]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Merge clang trunk r366426, resolve conflicts, and update FREEBSD-Xlist.
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
159     &swap_reserved, 0, sysctl_page_shift, "A", 
160     "Amount of swap storage needed to back all allocated anonymous memory.");
161 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
162     &swap_total, 0, sysctl_page_shift, "A", 
163     "Total amount of available swap storage.");
164
165 static int overcommit = 0;
166 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
167     "Configure virtual memory overcommit behavior. See tuning(7) "
168     "for details.");
169 static unsigned long swzone;
170 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
171     "Actual size of swap metadata zone");
172 static unsigned long swap_maxpages;
173 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
174     "Maximum amount of swap supported");
175
176 /* bits from overcommit */
177 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
178 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
179 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
180
181 static int
182 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
183 {
184         uint64_t newval;
185         u_long value = *(u_long *)arg1;
186
187         newval = ((uint64_t)value) << PAGE_SHIFT;
188         return (sysctl_handle_64(oidp, &newval, 0, req));
189 }
190
191 int
192 swap_reserve(vm_ooffset_t incr)
193 {
194
195         return (swap_reserve_by_cred(incr, curthread->td_ucred));
196 }
197
198 int
199 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
200 {
201         u_long r, s, prev, pincr;
202         int res, error;
203         static int curfail;
204         static struct timeval lastfail;
205         struct uidinfo *uip;
206
207         uip = cred->cr_ruidinfo;
208
209         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
210             (uintmax_t)incr));
211
212 #ifdef RACCT
213         if (racct_enable) {
214                 PROC_LOCK(curproc);
215                 error = racct_add(curproc, RACCT_SWAP, incr);
216                 PROC_UNLOCK(curproc);
217                 if (error != 0)
218                         return (0);
219         }
220 #endif
221
222         pincr = atop(incr);
223         res = 0;
224         prev = atomic_fetchadd_long(&swap_reserved, pincr);
225         r = prev + pincr;
226         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
227                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
228                     vm_wire_count();
229         } else
230                 s = 0;
231         s += swap_total;
232         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
233             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
234                 res = 1;
235         } else {
236                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
237                 if (prev < pincr)
238                         panic("swap_reserved < incr on overcommit fail");
239         }
240         if (res) {
241                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
242                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
243                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
244                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
245                         res = 0;
246                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
247                         if (prev < pincr)
248                                 panic("uip->ui_vmsize < incr on overcommit fail");
249                 }
250         }
251         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
252                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
253                     uip->ui_uid, curproc->p_pid, incr);
254         }
255
256 #ifdef RACCT
257         if (racct_enable && !res) {
258                 PROC_LOCK(curproc);
259                 racct_sub(curproc, RACCT_SWAP, incr);
260                 PROC_UNLOCK(curproc);
261         }
262 #endif
263
264         return (res);
265 }
266
267 void
268 swap_reserve_force(vm_ooffset_t incr)
269 {
270         struct uidinfo *uip;
271         u_long pincr;
272
273         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
274             (uintmax_t)incr));
275
276         PROC_LOCK(curproc);
277 #ifdef RACCT
278         if (racct_enable)
279                 racct_add_force(curproc, RACCT_SWAP, incr);
280 #endif
281         pincr = atop(incr);
282         atomic_add_long(&swap_reserved, pincr);
283         uip = curproc->p_ucred->cr_ruidinfo;
284         atomic_add_long(&uip->ui_vmsize, pincr);
285         PROC_UNLOCK(curproc);
286 }
287
288 void
289 swap_release(vm_ooffset_t decr)
290 {
291         struct ucred *cred;
292
293         PROC_LOCK(curproc);
294         cred = curproc->p_ucred;
295         swap_release_by_cred(decr, cred);
296         PROC_UNLOCK(curproc);
297 }
298
299 void
300 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
301 {
302         u_long prev, pdecr;
303         struct uidinfo *uip;
304
305         uip = cred->cr_ruidinfo;
306
307         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
308             (uintmax_t)decr));
309
310         pdecr = atop(decr);
311         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
312         if (prev < pdecr)
313                 panic("swap_reserved < decr");
314
315         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
316         if (prev < pdecr)
317                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
318 #ifdef RACCT
319         if (racct_enable)
320                 racct_sub_cred(cred, RACCT_SWAP, decr);
321 #endif
322 }
323
324 #define SWM_POP         0x01    /* pop out                      */
325
326 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
327 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
328 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
329 static int nsw_wcount_async;    /* limit async write buffers */
330 static int nsw_wcount_async_max;/* assigned maximum                     */
331 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
332
333 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
334 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
335     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
336     "Maximum running async swap ops");
337 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
338 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
339     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
340     "Swap Fragmentation Info");
341
342 static struct sx sw_alloc_sx;
343
344 /*
345  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
346  * of searching a named list by hashing it just a little.
347  */
348
349 #define NOBJLISTS               8
350
351 #define NOBJLIST(handle)        \
352         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
353
354 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
355 static uma_zone_t swwbuf_zone;
356 static uma_zone_t swrbuf_zone;
357 static uma_zone_t swblk_zone;
358 static uma_zone_t swpctrie_zone;
359
360 /*
361  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
362  * calls hooked from other parts of the VM system and do not appear here.
363  * (see vm/swap_pager.h).
364  */
365 static vm_object_t
366                 swap_pager_alloc(void *handle, vm_ooffset_t size,
367                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
368 static void     swap_pager_dealloc(vm_object_t object);
369 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
370     int *);
371 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
372     int *, pgo_getpages_iodone_t, void *);
373 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
374 static boolean_t
375                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
376 static void     swap_pager_init(void);
377 static void     swap_pager_unswapped(vm_page_t);
378 static void     swap_pager_swapoff(struct swdevt *sp);
379
380 struct pagerops swappagerops = {
381         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
382         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
383         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
384         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
385         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
386         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
387         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
388         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
389 };
390
391 /*
392  * swap_*() routines are externally accessible.  swp_*() routines are
393  * internal.
394  */
395 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
396 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
397
398 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
399     "Maximum size of a swap block in pages");
400
401 static void     swp_sizecheck(void);
402 static void     swp_pager_async_iodone(struct buf *bp);
403 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
404 static int      swapongeom(struct vnode *);
405 static int      swaponvp(struct thread *, struct vnode *, u_long);
406 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
407
408 /*
409  * Swap bitmap functions
410  */
411 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
412 static daddr_t  swp_pager_getswapspace(int *npages, int limit);
413
414 /*
415  * Metadata functions
416  */
417 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
418 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
419 static void swp_pager_meta_free_all(vm_object_t);
420 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
421
422 static void
423 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
424 {
425
426         *start = SWAPBLK_NONE;
427         *num = 0;
428 }
429
430 static void
431 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
432 {
433
434         if (*start + *num == addr) {
435                 (*num)++;
436         } else {
437                 swp_pager_freeswapspace(*start, *num);
438                 *start = addr;
439                 *num = 1;
440         }
441 }
442
443 static void *
444 swblk_trie_alloc(struct pctrie *ptree)
445 {
446
447         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
448             M_USE_RESERVE : 0)));
449 }
450
451 static void
452 swblk_trie_free(struct pctrie *ptree, void *node)
453 {
454
455         uma_zfree(swpctrie_zone, node);
456 }
457
458 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
459
460 /*
461  * SWP_SIZECHECK() -    update swap_pager_full indication
462  *
463  *      update the swap_pager_almost_full indication and warn when we are
464  *      about to run out of swap space, using lowat/hiwat hysteresis.
465  *
466  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
467  *
468  *      No restrictions on call
469  *      This routine may not block.
470  */
471 static void
472 swp_sizecheck(void)
473 {
474
475         if (swap_pager_avail < nswap_lowat) {
476                 if (swap_pager_almost_full == 0) {
477                         printf("swap_pager: out of swap space\n");
478                         swap_pager_almost_full = 1;
479                 }
480         } else {
481                 swap_pager_full = 0;
482                 if (swap_pager_avail > nswap_hiwat)
483                         swap_pager_almost_full = 0;
484         }
485 }
486
487 /*
488  * SWAP_PAGER_INIT() -  initialize the swap pager!
489  *
490  *      Expected to be started from system init.  NOTE:  This code is run
491  *      before much else so be careful what you depend on.  Most of the VM
492  *      system has yet to be initialized at this point.
493  */
494 static void
495 swap_pager_init(void)
496 {
497         /*
498          * Initialize object lists
499          */
500         int i;
501
502         for (i = 0; i < NOBJLISTS; ++i)
503                 TAILQ_INIT(&swap_pager_object_list[i]);
504         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
505         sx_init(&sw_alloc_sx, "swspsx");
506         sx_init(&swdev_syscall_lock, "swsysc");
507 }
508
509 /*
510  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
511  *
512  *      Expected to be started from pageout process once, prior to entering
513  *      its main loop.
514  */
515 void
516 swap_pager_swap_init(void)
517 {
518         unsigned long n, n2;
519
520         /*
521          * Number of in-transit swap bp operations.  Don't
522          * exhaust the pbufs completely.  Make sure we
523          * initialize workable values (0 will work for hysteresis
524          * but it isn't very efficient).
525          *
526          * The nsw_cluster_max is constrained by the bp->b_pages[]
527          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
528          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
529          * constrained by the swap device interleave stripe size.
530          *
531          * Currently we hardwire nsw_wcount_async to 4.  This limit is
532          * designed to prevent other I/O from having high latencies due to
533          * our pageout I/O.  The value 4 works well for one or two active swap
534          * devices but is probably a little low if you have more.  Even so,
535          * a higher value would probably generate only a limited improvement
536          * with three or four active swap devices since the system does not
537          * typically have to pageout at extreme bandwidths.   We will want
538          * at least 2 per swap devices, and 4 is a pretty good value if you
539          * have one NFS swap device due to the command/ack latency over NFS.
540          * So it all works out pretty well.
541          */
542         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
543
544         nsw_wcount_async = 4;
545         nsw_wcount_async_max = nsw_wcount_async;
546         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
547
548         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
549         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
550
551         /*
552          * Initialize our zone, taking the user's requested size or
553          * estimating the number we need based on the number of pages
554          * in the system.
555          */
556         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
557             vm_cnt.v_page_count / 2;
558         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
559             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
560         if (swpctrie_zone == NULL)
561                 panic("failed to create swap pctrie zone.");
562         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
563             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
564         if (swblk_zone == NULL)
565                 panic("failed to create swap blk zone.");
566         n2 = n;
567         do {
568                 if (uma_zone_reserve_kva(swblk_zone, n))
569                         break;
570                 /*
571                  * if the allocation failed, try a zone two thirds the
572                  * size of the previous attempt.
573                  */
574                 n -= ((n + 2) / 3);
575         } while (n > 0);
576
577         /*
578          * Often uma_zone_reserve_kva() cannot reserve exactly the
579          * requested size.  Account for the difference when
580          * calculating swap_maxpages.
581          */
582         n = uma_zone_get_max(swblk_zone);
583
584         if (n < n2)
585                 printf("Swap blk zone entries changed from %lu to %lu.\n",
586                     n2, n);
587         swap_maxpages = n * SWAP_META_PAGES;
588         swzone = n * sizeof(struct swblk);
589         if (!uma_zone_reserve_kva(swpctrie_zone, n))
590                 printf("Cannot reserve swap pctrie zone, "
591                     "reduce kern.maxswzone.\n");
592 }
593
594 static vm_object_t
595 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
596     vm_ooffset_t offset)
597 {
598         vm_object_t object;
599
600         if (cred != NULL) {
601                 if (!swap_reserve_by_cred(size, cred))
602                         return (NULL);
603                 crhold(cred);
604         }
605
606         /*
607          * The un_pager.swp.swp_blks trie is initialized by
608          * vm_object_allocate() to ensure the correct order of
609          * visibility to other threads.
610          */
611         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
612             PAGE_MASK + size));
613
614         object->handle = handle;
615         if (cred != NULL) {
616                 object->cred = cred;
617                 object->charge = size;
618         }
619         return (object);
620 }
621
622 /*
623  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
624  *                      its metadata structures.
625  *
626  *      This routine is called from the mmap and fork code to create a new
627  *      OBJT_SWAP object.
628  *
629  *      This routine must ensure that no live duplicate is created for
630  *      the named object request, which is protected against by
631  *      holding the sw_alloc_sx lock in case handle != NULL.
632  */
633 static vm_object_t
634 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
635     vm_ooffset_t offset, struct ucred *cred)
636 {
637         vm_object_t object;
638
639         if (handle != NULL) {
640                 /*
641                  * Reference existing named region or allocate new one.  There
642                  * should not be a race here against swp_pager_meta_build()
643                  * as called from vm_page_remove() in regards to the lookup
644                  * of the handle.
645                  */
646                 sx_xlock(&sw_alloc_sx);
647                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
648                 if (object == NULL) {
649                         object = swap_pager_alloc_init(handle, cred, size,
650                             offset);
651                         if (object != NULL) {
652                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
653                                     object, pager_object_list);
654                         }
655                 }
656                 sx_xunlock(&sw_alloc_sx);
657         } else {
658                 object = swap_pager_alloc_init(handle, cred, size, offset);
659         }
660         return (object);
661 }
662
663 /*
664  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
665  *
666  *      The swap backing for the object is destroyed.  The code is
667  *      designed such that we can reinstantiate it later, but this
668  *      routine is typically called only when the entire object is
669  *      about to be destroyed.
670  *
671  *      The object must be locked.
672  */
673 static void
674 swap_pager_dealloc(vm_object_t object)
675 {
676
677         VM_OBJECT_ASSERT_WLOCKED(object);
678         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
679
680         /*
681          * Remove from list right away so lookups will fail if we block for
682          * pageout completion.
683          */
684         if (object->handle != NULL) {
685                 VM_OBJECT_WUNLOCK(object);
686                 sx_xlock(&sw_alloc_sx);
687                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
688                     pager_object_list);
689                 sx_xunlock(&sw_alloc_sx);
690                 VM_OBJECT_WLOCK(object);
691         }
692
693         vm_object_pip_wait(object, "swpdea");
694
695         /*
696          * Free all remaining metadata.  We only bother to free it from
697          * the swap meta data.  We do not attempt to free swapblk's still
698          * associated with vm_page_t's for this object.  We do not care
699          * if paging is still in progress on some objects.
700          */
701         swp_pager_meta_free_all(object);
702         object->handle = NULL;
703         object->type = OBJT_DEAD;
704 }
705
706 /************************************************************************
707  *                      SWAP PAGER BITMAP ROUTINES                      *
708  ************************************************************************/
709
710 /*
711  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
712  *
713  *      Allocate swap for up to the requested number of pages, and at
714  *      least a minimum number of pages.  The starting swap block number
715  *      (a page index) is returned or SWAPBLK_NONE if the allocation
716  *      failed.
717  *
718  *      Also has the side effect of advising that somebody made a mistake
719  *      when they configured swap and didn't configure enough.
720  *
721  *      This routine may not sleep.
722  *
723  *      We allocate in round-robin fashion from the configured devices.
724  */
725 static daddr_t
726 swp_pager_getswapspace(int *io_npages, int limit)
727 {
728         daddr_t blk;
729         struct swdevt *sp;
730         int mpages, npages;
731
732         blk = SWAPBLK_NONE;
733         mpages = *io_npages;
734         npages = imin(BLIST_MAX_ALLOC, mpages);
735         mtx_lock(&sw_dev_mtx);
736         sp = swdevhd;
737         while (!TAILQ_EMPTY(&swtailq)) {
738                 if (sp == NULL)
739                         sp = TAILQ_FIRST(&swtailq);
740                 if ((sp->sw_flags & SW_CLOSING) == 0)
741                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
742                 if (blk != SWAPBLK_NONE)
743                         break;
744                 sp = TAILQ_NEXT(sp, sw_list);
745                 if (swdevhd == sp) {
746                         if (npages <= limit)
747                                 break;
748                         mpages = npages - 1;
749                         npages >>= 1;
750                 }
751         }
752         if (blk != SWAPBLK_NONE) {
753                 *io_npages = npages;
754                 blk += sp->sw_first;
755                 sp->sw_used += npages;
756                 swap_pager_avail -= npages;
757                 swp_sizecheck();
758                 swdevhd = TAILQ_NEXT(sp, sw_list);
759         } else {
760                 if (swap_pager_full != 2) {
761                         printf("swp_pager_getswapspace(%d): failed\n",
762                             *io_npages);
763                         swap_pager_full = 2;
764                         swap_pager_almost_full = 1;
765                 }
766                 swdevhd = NULL;
767         }
768         mtx_unlock(&sw_dev_mtx);
769         return (blk);
770 }
771
772 static bool
773 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
774 {
775
776         return (blk >= sp->sw_first && blk < sp->sw_end);
777 }
778
779 static void
780 swp_pager_strategy(struct buf *bp)
781 {
782         struct swdevt *sp;
783
784         mtx_lock(&sw_dev_mtx);
785         TAILQ_FOREACH(sp, &swtailq, sw_list) {
786                 if (swp_pager_isondev(bp->b_blkno, sp)) {
787                         mtx_unlock(&sw_dev_mtx);
788                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
789                             unmapped_buf_allowed) {
790                                 bp->b_data = unmapped_buf;
791                                 bp->b_offset = 0;
792                         } else {
793                                 pmap_qenter((vm_offset_t)bp->b_data,
794                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
795                         }
796                         sp->sw_strategy(bp, sp);
797                         return;
798                 }
799         }
800         panic("Swapdev not found");
801 }
802
803
804 /*
805  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
806  *
807  *      This routine returns the specified swap blocks back to the bitmap.
808  *
809  *      This routine may not sleep.
810  */
811 static void
812 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
813 {
814         struct swdevt *sp;
815
816         if (npages == 0)
817                 return;
818         mtx_lock(&sw_dev_mtx);
819         TAILQ_FOREACH(sp, &swtailq, sw_list) {
820                 if (swp_pager_isondev(blk, sp)) {
821                         sp->sw_used -= npages;
822                         /*
823                          * If we are attempting to stop swapping on
824                          * this device, we don't want to mark any
825                          * blocks free lest they be reused.
826                          */
827                         if ((sp->sw_flags & SW_CLOSING) == 0) {
828                                 blist_free(sp->sw_blist, blk - sp->sw_first,
829                                     npages);
830                                 swap_pager_avail += npages;
831                                 swp_sizecheck();
832                         }
833                         mtx_unlock(&sw_dev_mtx);
834                         return;
835                 }
836         }
837         panic("Swapdev not found");
838 }
839
840 /*
841  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
842  */
843 static int
844 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
845 {
846         struct sbuf sbuf;
847         struct swdevt *sp;
848         const char *devname;
849         int error;
850
851         error = sysctl_wire_old_buffer(req, 0);
852         if (error != 0)
853                 return (error);
854         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
855         mtx_lock(&sw_dev_mtx);
856         TAILQ_FOREACH(sp, &swtailq, sw_list) {
857                 if (vn_isdisk(sp->sw_vp, NULL))
858                         devname = devtoname(sp->sw_vp->v_rdev);
859                 else
860                         devname = "[file]";
861                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
862                 blist_stats(sp->sw_blist, &sbuf);
863         }
864         mtx_unlock(&sw_dev_mtx);
865         error = sbuf_finish(&sbuf);
866         sbuf_delete(&sbuf);
867         return (error);
868 }
869
870 /*
871  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
872  *                              range within an object.
873  *
874  *      This is a globally accessible routine.
875  *
876  *      This routine removes swapblk assignments from swap metadata.
877  *
878  *      The external callers of this routine typically have already destroyed
879  *      or renamed vm_page_t's associated with this range in the object so
880  *      we should be ok.
881  *
882  *      The object must be locked.
883  */
884 void
885 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
886 {
887
888         swp_pager_meta_free(object, start, size);
889 }
890
891 /*
892  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
893  *
894  *      Assigns swap blocks to the specified range within the object.  The
895  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
896  *
897  *      Returns 0 on success, -1 on failure.
898  */
899 int
900 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
901 {
902         daddr_t addr, blk, n_free, s_free;
903         int i, j, n;
904
905         swp_pager_init_freerange(&s_free, &n_free);
906         VM_OBJECT_WLOCK(object);
907         for (i = 0; i < size; i += n) {
908                 n = size - i;
909                 blk = swp_pager_getswapspace(&n, 1);
910                 if (blk == SWAPBLK_NONE) {
911                         swp_pager_meta_free(object, start, i);
912                         VM_OBJECT_WUNLOCK(object);
913                         return (-1);
914                 }
915                 for (j = 0; j < n; ++j) {
916                         addr = swp_pager_meta_build(object,
917                             start + i + j, blk + j);
918                         if (addr != SWAPBLK_NONE)
919                                 swp_pager_update_freerange(&s_free, &n_free,
920                                     addr);
921                 }
922         }
923         swp_pager_freeswapspace(s_free, n_free);
924         VM_OBJECT_WUNLOCK(object);
925         return (0);
926 }
927
928 /*
929  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
930  *                      and destroy the source.
931  *
932  *      Copy any valid swapblks from the source to the destination.  In
933  *      cases where both the source and destination have a valid swapblk,
934  *      we keep the destination's.
935  *
936  *      This routine is allowed to sleep.  It may sleep allocating metadata
937  *      indirectly through swp_pager_meta_build() or if paging is still in
938  *      progress on the source.
939  *
940  *      The source object contains no vm_page_t's (which is just as well)
941  *
942  *      The source object is of type OBJT_SWAP.
943  *
944  *      The source and destination objects must be locked.
945  *      Both object locks may temporarily be released.
946  */
947 void
948 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
949     vm_pindex_t offset, int destroysource)
950 {
951         vm_pindex_t i;
952         daddr_t dstaddr, n_free, s_free, srcaddr;
953
954         VM_OBJECT_ASSERT_WLOCKED(srcobject);
955         VM_OBJECT_ASSERT_WLOCKED(dstobject);
956
957         /*
958          * If destroysource is set, we remove the source object from the
959          * swap_pager internal queue now.
960          */
961         if (destroysource && srcobject->handle != NULL) {
962                 vm_object_pip_add(srcobject, 1);
963                 VM_OBJECT_WUNLOCK(srcobject);
964                 vm_object_pip_add(dstobject, 1);
965                 VM_OBJECT_WUNLOCK(dstobject);
966                 sx_xlock(&sw_alloc_sx);
967                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
968                     pager_object_list);
969                 sx_xunlock(&sw_alloc_sx);
970                 VM_OBJECT_WLOCK(dstobject);
971                 vm_object_pip_wakeup(dstobject);
972                 VM_OBJECT_WLOCK(srcobject);
973                 vm_object_pip_wakeup(srcobject);
974         }
975
976         /*
977          * Transfer source to destination.
978          */
979         swp_pager_init_freerange(&s_free, &n_free);
980         for (i = 0; i < dstobject->size; ++i) {
981                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
982                 if (srcaddr == SWAPBLK_NONE)
983                         continue;
984                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
985                 if (dstaddr != SWAPBLK_NONE) {
986                         /*
987                          * Destination has valid swapblk or it is represented
988                          * by a resident page.  We destroy the source block.
989                          */
990                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
991                         continue;
992                 }
993
994                 /*
995                  * Destination has no swapblk and is not resident,
996                  * copy source.
997                  *
998                  * swp_pager_meta_build() can sleep.
999                  */
1000                 vm_object_pip_add(srcobject, 1);
1001                 VM_OBJECT_WUNLOCK(srcobject);
1002                 vm_object_pip_add(dstobject, 1);
1003                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1004                 KASSERT(dstaddr == SWAPBLK_NONE,
1005                     ("Unexpected destination swapblk"));
1006                 vm_object_pip_wakeup(dstobject);
1007                 VM_OBJECT_WLOCK(srcobject);
1008                 vm_object_pip_wakeup(srcobject);
1009         }
1010         swp_pager_freeswapspace(s_free, n_free);
1011
1012         /*
1013          * Free left over swap blocks in source.
1014          *
1015          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1016          * double-remove the object from the swap queues.
1017          */
1018         if (destroysource) {
1019                 swp_pager_meta_free_all(srcobject);
1020                 /*
1021                  * Reverting the type is not necessary, the caller is going
1022                  * to destroy srcobject directly, but I'm doing it here
1023                  * for consistency since we've removed the object from its
1024                  * queues.
1025                  */
1026                 srcobject->type = OBJT_DEFAULT;
1027         }
1028 }
1029
1030 /*
1031  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1032  *                              the requested page.
1033  *
1034  *      We determine whether good backing store exists for the requested
1035  *      page and return TRUE if it does, FALSE if it doesn't.
1036  *
1037  *      If TRUE, we also try to determine how much valid, contiguous backing
1038  *      store exists before and after the requested page.
1039  */
1040 static boolean_t
1041 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1042     int *after)
1043 {
1044         daddr_t blk, blk0;
1045         int i;
1046
1047         VM_OBJECT_ASSERT_LOCKED(object);
1048
1049         /*
1050          * do we have good backing store at the requested index ?
1051          */
1052         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1053         if (blk0 == SWAPBLK_NONE) {
1054                 if (before)
1055                         *before = 0;
1056                 if (after)
1057                         *after = 0;
1058                 return (FALSE);
1059         }
1060
1061         /*
1062          * find backwards-looking contiguous good backing store
1063          */
1064         if (before != NULL) {
1065                 for (i = 1; i < SWB_NPAGES; i++) {
1066                         if (i > pindex)
1067                                 break;
1068                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1069                         if (blk != blk0 - i)
1070                                 break;
1071                 }
1072                 *before = i - 1;
1073         }
1074
1075         /*
1076          * find forward-looking contiguous good backing store
1077          */
1078         if (after != NULL) {
1079                 for (i = 1; i < SWB_NPAGES; i++) {
1080                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1081                         if (blk != blk0 + i)
1082                                 break;
1083                 }
1084                 *after = i - 1;
1085         }
1086         return (TRUE);
1087 }
1088
1089 /*
1090  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1091  *
1092  *      This removes any associated swap backing store, whether valid or
1093  *      not, from the page.
1094  *
1095  *      This routine is typically called when a page is made dirty, at
1096  *      which point any associated swap can be freed.  MADV_FREE also
1097  *      calls us in a special-case situation
1098  *
1099  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1100  *      should make the page dirty before calling this routine.  This routine
1101  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1102  *      depends on it.
1103  *
1104  *      This routine may not sleep.
1105  *
1106  *      The object containing the page must be locked.
1107  */
1108 static void
1109 swap_pager_unswapped(vm_page_t m)
1110 {
1111         daddr_t srcaddr;
1112
1113         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1114         if (srcaddr != SWAPBLK_NONE)
1115                 swp_pager_freeswapspace(srcaddr, 1);
1116 }
1117
1118 /*
1119  * swap_pager_getpages() - bring pages in from swap
1120  *
1121  *      Attempt to page in the pages in array "ma" of length "count".  The
1122  *      caller may optionally specify that additional pages preceding and
1123  *      succeeding the specified range be paged in.  The number of such pages
1124  *      is returned in the "rbehind" and "rahead" parameters, and they will
1125  *      be in the inactive queue upon return.
1126  *
1127  *      The pages in "ma" must be busied and will remain busied upon return.
1128  */
1129 static int
1130 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1131     int *rahead)
1132 {
1133         struct buf *bp;
1134         vm_page_t bm, mpred, msucc, p;
1135         vm_pindex_t pindex;
1136         daddr_t blk;
1137         int i, maxahead, maxbehind, reqcount;
1138
1139         reqcount = count;
1140
1141         /*
1142          * Determine the final number of read-behind pages and
1143          * allocate them BEFORE releasing the object lock.  Otherwise,
1144          * there can be a problematic race with vm_object_split().
1145          * Specifically, vm_object_split() might first transfer pages
1146          * that precede ma[0] in the current object to a new object,
1147          * and then this function incorrectly recreates those pages as
1148          * read-behind pages in the current object.
1149          */
1150         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1151                 return (VM_PAGER_FAIL);
1152
1153         /*
1154          * Clip the readahead and readbehind ranges to exclude resident pages.
1155          */
1156         if (rahead != NULL) {
1157                 KASSERT(reqcount - 1 <= maxahead,
1158                     ("page count %d extends beyond swap block", reqcount));
1159                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1160                 pindex = ma[reqcount - 1]->pindex;
1161                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1162                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1163                         *rahead = msucc->pindex - pindex - 1;
1164         }
1165         if (rbehind != NULL) {
1166                 *rbehind = imin(*rbehind, maxbehind);
1167                 pindex = ma[0]->pindex;
1168                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1169                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1170                         *rbehind = pindex - mpred->pindex - 1;
1171         }
1172
1173         bm = ma[0];
1174         for (i = 0; i < count; i++)
1175                 ma[i]->oflags |= VPO_SWAPINPROG;
1176
1177         /*
1178          * Allocate readahead and readbehind pages.
1179          */
1180         if (rbehind != NULL) {
1181                 for (i = 1; i <= *rbehind; i++) {
1182                         p = vm_page_alloc(object, ma[0]->pindex - i,
1183                             VM_ALLOC_NORMAL);
1184                         if (p == NULL)
1185                                 break;
1186                         p->oflags |= VPO_SWAPINPROG;
1187                         bm = p;
1188                 }
1189                 *rbehind = i - 1;
1190         }
1191         if (rahead != NULL) {
1192                 for (i = 0; i < *rahead; i++) {
1193                         p = vm_page_alloc(object,
1194                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1195                         if (p == NULL)
1196                                 break;
1197                         p->oflags |= VPO_SWAPINPROG;
1198                 }
1199                 *rahead = i;
1200         }
1201         if (rbehind != NULL)
1202                 count += *rbehind;
1203         if (rahead != NULL)
1204                 count += *rahead;
1205
1206         vm_object_pip_add(object, count);
1207
1208         pindex = bm->pindex;
1209         blk = swp_pager_meta_ctl(object, pindex, 0);
1210         KASSERT(blk != SWAPBLK_NONE,
1211             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1212
1213         VM_OBJECT_WUNLOCK(object);
1214         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1215         /* Pages cannot leave the object while busy. */
1216         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1217                 MPASS(p->pindex == bm->pindex + i);
1218                 bp->b_pages[i] = p;
1219         }
1220
1221         bp->b_flags |= B_PAGING;
1222         bp->b_iocmd = BIO_READ;
1223         bp->b_iodone = swp_pager_async_iodone;
1224         bp->b_rcred = crhold(thread0.td_ucred);
1225         bp->b_wcred = crhold(thread0.td_ucred);
1226         bp->b_blkno = blk;
1227         bp->b_bcount = PAGE_SIZE * count;
1228         bp->b_bufsize = PAGE_SIZE * count;
1229         bp->b_npages = count;
1230         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1231         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1232
1233         VM_CNT_INC(v_swapin);
1234         VM_CNT_ADD(v_swappgsin, count);
1235
1236         /*
1237          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1238          * this point because we automatically release it on completion.
1239          * Instead, we look at the one page we are interested in which we
1240          * still hold a lock on even through the I/O completion.
1241          *
1242          * The other pages in our ma[] array are also released on completion,
1243          * so we cannot assume they are valid anymore either.
1244          *
1245          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1246          */
1247         BUF_KERNPROC(bp);
1248         swp_pager_strategy(bp);
1249
1250         /*
1251          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1252          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1253          * is set in the metadata for each page in the request.
1254          */
1255         VM_OBJECT_WLOCK(object);
1256         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1257                 ma[0]->oflags |= VPO_SWAPSLEEP;
1258                 VM_CNT_INC(v_intrans);
1259                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1260                     "swread", hz * 20)) {
1261                         printf(
1262 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1263                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1264                 }
1265         }
1266
1267         /*
1268          * If we had an unrecoverable read error pages will not be valid.
1269          */
1270         for (i = 0; i < reqcount; i++)
1271                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1272                         return (VM_PAGER_ERROR);
1273
1274         return (VM_PAGER_OK);
1275
1276         /*
1277          * A final note: in a low swap situation, we cannot deallocate swap
1278          * and mark a page dirty here because the caller is likely to mark
1279          * the page clean when we return, causing the page to possibly revert
1280          * to all-zero's later.
1281          */
1282 }
1283
1284 /*
1285  *      swap_pager_getpages_async():
1286  *
1287  *      Right now this is emulation of asynchronous operation on top of
1288  *      swap_pager_getpages().
1289  */
1290 static int
1291 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1292     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1293 {
1294         int r, error;
1295
1296         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1297         VM_OBJECT_WUNLOCK(object);
1298         switch (r) {
1299         case VM_PAGER_OK:
1300                 error = 0;
1301                 break;
1302         case VM_PAGER_ERROR:
1303                 error = EIO;
1304                 break;
1305         case VM_PAGER_FAIL:
1306                 error = EINVAL;
1307                 break;
1308         default:
1309                 panic("unhandled swap_pager_getpages() error %d", r);
1310         }
1311         (iodone)(arg, ma, count, error);
1312         VM_OBJECT_WLOCK(object);
1313
1314         return (r);
1315 }
1316
1317 /*
1318  *      swap_pager_putpages:
1319  *
1320  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1321  *
1322  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1323  *      are automatically converted to SWAP objects.
1324  *
1325  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1326  *      vm_page reservation system coupled with properly written VFS devices
1327  *      should ensure that no low-memory deadlock occurs.  This is an area
1328  *      which needs work.
1329  *
1330  *      The parent has N vm_object_pip_add() references prior to
1331  *      calling us and will remove references for rtvals[] that are
1332  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1333  *      completion.
1334  *
1335  *      The parent has soft-busy'd the pages it passes us and will unbusy
1336  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1337  *      We need to unbusy the rest on I/O completion.
1338  */
1339 static void
1340 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1341     int flags, int *rtvals)
1342 {
1343         struct buf *bp;
1344         daddr_t addr, blk, n_free, s_free;
1345         vm_page_t mreq;
1346         int i, j, n;
1347         bool async;
1348
1349         KASSERT(count == 0 || ma[0]->object == object,
1350             ("%s: object mismatch %p/%p",
1351             __func__, object, ma[0]->object));
1352
1353         /*
1354          * Step 1
1355          *
1356          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1357          */
1358         if (object->type != OBJT_SWAP) {
1359                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1360                 KASSERT(addr == SWAPBLK_NONE,
1361                     ("unexpected object swap block"));
1362         }
1363         VM_OBJECT_WUNLOCK(object);
1364         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1365         swp_pager_init_freerange(&s_free, &n_free);
1366
1367         /*
1368          * Step 2
1369          *
1370          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1371          * The page is left dirty until the pageout operation completes
1372          * successfully.
1373          */
1374         for (i = 0; i < count; i += n) {
1375                 /* Maximum I/O size is limited by maximum swap block size. */
1376                 n = min(count - i, nsw_cluster_max);
1377
1378                 /* Get a block of swap of size up to size n. */
1379                 blk = swp_pager_getswapspace(&n, 4);
1380                 if (blk == SWAPBLK_NONE) {
1381                         for (j = 0; j < n; ++j)
1382                                 rtvals[i + j] = VM_PAGER_FAIL;
1383                         continue;
1384                 }
1385
1386                 /*
1387                  * All I/O parameters have been satisfied.  Build the I/O
1388                  * request and assign the swap space.
1389                  */
1390                 if (async) {
1391                         mtx_lock(&swbuf_mtx);
1392                         while (nsw_wcount_async == 0)
1393                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1394                                     "swbufa", 0);
1395                         nsw_wcount_async--;
1396                         mtx_unlock(&swbuf_mtx);
1397                 }
1398                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1399                 if (async)
1400                         bp->b_flags = B_ASYNC;
1401                 bp->b_flags |= B_PAGING;
1402                 bp->b_iocmd = BIO_WRITE;
1403
1404                 bp->b_rcred = crhold(thread0.td_ucred);
1405                 bp->b_wcred = crhold(thread0.td_ucred);
1406                 bp->b_bcount = PAGE_SIZE * n;
1407                 bp->b_bufsize = PAGE_SIZE * n;
1408                 bp->b_blkno = blk;
1409
1410                 VM_OBJECT_WLOCK(object);
1411                 for (j = 0; j < n; ++j) {
1412                         mreq = ma[i + j];
1413                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1414                             blk + j);
1415                         if (addr != SWAPBLK_NONE)
1416                                 swp_pager_update_freerange(&s_free, &n_free,
1417                                     addr);
1418                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1419                         mreq->oflags |= VPO_SWAPINPROG;
1420                         bp->b_pages[j] = mreq;
1421                 }
1422                 VM_OBJECT_WUNLOCK(object);
1423                 bp->b_npages = n;
1424                 /*
1425                  * Must set dirty range for NFS to work.
1426                  */
1427                 bp->b_dirtyoff = 0;
1428                 bp->b_dirtyend = bp->b_bcount;
1429
1430                 VM_CNT_INC(v_swapout);
1431                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1432
1433                 /*
1434                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1435                  * can call the async completion routine at the end of a
1436                  * synchronous I/O operation.  Otherwise, our caller would
1437                  * perform duplicate unbusy and wakeup operations on the page
1438                  * and object, respectively.
1439                  */
1440                 for (j = 0; j < n; j++)
1441                         rtvals[i + j] = VM_PAGER_PEND;
1442
1443                 /*
1444                  * asynchronous
1445                  *
1446                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1447                  */
1448                 if (async) {
1449                         bp->b_iodone = swp_pager_async_iodone;
1450                         BUF_KERNPROC(bp);
1451                         swp_pager_strategy(bp);
1452                         continue;
1453                 }
1454
1455                 /*
1456                  * synchronous
1457                  *
1458                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1459                  */
1460                 bp->b_iodone = bdone;
1461                 swp_pager_strategy(bp);
1462
1463                 /*
1464                  * Wait for the sync I/O to complete.
1465                  */
1466                 bwait(bp, PVM, "swwrt");
1467
1468                 /*
1469                  * Now that we are through with the bp, we can call the
1470                  * normal async completion, which frees everything up.
1471                  */
1472                 swp_pager_async_iodone(bp);
1473         }
1474         swp_pager_freeswapspace(s_free, n_free);
1475         VM_OBJECT_WLOCK(object);
1476 }
1477
1478 /*
1479  *      swp_pager_async_iodone:
1480  *
1481  *      Completion routine for asynchronous reads and writes from/to swap.
1482  *      Also called manually by synchronous code to finish up a bp.
1483  *
1484  *      This routine may not sleep.
1485  */
1486 static void
1487 swp_pager_async_iodone(struct buf *bp)
1488 {
1489         int i;
1490         vm_object_t object = NULL;
1491
1492         /*
1493          * Report error - unless we ran out of memory, in which case
1494          * we've already logged it in swapgeom_strategy().
1495          */
1496         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1497                 printf(
1498                     "swap_pager: I/O error - %s failed; blkno %ld,"
1499                         "size %ld, error %d\n",
1500                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1501                     (long)bp->b_blkno,
1502                     (long)bp->b_bcount,
1503                     bp->b_error
1504                 );
1505         }
1506
1507         /*
1508          * remove the mapping for kernel virtual
1509          */
1510         if (buf_mapped(bp))
1511                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1512         else
1513                 bp->b_data = bp->b_kvabase;
1514
1515         if (bp->b_npages) {
1516                 object = bp->b_pages[0]->object;
1517                 VM_OBJECT_WLOCK(object);
1518         }
1519
1520         /*
1521          * cleanup pages.  If an error occurs writing to swap, we are in
1522          * very serious trouble.  If it happens to be a disk error, though,
1523          * we may be able to recover by reassigning the swap later on.  So
1524          * in this case we remove the m->swapblk assignment for the page
1525          * but do not free it in the rlist.  The errornous block(s) are thus
1526          * never reallocated as swap.  Redirty the page and continue.
1527          */
1528         for (i = 0; i < bp->b_npages; ++i) {
1529                 vm_page_t m = bp->b_pages[i];
1530
1531                 m->oflags &= ~VPO_SWAPINPROG;
1532                 if (m->oflags & VPO_SWAPSLEEP) {
1533                         m->oflags &= ~VPO_SWAPSLEEP;
1534                         wakeup(&object->handle);
1535                 }
1536
1537                 if (bp->b_ioflags & BIO_ERROR) {
1538                         /*
1539                          * If an error occurs I'd love to throw the swapblk
1540                          * away without freeing it back to swapspace, so it
1541                          * can never be used again.  But I can't from an
1542                          * interrupt.
1543                          */
1544                         if (bp->b_iocmd == BIO_READ) {
1545                                 /*
1546                                  * NOTE: for reads, m->dirty will probably
1547                                  * be overridden by the original caller of
1548                                  * getpages so don't play cute tricks here.
1549                                  */
1550                                 m->valid = 0;
1551                         } else {
1552                                 /*
1553                                  * If a write error occurs, reactivate page
1554                                  * so it doesn't clog the inactive list,
1555                                  * then finish the I/O.
1556                                  */
1557                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1558                                 vm_page_lock(m);
1559                                 vm_page_activate(m);
1560                                 vm_page_unlock(m);
1561                                 vm_page_sunbusy(m);
1562                         }
1563                 } else if (bp->b_iocmd == BIO_READ) {
1564                         /*
1565                          * NOTE: for reads, m->dirty will probably be
1566                          * overridden by the original caller of getpages so
1567                          * we cannot set them in order to free the underlying
1568                          * swap in a low-swap situation.  I don't think we'd
1569                          * want to do that anyway, but it was an optimization
1570                          * that existed in the old swapper for a time before
1571                          * it got ripped out due to precisely this problem.
1572                          */
1573                         KASSERT(!pmap_page_is_mapped(m),
1574                             ("swp_pager_async_iodone: page %p is mapped", m));
1575                         KASSERT(m->dirty == 0,
1576                             ("swp_pager_async_iodone: page %p is dirty", m));
1577
1578                         m->valid = VM_PAGE_BITS_ALL;
1579                         if (i < bp->b_pgbefore ||
1580                             i >= bp->b_npages - bp->b_pgafter)
1581                                 vm_page_readahead_finish(m);
1582                 } else {
1583                         /*
1584                          * For write success, clear the dirty
1585                          * status, then finish the I/O ( which decrements the
1586                          * busy count and possibly wakes waiter's up ).
1587                          * A page is only written to swap after a period of
1588                          * inactivity.  Therefore, we do not expect it to be
1589                          * reused.
1590                          */
1591                         KASSERT(!pmap_page_is_write_mapped(m),
1592                             ("swp_pager_async_iodone: page %p is not write"
1593                             " protected", m));
1594                         vm_page_undirty(m);
1595                         vm_page_lock(m);
1596                         vm_page_deactivate_noreuse(m);
1597                         vm_page_unlock(m);
1598                         vm_page_sunbusy(m);
1599                 }
1600         }
1601
1602         /*
1603          * adjust pip.  NOTE: the original parent may still have its own
1604          * pip refs on the object.
1605          */
1606         if (object != NULL) {
1607                 vm_object_pip_wakeupn(object, bp->b_npages);
1608                 VM_OBJECT_WUNLOCK(object);
1609         }
1610
1611         /*
1612          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1613          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1614          * trigger a KASSERT in relpbuf().
1615          */
1616         if (bp->b_vp) {
1617                     bp->b_vp = NULL;
1618                     bp->b_bufobj = NULL;
1619         }
1620         /*
1621          * release the physical I/O buffer
1622          */
1623         if (bp->b_flags & B_ASYNC) {
1624                 mtx_lock(&swbuf_mtx);
1625                 if (++nsw_wcount_async == 1)
1626                         wakeup(&nsw_wcount_async);
1627                 mtx_unlock(&swbuf_mtx);
1628         }
1629         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1630 }
1631
1632 int
1633 swap_pager_nswapdev(void)
1634 {
1635
1636         return (nswapdev);
1637 }
1638
1639 static void
1640 swp_pager_force_dirty(vm_page_t m)
1641 {
1642
1643         vm_page_dirty(m);
1644 #ifdef INVARIANTS
1645         vm_page_lock(m);
1646         if (!vm_page_wired(m) && m->queue == PQ_NONE)
1647                 panic("page %p is neither wired nor queued", m);
1648         vm_page_unlock(m);
1649 #endif
1650         vm_page_xunbusy(m);
1651         swap_pager_unswapped(m);
1652 }
1653
1654 static void
1655 swp_pager_force_launder(vm_page_t m)
1656 {
1657
1658         vm_page_dirty(m);
1659         vm_page_lock(m);
1660         vm_page_launder(m);
1661         vm_page_unlock(m);
1662         vm_page_xunbusy(m);
1663         swap_pager_unswapped(m);
1664 }
1665
1666 /*
1667  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1668  *
1669  *      This routine dissociates pages starting at the given index within an
1670  *      object from their backing store, paging them in if they do not reside
1671  *      in memory.  Pages that are paged in are marked dirty and placed in the
1672  *      laundry queue.  Pages are marked dirty because they no longer have
1673  *      backing store.  They are placed in the laundry queue because they have
1674  *      not been accessed recently.  Otherwise, they would already reside in
1675  *      memory.
1676  */
1677 static void
1678 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1679 {
1680         vm_page_t ma[npages];
1681         int i, j;
1682
1683         KASSERT(npages > 0, ("%s: No pages", __func__));
1684         KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1685             ("%s: Too many pages: %d", __func__, npages));
1686         vm_object_pip_add(object, npages);
1687         vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1688         for (i = j = 0;; i++) {
1689                 /* Count nonresident pages, to page-in all at once. */
1690                 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1691                         continue;
1692                 if (j < i) {
1693                         /* Page-in nonresident pages. Mark for laundering. */
1694                         if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1695                             NULL) != VM_PAGER_OK)
1696                                 panic("%s: read from swap failed", __func__);
1697                         do {
1698                                 swp_pager_force_launder(ma[j]);
1699                         } while (++j < i);
1700                 }
1701                 if (i == npages)
1702                         break;
1703                 /* Mark dirty a resident page. */
1704                 swp_pager_force_dirty(ma[j++]);
1705         }
1706         vm_object_pip_wakeupn(object, npages);
1707 }
1708
1709 /*
1710  *      swap_pager_swapoff_object:
1711  *
1712  *      Page in all of the pages that have been paged out for an object
1713  *      to a swap device.
1714  */
1715 static void
1716 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1717 {
1718         struct swblk *sb;
1719         vm_pindex_t pi, s_pindex;
1720         daddr_t blk, n_blks, s_blk;
1721         int i;
1722
1723         n_blks = 0;
1724         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1725             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1726                 for (i = 0; i < SWAP_META_PAGES; i++) {
1727                         blk = sb->d[i];
1728                         if (!swp_pager_isondev(blk, sp))
1729                                 blk = SWAPBLK_NONE;
1730
1731                         /*
1732                          * If there are no blocks/pages accumulated, start a new
1733                          * accumulation here.
1734                          */
1735                         if (n_blks == 0) {
1736                                 if (blk != SWAPBLK_NONE) {
1737                                         s_blk = blk;
1738                                         s_pindex = sb->p + i;
1739                                         n_blks = 1;
1740                                 }
1741                                 continue;
1742                         }
1743
1744                         /*
1745                          * If the accumulation can be extended without breaking
1746                          * the sequence of consecutive blocks and pages that
1747                          * swp_pager_force_pagein() depends on, do so.
1748                          */
1749                         if (n_blks < MAXPHYS / PAGE_SIZE &&
1750                             s_blk + n_blks == blk &&
1751                             s_pindex + n_blks == sb->p + i) {
1752                                 ++n_blks;
1753                                 continue;
1754                         }
1755
1756                         /*
1757                          * The sequence of consecutive blocks and pages cannot
1758                          * be extended, so page them all in here.  Then,
1759                          * because doing so involves releasing and reacquiring
1760                          * a lock that protects the swap block pctrie, do not
1761                          * rely on the current swap block.  Break this loop and
1762                          * re-fetch the same pindex from the pctrie again.
1763                          */
1764                         swp_pager_force_pagein(object, s_pindex, n_blks);
1765                         n_blks = 0;
1766                         break;
1767                 }
1768                 if (i == SWAP_META_PAGES)
1769                         pi = sb->p + SWAP_META_PAGES;
1770         }
1771         if (n_blks > 0)
1772                 swp_pager_force_pagein(object, s_pindex, n_blks);
1773 }
1774
1775 /*
1776  *      swap_pager_swapoff:
1777  *
1778  *      Page in all of the pages that have been paged out to the
1779  *      given device.  The corresponding blocks in the bitmap must be
1780  *      marked as allocated and the device must be flagged SW_CLOSING.
1781  *      There may be no processes swapped out to the device.
1782  *
1783  *      This routine may block.
1784  */
1785 static void
1786 swap_pager_swapoff(struct swdevt *sp)
1787 {
1788         vm_object_t object;
1789         int retries;
1790
1791         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1792
1793         retries = 0;
1794 full_rescan:
1795         mtx_lock(&vm_object_list_mtx);
1796         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1797                 if (object->type != OBJT_SWAP)
1798                         continue;
1799                 mtx_unlock(&vm_object_list_mtx);
1800                 /* Depends on type-stability. */
1801                 VM_OBJECT_WLOCK(object);
1802
1803                 /*
1804                  * Dead objects are eventually terminated on their own.
1805                  */
1806                 if ((object->flags & OBJ_DEAD) != 0)
1807                         goto next_obj;
1808
1809                 /*
1810                  * Sync with fences placed after pctrie
1811                  * initialization.  We must not access pctrie below
1812                  * unless we checked that our object is swap and not
1813                  * dead.
1814                  */
1815                 atomic_thread_fence_acq();
1816                 if (object->type != OBJT_SWAP)
1817                         goto next_obj;
1818
1819                 swap_pager_swapoff_object(sp, object);
1820 next_obj:
1821                 VM_OBJECT_WUNLOCK(object);
1822                 mtx_lock(&vm_object_list_mtx);
1823         }
1824         mtx_unlock(&vm_object_list_mtx);
1825
1826         if (sp->sw_used) {
1827                 /*
1828                  * Objects may be locked or paging to the device being
1829                  * removed, so we will miss their pages and need to
1830                  * make another pass.  We have marked this device as
1831                  * SW_CLOSING, so the activity should finish soon.
1832                  */
1833                 retries++;
1834                 if (retries > 100) {
1835                         panic("swapoff: failed to locate %d swap blocks",
1836                             sp->sw_used);
1837                 }
1838                 pause("swpoff", hz / 20);
1839                 goto full_rescan;
1840         }
1841         EVENTHANDLER_INVOKE(swapoff, sp);
1842 }
1843
1844 /************************************************************************
1845  *                              SWAP META DATA                          *
1846  ************************************************************************
1847  *
1848  *      These routines manipulate the swap metadata stored in the
1849  *      OBJT_SWAP object.
1850  *
1851  *      Swap metadata is implemented with a global hash and not directly
1852  *      linked into the object.  Instead the object simply contains
1853  *      appropriate tracking counters.
1854  */
1855
1856 /*
1857  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1858  */
1859 static bool
1860 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1861 {
1862         int i;
1863
1864         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1865         for (i = start; i < limit; i++) {
1866                 if (sb->d[i] != SWAPBLK_NONE)
1867                         return (false);
1868         }
1869         return (true);
1870 }
1871    
1872 /*
1873  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1874  *
1875  *      We first convert the object to a swap object if it is a default
1876  *      object.
1877  *
1878  *      The specified swapblk is added to the object's swap metadata.  If
1879  *      the swapblk is not valid, it is freed instead.  Any previously
1880  *      assigned swapblk is returned.
1881  */
1882 static daddr_t
1883 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1884 {
1885         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1886         struct swblk *sb, *sb1;
1887         vm_pindex_t modpi, rdpi;
1888         daddr_t prev_swapblk;
1889         int error, i;
1890
1891         VM_OBJECT_ASSERT_WLOCKED(object);
1892
1893         /*
1894          * Convert default object to swap object if necessary
1895          */
1896         if (object->type != OBJT_SWAP) {
1897                 pctrie_init(&object->un_pager.swp.swp_blks);
1898
1899                 /*
1900                  * Ensure that swap_pager_swapoff()'s iteration over
1901                  * object_list does not see a garbage pctrie.
1902                  */
1903                 atomic_thread_fence_rel();
1904
1905                 object->type = OBJT_SWAP;
1906                 KASSERT(object->handle == NULL, ("default pager with handle"));
1907         }
1908
1909         rdpi = rounddown(pindex, SWAP_META_PAGES);
1910         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1911         if (sb == NULL) {
1912                 if (swapblk == SWAPBLK_NONE)
1913                         return (SWAPBLK_NONE);
1914                 for (;;) {
1915                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1916                             pageproc ? M_USE_RESERVE : 0));
1917                         if (sb != NULL) {
1918                                 sb->p = rdpi;
1919                                 for (i = 0; i < SWAP_META_PAGES; i++)
1920                                         sb->d[i] = SWAPBLK_NONE;
1921                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1922                                     1, 0))
1923                                         printf("swblk zone ok\n");
1924                                 break;
1925                         }
1926                         VM_OBJECT_WUNLOCK(object);
1927                         if (uma_zone_exhausted(swblk_zone)) {
1928                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1929                                     0, 1))
1930                                         printf("swap blk zone exhausted, "
1931                                             "increase kern.maxswzone\n");
1932                                 vm_pageout_oom(VM_OOM_SWAPZ);
1933                                 pause("swzonxb", 10);
1934                         } else
1935                                 uma_zwait(swblk_zone);
1936                         VM_OBJECT_WLOCK(object);
1937                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1938                             rdpi);
1939                         if (sb != NULL)
1940                                 /*
1941                                  * Somebody swapped out a nearby page,
1942                                  * allocating swblk at the rdpi index,
1943                                  * while we dropped the object lock.
1944                                  */
1945                                 goto allocated;
1946                 }
1947                 for (;;) {
1948                         error = SWAP_PCTRIE_INSERT(
1949                             &object->un_pager.swp.swp_blks, sb);
1950                         if (error == 0) {
1951                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1952                                     1, 0))
1953                                         printf("swpctrie zone ok\n");
1954                                 break;
1955                         }
1956                         VM_OBJECT_WUNLOCK(object);
1957                         if (uma_zone_exhausted(swpctrie_zone)) {
1958                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1959                                     0, 1))
1960                                         printf("swap pctrie zone exhausted, "
1961                                             "increase kern.maxswzone\n");
1962                                 vm_pageout_oom(VM_OOM_SWAPZ);
1963                                 pause("swzonxp", 10);
1964                         } else
1965                                 uma_zwait(swpctrie_zone);
1966                         VM_OBJECT_WLOCK(object);
1967                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1968                             rdpi);
1969                         if (sb1 != NULL) {
1970                                 uma_zfree(swblk_zone, sb);
1971                                 sb = sb1;
1972                                 goto allocated;
1973                         }
1974                 }
1975         }
1976 allocated:
1977         MPASS(sb->p == rdpi);
1978
1979         modpi = pindex % SWAP_META_PAGES;
1980         /* Return prior contents of metadata. */
1981         prev_swapblk = sb->d[modpi];
1982         /* Enter block into metadata. */
1983         sb->d[modpi] = swapblk;
1984
1985         /*
1986          * Free the swblk if we end up with the empty page run.
1987          */
1988         if (swapblk == SWAPBLK_NONE &&
1989             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1990                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1991                 uma_zfree(swblk_zone, sb);
1992         }
1993         return (prev_swapblk);
1994 }
1995
1996 /*
1997  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1998  *
1999  *      The requested range of blocks is freed, with any associated swap
2000  *      returned to the swap bitmap.
2001  *
2002  *      This routine will free swap metadata structures as they are cleaned
2003  *      out.  This routine does *NOT* operate on swap metadata associated
2004  *      with resident pages.
2005  */
2006 static void
2007 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2008 {
2009         struct swblk *sb;
2010         daddr_t n_free, s_free;
2011         vm_pindex_t last;
2012         int i, limit, start;
2013
2014         VM_OBJECT_ASSERT_WLOCKED(object);
2015         if (object->type != OBJT_SWAP || count == 0)
2016                 return;
2017
2018         swp_pager_init_freerange(&s_free, &n_free);
2019         last = pindex + count;
2020         for (;;) {
2021                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2022                     rounddown(pindex, SWAP_META_PAGES));
2023                 if (sb == NULL || sb->p >= last)
2024                         break;
2025                 start = pindex > sb->p ? pindex - sb->p : 0;
2026                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2027                     SWAP_META_PAGES;
2028                 for (i = start; i < limit; i++) {
2029                         if (sb->d[i] == SWAPBLK_NONE)
2030                                 continue;
2031                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2032                         sb->d[i] = SWAPBLK_NONE;
2033                 }
2034                 pindex = sb->p + SWAP_META_PAGES;
2035                 if (swp_pager_swblk_empty(sb, 0, start) &&
2036                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2037                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2038                             sb->p);
2039                         uma_zfree(swblk_zone, sb);
2040                 }
2041         }
2042         swp_pager_freeswapspace(s_free, n_free);
2043 }
2044
2045 /*
2046  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2047  *
2048  *      This routine locates and destroys all swap metadata associated with
2049  *      an object.
2050  */
2051 static void
2052 swp_pager_meta_free_all(vm_object_t object)
2053 {
2054         struct swblk *sb;
2055         daddr_t n_free, s_free;
2056         vm_pindex_t pindex;
2057         int i;
2058
2059         VM_OBJECT_ASSERT_WLOCKED(object);
2060         if (object->type != OBJT_SWAP)
2061                 return;
2062
2063         swp_pager_init_freerange(&s_free, &n_free);
2064         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2065             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2066                 pindex = sb->p + SWAP_META_PAGES;
2067                 for (i = 0; i < SWAP_META_PAGES; i++) {
2068                         if (sb->d[i] == SWAPBLK_NONE)
2069                                 continue;
2070                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2071                 }
2072                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2073                 uma_zfree(swblk_zone, sb);
2074         }
2075         swp_pager_freeswapspace(s_free, n_free);
2076 }
2077
2078 /*
2079  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2080  *
2081  *      This routine is capable of looking up, or removing swapblk
2082  *      assignments in the swap meta data.  It returns the swapblk being
2083  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2084  *
2085  *      When acting on a busy resident page and paging is in progress, we
2086  *      have to wait until paging is complete but otherwise can act on the
2087  *      busy page.
2088  *
2089  *      SWM_POP         remove from meta data but do not free it
2090  */
2091 static daddr_t
2092 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2093 {
2094         struct swblk *sb;
2095         daddr_t r1;
2096
2097         if ((flags & SWM_POP) != 0)
2098                 VM_OBJECT_ASSERT_WLOCKED(object);
2099         else
2100                 VM_OBJECT_ASSERT_LOCKED(object);
2101
2102         /*
2103          * The meta data only exists if the object is OBJT_SWAP
2104          * and even then might not be allocated yet.
2105          */
2106         if (object->type != OBJT_SWAP)
2107                 return (SWAPBLK_NONE);
2108
2109         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2110             rounddown(pindex, SWAP_META_PAGES));
2111         if (sb == NULL)
2112                 return (SWAPBLK_NONE);
2113         r1 = sb->d[pindex % SWAP_META_PAGES];
2114         if (r1 == SWAPBLK_NONE)
2115                 return (SWAPBLK_NONE);
2116         if ((flags & SWM_POP) != 0) {
2117                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2118                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2119                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2120                             rounddown(pindex, SWAP_META_PAGES));
2121                         uma_zfree(swblk_zone, sb);
2122                 }
2123         }
2124         return (r1);
2125 }
2126
2127 /*
2128  * Returns the least page index which is greater than or equal to the
2129  * parameter pindex and for which there is a swap block allocated.
2130  * Returns object's size if the object's type is not swap or if there
2131  * are no allocated swap blocks for the object after the requested
2132  * pindex.
2133  */
2134 vm_pindex_t
2135 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2136 {
2137         struct swblk *sb;
2138         int i;
2139
2140         VM_OBJECT_ASSERT_LOCKED(object);
2141         if (object->type != OBJT_SWAP)
2142                 return (object->size);
2143
2144         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2145             rounddown(pindex, SWAP_META_PAGES));
2146         if (sb == NULL)
2147                 return (object->size);
2148         if (sb->p < pindex) {
2149                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2150                         if (sb->d[i] != SWAPBLK_NONE)
2151                                 return (sb->p + i);
2152                 }
2153                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2154                     roundup(pindex, SWAP_META_PAGES));
2155                 if (sb == NULL)
2156                         return (object->size);
2157         }
2158         for (i = 0; i < SWAP_META_PAGES; i++) {
2159                 if (sb->d[i] != SWAPBLK_NONE)
2160                         return (sb->p + i);
2161         }
2162
2163         /*
2164          * We get here if a swblk is present in the trie but it
2165          * doesn't map any blocks.
2166          */
2167         MPASS(0);
2168         return (object->size);
2169 }
2170
2171 /*
2172  * System call swapon(name) enables swapping on device name,
2173  * which must be in the swdevsw.  Return EBUSY
2174  * if already swapping on this device.
2175  */
2176 #ifndef _SYS_SYSPROTO_H_
2177 struct swapon_args {
2178         char *name;
2179 };
2180 #endif
2181
2182 /*
2183  * MPSAFE
2184  */
2185 /* ARGSUSED */
2186 int
2187 sys_swapon(struct thread *td, struct swapon_args *uap)
2188 {
2189         struct vattr attr;
2190         struct vnode *vp;
2191         struct nameidata nd;
2192         int error;
2193
2194         error = priv_check(td, PRIV_SWAPON);
2195         if (error)
2196                 return (error);
2197
2198         sx_xlock(&swdev_syscall_lock);
2199
2200         /*
2201          * Swap metadata may not fit in the KVM if we have physical
2202          * memory of >1GB.
2203          */
2204         if (swblk_zone == NULL) {
2205                 error = ENOMEM;
2206                 goto done;
2207         }
2208
2209         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2210             uap->name, td);
2211         error = namei(&nd);
2212         if (error)
2213                 goto done;
2214
2215         NDFREE(&nd, NDF_ONLY_PNBUF);
2216         vp = nd.ni_vp;
2217
2218         if (vn_isdisk(vp, &error)) {
2219                 error = swapongeom(vp);
2220         } else if (vp->v_type == VREG &&
2221             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2222             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2223                 /*
2224                  * Allow direct swapping to NFS regular files in the same
2225                  * way that nfs_mountroot() sets up diskless swapping.
2226                  */
2227                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2228         }
2229
2230         if (error)
2231                 vrele(vp);
2232 done:
2233         sx_xunlock(&swdev_syscall_lock);
2234         return (error);
2235 }
2236
2237 /*
2238  * Check that the total amount of swap currently configured does not
2239  * exceed half the theoretical maximum.  If it does, print a warning
2240  * message.
2241  */
2242 static void
2243 swapon_check_swzone(void)
2244 {
2245         unsigned long maxpages, npages;
2246
2247         npages = swap_total;
2248         /* absolute maximum we can handle assuming 100% efficiency */
2249         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2250
2251         /* recommend using no more than half that amount */
2252         if (npages > maxpages / 2) {
2253                 printf("warning: total configured swap (%lu pages) "
2254                     "exceeds maximum recommended amount (%lu pages).\n",
2255                     npages, maxpages / 2);
2256                 printf("warning: increase kern.maxswzone "
2257                     "or reduce amount of swap.\n");
2258         }
2259 }
2260
2261 static void
2262 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2263     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2264 {
2265         struct swdevt *sp, *tsp;
2266         swblk_t dvbase;
2267         u_long mblocks;
2268
2269         /*
2270          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2271          * First chop nblks off to page-align it, then convert.
2272          *
2273          * sw->sw_nblks is in page-sized chunks now too.
2274          */
2275         nblks &= ~(ctodb(1) - 1);
2276         nblks = dbtoc(nblks);
2277
2278         /*
2279          * If we go beyond this, we get overflows in the radix
2280          * tree bitmap code.
2281          */
2282         mblocks = 0x40000000 / BLIST_META_RADIX;
2283         if (nblks > mblocks) {
2284                 printf(
2285     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2286                     mblocks / 1024 / 1024 * PAGE_SIZE);
2287                 nblks = mblocks;
2288         }
2289
2290         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2291         sp->sw_vp = vp;
2292         sp->sw_id = id;
2293         sp->sw_dev = dev;
2294         sp->sw_nblks = nblks;
2295         sp->sw_used = 0;
2296         sp->sw_strategy = strategy;
2297         sp->sw_close = close;
2298         sp->sw_flags = flags;
2299
2300         sp->sw_blist = blist_create(nblks, M_WAITOK);
2301         /*
2302          * Do not free the first blocks in order to avoid overwriting
2303          * any bsd label at the front of the partition
2304          */
2305         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2306             nblks - howmany(BBSIZE, PAGE_SIZE));
2307
2308         dvbase = 0;
2309         mtx_lock(&sw_dev_mtx);
2310         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2311                 if (tsp->sw_end >= dvbase) {
2312                         /*
2313                          * We put one uncovered page between the devices
2314                          * in order to definitively prevent any cross-device
2315                          * I/O requests
2316                          */
2317                         dvbase = tsp->sw_end + 1;
2318                 }
2319         }
2320         sp->sw_first = dvbase;
2321         sp->sw_end = dvbase + nblks;
2322         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2323         nswapdev++;
2324         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2325         swap_total += nblks;
2326         swapon_check_swzone();
2327         swp_sizecheck();
2328         mtx_unlock(&sw_dev_mtx);
2329         EVENTHANDLER_INVOKE(swapon, sp);
2330 }
2331
2332 /*
2333  * SYSCALL: swapoff(devname)
2334  *
2335  * Disable swapping on the given device.
2336  *
2337  * XXX: Badly designed system call: it should use a device index
2338  * rather than filename as specification.  We keep sw_vp around
2339  * only to make this work.
2340  */
2341 #ifndef _SYS_SYSPROTO_H_
2342 struct swapoff_args {
2343         char *name;
2344 };
2345 #endif
2346
2347 /*
2348  * MPSAFE
2349  */
2350 /* ARGSUSED */
2351 int
2352 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2353 {
2354         struct vnode *vp;
2355         struct nameidata nd;
2356         struct swdevt *sp;
2357         int error;
2358
2359         error = priv_check(td, PRIV_SWAPOFF);
2360         if (error)
2361                 return (error);
2362
2363         sx_xlock(&swdev_syscall_lock);
2364
2365         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2366             td);
2367         error = namei(&nd);
2368         if (error)
2369                 goto done;
2370         NDFREE(&nd, NDF_ONLY_PNBUF);
2371         vp = nd.ni_vp;
2372
2373         mtx_lock(&sw_dev_mtx);
2374         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2375                 if (sp->sw_vp == vp)
2376                         break;
2377         }
2378         mtx_unlock(&sw_dev_mtx);
2379         if (sp == NULL) {
2380                 error = EINVAL;
2381                 goto done;
2382         }
2383         error = swapoff_one(sp, td->td_ucred);
2384 done:
2385         sx_xunlock(&swdev_syscall_lock);
2386         return (error);
2387 }
2388
2389 static int
2390 swapoff_one(struct swdevt *sp, struct ucred *cred)
2391 {
2392         u_long nblks;
2393 #ifdef MAC
2394         int error;
2395 #endif
2396
2397         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2398 #ifdef MAC
2399         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2400         error = mac_system_check_swapoff(cred, sp->sw_vp);
2401         (void) VOP_UNLOCK(sp->sw_vp, 0);
2402         if (error != 0)
2403                 return (error);
2404 #endif
2405         nblks = sp->sw_nblks;
2406
2407         /*
2408          * We can turn off this swap device safely only if the
2409          * available virtual memory in the system will fit the amount
2410          * of data we will have to page back in, plus an epsilon so
2411          * the system doesn't become critically low on swap space.
2412          */
2413         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2414                 return (ENOMEM);
2415
2416         /*
2417          * Prevent further allocations on this device.
2418          */
2419         mtx_lock(&sw_dev_mtx);
2420         sp->sw_flags |= SW_CLOSING;
2421         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2422         swap_total -= nblks;
2423         mtx_unlock(&sw_dev_mtx);
2424
2425         /*
2426          * Page in the contents of the device and close it.
2427          */
2428         swap_pager_swapoff(sp);
2429
2430         sp->sw_close(curthread, sp);
2431         mtx_lock(&sw_dev_mtx);
2432         sp->sw_id = NULL;
2433         TAILQ_REMOVE(&swtailq, sp, sw_list);
2434         nswapdev--;
2435         if (nswapdev == 0) {
2436                 swap_pager_full = 2;
2437                 swap_pager_almost_full = 1;
2438         }
2439         if (swdevhd == sp)
2440                 swdevhd = NULL;
2441         mtx_unlock(&sw_dev_mtx);
2442         blist_destroy(sp->sw_blist);
2443         free(sp, M_VMPGDATA);
2444         return (0);
2445 }
2446
2447 void
2448 swapoff_all(void)
2449 {
2450         struct swdevt *sp, *spt;
2451         const char *devname;
2452         int error;
2453
2454         sx_xlock(&swdev_syscall_lock);
2455
2456         mtx_lock(&sw_dev_mtx);
2457         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2458                 mtx_unlock(&sw_dev_mtx);
2459                 if (vn_isdisk(sp->sw_vp, NULL))
2460                         devname = devtoname(sp->sw_vp->v_rdev);
2461                 else
2462                         devname = "[file]";
2463                 error = swapoff_one(sp, thread0.td_ucred);
2464                 if (error != 0) {
2465                         printf("Cannot remove swap device %s (error=%d), "
2466                             "skipping.\n", devname, error);
2467                 } else if (bootverbose) {
2468                         printf("Swap device %s removed.\n", devname);
2469                 }
2470                 mtx_lock(&sw_dev_mtx);
2471         }
2472         mtx_unlock(&sw_dev_mtx);
2473
2474         sx_xunlock(&swdev_syscall_lock);
2475 }
2476
2477 void
2478 swap_pager_status(int *total, int *used)
2479 {
2480         struct swdevt *sp;
2481
2482         *total = 0;
2483         *used = 0;
2484         mtx_lock(&sw_dev_mtx);
2485         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2486                 *total += sp->sw_nblks;
2487                 *used += sp->sw_used;
2488         }
2489         mtx_unlock(&sw_dev_mtx);
2490 }
2491
2492 int
2493 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2494 {
2495         struct swdevt *sp;
2496         const char *tmp_devname;
2497         int error, n;
2498
2499         n = 0;
2500         error = ENOENT;
2501         mtx_lock(&sw_dev_mtx);
2502         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2503                 if (n != name) {
2504                         n++;
2505                         continue;
2506                 }
2507                 xs->xsw_version = XSWDEV_VERSION;
2508                 xs->xsw_dev = sp->sw_dev;
2509                 xs->xsw_flags = sp->sw_flags;
2510                 xs->xsw_nblks = sp->sw_nblks;
2511                 xs->xsw_used = sp->sw_used;
2512                 if (devname != NULL) {
2513                         if (vn_isdisk(sp->sw_vp, NULL))
2514                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2515                         else
2516                                 tmp_devname = "[file]";
2517                         strncpy(devname, tmp_devname, len);
2518                 }
2519                 error = 0;
2520                 break;
2521         }
2522         mtx_unlock(&sw_dev_mtx);
2523         return (error);
2524 }
2525
2526 #if defined(COMPAT_FREEBSD11)
2527 #define XSWDEV_VERSION_11       1
2528 struct xswdev11 {
2529         u_int   xsw_version;
2530         uint32_t xsw_dev;
2531         int     xsw_flags;
2532         int     xsw_nblks;
2533         int     xsw_used;
2534 };
2535 #endif
2536
2537 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2538 struct xswdev32 {
2539         u_int   xsw_version;
2540         u_int   xsw_dev1, xsw_dev2;
2541         int     xsw_flags;
2542         int     xsw_nblks;
2543         int     xsw_used;
2544 };
2545 #endif
2546
2547 static int
2548 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2549 {
2550         struct xswdev xs;
2551 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2552         struct xswdev32 xs32;
2553 #endif
2554 #if defined(COMPAT_FREEBSD11)
2555         struct xswdev11 xs11;
2556 #endif
2557         int error;
2558
2559         if (arg2 != 1)                  /* name length */
2560                 return (EINVAL);
2561         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2562         if (error != 0)
2563                 return (error);
2564 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2565         if (req->oldlen == sizeof(xs32)) {
2566                 xs32.xsw_version = XSWDEV_VERSION;
2567                 xs32.xsw_dev1 = xs.xsw_dev;
2568                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2569                 xs32.xsw_flags = xs.xsw_flags;
2570                 xs32.xsw_nblks = xs.xsw_nblks;
2571                 xs32.xsw_used = xs.xsw_used;
2572                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2573                 return (error);
2574         }
2575 #endif
2576 #if defined(COMPAT_FREEBSD11)
2577         if (req->oldlen == sizeof(xs11)) {
2578                 xs11.xsw_version = XSWDEV_VERSION_11;
2579                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2580                 xs11.xsw_flags = xs.xsw_flags;
2581                 xs11.xsw_nblks = xs.xsw_nblks;
2582                 xs11.xsw_used = xs.xsw_used;
2583                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2584                 return (error);
2585         }
2586 #endif
2587         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2588         return (error);
2589 }
2590
2591 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2592     "Number of swap devices");
2593 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2594     sysctl_vm_swap_info,
2595     "Swap statistics by device");
2596
2597 /*
2598  * Count the approximate swap usage in pages for a vmspace.  The
2599  * shadowed or not yet copied on write swap blocks are not accounted.
2600  * The map must be locked.
2601  */
2602 long
2603 vmspace_swap_count(struct vmspace *vmspace)
2604 {
2605         vm_map_t map;
2606         vm_map_entry_t cur;
2607         vm_object_t object;
2608         struct swblk *sb;
2609         vm_pindex_t e, pi;
2610         long count;
2611         int i;
2612
2613         map = &vmspace->vm_map;
2614         count = 0;
2615
2616         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2617                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2618                         continue;
2619                 object = cur->object.vm_object;
2620                 if (object == NULL || object->type != OBJT_SWAP)
2621                         continue;
2622                 VM_OBJECT_RLOCK(object);
2623                 if (object->type != OBJT_SWAP)
2624                         goto unlock;
2625                 pi = OFF_TO_IDX(cur->offset);
2626                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2627                 for (;; pi = sb->p + SWAP_META_PAGES) {
2628                         sb = SWAP_PCTRIE_LOOKUP_GE(
2629                             &object->un_pager.swp.swp_blks, pi);
2630                         if (sb == NULL || sb->p >= e)
2631                                 break;
2632                         for (i = 0; i < SWAP_META_PAGES; i++) {
2633                                 if (sb->p + i < e &&
2634                                     sb->d[i] != SWAPBLK_NONE)
2635                                         count++;
2636                         }
2637                 }
2638 unlock:
2639                 VM_OBJECT_RUNLOCK(object);
2640         }
2641         return (count);
2642 }
2643
2644 /*
2645  * GEOM backend
2646  *
2647  * Swapping onto disk devices.
2648  *
2649  */
2650
2651 static g_orphan_t swapgeom_orphan;
2652
2653 static struct g_class g_swap_class = {
2654         .name = "SWAP",
2655         .version = G_VERSION,
2656         .orphan = swapgeom_orphan,
2657 };
2658
2659 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2660
2661
2662 static void
2663 swapgeom_close_ev(void *arg, int flags)
2664 {
2665         struct g_consumer *cp;
2666
2667         cp = arg;
2668         g_access(cp, -1, -1, 0);
2669         g_detach(cp);
2670         g_destroy_consumer(cp);
2671 }
2672
2673 /*
2674  * Add a reference to the g_consumer for an inflight transaction.
2675  */
2676 static void
2677 swapgeom_acquire(struct g_consumer *cp)
2678 {
2679
2680         mtx_assert(&sw_dev_mtx, MA_OWNED);
2681         cp->index++;
2682 }
2683
2684 /*
2685  * Remove a reference from the g_consumer.  Post a close event if all
2686  * references go away, since the function might be called from the
2687  * biodone context.
2688  */
2689 static void
2690 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2691 {
2692
2693         mtx_assert(&sw_dev_mtx, MA_OWNED);
2694         cp->index--;
2695         if (cp->index == 0) {
2696                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2697                         sp->sw_id = NULL;
2698         }
2699 }
2700
2701 static void
2702 swapgeom_done(struct bio *bp2)
2703 {
2704         struct swdevt *sp;
2705         struct buf *bp;
2706         struct g_consumer *cp;
2707
2708         bp = bp2->bio_caller2;
2709         cp = bp2->bio_from;
2710         bp->b_ioflags = bp2->bio_flags;
2711         if (bp2->bio_error)
2712                 bp->b_ioflags |= BIO_ERROR;
2713         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2714         bp->b_error = bp2->bio_error;
2715         bp->b_caller1 = NULL;
2716         bufdone(bp);
2717         sp = bp2->bio_caller1;
2718         mtx_lock(&sw_dev_mtx);
2719         swapgeom_release(cp, sp);
2720         mtx_unlock(&sw_dev_mtx);
2721         g_destroy_bio(bp2);
2722 }
2723
2724 static void
2725 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2726 {
2727         struct bio *bio;
2728         struct g_consumer *cp;
2729
2730         mtx_lock(&sw_dev_mtx);
2731         cp = sp->sw_id;
2732         if (cp == NULL) {
2733                 mtx_unlock(&sw_dev_mtx);
2734                 bp->b_error = ENXIO;
2735                 bp->b_ioflags |= BIO_ERROR;
2736                 bufdone(bp);
2737                 return;
2738         }
2739         swapgeom_acquire(cp);
2740         mtx_unlock(&sw_dev_mtx);
2741         if (bp->b_iocmd == BIO_WRITE)
2742                 bio = g_new_bio();
2743         else
2744                 bio = g_alloc_bio();
2745         if (bio == NULL) {
2746                 mtx_lock(&sw_dev_mtx);
2747                 swapgeom_release(cp, sp);
2748                 mtx_unlock(&sw_dev_mtx);
2749                 bp->b_error = ENOMEM;
2750                 bp->b_ioflags |= BIO_ERROR;
2751                 printf("swap_pager: cannot allocate bio\n");
2752                 bufdone(bp);
2753                 return;
2754         }
2755
2756         bp->b_caller1 = bio;
2757         bio->bio_caller1 = sp;
2758         bio->bio_caller2 = bp;
2759         bio->bio_cmd = bp->b_iocmd;
2760         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2761         bio->bio_length = bp->b_bcount;
2762         bio->bio_done = swapgeom_done;
2763         if (!buf_mapped(bp)) {
2764                 bio->bio_ma = bp->b_pages;
2765                 bio->bio_data = unmapped_buf;
2766                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2767                 bio->bio_ma_n = bp->b_npages;
2768                 bio->bio_flags |= BIO_UNMAPPED;
2769         } else {
2770                 bio->bio_data = bp->b_data;
2771                 bio->bio_ma = NULL;
2772         }
2773         g_io_request(bio, cp);
2774         return;
2775 }
2776
2777 static void
2778 swapgeom_orphan(struct g_consumer *cp)
2779 {
2780         struct swdevt *sp;
2781         int destroy;
2782
2783         mtx_lock(&sw_dev_mtx);
2784         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2785                 if (sp->sw_id == cp) {
2786                         sp->sw_flags |= SW_CLOSING;
2787                         break;
2788                 }
2789         }
2790         /*
2791          * Drop reference we were created with. Do directly since we're in a
2792          * special context where we don't have to queue the call to
2793          * swapgeom_close_ev().
2794          */
2795         cp->index--;
2796         destroy = ((sp != NULL) && (cp->index == 0));
2797         if (destroy)
2798                 sp->sw_id = NULL;
2799         mtx_unlock(&sw_dev_mtx);
2800         if (destroy)
2801                 swapgeom_close_ev(cp, 0);
2802 }
2803
2804 static void
2805 swapgeom_close(struct thread *td, struct swdevt *sw)
2806 {
2807         struct g_consumer *cp;
2808
2809         mtx_lock(&sw_dev_mtx);
2810         cp = sw->sw_id;
2811         sw->sw_id = NULL;
2812         mtx_unlock(&sw_dev_mtx);
2813
2814         /*
2815          * swapgeom_close() may be called from the biodone context,
2816          * where we cannot perform topology changes.  Delegate the
2817          * work to the events thread.
2818          */
2819         if (cp != NULL)
2820                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2821 }
2822
2823 static int
2824 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2825 {
2826         struct g_provider *pp;
2827         struct g_consumer *cp;
2828         static struct g_geom *gp;
2829         struct swdevt *sp;
2830         u_long nblks;
2831         int error;
2832
2833         pp = g_dev_getprovider(dev);
2834         if (pp == NULL)
2835                 return (ENODEV);
2836         mtx_lock(&sw_dev_mtx);
2837         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2838                 cp = sp->sw_id;
2839                 if (cp != NULL && cp->provider == pp) {
2840                         mtx_unlock(&sw_dev_mtx);
2841                         return (EBUSY);
2842                 }
2843         }
2844         mtx_unlock(&sw_dev_mtx);
2845         if (gp == NULL)
2846                 gp = g_new_geomf(&g_swap_class, "swap");
2847         cp = g_new_consumer(gp);
2848         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2849         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2850         g_attach(cp, pp);
2851         /*
2852          * XXX: Every time you think you can improve the margin for
2853          * footshooting, somebody depends on the ability to do so:
2854          * savecore(8) wants to write to our swapdev so we cannot
2855          * set an exclusive count :-(
2856          */
2857         error = g_access(cp, 1, 1, 0);
2858         if (error != 0) {
2859                 g_detach(cp);
2860                 g_destroy_consumer(cp);
2861                 return (error);
2862         }
2863         nblks = pp->mediasize / DEV_BSIZE;
2864         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2865             swapgeom_close, dev2udev(dev),
2866             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2867         return (0);
2868 }
2869
2870 static int
2871 swapongeom(struct vnode *vp)
2872 {
2873         int error;
2874
2875         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2876         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2877                 error = ENOENT;
2878         } else {
2879                 g_topology_lock();
2880                 error = swapongeom_locked(vp->v_rdev, vp);
2881                 g_topology_unlock();
2882         }
2883         VOP_UNLOCK(vp, 0);
2884         return (error);
2885 }
2886
2887 /*
2888  * VNODE backend
2889  *
2890  * This is used mainly for network filesystem (read: probably only tested
2891  * with NFS) swapfiles.
2892  *
2893  */
2894
2895 static void
2896 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2897 {
2898         struct vnode *vp2;
2899
2900         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2901
2902         vp2 = sp->sw_id;
2903         vhold(vp2);
2904         if (bp->b_iocmd == BIO_WRITE) {
2905                 if (bp->b_bufobj)
2906                         bufobj_wdrop(bp->b_bufobj);
2907                 bufobj_wref(&vp2->v_bufobj);
2908         }
2909         if (bp->b_bufobj != &vp2->v_bufobj)
2910                 bp->b_bufobj = &vp2->v_bufobj;
2911         bp->b_vp = vp2;
2912         bp->b_iooffset = dbtob(bp->b_blkno);
2913         bstrategy(bp);
2914         return;
2915 }
2916
2917 static void
2918 swapdev_close(struct thread *td, struct swdevt *sp)
2919 {
2920
2921         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2922         vrele(sp->sw_vp);
2923 }
2924
2925
2926 static int
2927 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2928 {
2929         struct swdevt *sp;
2930         int error;
2931
2932         if (nblks == 0)
2933                 return (ENXIO);
2934         mtx_lock(&sw_dev_mtx);
2935         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2936                 if (sp->sw_id == vp) {
2937                         mtx_unlock(&sw_dev_mtx);
2938                         return (EBUSY);
2939                 }
2940         }
2941         mtx_unlock(&sw_dev_mtx);
2942
2943         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2944 #ifdef MAC
2945         error = mac_system_check_swapon(td->td_ucred, vp);
2946         if (error == 0)
2947 #endif
2948                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2949         (void) VOP_UNLOCK(vp, 0);
2950         if (error)
2951                 return (error);
2952
2953         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2954             NODEV, 0);
2955         return (0);
2956 }
2957
2958 static int
2959 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2960 {
2961         int error, new, n;
2962
2963         new = nsw_wcount_async_max;
2964         error = sysctl_handle_int(oidp, &new, 0, req);
2965         if (error != 0 || req->newptr == NULL)
2966                 return (error);
2967
2968         if (new > nswbuf / 2 || new < 1)
2969                 return (EINVAL);
2970
2971         mtx_lock(&swbuf_mtx);
2972         while (nsw_wcount_async_max != new) {
2973                 /*
2974                  * Adjust difference.  If the current async count is too low,
2975                  * we will need to sqeeze our update slowly in.  Sleep with a
2976                  * higher priority than getpbuf() to finish faster.
2977                  */
2978                 n = new - nsw_wcount_async_max;
2979                 if (nsw_wcount_async + n >= 0) {
2980                         nsw_wcount_async += n;
2981                         nsw_wcount_async_max += n;
2982                         wakeup(&nsw_wcount_async);
2983                 } else {
2984                         nsw_wcount_async_max -= nsw_wcount_async;
2985                         nsw_wcount_async = 0;
2986                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2987                             "swpsysctl", 0);
2988                 }
2989         }
2990         mtx_unlock(&swbuf_mtx);
2991
2992         return (0);
2993 }