirty(m);
1602                         vm_page_lock(m);
1603                         vm_page_deactivate_noreuse(m);
1604                         vm_page_unlock(m);
1605                         vm_page_sunbusy(m);
1606                 }
1607         }
1608
1609         /*
1610          * adjust pip.  NOTE: the original parent may still have its own
1611          * pip refs on the object.
1612          */
1613         if (object != NULL) {
1614                 vm_object_pip_wakeupn(object, bp->b_npages);
1615                 VM_OBJECT_WUNLOCK(object);
1616         }
1617
1618         /*
1619          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1620          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1621          * trigger a KASSERT in relpbuf().
1622          */
1623         if (bp->b_vp) {
1624                     bp->b_vp = NULL;
1625                     bp->b_bufobj = NULL;
1626         }
1627         /*
1628          * release the physical I/O buffer
1629          */
1630         relpbuf(
1631             bp,
1632             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1633                 ((bp->b_flags & B_ASYNC) ?
1634                     &nsw_wcount_async :
1635                     &nsw_wcount_sync
1636                 )
1637             )
1638         );
1639 }
1640
1641 int
1642 swap_pager_nswapdev(void)
1643 {
1644
1645         return (nswapdev);
1646 }
1647
1648 /*
1649  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1650  *
1651  *      This routine dissociates the page at the given index within an object
1652  *      from its backing store, paging it in if it does not reside in memory.
1653  *      If the page is paged in, it is marked dirty and placed in the laundry
1654  *      queue.  The page is marked dirty because it no longer has backing
1655  *      store.  It is placed in the laundry queue because it has not been
1656  *      accessed recently.  Otherwise, it would already reside in memory.
1657  *
1658  *      We also attempt to swap in all other pages in the swap block.
1659  *      However, we only guarantee that the one at the specified index is
1660  *      paged in.
1661  *
1662  *      XXX - The code to page the whole block in doesn't work, so we
1663  *            revert to the one-by-one behavior for now.  Sigh.
1664  */
1665 static inline void
1666 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1667 {
1668         vm_page_t m;
1669
1670         vm_object_pip_add(object, 1);
1671         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1672         if (m->valid == VM_PAGE_BITS_ALL) {
1673                 vm_object_pip_wakeup(object);
1674                 vm_page_dirty(m);
1675 #ifdef INVARIANTS
1676                 vm_page_lock(m);
1677                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1678                         panic("page %p is neither wired nor queued", m);
1679                 vm_page_unlock(m);
1680 #endif
1681                 vm_page_xunbusy(m);
1682                 vm_pager_page_unswapped(m);
1683                 return;
1684         }
1685
1686         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1687                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1688         vm_object_pip_wakeup(object);
1689         vm_page_dirty(m);
1690         vm_page_lock(m);
1691         vm_page_launder(m);
1692         vm_page_unlock(m);
1693         vm_page_xunbusy(m);
1694         vm_pager_page_unswapped(m);
1695 }
1696
1697 /*
1698  *      swap_pager_swapoff:
1699  *
1700  *      Page in all of the pages that have been paged out to the
1701  *      given device.  The corresponding blocks in the bitmap must be
1702  *      marked as allocated and the device must be flagged SW_CLOSING.
1703  *      There may be no processes swapped out to the device.
1704  *
1705  *      This routine may block.
1706  */
1707 static void
1708 swap_pager_swapoff(struct swdevt *sp)
1709 {
1710         struct swblk *sb;
1711         vm_object_t object;
1712         vm_pindex_t pi;
1713         int i, retries;
1714
1715         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1716
1717         retries = 0;
1718 full_rescan:
1719         mtx_lock(&vm_object_list_mtx);
1720         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1721                 if (object->type != OBJT_SWAP)
1722                         continue;
1723                 mtx_unlock(&vm_object_list_mtx);
1724                 /* Depends on type-stability. */
1725                 VM_OBJECT_WLOCK(object);
1726
1727                 /*
1728                  * Dead objects are eventually terminated on their own.
1729                  */
1730                 if ((object->flags & OBJ_DEAD) != 0)
1731                         goto next_obj;
1732
1733                 /*
1734                  * Sync with fences placed after pctrie
1735                  * initialization.  We must not access pctrie below
1736                  * unless we checked that our object is swap and not
1737                  * dead.
1738                  */
1739                 atomic_thread_fence_acq();
1740                 if (object->type != OBJT_SWAP)
1741                         goto next_obj;
1742
1743                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1744                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1745                         pi = sb->p + SWAP_META_PAGES;
1746                         for (i = 0; i < SWAP_META_PAGES; i++) {
1747                                 if (sb->d[i] == SWAPBLK_NONE)
1748                                         continue;
1749                                 if (swp_pager_isondev(sb->d[i], sp))
1750                                         swp_pager_force_pagein(object,
1751                                             sb->p + i);
1752                         }
1753                 }
1754 next_obj:
1755                 VM_OBJECT_WUNLOCK(object);
1756                 mtx_lock(&vm_object_list_mtx);
1757         }
1758         mtx_unlock(&vm_object_list_mtx);
1759
1760         if (sp->sw_used) {
1761                 /*
1762                  * Objects may be locked or paging to the device being
1763                  * removed, so we will miss their pages and need to
1764                  * make another pass.  We have marked this device as
1765                  * SW_CLOSING, so the activity should finish soon.
1766                  */
1767                 retries++;
1768                 if (retries > 100) {
1769                         panic("swapoff: failed to locate %d swap blocks",
1770                             sp->sw_used);
1771                 }
1772                 pause("swpoff", hz / 20);
1773                 goto full_rescan;
1774         }
1775         EVENTHANDLER_INVOKE(swapoff, sp);
1776 }
1777
1778 /************************************************************************
1779  *                              SWAP META DATA                          *
1780  ************************************************************************
1781  *
1782  *      These routines manipulate the swap metadata stored in the
1783  *      OBJT_SWAP object.
1784  *
1785  *      Swap metadata is implemented with a global hash and not directly
1786  *      linked into the object.  Instead the object simply contains
1787  *      appropriate tracking counters.
1788  */
1789
1790 /*
1791  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1792  */
1793 static bool
1794 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1795 {
1796         int i;
1797
1798         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1799         for (i = start; i < limit; i++) {
1800                 if (sb->d[i] != SWAPBLK_NONE)
1801                         return (false);
1802         }
1803         return (true);
1804 }
1805    
1806 /*
1807  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1808  *
1809  *      We first convert the object to a swap object if it is a default
1810  *      object.
1811  *
1812  *      The specified swapblk is added to the object's swap metadata.  If
1813  *      the swapblk is not valid, it is freed instead.  Any previously
1814  *      assigned swapblk is returned.
1815  */
1816 static daddr_t
1817 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1818 {
1819         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1820         struct swblk *sb, *sb1;
1821         vm_pindex_t modpi, rdpi;
1822         daddr_t prev_swapblk;
1823         int error, i;
1824
1825         VM_OBJECT_ASSERT_WLOCKED(object);
1826
1827         /*
1828          * Convert default object to swap object if necessary
1829          */
1830         if (object->type != OBJT_SWAP) {
1831                 pctrie_init(&object->un_pager.swp.swp_blks);
1832
1833                 /*
1834                  * Ensure that swap_pager_swapoff()'s iteration over
1835                  * object_list does not see a garbage pctrie.
1836                  */
1837                 atomic_thread_fence_rel();
1838
1839                 object->type = OBJT_SWAP;
1840                 KASSERT(object->handle == NULL, ("default pager with handle"));
1841         }
1842
1843         rdpi = rounddown(pindex, SWAP_META_PAGES);
1844         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1845         if (sb == NULL) {
1846                 if (swapblk == SWAPBLK_NONE)
1847                         return (SWAPBLK_NONE);
1848                 for (;;) {
1849                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1850                             pageproc ? M_USE_RESERVE : 0));
1851                         if (sb != NULL) {
1852                                 sb->p = rdpi;
1853                                 for (i = 0; i < SWAP_META_PAGES; i++)
1854                                         sb->d[i] = SWAPBLK_NONE;
1855                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1856                                     1, 0))
1857                                         printf("swblk zone ok\n");
1858                                 break;
1859                         }
1860                         VM_OBJECT_WUNLOCK(object);
1861                         if (uma_zone_exhausted(swblk_zone)) {
1862                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1863                                     0, 1))
1864                                         printf("swap blk zone exhausted, "
1865                                             "increase kern.maxswzone\n");
1866                                 vm_pageout_oom(VM_OOM_SWAPZ);
1867                                 pause("swzonxb", 10);
1868                         } else
1869                                 uma_zwait(swblk_zone);
1870                         VM_OBJECT_WLOCK(object);
1871                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1872                             rdpi);
1873                         if (sb != NULL)
1874                                 /*
1875                                  * Somebody swapped out a nearby page,
1876                                  * allocating swblk at the rdpi index,
1877                                  * while we dropped the object lock.
1878                                  */
1879                                 goto allocated;
1880                 }
1881                 for (;;) {
1882                         error = SWAP_PCTRIE_INSERT(
1883                             &object->un_pager.swp.swp_blks, sb);
1884                         if (error == 0) {
1885                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1886                                     1, 0))
1887                                         printf("swpctrie zone ok\n");
1888                                 break;
1889                         }
1890                         VM_OBJECT_WUNLOCK(object);
1891                         if (uma_zone_exhausted(swpctrie_zone)) {
1892                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1893                                     0, 1))
1894                                         printf("swap pctrie zone exhausted, "
1895                                             "increase kern.maxswzone\n");
1896                                 vm_pageout_oom(VM_OOM_SWAPZ);
1897                                 pause("swzonxp", 10);
1898                         } else
1899                                 uma_zwait(swpctrie_zone);
1900                         VM_OBJECT_WLOCK(object);
1901                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1902                             rdpi);
1903                         if (sb1 != NULL) {
1904                                 uma_zfree(swblk_zone, sb);
1905                                 sb = sb1;
1906                                 goto allocated;
1907                         }
1908                 }
1909         }
1910 allocated:
1911         MPASS(sb->p == rdpi);
1912
1913         modpi = pindex % SWAP_META_PAGES;
1914         /* Return prior contents of metadata. */
1915         prev_swapblk = sb->d[modpi];
1916         /* Enter block into metadata. */
1917         sb->d[modpi] = swapblk;
1918
1919         /*
1920          * Free the swblk if we end up with the empty page run.
1921          */
1922         if (swapblk == SWAPBLK_NONE &&
1923             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1924                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1925                 uma_zfree(swblk_zone, sb);
1926         }
1927         return (prev_swapblk);
1928 }
1929
1930 /*
1931  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1932  *
1933  *      The requested range of blocks is freed, with any associated swap
1934  *      returned to the swap bitmap.
1935  *
1936  *      This routine will free swap metadata structures as they are cleaned
1937  *      out.  This routine does *NOT* operate on swap metadata associated
1938  *      with resident pages.
1939  */
1940 static void
1941 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1942 {
1943         struct swblk *sb;
1944         daddr_t n_free, s_free;
1945         vm_pindex_t last;
1946         int i, limit, start;
1947
1948         VM_OBJECT_ASSERT_WLOCKED(object);
1949         if (object->type != OBJT_SWAP || count == 0)
1950                 return;
1951
1952         swp_pager_init_freerange(&s_free, &n_free);
1953         last = pindex + count;
1954         for (;;) {
1955                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1956                     rounddown(pindex, SWAP_META_PAGES));
1957                 if (sb == NULL || sb->p >= last)
1958                         break;
1959                 start = pindex > sb->p ? pindex - sb->p : 0;
1960                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1961                     SWAP_META_PAGES;
1962                 for (i = start; i < limit; i++) {
1963                         if (sb->d[i] == SWAPBLK_NONE)
1964                                 continue;
1965                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1966                         sb->d[i] = SWAPBLK_NONE;
1967                 }
1968                 if (swp_pager_swblk_empty(sb, 0, start) &&
1969                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1970                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1971                             sb->p);
1972                         uma_zfree(swblk_zone, sb);
1973                 }
1974                 pindex = sb->p + SWAP_META_PAGES;
1975         }
1976         swp_pager_freeswapspace(s_free, n_free);
1977 }
1978
1979 /*
1980  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1981  *
1982  *      This routine locates and destroys all swap metadata associated with
1983  *      an object.
1984  */
1985 static void
1986 swp_pager_meta_free_all(vm_object_t object)
1987 {
1988         struct swblk *sb;
1989         daddr_t n_free, s_free;
1990         vm_pindex_t pindex;
1991         int i;
1992
1993         VM_OBJECT_ASSERT_WLOCKED(object);
1994         if (object->type != OBJT_SWAP)
1995                 return;
1996
1997         swp_pager_init_freerange(&s_free, &n_free);
1998         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1999             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2000                 pindex = sb->p + SWAP_META_PAGES;
2001                 for (i = 0; i < SWAP_META_PAGES; i++) {
2002                         if (sb->d[i] == SWAPBLK_NONE)
2003                                 continue;
2004                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2005                 }
2006                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2007                 uma_zfree(swblk_zone, sb);
2008         }
2009         swp_pager_freeswapspace(s_free, n_free);
2010 }
2011
2012 /*
2013  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2014  *
2015  *      This routine is capable of looking up, or removing swapblk
2016  *      assignments in the swap meta data.  It returns the swapblk being
2017  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2018  *
2019  *      When acting on a busy resident page and paging is in progress, we
2020  *      have to wait until paging is complete but otherwise can act on the
2021  *      busy page.
2022  *
2023  *      SWM_POP         remove from meta data but do not free it
2024  */
2025 static daddr_t
2026 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2027 {
2028         struct swblk *sb;
2029         daddr_t r1;
2030
2031         if ((flags & SWM_POP) != 0)
2032                 VM_OBJECT_ASSERT_WLOCKED(object);
2033         else
2034                 VM_OBJECT_ASSERT_LOCKED(object);
2035
2036         /*
2037          * The meta data only exists if the object is OBJT_SWAP
2038          * and even then might not be allocated yet.
2039          */
2040         if (object->type != OBJT_SWAP)
2041                 return (SWAPBLK_NONE);
2042
2043         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2044             rounddown(pindex, SWAP_META_PAGES));
2045         if (sb == NULL)
2046                 return (SWAPBLK_NONE);
2047         r1 = sb->d[pindex % SWAP_META_PAGES];
2048         if (r1 == SWAPBLK_NONE)
2049                 return (SWAPBLK_NONE);
2050         if ((flags & SWM_POP) != 0) {
2051                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2052                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2053                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2054                             rounddown(pindex, SWAP_META_PAGES));
2055                         uma_zfree(swblk_zone, sb);
2056                 }
2057         }
2058         return (r1);
2059 }
2060
2061 /*
2062  * Returns the least page index which is greater than or equal to the
2063  * parameter pindex and for which there is a swap block allocated.
2064  * Returns object's size if the object's type is not swap or if there
2065  * are no allocated swap blocks for the object after the requested
2066  * pindex.
2067  */
2068 vm_pindex_t
2069 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2070 {
2071         struct swblk *sb;
2072         int i;
2073
2074         VM_OBJECT_ASSERT_LOCKED(object);
2075         if (object->type != OBJT_SWAP)
2076                 return (object->size);
2077
2078         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2079             rounddown(pindex, SWAP_META_PAGES));
2080         if (sb == NULL)
2081                 return (object->size);
2082         if (sb->p < pindex) {
2083                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2084                         if (sb->d[i] != SWAPBLK_NONE)
2085                                 return (sb->p + i);
2086                 }
2087                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2088                     roundup(pindex, SWAP_META_PAGES));
2089                 if (sb == NULL)
2090                         return (object->size);
2091         }
2092         for (i = 0; i < SWAP_META_PAGES; i++) {
2093                 if (sb->d[i] != SWAPBLK_NONE)
2094                         return (sb->p + i);
2095         }
2096
2097         /*
2098          * We get here if a swblk is present in the trie but it
2099          * doesn't map any blocks.
2100          */
2101         MPASS(0);
2102         return (object->size);
2103 }
2104
2105 /*
2106  * System call swapon(name) enables swapping on device name,
2107  * which must be in the swdevsw.  Return EBUSY
2108  * if already swapping on this device.
2109  */
2110 #ifndef _SYS_SYSPROTO_H_
2111 struct swapon_args {
2112         char *name;
2113 };
2114 #endif
2115
2116 /*
2117  * MPSAFE
2118  */
2119 /* ARGSUSED */
2120 int
2121 sys_swapon(struct thread *td, struct swapon_args *uap)
2122 {
2123         struct vattr attr;
2124         struct vnode *vp;
2125         struct nameidata nd;
2126         int error;
2127
2128         error = priv_check(td, PRIV_SWAPON);
2129         if (error)
2130                 return (error);
2131
2132         sx_xlock(&swdev_syscall_lock);
2133
2134         /*
2135          * Swap metadata may not fit in the KVM if we have physical
2136          * memory of >1GB.
2137          */
2138         if (swblk_zone == NULL) {
2139                 error = ENOMEM;
2140                 goto done;
2141         }
2142
2143         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2144             uap->name, td);
2145         error = namei(&nd);
2146         if (error)
2147                 goto done;
2148
2149         NDFREE(&nd, NDF_ONLY_PNBUF);
2150         vp = nd.ni_vp;
2151
2152         if (vn_isdisk(vp, &error)) {
2153                 error = swapongeom(vp);
2154         } else if (vp->v_type == VREG &&
2155             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2156             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2157                 /*
2158                  * Allow direct swapping to NFS regular files in the same
2159                  * way that nfs_mountroot() sets up diskless swapping.
2160                  */
2161                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2162         }
2163
2164         if (error)
2165                 vrele(vp);
2166 done:
2167         sx_xunlock(&swdev_syscall_lock);
2168         return (error);
2169 }
2170
2171 /*
2172  * Check that the total amount of swap currently configured does not
2173  * exceed half the theoretical maximum.  If it does, print a warning
2174  * message.
2175  */
2176 static void
2177 swapon_check_swzone(void)
2178 {
2179         unsigned long maxpages, npages;
2180
2181         npages = swap_total / PAGE_SIZE;
2182         /* absolute maximum we can handle assuming 100% efficiency */
2183         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2184
2185         /* recommend using no more than half that amount */
2186         if (npages > maxpages / 2) {
2187                 printf("warning: total configured swap (%lu pages) "
2188                     "exceeds maximum recommended amount (%lu pages).\n",
2189                     npages, maxpages / 2);
2190                 printf("warning: increase kern.maxswzone "
2191                     "or reduce amount of swap.\n");
2192         }
2193 }
2194
2195 static void
2196 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2197     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2198 {
2199         struct swdevt *sp, *tsp;
2200         swblk_t dvbase;
2201         u_long mblocks;
2202
2203         /*
2204          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2205          * First chop nblks off to page-align it, then convert.
2206          *
2207          * sw->sw_nblks is in page-sized chunks now too.
2208          */
2209         nblks &= ~(ctodb(1) - 1);
2210         nblks = dbtoc(nblks);
2211
2212         /*
2213          * If we go beyond this, we get overflows in the radix
2214          * tree bitmap code.
2215          */
2216         mblocks = 0x40000000 / BLIST_META_RADIX;
2217         if (nblks > mblocks) {
2218                 printf(
2219     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2220                     mblocks / 1024 / 1024 * PAGE_SIZE);
2221                 nblks = mblocks;
2222         }
2223
2224         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2225         sp->sw_vp = vp;
2226         sp->sw_id = id;
2227         sp->sw_dev = dev;
2228         sp->sw_flags = 0;
2229         sp->sw_nblks = nblks;
2230         sp->sw_used = 0;
2231         sp->sw_strategy = strategy;
2232         sp->sw_close = close;
2233         sp->sw_flags = flags;
2234
2235         sp->sw_blist = blist_create(nblks, M_WAITOK);
2236         /*
2237          * Do not free the first two block in order to avoid overwriting
2238          * any bsd label at the front of the partition
2239          */
2240         blist_free(sp->sw_blist, 2, nblks - 2);
2241
2242         dvbase = 0;
2243         mtx_lock(&sw_dev_mtx);
2244         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2245                 if (tsp->sw_end >= dvbase) {
2246                         /*
2247                          * We put one uncovered page between the devices
2248                          * in order to definitively prevent any cross-device
2249                          * I/O requests
2250                          */
2251                         dvbase = tsp->sw_end + 1;
2252                 }
2253         }
2254         sp->sw_first = dvbase;
2255         sp->sw_end = dvbase + nblks;
2256         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2257         nswapdev++;
2258         swap_pager_avail += nblks - 2;
2259         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2260         swapon_check_swzone();
2261         swp_sizecheck();
2262         mtx_unlock(&sw_dev_mtx);
2263         EVENTHANDLER_INVOKE(swapon, sp);
2264 }
2265
2266 /*
2267  * SYSCALL: swapoff(devname)
2268  *
2269  * Disable swapping on the given device.
2270  *
2271  * XXX: Badly designed system call: it should use a device index
2272  * rather than filename as specification.  We keep sw_vp around
2273  * only to make this work.
2274  */
2275 #ifndef _SYS_SYSPROTO_H_
2276 struct swapoff_args {
2277         char *name;
2278 };
2279 #endif
2280
2281 /*
2282  * MPSAFE
2283  */
2284 /* ARGSUSED */
2285 int
2286 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2287 {
2288         struct vnode *vp;
2289         struct nameidata nd;
2290         struct swdevt *sp;
2291         int error;
2292
2293         error = priv_check(td, PRIV_SWAPOFF);
2294         if (error)
2295                 return (error);
2296
2297         sx_xlock(&swdev_syscall_lock);
2298
2299         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2300             td);
2301         error = namei(&nd);
2302         if (error)
2303                 goto done;
2304         NDFREE(&nd, NDF_ONLY_PNBUF);
2305         vp = nd.ni_vp;
2306
2307         mtx_lock(&sw_dev_mtx);
2308         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2309                 if (sp->sw_vp == vp)
2310                         break;
2311         }
2312         mtx_unlock(&sw_dev_mtx);
2313         if (sp == NULL) {
2314                 error = EINVAL;
2315                 goto done;
2316         }
2317         error = swapoff_one(sp, td->td_ucred);
2318 done:
2319         sx_xunlock(&swdev_syscall_lock);
2320         return (error);
2321 }
2322
2323 static int
2324 swapoff_one(struct swdevt *sp, struct ucred *cred)
2325 {
2326         u_long nblks;
2327 #ifdef MAC
2328         int error;
2329 #endif
2330
2331         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2332 #ifdef MAC
2333         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2334         error = mac_system_check_swapoff(cred, sp->sw_vp);
2335         (void) VOP_UNLOCK(sp->sw_vp, 0);
2336         if (error != 0)
2337                 return (error);
2338 #endif
2339         nblks = sp->sw_nblks;
2340
2341         /*
2342          * We can turn off this swap device safely only if the
2343          * available virtual memory in the system will fit the amount
2344          * of data we will have to page back in, plus an epsilon so
2345          * the system doesn't become critically low on swap space.
2346          */
2347         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2348                 return (ENOMEM);
2349
2350         /*
2351          * Prevent further allocations on this device.
2352          */
2353         mtx_lock(&sw_dev_mtx);
2354         sp->sw_flags |= SW_CLOSING;
2355         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2356         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2357         mtx_unlock(&sw_dev_mtx);
2358
2359         /*
2360          * Page in the contents of the device and close it.
2361          */
2362         swap_pager_swapoff(sp);
2363
2364         sp->sw_close(curthread, sp);
2365         mtx_lock(&sw_dev_mtx);
2366         sp->sw_id = NULL;
2367         TAILQ_REMOVE(&swtailq, sp, sw_list);
2368         nswapdev--;
2369         if (nswapdev == 0) {
2370                 swap_pager_full = 2;
2371                 swap_pager_almost_full = 1;
2372         }
2373         if (swdevhd == sp)
2374                 swdevhd = NULL;
2375         mtx_unlock(&sw_dev_mtx);
2376         blist_destroy(sp->sw_blist);
2377         free(sp, M_VMPGDATA);
2378         return (0);
2379 }
2380
2381 void
2382 swapoff_all(void)
2383 {
2384         struct swdevt *sp, *spt;
2385         const char *devname;
2386         int error;
2387
2388         sx_xlock(&swdev_syscall_lock);
2389
2390         mtx_lock(&sw_dev_mtx);
2391         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2392                 mtx_unlock(&sw_dev_mtx);
2393                 if (vn_isdisk(sp->sw_vp, NULL))
2394                         devname = devtoname(sp->sw_vp->v_rdev);
2395                 else
2396                         devname = "[file]";
2397                 error = swapoff_one(sp, thread0.td_ucred);
2398                 if (error != 0) {
2399                         printf("Cannot remove swap device %s (error=%d), "
2400                             "skipping.\n", devname, error);
2401                 } else if (bootverbose) {
2402                         printf("Swap device %s removed.\n", devname);
2403                 }
2404                 mtx_lock(&sw_dev_mtx);
2405         }
2406         mtx_unlock(&sw_dev_mtx);
2407
2408         sx_xunlock(&swdev_syscall_lock);
2409 }
2410
2411 void
2412 swap_pager_status(int *total, int *used)
2413 {
2414         struct swdevt *sp;
2415
2416         *total = 0;
2417         *used = 0;
2418         mtx_lock(&sw_dev_mtx);
2419         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2420                 *total += sp->sw_nblks;
2421                 *used += sp->sw_used;
2422         }
2423         mtx_unlock(&sw_dev_mtx);
2424 }
2425
2426 int
2427 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2428 {
2429         struct swdevt *sp;
2430         const char *tmp_devname;
2431         int error, n;
2432
2433         n = 0;
2434         error = ENOENT;
2435         mtx_lock(&sw_dev_mtx);
2436         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2437                 if (n != name) {
2438                         n++;
2439                         continue;
2440                 }
2441                 xs->xsw_version = XSWDEV_VERSION;
2442                 xs->xsw_dev = sp->sw_dev;
2443                 xs->xsw_flags = sp->sw_flags;
2444                 xs->xsw_nblks = sp->sw_nblks;
2445                 xs->xsw_used = sp->sw_used;
2446                 if (devname != NULL) {
2447                         if (vn_isdisk(sp->sw_vp, NULL))
2448                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2449                         else
2450                                 tmp_devname = "[file]";
2451                         strncpy(devname, tmp_devname, len);
2452                 }
2453                 error = 0;
2454                 break;
2455         }
2456         mtx_unlock(&sw_dev_mtx);
2457         return (error);
2458 }
2459
2460 #if defined(COMPAT_FREEBSD11)
2461 #define XSWDEV_VERSION_11       1
2462 struct xswdev11 {
2463         u_int   xsw_version;
2464         uint32_t xsw_dev;
2465         int     xsw_flags;
2466         int     xsw_nblks;
2467         int     xsw_used;
2468 };
2469 #endif
2470
2471 static int
2472 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2473 {
2474         struct xswdev xs;
2475 #if defined(COMPAT_FREEBSD11)
2476         struct xswdev11 xs11;
2477 #endif
2478         int error;
2479
2480         if (arg2 != 1)                  /* name length */
2481                 return (EINVAL);
2482         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2483         if (error != 0)
2484                 return (error);
2485 #if defined(COMPAT_FREEBSD11)
2486         if (req->oldlen == sizeof(xs11)) {
2487                 xs11.xsw_version = XSWDEV_VERSION_11;
2488                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2489                 xs11.xsw_flags = xs.xsw_flags;
2490                 xs11.xsw_nblks = xs.xsw_nblks;
2491                 xs11.xsw_used = xs.xsw_used;
2492                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2493         } else
2494 #endif
2495                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2496         return (error);
2497 }
2498
2499 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2500     "Number of swap devices");
2501 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2502     sysctl_vm_swap_info,
2503     "Swap statistics by device");
2504
2505 /*
2506  * Count the approximate swap usage in pages for a vmspace.  The
2507  * shadowed or not yet copied on write swap blocks are not accounted.
2508  * The map must be locked.
2509  */
2510 long
2511 vmspace_swap_count(struct vmspace *vmspace)
2512 {
2513         vm_map_t map;
2514         vm_map_entry_t cur;
2515         vm_object_t object;
2516         struct swblk *sb;
2517         vm_pindex_t e, pi;
2518         long count;
2519         int i;
2520
2521         map = &vmspace->vm_map;
2522         count = 0;
2523
2524         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2525                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2526                         continue;
2527                 object = cur->object.vm_object;
2528                 if (object == NULL || object->type != OBJT_SWAP)
2529                         continue;
2530                 VM_OBJECT_RLOCK(object);
2531                 if (object->type != OBJT_SWAP)
2532                         goto unlock;
2533                 pi = OFF_TO_IDX(cur->offset);
2534                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2535                 for (;; pi = sb->p + SWAP_META_PAGES) {
2536                         sb = SWAP_PCTRIE_LOOKUP_GE(
2537                             &object->un_pager.swp.swp_blks, pi);
2538                         if (sb == NULL || sb->p >= e)
2539                                 break;
2540                         for (i = 0; i < SWAP_META_PAGES; i++) {
2541                                 if (sb->p + i < e &&
2542                                     sb->d[i] != SWAPBLK_NONE)
2543                                         count++;
2544                         }
2545                 }
2546 unlock:
2547                 VM_OBJECT_RUNLOCK(object);
2548         }
2549         return (count);
2550 }
2551
2552 /*
2553  * GEOM backend
2554  *
2555  * Swapping onto disk devices.
2556  *
2557  */
2558
2559 static g_orphan_t swapgeom_orphan;
2560
2561 static struct g_class g_swap_class = {
2562         .name = "SWAP",
2563         .version = G_VERSION,
2564         .orphan = swapgeom_orphan,
2565 };
2566
2567 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2568
2569
2570 static void
2571 swapgeom_close_ev(void *arg, int flags)
2572 {
2573         struct g_consumer *cp;
2574
2575         cp = arg;
2576         g_access(cp, -1, -1, 0);
2577         g_detach(cp);
2578         g_destroy_consumer(cp);
2579 }
2580
2581 /*
2582  * Add a reference to the g_consumer for an inflight transaction.
2583  */
2584 static void
2585 swapgeom_acquire(struct g_consumer *cp)
2586 {
2587
2588         mtx_assert(&sw_dev_mtx, MA_OWNED);
2589         cp->index++;
2590 }
2591
2592 /*
2593  * Remove a reference from the g_consumer.  Post a close event if all
2594  * references go away, since the function might be called from the
2595  * biodone context.
2596  */
2597 static void
2598 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2599 {
2600
2601         mtx_assert(&sw_dev_mtx, MA_OWNED);
2602         cp->index--;
2603         if (cp->index == 0) {
2604                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2605                         sp->sw_id = NULL;
2606         }
2607 }
2608
2609 static void
2610 swapgeom_done(struct bio *bp2)
2611 {
2612         struct swdevt *sp;
2613         struct buf *bp;
2614         struct g_consumer *cp;
2615
2616         bp = bp2->bio_caller2;
2617         cp = bp2->bio_from;
2618         bp->b_ioflags = bp2->bio_flags;
2619         if (bp2->bio_error)
2620                 bp->b_ioflags |= BIO_ERROR;
2621         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2622         bp->b_error = bp2->bio_error;
2623         bufdone(bp);
2624         sp = bp2->bio_caller1;
2625         mtx_lock(&sw_dev_mtx);
2626         swapgeom_release(cp, sp);
2627         mtx_unlock(&sw_dev_mtx);
2628         g_destroy_bio(bp2);
2629 }
2630
2631 static void
2632 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2633 {
2634         struct bio *bio;
2635         struct g_consumer *cp;
2636
2637         mtx_lock(&sw_dev_mtx);
2638         cp = sp->sw_id;
2639         if (cp == NULL) {
2640                 mtx_unlock(&sw_dev_mtx);
2641                 bp->b_error = ENXIO;
2642                 bp->b_ioflags |= BIO_ERROR;
2643                 bufdone(bp);
2644                 return;
2645         }
2646         swapgeom_acquire(cp);
2647         mtx_unlock(&sw_dev_mtx);
2648         if (bp->b_iocmd == BIO_WRITE)
2649                 bio = g_new_bio();
2650         else
2651                 bio = g_alloc_bio();
2652         if (bio == NULL) {
2653                 mtx_lock(&sw_dev_mtx);
2654                 swapgeom_release(cp, sp);
2655                 mtx_unlock(&sw_dev_mtx);
2656                 bp->b_error = ENOMEM;
2657                 bp->b_ioflags |= BIO_ERROR;
2658                 bufdone(bp);
2659                 return;
2660         }
2661
2662         bio->bio_caller1 = sp;
2663         bio->bio_caller2 = bp;
2664         bio->bio_cmd = bp->b_iocmd;
2665         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2666         bio->bio_length = bp->b_bcount;
2667         bio->bio_done = swapgeom_done;
2668         if (!buf_mapped(bp)) {
2669                 bio->bio_ma = bp->b_pages;
2670                 bio->bio_data = unmapped_buf;
2671                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2672                 bio->bio_ma_n = bp->b_npages;
2673                 bio->bio_flags |= BIO_UNMAPPED;
2674         } else {
2675                 bio->bio_data = bp->b_data;
2676                 bio->bio_ma = NULL;
2677         }
2678         g_io_request(bio, cp);
2679         return;
2680 }
2681
2682 static void
2683 swapgeom_orphan(struct g_consumer *cp)
2684 {
2685         struct swdevt *sp;
2686         int destroy;
2687
2688         mtx_lock(&sw_dev_mtx);
2689         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2690                 if (sp->sw_id == cp) {
2691                         sp->sw_flags |= SW_CLOSING;
2692                         break;
2693                 }
2694         }
2695         /*
2696          * Drop reference we were created with. Do directly since we're in a
2697          * special context where we don't have to queue the call to
2698          * swapgeom_close_ev().
2699          */
2700         cp->index--;
2701         destroy = ((sp != NULL) && (cp->index == 0));
2702         if (destroy)
2703                 sp->sw_id = NULL;
2704         mtx_unlock(&sw_dev_mtx);
2705         if (destroy)
2706                 swapgeom_close_ev(cp, 0);
2707 }
2708
2709 static void
2710 swapgeom_close(struct thread *td, struct swdevt *sw)
2711 {
2712         struct g_consumer *cp;
2713
2714         mtx_lock(&sw_dev_mtx);
2715         cp = sw->sw_id;
2716         sw->sw_id = NULL;
2717         mtx_unlock(&sw_dev_mtx);
2718
2719         /*
2720          * swapgeom_close() may be called from the biodone context,
2721          * where we cannot perform topology changes.  Delegate the
2722          * work to the events thread.
2723          */
2724         if (cp != NULL)
2725                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2726 }
2727
2728 static int
2729 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2730 {
2731         struct g_provider *pp;
2732         struct g_consumer *cp;
2733         static struct g_geom *gp;
2734         struct swdevt *sp;
2735         u_long nblks;
2736         int error;
2737
2738         pp = g_dev_getprovider(dev);
2739         if (pp == NULL)
2740                 return (ENODEV);
2741         mtx_lock(&sw_dev_mtx);
2742         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2743                 cp = sp->sw_id;
2744                 if (cp != NULL && cp->provider == pp) {
2745                         mtx_unlock(&sw_dev_mtx);
2746                         return (EBUSY);
2747                 }
2748         }
2749         mtx_unlock(&sw_dev_mtx);
2750         if (gp == NULL)
2751                 gp = g_new_geomf(&g_swap_class, "swap");
2752         cp = g_new_consumer(gp);
2753         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2754         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2755         g_attach(cp, pp);
2756         /*
2757          * XXX: Every time you think you can improve the margin for
2758          * footshooting, somebody depends on the ability to do so:
2759          * savecore(8) wants to write to our swapdev so we cannot
2760          * set an exclusive count :-(
2761          */
2762         error = g_access(cp, 1, 1, 0);
2763         if (error != 0) {
2764                 g_detach(cp);
2765                 g_destroy_consumer(cp);
2766                 return (error);
2767         }
2768         nblks = pp->mediasize / DEV_BSIZE;
2769         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2770             swapgeom_close, dev2udev(dev),
2771             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2772         return (0);
2773 }
2774
2775 static int
2776 swapongeom(struct vnode *vp)
2777 {
2778         int error;
2779
2780         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2781         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2782                 error = ENOENT;
2783         } else {
2784                 g_topology_lock();
2785                 error = swapongeom_locked(vp->v_rdev, vp);
2786                 g_topology_unlock();
2787         }
2788         VOP_UNLOCK(vp, 0);
2789         return (error);
2790 }
2791
2792 /*
2793  * VNODE backend
2794  *
2795  * This is used mainly for network filesystem (read: probably only tested
2796  * with NFS) swapfiles.
2797  *
2798  */
2799
2800 static void
2801 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2802 {
2803         struct vnode *vp2;
2804
2805         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2806
2807         vp2 = sp->sw_id;
2808         vhold(vp2);
2809         if (bp->b_iocmd == BIO_WRITE) {
2810                 if (bp->b_bufobj)
2811                         bufobj_wdrop(bp->b_bufobj);
2812                 bufobj_wref(&vp2->v_bufobj);
2813         }
2814         if (bp->b_bufobj != &vp2->v_bufobj)
2815                 bp->b_bufobj = &vp2->v_bufobj;
2816         bp->b_vp = vp2;
2817         bp->b_iooffset = dbtob(bp->b_blkno);
2818         bstrategy(bp);
2819         return;
2820 }
2821
2822 static void
2823 swapdev_close(struct thread *td, struct swdevt *sp)
2824 {
2825
2826         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2827         vrele(sp->sw_vp);
2828 }
2829
2830
2831 static int
2832 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2833 {
2834         struct swdevt *sp;
2835         int error;
2836
2837         if (nblks == 0)
2838                 return (ENXIO);
2839         mtx_lock(&sw_dev_mtx);
2840         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2841                 if (sp->sw_id == vp) {
2842                         mtx_unlock(&sw_dev_mtx);
2843                         return (EBUSY);
2844                 }
2845         }
2846         mtx_unlock(&sw_dev_mtx);
2847
2848         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2849 #ifdef MAC
2850         error = mac_system_check_swapon(td->td_ucred, vp);
2851         if (error == 0)
2852 #endif
2853                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2854         (void) VOP_UNLOCK(vp, 0);
2855         if (error)
2856                 return (error);
2857
2858         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2859             NODEV, 0);
2860         return (0);
2861 }
2862
2863 static int
2864 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2865 {
2866         int error, new, n;
2867
2868         new = nsw_wcount_async_max;
2869         error = sysctl_handle_int(oidp, &new, 0, req);
2870         if (error != 0 || req->newptr == NULL)
2871                 return (error);
2872
2873         if (new > nswbuf / 2 || new < 1)
2874                 return (EINVAL);
2875
2876         mtx_lock(&pbuf_mtx);
2877         while (nsw_wcount_async_max != new) {
2878                 /*
2879                  * Adjust difference.  If the current async count is too low,
2880                  * we will need to sqeeze our update slowly in.  Sleep with a
2881                  * higher priority than getpbuf() to finish faster.
2882                  */
2883                 n = new - nsw_wcount_async_max;
2884                 if (nsw_wcount_async + n >= 0) {
2885                         nsw_wcount_async += n;
2886                         nsw_wcount_async_max += n;
2887                         wakeup(&nsw_wcount_async);
2888                 } else {
2889                         nsw_wcount_async_max -= nsw_wcount_async;
2890                         nsw_wcount_async = 0;
2891                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2892                             "swpsysctl", 0);
2893                 }
2894         }
2895         mtx_unlock(&pbuf_mtx);
2896
2897         return (0);
2898 }