]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
eliminate locking surrounding ui_vmsize and swap reserve by using atomics
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_swap.h"
75 #include "opt_vm.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/conf.h>
80 #include <sys/kernel.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/bio.h>
84 #include <sys/buf.h>
85 #include <sys/disk.h>
86 #include <sys/fcntl.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/vnode.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/blist.h>
100 #include <sys/lock.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158     &swap_reserved, 0, sysctl_page_shift, "A", 
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161     &swap_total, 0, sysctl_page_shift, "A", 
162     "Total amount of available swap storage.");
163
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170     "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173     "Maximum amount of swap supported");
174
175 /* bits from overcommit */
176 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
177 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
178 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
179
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183         uint64_t newval;
184         u_long value = *(u_long *)arg1;
185
186         newval = ((uint64_t)value) << PAGE_SHIFT;
187         return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193
194         return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200         u_long r, s, prev, pincr;
201         int res, error;
202         static int curfail;
203         static struct timeval lastfail;
204         struct uidinfo *uip;
205
206         uip = cred->cr_ruidinfo;
207
208         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209             (uintmax_t)incr));
210
211 #ifdef RACCT
212         if (racct_enable) {
213                 PROC_LOCK(curproc);
214                 error = racct_add(curproc, RACCT_SWAP, incr);
215                 PROC_UNLOCK(curproc);
216                 if (error != 0)
217                         return (0);
218         }
219 #endif
220
221         pincr = atop(incr);
222         res = 0;
223         prev = atomic_fetchadd_long(&swap_reserved, pincr);
224         r = prev + pincr;
225         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227                     vm_wire_count();
228         } else
229                 s = 0;
230         s += swap_total;
231         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233                 res = 1;
234         } else {
235                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236                 if (prev < pincr)
237                         panic("swap_reserved < incr on overcommit fail");
238         }
239         if (res) {
240                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244                         res = 0;
245                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246                         if (prev < pincr)
247                                 panic("uip->ui_vmsize < incr on overcommit fail");
248                 }
249         }
250         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252                     uip->ui_uid, curproc->p_pid, incr);
253         }
254
255 #ifdef RACCT
256         if (racct_enable && !res) {
257                 PROC_LOCK(curproc);
258                 racct_sub(curproc, RACCT_SWAP, incr);
259                 PROC_UNLOCK(curproc);
260         }
261 #endif
262
263         return (res);
264 }
265
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269         struct uidinfo *uip;
270         u_long pincr;
271
272         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273             (uintmax_t)incr));
274
275         PROC_LOCK(curproc);
276 #ifdef RACCT
277         if (racct_enable)
278                 racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280         pincr = atop(incr);
281         atomic_add_long(&swap_reserved, pincr);
282         uip = curproc->p_ucred->cr_ruidinfo;
283         atomic_add_long(&uip->ui_vmsize, pincr);
284         PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290         struct ucred *cred;
291
292         PROC_LOCK(curproc);
293         cred = curproc->p_ucred;
294         swap_release_by_cred(decr, cred);
295         PROC_UNLOCK(curproc);
296 }
297
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301         u_long prev, pdecr;
302         struct uidinfo *uip;
303
304         uip = cred->cr_ruidinfo;
305
306         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307             (uintmax_t)decr));
308
309         pdecr = atop(decr);
310         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311         if (prev < pdecr)
312                 panic("swap_reserved < decr");
313
314         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315         if (prev < pdecr)
316                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318         if (racct_enable)
319                 racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322
323 #define SWM_POP         0x01    /* pop out                      */
324
325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static int nsw_rcount;          /* free read buffers                    */
328 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
329 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
330 static int nsw_wcount_async_max;/* assigned maximum                     */
331 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
332
333 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
334 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
335     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
336     "Maximum running async swap ops");
337 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
338 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
339     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
340     "Swap Fragmentation Info");
341
342 static struct sx sw_alloc_sx;
343
344 /*
345  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
346  * of searching a named list by hashing it just a little.
347  */
348
349 #define NOBJLISTS               8
350
351 #define NOBJLIST(handle)        \
352         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
353
354 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
355 static uma_zone_t swblk_zone;
356 static uma_zone_t swpctrie_zone;
357
358 /*
359  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
360  * calls hooked from other parts of the VM system and do not appear here.
361  * (see vm/swap_pager.h).
362  */
363 static vm_object_t
364                 swap_pager_alloc(void *handle, vm_ooffset_t size,
365                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
366 static void     swap_pager_dealloc(vm_object_t object);
367 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
368     int *);
369 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
370     int *, pgo_getpages_iodone_t, void *);
371 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
372 static boolean_t
373                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
374 static void     swap_pager_init(void);
375 static void     swap_pager_unswapped(vm_page_t);
376 static void     swap_pager_swapoff(struct swdevt *sp);
377
378 struct pagerops swappagerops = {
379         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
380         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
381         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
382         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
383         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
384         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
385         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
386         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
387 };
388
389 /*
390  * swap_*() routines are externally accessible.  swp_*() routines are
391  * internal.
392  */
393 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
394 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
395
396 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
397     "Maximum size of a swap block in pages");
398
399 static void     swp_sizecheck(void);
400 static void     swp_pager_async_iodone(struct buf *bp);
401 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
402 static int      swapongeom(struct vnode *);
403 static int      swaponvp(struct thread *, struct vnode *, u_long);
404 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
405
406 /*
407  * Swap bitmap functions
408  */
409 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
410 static daddr_t  swp_pager_getswapspace(int npages);
411
412 /*
413  * Metadata functions
414  */
415 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
416 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
417 static void swp_pager_meta_free_all(vm_object_t);
418 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
419
420 static void
421 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
422 {
423
424         *start = SWAPBLK_NONE;
425         *num = 0;
426 }
427
428 static void
429 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
430 {
431
432         if (*start + *num == addr) {
433                 (*num)++;
434         } else {
435                 swp_pager_freeswapspace(*start, *num);
436                 *start = addr;
437                 *num = 1;
438         }
439 }
440
441 static void *
442 swblk_trie_alloc(struct pctrie *ptree)
443 {
444
445         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
446             M_USE_RESERVE : 0)));
447 }
448
449 static void
450 swblk_trie_free(struct pctrie *ptree, void *node)
451 {
452
453         uma_zfree(swpctrie_zone, node);
454 }
455
456 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
457
458 /*
459  * SWP_SIZECHECK() -    update swap_pager_full indication
460  *
461  *      update the swap_pager_almost_full indication and warn when we are
462  *      about to run out of swap space, using lowat/hiwat hysteresis.
463  *
464  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
465  *
466  *      No restrictions on call
467  *      This routine may not block.
468  */
469 static void
470 swp_sizecheck(void)
471 {
472
473         if (swap_pager_avail < nswap_lowat) {
474                 if (swap_pager_almost_full == 0) {
475                         printf("swap_pager: out of swap space\n");
476                         swap_pager_almost_full = 1;
477                 }
478         } else {
479                 swap_pager_full = 0;
480                 if (swap_pager_avail > nswap_hiwat)
481                         swap_pager_almost_full = 0;
482         }
483 }
484
485 /*
486  * SWAP_PAGER_INIT() -  initialize the swap pager!
487  *
488  *      Expected to be started from system init.  NOTE:  This code is run
489  *      before much else so be careful what you depend on.  Most of the VM
490  *      system has yet to be initialized at this point.
491  */
492 static void
493 swap_pager_init(void)
494 {
495         /*
496          * Initialize object lists
497          */
498         int i;
499
500         for (i = 0; i < NOBJLISTS; ++i)
501                 TAILQ_INIT(&swap_pager_object_list[i]);
502         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
503         sx_init(&sw_alloc_sx, "swspsx");
504         sx_init(&swdev_syscall_lock, "swsysc");
505 }
506
507 /*
508  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
509  *
510  *      Expected to be started from pageout process once, prior to entering
511  *      its main loop.
512  */
513 void
514 swap_pager_swap_init(void)
515 {
516         unsigned long n, n2;
517
518         /*
519          * Number of in-transit swap bp operations.  Don't
520          * exhaust the pbufs completely.  Make sure we
521          * initialize workable values (0 will work for hysteresis
522          * but it isn't very efficient).
523          *
524          * The nsw_cluster_max is constrained by the bp->b_pages[]
525          * array (MAXPHYS/PAGE_SIZE) and our locally defined
526          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
527          * constrained by the swap device interleave stripe size.
528          *
529          * Currently we hardwire nsw_wcount_async to 4.  This limit is
530          * designed to prevent other I/O from having high latencies due to
531          * our pageout I/O.  The value 4 works well for one or two active swap
532          * devices but is probably a little low if you have more.  Even so,
533          * a higher value would probably generate only a limited improvement
534          * with three or four active swap devices since the system does not
535          * typically have to pageout at extreme bandwidths.   We will want
536          * at least 2 per swap devices, and 4 is a pretty good value if you
537          * have one NFS swap device due to the command/ack latency over NFS.
538          * So it all works out pretty well.
539          */
540         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
541
542         mtx_lock(&pbuf_mtx);
543         nsw_rcount = (nswbuf + 1) / 2;
544         nsw_wcount_sync = (nswbuf + 3) / 4;
545         nsw_wcount_async = 4;
546         nsw_wcount_async_max = nsw_wcount_async;
547         mtx_unlock(&pbuf_mtx);
548
549         /*
550          * Initialize our zone, guessing on the number we need based
551          * on the number of pages in the system.
552          */
553         n = vm_cnt.v_page_count / 2;
554         if (maxswzone && n > maxswzone / sizeof(struct swblk))
555                 n = maxswzone / sizeof(struct swblk);
556         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
557             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
558         if (swpctrie_zone == NULL)
559                 panic("failed to create swap pctrie zone.");
560         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
561             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
562         if (swblk_zone == NULL)
563                 panic("failed to create swap blk zone.");
564         n2 = n;
565         do {
566                 if (uma_zone_reserve_kva(swblk_zone, n))
567                         break;
568                 /*
569                  * if the allocation failed, try a zone two thirds the
570                  * size of the previous attempt.
571                  */
572                 n -= ((n + 2) / 3);
573         } while (n > 0);
574
575         /*
576          * Often uma_zone_reserve_kva() cannot reserve exactly the
577          * requested size.  Account for the difference when
578          * calculating swap_maxpages.
579          */
580         n = uma_zone_get_max(swblk_zone);
581
582         if (n < n2)
583                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
584                     n2, n);
585         swap_maxpages = n * SWAP_META_PAGES;
586         swzone = n * sizeof(struct swblk);
587         if (!uma_zone_reserve_kva(swpctrie_zone, n))
588                 printf("Cannot reserve swap pctrie zone, "
589                     "reduce kern.maxswzone.\n");
590 }
591
592 static vm_object_t
593 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
594     vm_ooffset_t offset)
595 {
596         vm_object_t object;
597
598         if (cred != NULL) {
599                 if (!swap_reserve_by_cred(size, cred))
600                         return (NULL);
601                 crhold(cred);
602         }
603
604         /*
605          * The un_pager.swp.swp_blks trie is initialized by
606          * vm_object_allocate() to ensure the correct order of
607          * visibility to other threads.
608          */
609         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
610             PAGE_MASK + size));
611
612         object->handle = handle;
613         if (cred != NULL) {
614                 object->cred = cred;
615                 object->charge = size;
616         }
617         return (object);
618 }
619
620 /*
621  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
622  *                      its metadata structures.
623  *
624  *      This routine is called from the mmap and fork code to create a new
625  *      OBJT_SWAP object.
626  *
627  *      This routine must ensure that no live duplicate is created for
628  *      the named object request, which is protected against by
629  *      holding the sw_alloc_sx lock in case handle != NULL.
630  */
631 static vm_object_t
632 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
633     vm_ooffset_t offset, struct ucred *cred)
634 {
635         vm_object_t object;
636
637         if (handle != NULL) {
638                 /*
639                  * Reference existing named region or allocate new one.  There
640                  * should not be a race here against swp_pager_meta_build()
641                  * as called from vm_page_remove() in regards to the lookup
642                  * of the handle.
643                  */
644                 sx_xlock(&sw_alloc_sx);
645                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
646                 if (object == NULL) {
647                         object = swap_pager_alloc_init(handle, cred, size,
648                             offset);
649                         if (object != NULL) {
650                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
651                                     object, pager_object_list);
652                         }
653                 }
654                 sx_xunlock(&sw_alloc_sx);
655         } else {
656                 object = swap_pager_alloc_init(handle, cred, size, offset);
657         }
658         return (object);
659 }
660
661 /*
662  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
663  *
664  *      The swap backing for the object is destroyed.  The code is
665  *      designed such that we can reinstantiate it later, but this
666  *      routine is typically called only when the entire object is
667  *      about to be destroyed.
668  *
669  *      The object must be locked.
670  */
671 static void
672 swap_pager_dealloc(vm_object_t object)
673 {
674
675         VM_OBJECT_ASSERT_WLOCKED(object);
676         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
677
678         /*
679          * Remove from list right away so lookups will fail if we block for
680          * pageout completion.
681          */
682         if (object->handle != NULL) {
683                 VM_OBJECT_WUNLOCK(object);
684                 sx_xlock(&sw_alloc_sx);
685                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
686                     pager_object_list);
687                 sx_xunlock(&sw_alloc_sx);
688                 VM_OBJECT_WLOCK(object);
689         }
690
691         vm_object_pip_wait(object, "swpdea");
692
693         /*
694          * Free all remaining metadata.  We only bother to free it from
695          * the swap meta data.  We do not attempt to free swapblk's still
696          * associated with vm_page_t's for this object.  We do not care
697          * if paging is still in progress on some objects.
698          */
699         swp_pager_meta_free_all(object);
700         object->handle = NULL;
701         object->type = OBJT_DEAD;
702 }
703
704 /************************************************************************
705  *                      SWAP PAGER BITMAP ROUTINES                      *
706  ************************************************************************/
707
708 /*
709  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
710  *
711  *      Allocate swap for the requested number of pages.  The starting
712  *      swap block number (a page index) is returned or SWAPBLK_NONE
713  *      if the allocation failed.
714  *
715  *      Also has the side effect of advising that somebody made a mistake
716  *      when they configured swap and didn't configure enough.
717  *
718  *      This routine may not sleep.
719  *
720  *      We allocate in round-robin fashion from the configured devices.
721  */
722 static daddr_t
723 swp_pager_getswapspace(int npages)
724 {
725         daddr_t blk;
726         struct swdevt *sp;
727         int i;
728
729         blk = SWAPBLK_NONE;
730         mtx_lock(&sw_dev_mtx);
731         sp = swdevhd;
732         for (i = 0; i < nswapdev; i++) {
733                 if (sp == NULL)
734                         sp = TAILQ_FIRST(&swtailq);
735                 if (!(sp->sw_flags & SW_CLOSING)) {
736                         blk = blist_alloc(sp->sw_blist, npages);
737                         if (blk != SWAPBLK_NONE) {
738                                 blk += sp->sw_first;
739                                 sp->sw_used += npages;
740                                 swap_pager_avail -= npages;
741                                 swp_sizecheck();
742                                 swdevhd = TAILQ_NEXT(sp, sw_list);
743                                 goto done;
744                         }
745                 }
746                 sp = TAILQ_NEXT(sp, sw_list);
747         }
748         if (swap_pager_full != 2) {
749                 printf("swap_pager_getswapspace(%d): failed\n", npages);
750                 swap_pager_full = 2;
751                 swap_pager_almost_full = 1;
752         }
753         swdevhd = NULL;
754 done:
755         mtx_unlock(&sw_dev_mtx);
756         return (blk);
757 }
758
759 static int
760 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
761 {
762
763         return (blk >= sp->sw_first && blk < sp->sw_end);
764 }
765
766 static void
767 swp_pager_strategy(struct buf *bp)
768 {
769         struct swdevt *sp;
770
771         mtx_lock(&sw_dev_mtx);
772         TAILQ_FOREACH(sp, &swtailq, sw_list) {
773                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
774                         mtx_unlock(&sw_dev_mtx);
775                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
776                             unmapped_buf_allowed) {
777                                 bp->b_data = unmapped_buf;
778                                 bp->b_offset = 0;
779                         } else {
780                                 pmap_qenter((vm_offset_t)bp->b_data,
781                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
782                         }
783                         sp->sw_strategy(bp, sp);
784                         return;
785                 }
786         }
787         panic("Swapdev not found");
788 }
789
790
791 /*
792  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
793  *
794  *      This routine returns the specified swap blocks back to the bitmap.
795  *
796  *      This routine may not sleep.
797  */
798 static void
799 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
800 {
801         struct swdevt *sp;
802
803         if (npages == 0)
804                 return;
805         mtx_lock(&sw_dev_mtx);
806         TAILQ_FOREACH(sp, &swtailq, sw_list) {
807                 if (blk >= sp->sw_first && blk < sp->sw_end) {
808                         sp->sw_used -= npages;
809                         /*
810                          * If we are attempting to stop swapping on
811                          * this device, we don't want to mark any
812                          * blocks free lest they be reused.
813                          */
814                         if ((sp->sw_flags & SW_CLOSING) == 0) {
815                                 blist_free(sp->sw_blist, blk - sp->sw_first,
816                                     npages);
817                                 swap_pager_avail += npages;
818                                 swp_sizecheck();
819                         }
820                         mtx_unlock(&sw_dev_mtx);
821                         return;
822                 }
823         }
824         panic("Swapdev not found");
825 }
826
827 /*
828  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
829  */
830 static int
831 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
832 {
833         struct sbuf sbuf;
834         struct swdevt *sp;
835         const char *devname;
836         int error;
837
838         error = sysctl_wire_old_buffer(req, 0);
839         if (error != 0)
840                 return (error);
841         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
842         mtx_lock(&sw_dev_mtx);
843         TAILQ_FOREACH(sp, &swtailq, sw_list) {
844                 if (vn_isdisk(sp->sw_vp, NULL))
845                         devname = devtoname(sp->sw_vp->v_rdev);
846                 else
847                         devname = "[file]";
848                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
849                 blist_stats(sp->sw_blist, &sbuf);
850         }
851         mtx_unlock(&sw_dev_mtx);
852         error = sbuf_finish(&sbuf);
853         sbuf_delete(&sbuf);
854         return (error);
855 }
856
857 /*
858  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
859  *                              range within an object.
860  *
861  *      This is a globally accessible routine.
862  *
863  *      This routine removes swapblk assignments from swap metadata.
864  *
865  *      The external callers of this routine typically have already destroyed
866  *      or renamed vm_page_t's associated with this range in the object so
867  *      we should be ok.
868  *
869  *      The object must be locked.
870  */
871 void
872 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
873 {
874
875         swp_pager_meta_free(object, start, size);
876 }
877
878 /*
879  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
880  *
881  *      Assigns swap blocks to the specified range within the object.  The
882  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
883  *
884  *      Returns 0 on success, -1 on failure.
885  */
886 int
887 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
888 {
889         int n = 0;
890         daddr_t blk = SWAPBLK_NONE;
891         vm_pindex_t beg = start;        /* save start index */
892         daddr_t addr, n_free, s_free;
893
894         swp_pager_init_freerange(&s_free, &n_free);
895         VM_OBJECT_WLOCK(object);
896         while (size) {
897                 if (n == 0) {
898                         n = BLIST_MAX_ALLOC;
899                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
900                                 n >>= 1;
901                                 if (n == 0) {
902                                         swp_pager_meta_free(object, beg, start - beg);
903                                         VM_OBJECT_WUNLOCK(object);
904                                         return (-1);
905                                 }
906                         }
907                 }
908                 addr = swp_pager_meta_build(object, start, blk);
909                 if (addr != SWAPBLK_NONE)
910                         swp_pager_update_freerange(&s_free, &n_free, addr);
911                 --size;
912                 ++start;
913                 ++blk;
914                 --n;
915         }
916         swp_pager_freeswapspace(s_free, n_free);
917         swp_pager_meta_free(object, start, n);
918         VM_OBJECT_WUNLOCK(object);
919         return (0);
920 }
921
922 /*
923  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
924  *                      and destroy the source.
925  *
926  *      Copy any valid swapblks from the source to the destination.  In
927  *      cases where both the source and destination have a valid swapblk,
928  *      we keep the destination's.
929  *
930  *      This routine is allowed to sleep.  It may sleep allocating metadata
931  *      indirectly through swp_pager_meta_build() or if paging is still in
932  *      progress on the source.
933  *
934  *      The source object contains no vm_page_t's (which is just as well)
935  *
936  *      The source object is of type OBJT_SWAP.
937  *
938  *      The source and destination objects must be locked.
939  *      Both object locks may temporarily be released.
940  */
941 void
942 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
943     vm_pindex_t offset, int destroysource)
944 {
945         vm_pindex_t i;
946         daddr_t dstaddr, n_free, s_free, srcaddr;
947
948         VM_OBJECT_ASSERT_WLOCKED(srcobject);
949         VM_OBJECT_ASSERT_WLOCKED(dstobject);
950
951         /*
952          * If destroysource is set, we remove the source object from the
953          * swap_pager internal queue now.
954          */
955         if (destroysource && srcobject->handle != NULL) {
956                 vm_object_pip_add(srcobject, 1);
957                 VM_OBJECT_WUNLOCK(srcobject);
958                 vm_object_pip_add(dstobject, 1);
959                 VM_OBJECT_WUNLOCK(dstobject);
960                 sx_xlock(&sw_alloc_sx);
961                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
962                     pager_object_list);
963                 sx_xunlock(&sw_alloc_sx);
964                 VM_OBJECT_WLOCK(dstobject);
965                 vm_object_pip_wakeup(dstobject);
966                 VM_OBJECT_WLOCK(srcobject);
967                 vm_object_pip_wakeup(srcobject);
968         }
969
970         /*
971          * Transfer source to destination.
972          */
973         swp_pager_init_freerange(&s_free, &n_free);
974         for (i = 0; i < dstobject->size; ++i) {
975                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
976                 if (srcaddr == SWAPBLK_NONE)
977                         continue;
978                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
979                 if (dstaddr != SWAPBLK_NONE) {
980                         /*
981                          * Destination has valid swapblk or it is represented
982                          * by a resident page.  We destroy the source block.
983                          */
984                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
985                         continue;
986                 }
987
988                 /*
989                  * Destination has no swapblk and is not resident,
990                  * copy source.
991                  *
992                  * swp_pager_meta_build() can sleep.
993                  */
994                 vm_object_pip_add(srcobject, 1);
995                 VM_OBJECT_WUNLOCK(srcobject);
996                 vm_object_pip_add(dstobject, 1);
997                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
998                 KASSERT(dstaddr == SWAPBLK_NONE,
999                     ("Unexpected destination swapblk"));
1000                 vm_object_pip_wakeup(dstobject);
1001                 VM_OBJECT_WLOCK(srcobject);
1002                 vm_object_pip_wakeup(srcobject);
1003         }
1004         swp_pager_freeswapspace(s_free, n_free);
1005
1006         /*
1007          * Free left over swap blocks in source.
1008          *
1009          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1010          * double-remove the object from the swap queues.
1011          */
1012         if (destroysource) {
1013                 swp_pager_meta_free_all(srcobject);
1014                 /*
1015                  * Reverting the type is not necessary, the caller is going
1016                  * to destroy srcobject directly, but I'm doing it here
1017                  * for consistency since we've removed the object from its
1018                  * queues.
1019                  */
1020                 srcobject->type = OBJT_DEFAULT;
1021         }
1022 }
1023
1024 /*
1025  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1026  *                              the requested page.
1027  *
1028  *      We determine whether good backing store exists for the requested
1029  *      page and return TRUE if it does, FALSE if it doesn't.
1030  *
1031  *      If TRUE, we also try to determine how much valid, contiguous backing
1032  *      store exists before and after the requested page.
1033  */
1034 static boolean_t
1035 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1036     int *after)
1037 {
1038         daddr_t blk, blk0;
1039         int i;
1040
1041         VM_OBJECT_ASSERT_LOCKED(object);
1042
1043         /*
1044          * do we have good backing store at the requested index ?
1045          */
1046         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1047         if (blk0 == SWAPBLK_NONE) {
1048                 if (before)
1049                         *before = 0;
1050                 if (after)
1051                         *after = 0;
1052                 return (FALSE);
1053         }
1054
1055         /*
1056          * find backwards-looking contiguous good backing store
1057          */
1058         if (before != NULL) {
1059                 for (i = 1; i < SWB_NPAGES; i++) {
1060                         if (i > pindex)
1061                                 break;
1062                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1063                         if (blk != blk0 - i)
1064                                 break;
1065                 }
1066                 *before = i - 1;
1067         }
1068
1069         /*
1070          * find forward-looking contiguous good backing store
1071          */
1072         if (after != NULL) {
1073                 for (i = 1; i < SWB_NPAGES; i++) {
1074                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1075                         if (blk != blk0 + i)
1076                                 break;
1077                 }
1078                 *after = i - 1;
1079         }
1080         return (TRUE);
1081 }
1082
1083 /*
1084  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1085  *
1086  *      This removes any associated swap backing store, whether valid or
1087  *      not, from the page.
1088  *
1089  *      This routine is typically called when a page is made dirty, at
1090  *      which point any associated swap can be freed.  MADV_FREE also
1091  *      calls us in a special-case situation
1092  *
1093  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1094  *      should make the page dirty before calling this routine.  This routine
1095  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1096  *      depends on it.
1097  *
1098  *      This routine may not sleep.
1099  *
1100  *      The object containing the page must be locked.
1101  */
1102 static void
1103 swap_pager_unswapped(vm_page_t m)
1104 {
1105         daddr_t srcaddr;
1106
1107         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1108         if (srcaddr != SWAPBLK_NONE)
1109                 swp_pager_freeswapspace(srcaddr, 1);
1110 }
1111
1112 /*
1113  * swap_pager_getpages() - bring pages in from swap
1114  *
1115  *      Attempt to page in the pages in array "ma" of length "count".  The
1116  *      caller may optionally specify that additional pages preceding and
1117  *      succeeding the specified range be paged in.  The number of such pages
1118  *      is returned in the "rbehind" and "rahead" parameters, and they will
1119  *      be in the inactive queue upon return.
1120  *
1121  *      The pages in "ma" must be busied and will remain busied upon return.
1122  */
1123 static int
1124 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1125     int *rahead)
1126 {
1127         struct buf *bp;
1128         vm_page_t bm, mpred, msucc, p;
1129         vm_pindex_t pindex;
1130         daddr_t blk;
1131         int i, maxahead, maxbehind, reqcount;
1132
1133         reqcount = count;
1134
1135         /*
1136          * Determine the final number of read-behind pages and
1137          * allocate them BEFORE releasing the object lock.  Otherwise,
1138          * there can be a problematic race with vm_object_split().
1139          * Specifically, vm_object_split() might first transfer pages
1140          * that precede ma[0] in the current object to a new object,
1141          * and then this function incorrectly recreates those pages as
1142          * read-behind pages in the current object.
1143          */
1144         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1145                 return (VM_PAGER_FAIL);
1146
1147         /*
1148          * Clip the readahead and readbehind ranges to exclude resident pages.
1149          */
1150         if (rahead != NULL) {
1151                 KASSERT(reqcount - 1 <= maxahead,
1152                     ("page count %d extends beyond swap block", reqcount));
1153                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1154                 pindex = ma[reqcount - 1]->pindex;
1155                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1156                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1157                         *rahead = msucc->pindex - pindex - 1;
1158         }
1159         if (rbehind != NULL) {
1160                 *rbehind = imin(*rbehind, maxbehind);
1161                 pindex = ma[0]->pindex;
1162                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1163                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1164                         *rbehind = pindex - mpred->pindex - 1;
1165         }
1166
1167         bm = ma[0];
1168         for (i = 0; i < count; i++)
1169                 ma[i]->oflags |= VPO_SWAPINPROG;
1170
1171         /*
1172          * Allocate readahead and readbehind pages.
1173          */
1174         if (rbehind != NULL) {
1175                 for (i = 1; i <= *rbehind; i++) {
1176                         p = vm_page_alloc(object, ma[0]->pindex - i,
1177                             VM_ALLOC_NORMAL);
1178                         if (p == NULL)
1179                                 break;
1180                         p->oflags |= VPO_SWAPINPROG;
1181                         bm = p;
1182                 }
1183                 *rbehind = i - 1;
1184         }
1185         if (rahead != NULL) {
1186                 for (i = 0; i < *rahead; i++) {
1187                         p = vm_page_alloc(object,
1188                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1189                         if (p == NULL)
1190                                 break;
1191                         p->oflags |= VPO_SWAPINPROG;
1192                 }
1193                 *rahead = i;
1194         }
1195         if (rbehind != NULL)
1196                 count += *rbehind;
1197         if (rahead != NULL)
1198                 count += *rahead;
1199
1200         vm_object_pip_add(object, count);
1201
1202         pindex = bm->pindex;
1203         blk = swp_pager_meta_ctl(object, pindex, 0);
1204         KASSERT(blk != SWAPBLK_NONE,
1205             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1206
1207         VM_OBJECT_WUNLOCK(object);
1208         bp = getpbuf(&nsw_rcount);
1209         /* Pages cannot leave the object while busy. */
1210         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1211                 MPASS(p->pindex == bm->pindex + i);
1212                 bp->b_pages[i] = p;
1213         }
1214
1215         bp->b_flags |= B_PAGING;
1216         bp->b_iocmd = BIO_READ;
1217         bp->b_iodone = swp_pager_async_iodone;
1218         bp->b_rcred = crhold(thread0.td_ucred);
1219         bp->b_wcred = crhold(thread0.td_ucred);
1220         bp->b_blkno = blk;
1221         bp->b_bcount = PAGE_SIZE * count;
1222         bp->b_bufsize = PAGE_SIZE * count;
1223         bp->b_npages = count;
1224         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1225         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1226
1227         VM_CNT_INC(v_swapin);
1228         VM_CNT_ADD(v_swappgsin, count);
1229
1230         /*
1231          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1232          * this point because we automatically release it on completion.
1233          * Instead, we look at the one page we are interested in which we
1234          * still hold a lock on even through the I/O completion.
1235          *
1236          * The other pages in our ma[] array are also released on completion,
1237          * so we cannot assume they are valid anymore either.
1238          *
1239          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1240          */
1241         BUF_KERNPROC(bp);
1242         swp_pager_strategy(bp);
1243
1244         /*
1245          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1246          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1247          * is set in the metadata for each page in the request.
1248          */
1249         VM_OBJECT_WLOCK(object);
1250         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1251                 ma[0]->oflags |= VPO_SWAPSLEEP;
1252                 VM_CNT_INC(v_intrans);
1253                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1254                     "swread", hz * 20)) {
1255                         printf(
1256 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1257                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1258                 }
1259         }
1260
1261         /*
1262          * If we had an unrecoverable read error pages will not be valid.
1263          */
1264         for (i = 0; i < reqcount; i++)
1265                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1266                         return (VM_PAGER_ERROR);
1267
1268         return (VM_PAGER_OK);
1269
1270         /*
1271          * A final note: in a low swap situation, we cannot deallocate swap
1272          * and mark a page dirty here because the caller is likely to mark
1273          * the page clean when we return, causing the page to possibly revert
1274          * to all-zero's later.
1275          */
1276 }
1277
1278 /*
1279  *      swap_pager_getpages_async():
1280  *
1281  *      Right now this is emulation of asynchronous operation on top of
1282  *      swap_pager_getpages().
1283  */
1284 static int
1285 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1286     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1287 {
1288         int r, error;
1289
1290         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1291         VM_OBJECT_WUNLOCK(object);
1292         switch (r) {
1293         case VM_PAGER_OK:
1294                 error = 0;
1295                 break;
1296         case VM_PAGER_ERROR:
1297                 error = EIO;
1298                 break;
1299         case VM_PAGER_FAIL:
1300                 error = EINVAL;
1301                 break;
1302         default:
1303                 panic("unhandled swap_pager_getpages() error %d", r);
1304         }
1305         (iodone)(arg, ma, count, error);
1306         VM_OBJECT_WLOCK(object);
1307
1308         return (r);
1309 }
1310
1311 /*
1312  *      swap_pager_putpages:
1313  *
1314  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1315  *
1316  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1317  *      are automatically converted to SWAP objects.
1318  *
1319  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1320  *      vm_page reservation system coupled with properly written VFS devices
1321  *      should ensure that no low-memory deadlock occurs.  This is an area
1322  *      which needs work.
1323  *
1324  *      The parent has N vm_object_pip_add() references prior to
1325  *      calling us and will remove references for rtvals[] that are
1326  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1327  *      completion.
1328  *
1329  *      The parent has soft-busy'd the pages it passes us and will unbusy
1330  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1331  *      We need to unbusy the rest on I/O completion.
1332  */
1333 static void
1334 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1335     int flags, int *rtvals)
1336 {
1337         int i, n;
1338         boolean_t sync;
1339         daddr_t addr, n_free, s_free;
1340
1341         swp_pager_init_freerange(&s_free, &n_free);
1342         if (count && ma[0]->object != object) {
1343                 panic("swap_pager_putpages: object mismatch %p/%p",
1344                     object,
1345                     ma[0]->object
1346                 );
1347         }
1348
1349         /*
1350          * Step 1
1351          *
1352          * Turn object into OBJT_SWAP
1353          * check for bogus sysops
1354          * force sync if not pageout process
1355          */
1356         if (object->type != OBJT_SWAP) {
1357                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1358                 KASSERT(addr == SWAPBLK_NONE,
1359                     ("unexpected object swap block"));
1360         }
1361         VM_OBJECT_WUNLOCK(object);
1362
1363         n = 0;
1364         if (curproc != pageproc)
1365                 sync = TRUE;
1366         else
1367                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1368
1369         /*
1370          * Step 2
1371          *
1372          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1373          * The page is left dirty until the pageout operation completes
1374          * successfully.
1375          */
1376         for (i = 0; i < count; i += n) {
1377                 int j;
1378                 struct buf *bp;
1379                 daddr_t blk;
1380
1381                 /*
1382                  * Maximum I/O size is limited by a number of factors.
1383                  */
1384                 n = min(BLIST_MAX_ALLOC, count - i);
1385                 n = min(n, nsw_cluster_max);
1386
1387                 /*
1388                  * Get biggest block of swap we can.  If we fail, fall
1389                  * back and try to allocate a smaller block.  Don't go
1390                  * overboard trying to allocate space if it would overly
1391                  * fragment swap.
1392                  */
1393                 while (
1394                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1395                     n > 4
1396                 ) {
1397                         n >>= 1;
1398                 }
1399                 if (blk == SWAPBLK_NONE) {
1400                         for (j = 0; j < n; ++j)
1401                                 rtvals[i+j] = VM_PAGER_FAIL;
1402                         continue;
1403                 }
1404
1405                 /*
1406                  * All I/O parameters have been satisfied, build the I/O
1407                  * request and assign the swap space.
1408                  */
1409                 if (sync == TRUE) {
1410                         bp = getpbuf(&nsw_wcount_sync);
1411                 } else {
1412                         bp = getpbuf(&nsw_wcount_async);
1413                         bp->b_flags = B_ASYNC;
1414                 }
1415                 bp->b_flags |= B_PAGING;
1416                 bp->b_iocmd = BIO_WRITE;
1417
1418                 bp->b_rcred = crhold(thread0.td_ucred);
1419                 bp->b_wcred = crhold(thread0.td_ucred);
1420                 bp->b_bcount = PAGE_SIZE * n;
1421                 bp->b_bufsize = PAGE_SIZE * n;
1422                 bp->b_blkno = blk;
1423
1424                 VM_OBJECT_WLOCK(object);
1425                 for (j = 0; j < n; ++j) {
1426                         vm_page_t mreq = ma[i+j];
1427
1428                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1429                             blk + j);
1430                         if (addr != SWAPBLK_NONE)
1431                                 swp_pager_update_freerange(&s_free, &n_free,
1432                                     addr);
1433                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1434                         mreq->oflags |= VPO_SWAPINPROG;
1435                         bp->b_pages[j] = mreq;
1436                 }
1437                 VM_OBJECT_WUNLOCK(object);
1438                 bp->b_npages = n;
1439                 /*
1440                  * Must set dirty range for NFS to work.
1441                  */
1442                 bp->b_dirtyoff = 0;
1443                 bp->b_dirtyend = bp->b_bcount;
1444
1445                 VM_CNT_INC(v_swapout);
1446                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1447
1448                 /*
1449                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1450                  * can call the async completion routine at the end of a
1451                  * synchronous I/O operation.  Otherwise, our caller would
1452                  * perform duplicate unbusy and wakeup operations on the page
1453                  * and object, respectively.
1454                  */
1455                 for (j = 0; j < n; j++)
1456                         rtvals[i + j] = VM_PAGER_PEND;
1457
1458                 /*
1459                  * asynchronous
1460                  *
1461                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1462                  */
1463                 if (sync == FALSE) {
1464                         bp->b_iodone = swp_pager_async_iodone;
1465                         BUF_KERNPROC(bp);
1466                         swp_pager_strategy(bp);
1467                         continue;
1468                 }
1469
1470                 /*
1471                  * synchronous
1472                  *
1473                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1474                  */
1475                 bp->b_iodone = bdone;
1476                 swp_pager_strategy(bp);
1477
1478                 /*
1479                  * Wait for the sync I/O to complete.
1480                  */
1481                 bwait(bp, PVM, "swwrt");
1482
1483                 /*
1484                  * Now that we are through with the bp, we can call the
1485                  * normal async completion, which frees everything up.
1486                  */
1487                 swp_pager_async_iodone(bp);
1488         }
1489         VM_OBJECT_WLOCK(object);
1490         swp_pager_freeswapspace(s_free, n_free);
1491 }
1492
1493 /*
1494  *      swp_pager_async_iodone:
1495  *
1496  *      Completion routine for asynchronous reads and writes from/to swap.
1497  *      Also called manually by synchronous code to finish up a bp.
1498  *
1499  *      This routine may not sleep.
1500  */
1501 static void
1502 swp_pager_async_iodone(struct buf *bp)
1503 {
1504         int i;
1505         vm_object_t object = NULL;
1506
1507         /*
1508          * report error
1509          */
1510         if (bp->b_ioflags & BIO_ERROR) {
1511                 printf(
1512                     "swap_pager: I/O error - %s failed; blkno %ld,"
1513                         "size %ld, error %d\n",
1514                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1515                     (long)bp->b_blkno,
1516                     (long)bp->b_bcount,
1517                     bp->b_error
1518                 );
1519         }
1520
1521         /*
1522          * remove the mapping for kernel virtual
1523          */
1524         if (buf_mapped(bp))
1525                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1526         else
1527                 bp->b_data = bp->b_kvabase;
1528
1529         if (bp->b_npages) {
1530                 object = bp->b_pages[0]->object;
1531                 VM_OBJECT_WLOCK(object);
1532         }
1533
1534         /*
1535          * cleanup pages.  If an error occurs writing to swap, we are in
1536          * very serious trouble.  If it happens to be a disk error, though,
1537          * we may be able to recover by reassigning the swap later on.  So
1538          * in this case we remove the m->swapblk assignment for the page
1539          * but do not free it in the rlist.  The errornous block(s) are thus
1540          * never reallocated as swap.  Redirty the page and continue.
1541          */
1542         for (i = 0; i < bp->b_npages; ++i) {
1543                 vm_page_t m = bp->b_pages[i];
1544
1545                 m->oflags &= ~VPO_SWAPINPROG;
1546                 if (m->oflags & VPO_SWAPSLEEP) {
1547                         m->oflags &= ~VPO_SWAPSLEEP;
1548                         wakeup(&object->paging_in_progress);
1549                 }
1550
1551                 if (bp->b_ioflags & BIO_ERROR) {
1552                         /*
1553                          * If an error occurs I'd love to throw the swapblk
1554                          * away without freeing it back to swapspace, so it
1555                          * can never be used again.  But I can't from an
1556                          * interrupt.
1557                          */
1558                         if (bp->b_iocmd == BIO_READ) {
1559                                 /*
1560                                  * NOTE: for reads, m->dirty will probably
1561                                  * be overridden by the original caller of
1562                                  * getpages so don't play cute tricks here.
1563                                  */
1564                                 m->valid = 0;
1565                         } else {
1566                                 /*
1567                                  * If a write error occurs, reactivate page
1568                                  * so it doesn't clog the inactive list,
1569                                  * then finish the I/O.
1570                                  */
1571                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1572                                 vm_page_lock(m);
1573                                 vm_page_activate(m);
1574                                 vm_page_unlock(m);
1575                                 vm_page_sunbusy(m);
1576                         }
1577                 } else if (bp->b_iocmd == BIO_READ) {
1578                         /*
1579                          * NOTE: for reads, m->dirty will probably be
1580                          * overridden by the original caller of getpages so
1581                          * we cannot set them in order to free the underlying
1582                          * swap in a low-swap situation.  I don't think we'd
1583                          * want to do that anyway, but it was an optimization
1584                          * that existed in the old swapper for a time before
1585                          * it got ripped out due to precisely this problem.
1586                          */
1587                         KASSERT(!pmap_page_is_mapped(m),
1588                             ("swp_pager_async_iodone: page %p is mapped", m));
1589                         KASSERT(m->dirty == 0,
1590                             ("swp_pager_async_iodone: page %p is dirty", m));
1591
1592                         m->valid = VM_PAGE_BITS_ALL;
1593                         if (i < bp->b_pgbefore ||
1594                             i >= bp->b_npages - bp->b_pgafter)
1595                                 vm_page_readahead_finish(m);
1596                 } else {
1597                         /*
1598                          * For write success, clear the dirty
1599                          * status, then finish the I/O ( which decrements the
1600                          * busy count and possibly wakes waiter's up ).
1601                          * A page is only written to swap after a period of
1602                          * inactivity.  Therefore, we do not expect it to be
1603                          * reused.
1604                          */
1605                         KASSERT(!pmap_page_is_write_mapped(m),
1606                             ("swp_pager_async_iodone: page %p is not write"
1607                             " protected", m));
1608                         vm_page_undirty(m);
1609                         vm_page_lock(m);
1610                         vm_page_deactivate_noreuse(m);
1611                         vm_page_unlock(m);
1612                         vm_page_sunbusy(m);
1613                 }
1614         }
1615
1616         /*
1617          * adjust pip.  NOTE: the original parent may still have its own
1618          * pip refs on the object.
1619          */
1620         if (object != NULL) {
1621                 vm_object_pip_wakeupn(object, bp->b_npages);
1622                 VM_OBJECT_WUNLOCK(object);
1623         }
1624
1625         /*
1626          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1627          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1628          * trigger a KASSERT in relpbuf().
1629          */
1630         if (bp->b_vp) {
1631                     bp->b_vp = NULL;
1632                     bp->b_bufobj = NULL;
1633         }
1634         /*
1635          * release the physical I/O buffer
1636          */
1637         relpbuf(
1638             bp,
1639             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1640                 ((bp->b_flags & B_ASYNC) ?
1641                     &nsw_wcount_async :
1642                     &nsw_wcount_sync
1643                 )
1644             )
1645         );
1646 }
1647
1648 int
1649 swap_pager_nswapdev(void)
1650 {
1651
1652         return (nswapdev);
1653 }
1654
1655 /*
1656  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1657  *
1658  *      This routine dissociates the page at the given index within an object
1659  *      from its backing store, paging it in if it does not reside in memory.
1660  *      If the page is paged in, it is marked dirty and placed in the laundry
1661  *      queue.  The page is marked dirty because it no longer has backing
1662  *      store.  It is placed in the laundry queue because it has not been
1663  *      accessed recently.  Otherwise, it would already reside in memory.
1664  *
1665  *      We also attempt to swap in all other pages in the swap block.
1666  *      However, we only guarantee that the one at the specified index is
1667  *      paged in.
1668  *
1669  *      XXX - The code to page the whole block in doesn't work, so we
1670  *            revert to the one-by-one behavior for now.  Sigh.
1671  */
1672 static inline void
1673 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1674 {
1675         vm_page_t m;
1676
1677         vm_object_pip_add(object, 1);
1678         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1679         if (m->valid == VM_PAGE_BITS_ALL) {
1680                 vm_object_pip_wakeup(object);
1681                 vm_page_dirty(m);
1682 #ifdef INVARIANTS
1683                 vm_page_lock(m);
1684                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1685                         panic("page %p is neither wired nor queued", m);
1686                 vm_page_unlock(m);
1687 #endif
1688                 vm_page_xunbusy(m);
1689                 vm_pager_page_unswapped(m);
1690                 return;
1691         }
1692
1693         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1694                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1695         vm_object_pip_wakeup(object);
1696         vm_page_dirty(m);
1697         vm_page_lock(m);
1698         vm_page_launder(m);
1699         vm_page_unlock(m);
1700         vm_page_xunbusy(m);
1701         vm_pager_page_unswapped(m);
1702 }
1703
1704 /*
1705  *      swap_pager_swapoff:
1706  *
1707  *      Page in all of the pages that have been paged out to the
1708  *      given device.  The corresponding blocks in the bitmap must be
1709  *      marked as allocated and the device must be flagged SW_CLOSING.
1710  *      There may be no processes swapped out to the device.
1711  *
1712  *      This routine may block.
1713  */
1714 static void
1715 swap_pager_swapoff(struct swdevt *sp)
1716 {
1717         struct swblk *sb;
1718         vm_object_t object;
1719         vm_pindex_t pi;
1720         int i, retries;
1721
1722         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1723
1724         retries = 0;
1725 full_rescan:
1726         mtx_lock(&vm_object_list_mtx);
1727         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1728                 if (object->type != OBJT_SWAP)
1729                         continue;
1730                 mtx_unlock(&vm_object_list_mtx);
1731                 /* Depends on type-stability. */
1732                 VM_OBJECT_WLOCK(object);
1733
1734                 /*
1735                  * Dead objects are eventually terminated on their own.
1736                  */
1737                 if ((object->flags & OBJ_DEAD) != 0)
1738                         goto next_obj;
1739
1740                 /*
1741                  * Sync with fences placed after pctrie
1742                  * initialization.  We must not access pctrie below
1743                  * unless we checked that our object is swap and not
1744                  * dead.
1745                  */
1746                 atomic_thread_fence_acq();
1747                 if (object->type != OBJT_SWAP)
1748                         goto next_obj;
1749
1750                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1751                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1752                         pi = sb->p + SWAP_META_PAGES;
1753                         for (i = 0; i < SWAP_META_PAGES; i++) {
1754                                 if (sb->d[i] == SWAPBLK_NONE)
1755                                         continue;
1756                                 if (swp_pager_isondev(sb->d[i], sp))
1757                                         swp_pager_force_pagein(object,
1758                                             sb->p + i);
1759                         }
1760                 }
1761 next_obj:
1762                 VM_OBJECT_WUNLOCK(object);
1763                 mtx_lock(&vm_object_list_mtx);
1764         }
1765         mtx_unlock(&vm_object_list_mtx);
1766
1767         if (sp->sw_used) {
1768                 /*
1769                  * Objects may be locked or paging to the device being
1770                  * removed, so we will miss their pages and need to
1771                  * make another pass.  We have marked this device as
1772                  * SW_CLOSING, so the activity should finish soon.
1773                  */
1774                 retries++;
1775                 if (retries > 100) {
1776                         panic("swapoff: failed to locate %d swap blocks",
1777                             sp->sw_used);
1778                 }
1779                 pause("swpoff", hz / 20);
1780                 goto full_rescan;
1781         }
1782         EVENTHANDLER_INVOKE(swapoff, sp);
1783 }
1784
1785 /************************************************************************
1786  *                              SWAP META DATA                          *
1787  ************************************************************************
1788  *
1789  *      These routines manipulate the swap metadata stored in the
1790  *      OBJT_SWAP object.
1791  *
1792  *      Swap metadata is implemented with a global hash and not directly
1793  *      linked into the object.  Instead the object simply contains
1794  *      appropriate tracking counters.
1795  */
1796
1797 /*
1798  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1799  */
1800 static bool
1801 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1802 {
1803         int i;
1804
1805         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1806         for (i = start; i < limit; i++) {
1807                 if (sb->d[i] != SWAPBLK_NONE)
1808                         return (false);
1809         }
1810         return (true);
1811 }
1812    
1813 /*
1814  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1815  *
1816  *      We first convert the object to a swap object if it is a default
1817  *      object.
1818  *
1819  *      The specified swapblk is added to the object's swap metadata.  If
1820  *      the swapblk is not valid, it is freed instead.  Any previously
1821  *      assigned swapblk is returned.
1822  */
1823 static daddr_t
1824 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1825 {
1826         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1827         struct swblk *sb, *sb1;
1828         vm_pindex_t modpi, rdpi;
1829         daddr_t prev_swapblk;
1830         int error, i;
1831
1832         VM_OBJECT_ASSERT_WLOCKED(object);
1833
1834         /*
1835          * Convert default object to swap object if necessary
1836          */
1837         if (object->type != OBJT_SWAP) {
1838                 pctrie_init(&object->un_pager.swp.swp_blks);
1839
1840                 /*
1841                  * Ensure that swap_pager_swapoff()'s iteration over
1842                  * object_list does not see a garbage pctrie.
1843                  */
1844                 atomic_thread_fence_rel();
1845
1846                 object->type = OBJT_SWAP;
1847                 KASSERT(object->handle == NULL, ("default pager with handle"));
1848         }
1849
1850         rdpi = rounddown(pindex, SWAP_META_PAGES);
1851         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1852         if (sb == NULL) {
1853                 if (swapblk == SWAPBLK_NONE)
1854                         return (SWAPBLK_NONE);
1855                 for (;;) {
1856                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1857                             pageproc ? M_USE_RESERVE : 0));
1858                         if (sb != NULL) {
1859                                 sb->p = rdpi;
1860                                 for (i = 0; i < SWAP_META_PAGES; i++)
1861                                         sb->d[i] = SWAPBLK_NONE;
1862                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1863                                     1, 0))
1864                                         printf("swblk zone ok\n");
1865                                 break;
1866                         }
1867                         VM_OBJECT_WUNLOCK(object);
1868                         if (uma_zone_exhausted(swblk_zone)) {
1869                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1870                                     0, 1))
1871                                         printf("swap blk zone exhausted, "
1872                                             "increase kern.maxswzone\n");
1873                                 vm_pageout_oom(VM_OOM_SWAPZ);
1874                                 pause("swzonxb", 10);
1875                         } else
1876                                 uma_zwait(swblk_zone);
1877                         VM_OBJECT_WLOCK(object);
1878                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1879                             rdpi);
1880                         if (sb != NULL)
1881                                 /*
1882                                  * Somebody swapped out a nearby page,
1883                                  * allocating swblk at the rdpi index,
1884                                  * while we dropped the object lock.
1885                                  */
1886                                 goto allocated;
1887                 }
1888                 for (;;) {
1889                         error = SWAP_PCTRIE_INSERT(
1890                             &object->un_pager.swp.swp_blks, sb);
1891                         if (error == 0) {
1892                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1893                                     1, 0))
1894                                         printf("swpctrie zone ok\n");
1895                                 break;
1896                         }
1897                         VM_OBJECT_WUNLOCK(object);
1898                         if (uma_zone_exhausted(swpctrie_zone)) {
1899                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1900                                     0, 1))
1901                                         printf("swap pctrie zone exhausted, "
1902                                             "increase kern.maxswzone\n");
1903                                 vm_pageout_oom(VM_OOM_SWAPZ);
1904                                 pause("swzonxp", 10);
1905                         } else
1906                                 uma_zwait(swpctrie_zone);
1907                         VM_OBJECT_WLOCK(object);
1908                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1909                             rdpi);
1910                         if (sb1 != NULL) {
1911                                 uma_zfree(swblk_zone, sb);
1912                                 sb = sb1;
1913                                 goto allocated;
1914                         }
1915                 }
1916         }
1917 allocated:
1918         MPASS(sb->p == rdpi);
1919
1920         modpi = pindex % SWAP_META_PAGES;
1921         /* Return prior contents of metadata. */
1922         prev_swapblk = sb->d[modpi];
1923         /* Enter block into metadata. */
1924         sb->d[modpi] = swapblk;
1925
1926         /*
1927          * Free the swblk if we end up with the empty page run.
1928          */
1929         if (swapblk == SWAPBLK_NONE &&
1930             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1931                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1932                 uma_zfree(swblk_zone, sb);
1933         }
1934         return (prev_swapblk);
1935 }
1936
1937 /*
1938  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1939  *
1940  *      The requested range of blocks is freed, with any associated swap
1941  *      returned to the swap bitmap.
1942  *
1943  *      This routine will free swap metadata structures as they are cleaned
1944  *      out.  This routine does *NOT* operate on swap metadata associated
1945  *      with resident pages.
1946  */
1947 static void
1948 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1949 {
1950         struct swblk *sb;
1951         daddr_t n_free, s_free;
1952         vm_pindex_t last;
1953         int i, limit, start;
1954
1955         VM_OBJECT_ASSERT_WLOCKED(object);
1956         if (object->type != OBJT_SWAP || count == 0)
1957                 return;
1958
1959         swp_pager_init_freerange(&s_free, &n_free);
1960         last = pindex + count;
1961         for (;;) {
1962                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1963                     rounddown(pindex, SWAP_META_PAGES));
1964                 if (sb == NULL || sb->p >= last)
1965                         break;
1966                 start = pindex > sb->p ? pindex - sb->p : 0;
1967                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1968                     SWAP_META_PAGES;
1969                 for (i = start; i < limit; i++) {
1970                         if (sb->d[i] == SWAPBLK_NONE)
1971                                 continue;
1972                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1973                         sb->d[i] = SWAPBLK_NONE;
1974                 }
1975                 if (swp_pager_swblk_empty(sb, 0, start) &&
1976                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1977                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1978                             sb->p);
1979                         uma_zfree(swblk_zone, sb);
1980                 }
1981                 pindex = sb->p + SWAP_META_PAGES;
1982         }
1983         swp_pager_freeswapspace(s_free, n_free);
1984 }
1985
1986 /*
1987  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1988  *
1989  *      This routine locates and destroys all swap metadata associated with
1990  *      an object.
1991  */
1992 static void
1993 swp_pager_meta_free_all(vm_object_t object)
1994 {
1995         struct swblk *sb;
1996         daddr_t n_free, s_free;
1997         vm_pindex_t pindex;
1998         int i;
1999
2000         VM_OBJECT_ASSERT_WLOCKED(object);
2001         if (object->type != OBJT_SWAP)
2002                 return;
2003
2004         swp_pager_init_freerange(&s_free, &n_free);
2005         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2006             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2007                 pindex = sb->p + SWAP_META_PAGES;
2008                 for (i = 0; i < SWAP_META_PAGES; i++) {
2009                         if (sb->d[i] == SWAPBLK_NONE)
2010                                 continue;
2011                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2012                 }
2013                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2014                 uma_zfree(swblk_zone, sb);
2015         }
2016         swp_pager_freeswapspace(s_free, n_free);
2017 }
2018
2019 /*
2020  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2021  *
2022  *      This routine is capable of looking up, or removing swapblk
2023  *      assignments in the swap meta data.  It returns the swapblk being
2024  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2025  *
2026  *      When acting on a busy resident page and paging is in progress, we
2027  *      have to wait until paging is complete but otherwise can act on the
2028  *      busy page.
2029  *
2030  *      SWM_POP         remove from meta data but do not free it
2031  */
2032 static daddr_t
2033 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2034 {
2035         struct swblk *sb;
2036         daddr_t r1;
2037
2038         if ((flags & SWM_POP) != 0)
2039                 VM_OBJECT_ASSERT_WLOCKED(object);
2040         else
2041                 VM_OBJECT_ASSERT_LOCKED(object);
2042
2043         /*
2044          * The meta data only exists if the object is OBJT_SWAP
2045          * and even then might not be allocated yet.
2046          */
2047         if (object->type != OBJT_SWAP)
2048                 return (SWAPBLK_NONE);
2049
2050         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2051             rounddown(pindex, SWAP_META_PAGES));
2052         if (sb == NULL)
2053                 return (SWAPBLK_NONE);
2054         r1 = sb->d[pindex % SWAP_META_PAGES];
2055         if (r1 == SWAPBLK_NONE)
2056                 return (SWAPBLK_NONE);
2057         if ((flags & SWM_POP) != 0) {
2058                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2059                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2060                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2061                             rounddown(pindex, SWAP_META_PAGES));
2062                         uma_zfree(swblk_zone, sb);
2063                 }
2064         }
2065         return (r1);
2066 }
2067
2068 /*
2069  * Returns the least page index which is greater than or equal to the
2070  * parameter pindex and for which there is a swap block allocated.
2071  * Returns object's size if the object's type is not swap or if there
2072  * are no allocated swap blocks for the object after the requested
2073  * pindex.
2074  */
2075 vm_pindex_t
2076 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2077 {
2078         struct swblk *sb;
2079         int i;
2080
2081         VM_OBJECT_ASSERT_LOCKED(object);
2082         if (object->type != OBJT_SWAP)
2083                 return (object->size);
2084
2085         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2086             rounddown(pindex, SWAP_META_PAGES));
2087         if (sb == NULL)
2088                 return (object->size);
2089         if (sb->p < pindex) {
2090                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2091                         if (sb->d[i] != SWAPBLK_NONE)
2092                                 return (sb->p + i);
2093                 }
2094                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2095                     roundup(pindex, SWAP_META_PAGES));
2096                 if (sb == NULL)
2097                         return (object->size);
2098         }
2099         for (i = 0; i < SWAP_META_PAGES; i++) {
2100                 if (sb->d[i] != SWAPBLK_NONE)
2101                         return (sb->p + i);
2102         }
2103
2104         /*
2105          * We get here if a swblk is present in the trie but it
2106          * doesn't map any blocks.
2107          */
2108         MPASS(0);
2109         return (object->size);
2110 }
2111
2112 /*
2113  * System call swapon(name) enables swapping on device name,
2114  * which must be in the swdevsw.  Return EBUSY
2115  * if already swapping on this device.
2116  */
2117 #ifndef _SYS_SYSPROTO_H_
2118 struct swapon_args {
2119         char *name;
2120 };
2121 #endif
2122
2123 /*
2124  * MPSAFE
2125  */
2126 /* ARGSUSED */
2127 int
2128 sys_swapon(struct thread *td, struct swapon_args *uap)
2129 {
2130         struct vattr attr;
2131         struct vnode *vp;
2132         struct nameidata nd;
2133         int error;
2134
2135         error = priv_check(td, PRIV_SWAPON);
2136         if (error)
2137                 return (error);
2138
2139         sx_xlock(&swdev_syscall_lock);
2140
2141         /*
2142          * Swap metadata may not fit in the KVM if we have physical
2143          * memory of >1GB.
2144          */
2145         if (swblk_zone == NULL) {
2146                 error = ENOMEM;
2147                 goto done;
2148         }
2149
2150         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2151             uap->name, td);
2152         error = namei(&nd);
2153         if (error)
2154                 goto done;
2155
2156         NDFREE(&nd, NDF_ONLY_PNBUF);
2157         vp = nd.ni_vp;
2158
2159         if (vn_isdisk(vp, &error)) {
2160                 error = swapongeom(vp);
2161         } else if (vp->v_type == VREG &&
2162             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2163             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2164                 /*
2165                  * Allow direct swapping to NFS regular files in the same
2166                  * way that nfs_mountroot() sets up diskless swapping.
2167                  */
2168                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2169         }
2170
2171         if (error)
2172                 vrele(vp);
2173 done:
2174         sx_xunlock(&swdev_syscall_lock);
2175         return (error);
2176 }
2177
2178 /*
2179  * Check that the total amount of swap currently configured does not
2180  * exceed half the theoretical maximum.  If it does, print a warning
2181  * message.
2182  */
2183 static void
2184 swapon_check_swzone(void)
2185 {
2186         unsigned long maxpages, npages;
2187
2188         npages = swap_total;
2189         /* absolute maximum we can handle assuming 100% efficiency */
2190         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2191
2192         /* recommend using no more than half that amount */
2193         if (npages > maxpages / 2) {
2194                 printf("warning: total configured swap (%lu pages) "
2195                     "exceeds maximum recommended amount (%lu pages).\n",
2196                     npages, maxpages / 2);
2197                 printf("warning: increase kern.maxswzone "
2198                     "or reduce amount of swap.\n");
2199         }
2200 }
2201
2202 static void
2203 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2204     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2205 {
2206         struct swdevt *sp, *tsp;
2207         swblk_t dvbase;
2208         u_long mblocks;
2209
2210         /*
2211          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2212          * First chop nblks off to page-align it, then convert.
2213          *
2214          * sw->sw_nblks is in page-sized chunks now too.
2215          */
2216         nblks &= ~(ctodb(1) - 1);
2217         nblks = dbtoc(nblks);
2218
2219         /*
2220          * If we go beyond this, we get overflows in the radix
2221          * tree bitmap code.
2222          */
2223         mblocks = 0x40000000 / BLIST_META_RADIX;
2224         if (nblks > mblocks) {
2225                 printf(
2226     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2227                     mblocks / 1024 / 1024 * PAGE_SIZE);
2228                 nblks = mblocks;
2229         }
2230
2231         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2232         sp->sw_vp = vp;
2233         sp->sw_id = id;
2234         sp->sw_dev = dev;
2235         sp->sw_flags = 0;
2236         sp->sw_nblks = nblks;
2237         sp->sw_used = 0;
2238         sp->sw_strategy = strategy;
2239         sp->sw_close = close;
2240         sp->sw_flags = flags;
2241
2242         sp->sw_blist = blist_create(nblks, M_WAITOK);
2243         /*
2244          * Do not free the first two block in order to avoid overwriting
2245          * any bsd label at the front of the partition
2246          */
2247         blist_free(sp->sw_blist, 2, nblks - 2);
2248
2249         dvbase = 0;
2250         mtx_lock(&sw_dev_mtx);
2251         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2252                 if (tsp->sw_end >= dvbase) {
2253                         /*
2254                          * We put one uncovered page between the devices
2255                          * in order to definitively prevent any cross-device
2256                          * I/O requests
2257                          */
2258                         dvbase = tsp->sw_end + 1;
2259                 }
2260         }
2261         sp->sw_first = dvbase;
2262         sp->sw_end = dvbase + nblks;
2263         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2264         nswapdev++;
2265         swap_pager_avail += nblks - 2;
2266         swap_total += nblks;
2267         swapon_check_swzone();
2268         swp_sizecheck();
2269         mtx_unlock(&sw_dev_mtx);
2270         EVENTHANDLER_INVOKE(swapon, sp);
2271 }
2272
2273 /*
2274  * SYSCALL: swapoff(devname)
2275  *
2276  * Disable swapping on the given device.
2277  *
2278  * XXX: Badly designed system call: it should use a device index
2279  * rather than filename as specification.  We keep sw_vp around
2280  * only to make this work.
2281  */
2282 #ifndef _SYS_SYSPROTO_H_
2283 struct swapoff_args {
2284         char *name;
2285 };
2286 #endif
2287
2288 /*
2289  * MPSAFE
2290  */
2291 /* ARGSUSED */
2292 int
2293 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2294 {
2295         struct vnode *vp;
2296         struct nameidata nd;
2297         struct swdevt *sp;
2298         int error;
2299
2300         error = priv_check(td, PRIV_SWAPOFF);
2301         if (error)
2302                 return (error);
2303
2304         sx_xlock(&swdev_syscall_lock);
2305
2306         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2307             td);
2308         error = namei(&nd);
2309         if (error)
2310                 goto done;
2311         NDFREE(&nd, NDF_ONLY_PNBUF);
2312         vp = nd.ni_vp;
2313
2314         mtx_lock(&sw_dev_mtx);
2315         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2316                 if (sp->sw_vp == vp)
2317                         break;
2318         }
2319         mtx_unlock(&sw_dev_mtx);
2320         if (sp == NULL) {
2321                 error = EINVAL;
2322                 goto done;
2323         }
2324         error = swapoff_one(sp, td->td_ucred);
2325 done:
2326         sx_xunlock(&swdev_syscall_lock);
2327         return (error);
2328 }
2329
2330 static int
2331 swapoff_one(struct swdevt *sp, struct ucred *cred)
2332 {
2333         u_long nblks;
2334 #ifdef MAC
2335         int error;
2336 #endif
2337
2338         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2339 #ifdef MAC
2340         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2341         error = mac_system_check_swapoff(cred, sp->sw_vp);
2342         (void) VOP_UNLOCK(sp->sw_vp, 0);
2343         if (error != 0)
2344                 return (error);
2345 #endif
2346         nblks = sp->sw_nblks;
2347
2348         /*
2349          * We can turn off this swap device safely only if the
2350          * available virtual memory in the system will fit the amount
2351          * of data we will have to page back in, plus an epsilon so
2352          * the system doesn't become critically low on swap space.
2353          */
2354         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2355                 return (ENOMEM);
2356
2357         /*
2358          * Prevent further allocations on this device.
2359          */
2360         mtx_lock(&sw_dev_mtx);
2361         sp->sw_flags |= SW_CLOSING;
2362         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2363         swap_total -= nblks;
2364         mtx_unlock(&sw_dev_mtx);
2365
2366         /*
2367          * Page in the contents of the device and close it.
2368          */
2369         swap_pager_swapoff(sp);
2370
2371         sp->sw_close(curthread, sp);
2372         mtx_lock(&sw_dev_mtx);
2373         sp->sw_id = NULL;
2374         TAILQ_REMOVE(&swtailq, sp, sw_list);
2375         nswapdev--;
2376         if (nswapdev == 0) {
2377                 swap_pager_full = 2;
2378                 swap_pager_almost_full = 1;
2379         }
2380         if (swdevhd == sp)
2381                 swdevhd = NULL;
2382         mtx_unlock(&sw_dev_mtx);
2383         blist_destroy(sp->sw_blist);
2384         free(sp, M_VMPGDATA);
2385         return (0);
2386 }
2387
2388 void
2389 swapoff_all(void)
2390 {
2391         struct swdevt *sp, *spt;
2392         const char *devname;
2393         int error;
2394
2395         sx_xlock(&swdev_syscall_lock);
2396
2397         mtx_lock(&sw_dev_mtx);
2398         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2399                 mtx_unlock(&sw_dev_mtx);
2400                 if (vn_isdisk(sp->sw_vp, NULL))
2401                         devname = devtoname(sp->sw_vp->v_rdev);
2402                 else
2403                         devname = "[file]";
2404                 error = swapoff_one(sp, thread0.td_ucred);
2405                 if (error != 0) {
2406                         printf("Cannot remove swap device %s (error=%d), "
2407                             "skipping.\n", devname, error);
2408                 } else if (bootverbose) {
2409                         printf("Swap device %s removed.\n", devname);
2410                 }
2411                 mtx_lock(&sw_dev_mtx);
2412         }
2413         mtx_unlock(&sw_dev_mtx);
2414
2415         sx_xunlock(&swdev_syscall_lock);
2416 }
2417
2418 void
2419 swap_pager_status(int *total, int *used)
2420 {
2421         struct swdevt *sp;
2422
2423         *total = 0;
2424         *used = 0;
2425         mtx_lock(&sw_dev_mtx);
2426         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2427                 *total += sp->sw_nblks;
2428                 *used += sp->sw_used;
2429         }
2430         mtx_unlock(&sw_dev_mtx);
2431 }
2432
2433 int
2434 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2435 {
2436         struct swdevt *sp;
2437         const char *tmp_devname;
2438         int error, n;
2439
2440         n = 0;
2441         error = ENOENT;
2442         mtx_lock(&sw_dev_mtx);
2443         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2444                 if (n != name) {
2445                         n++;
2446                         continue;
2447                 }
2448                 xs->xsw_version = XSWDEV_VERSION;
2449                 xs->xsw_dev = sp->sw_dev;
2450                 xs->xsw_flags = sp->sw_flags;
2451                 xs->xsw_nblks = sp->sw_nblks;
2452                 xs->xsw_used = sp->sw_used;
2453                 if (devname != NULL) {
2454                         if (vn_isdisk(sp->sw_vp, NULL))
2455                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2456                         else
2457                                 tmp_devname = "[file]";
2458                         strncpy(devname, tmp_devname, len);
2459                 }
2460                 error = 0;
2461                 break;
2462         }
2463         mtx_unlock(&sw_dev_mtx);
2464         return (error);
2465 }
2466
2467 #if defined(COMPAT_FREEBSD11)
2468 #define XSWDEV_VERSION_11       1
2469 struct xswdev11 {
2470         u_int   xsw_version;
2471         uint32_t xsw_dev;
2472         int     xsw_flags;
2473         int     xsw_nblks;
2474         int     xsw_used;
2475 };
2476 #endif
2477
2478 static int
2479 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2480 {
2481         struct xswdev xs;
2482 #if defined(COMPAT_FREEBSD11)
2483         struct xswdev11 xs11;
2484 #endif
2485         int error;
2486
2487         if (arg2 != 1)                  /* name length */
2488                 return (EINVAL);
2489         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2490         if (error != 0)
2491                 return (error);
2492 #if defined(COMPAT_FREEBSD11)
2493         if (req->oldlen == sizeof(xs11)) {
2494                 xs11.xsw_version = XSWDEV_VERSION_11;
2495                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2496                 xs11.xsw_flags = xs.xsw_flags;
2497                 xs11.xsw_nblks = xs.xsw_nblks;
2498                 xs11.xsw_used = xs.xsw_used;
2499                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2500         } else
2501 #endif
2502                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2503         return (error);
2504 }
2505
2506 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2507     "Number of swap devices");
2508 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2509     sysctl_vm_swap_info,
2510     "Swap statistics by device");
2511
2512 /*
2513  * Count the approximate swap usage in pages for a vmspace.  The
2514  * shadowed or not yet copied on write swap blocks are not accounted.
2515  * The map must be locked.
2516  */
2517 long
2518 vmspace_swap_count(struct vmspace *vmspace)
2519 {
2520         vm_map_t map;
2521         vm_map_entry_t cur;
2522         vm_object_t object;
2523         struct swblk *sb;
2524         vm_pindex_t e, pi;
2525         long count;
2526         int i;
2527
2528         map = &vmspace->vm_map;
2529         count = 0;
2530
2531         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2532                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2533                         continue;
2534                 object = cur->object.vm_object;
2535                 if (object == NULL || object->type != OBJT_SWAP)
2536                         continue;
2537                 VM_OBJECT_RLOCK(object);
2538                 if (object->type != OBJT_SWAP)
2539                         goto unlock;
2540                 pi = OFF_TO_IDX(cur->offset);
2541                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2542                 for (;; pi = sb->p + SWAP_META_PAGES) {
2543                         sb = SWAP_PCTRIE_LOOKUP_GE(
2544                             &object->un_pager.swp.swp_blks, pi);
2545                         if (sb == NULL || sb->p >= e)
2546                                 break;
2547                         for (i = 0; i < SWAP_META_PAGES; i++) {
2548                                 if (sb->p + i < e &&
2549                                     sb->d[i] != SWAPBLK_NONE)
2550                                         count++;
2551                         }
2552                 }
2553 unlock:
2554                 VM_OBJECT_RUNLOCK(object);
2555         }
2556         return (count);
2557 }
2558
2559 /*
2560  * GEOM backend
2561  *
2562  * Swapping onto disk devices.
2563  *
2564  */
2565
2566 static g_orphan_t swapgeom_orphan;
2567
2568 static struct g_class g_swap_class = {
2569         .name = "SWAP",
2570         .version = G_VERSION,
2571         .orphan = swapgeom_orphan,
2572 };
2573
2574 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2575
2576
2577 static void
2578 swapgeom_close_ev(void *arg, int flags)
2579 {
2580         struct g_consumer *cp;
2581
2582         cp = arg;
2583         g_access(cp, -1, -1, 0);
2584         g_detach(cp);
2585         g_destroy_consumer(cp);
2586 }
2587
2588 /*
2589  * Add a reference to the g_consumer for an inflight transaction.
2590  */
2591 static void
2592 swapgeom_acquire(struct g_consumer *cp)
2593 {
2594
2595         mtx_assert(&sw_dev_mtx, MA_OWNED);
2596         cp->index++;
2597 }
2598
2599 /*
2600  * Remove a reference from the g_consumer.  Post a close event if all
2601  * references go away, since the function might be called from the
2602  * biodone context.
2603  */
2604 static void
2605 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2606 {
2607
2608         mtx_assert(&sw_dev_mtx, MA_OWNED);
2609         cp->index--;
2610         if (cp->index == 0) {
2611                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2612                         sp->sw_id = NULL;
2613         }
2614 }
2615
2616 static void
2617 swapgeom_done(struct bio *bp2)
2618 {
2619         struct swdevt *sp;
2620         struct buf *bp;
2621         struct g_consumer *cp;
2622
2623         bp = bp2->bio_caller2;
2624         cp = bp2->bio_from;
2625         bp->b_ioflags = bp2->bio_flags;
2626         if (bp2->bio_error)
2627                 bp->b_ioflags |= BIO_ERROR;
2628         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2629         bp->b_error = bp2->bio_error;
2630         bufdone(bp);
2631         sp = bp2->bio_caller1;
2632         mtx_lock(&sw_dev_mtx);
2633         swapgeom_release(cp, sp);
2634         mtx_unlock(&sw_dev_mtx);
2635         g_destroy_bio(bp2);
2636 }
2637
2638 static void
2639 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2640 {
2641         struct bio *bio;
2642         struct g_consumer *cp;
2643
2644         mtx_lock(&sw_dev_mtx);
2645         cp = sp->sw_id;
2646         if (cp == NULL) {
2647                 mtx_unlock(&sw_dev_mtx);
2648                 bp->b_error = ENXIO;
2649                 bp->b_ioflags |= BIO_ERROR;
2650                 bufdone(bp);
2651                 return;
2652         }
2653         swapgeom_acquire(cp);
2654         mtx_unlock(&sw_dev_mtx);
2655         if (bp->b_iocmd == BIO_WRITE)
2656                 bio = g_new_bio();
2657         else
2658                 bio = g_alloc_bio();
2659         if (bio == NULL) {
2660                 mtx_lock(&sw_dev_mtx);
2661                 swapgeom_release(cp, sp);
2662                 mtx_unlock(&sw_dev_mtx);
2663                 bp->b_error = ENOMEM;
2664                 bp->b_ioflags |= BIO_ERROR;
2665                 bufdone(bp);
2666                 return;
2667         }
2668
2669         bio->bio_caller1 = sp;
2670         bio->bio_caller2 = bp;
2671         bio->bio_cmd = bp->b_iocmd;
2672         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2673         bio->bio_length = bp->b_bcount;
2674         bio->bio_done = swapgeom_done;
2675         if (!buf_mapped(bp)) {
2676                 bio->bio_ma = bp->b_pages;
2677                 bio->bio_data = unmapped_buf;
2678                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2679                 bio->bio_ma_n = bp->b_npages;
2680                 bio->bio_flags |= BIO_UNMAPPED;
2681         } else {
2682                 bio->bio_data = bp->b_data;
2683                 bio->bio_ma = NULL;
2684         }
2685         g_io_request(bio, cp);
2686         return;
2687 }
2688
2689 static void
2690 swapgeom_orphan(struct g_consumer *cp)
2691 {
2692         struct swdevt *sp;
2693         int destroy;
2694
2695         mtx_lock(&sw_dev_mtx);
2696         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2697                 if (sp->sw_id == cp) {
2698                         sp->sw_flags |= SW_CLOSING;
2699                         break;
2700                 }
2701         }
2702         /*
2703          * Drop reference we were created with. Do directly since we're in a
2704          * special context where we don't have to queue the call to
2705          * swapgeom_close_ev().
2706          */
2707         cp->index--;
2708         destroy = ((sp != NULL) && (cp->index == 0));
2709         if (destroy)
2710                 sp->sw_id = NULL;
2711         mtx_unlock(&sw_dev_mtx);
2712         if (destroy)
2713                 swapgeom_close_ev(cp, 0);
2714 }
2715
2716 static void
2717 swapgeom_close(struct thread *td, struct swdevt *sw)
2718 {
2719         struct g_consumer *cp;
2720
2721         mtx_lock(&sw_dev_mtx);
2722         cp = sw->sw_id;
2723         sw->sw_id = NULL;
2724         mtx_unlock(&sw_dev_mtx);
2725
2726         /*
2727          * swapgeom_close() may be called from the biodone context,
2728          * where we cannot perform topology changes.  Delegate the
2729          * work to the events thread.
2730          */
2731         if (cp != NULL)
2732                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2733 }
2734
2735 static int
2736 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2737 {
2738         struct g_provider *pp;
2739         struct g_consumer *cp;
2740         static struct g_geom *gp;
2741         struct swdevt *sp;
2742         u_long nblks;
2743         int error;
2744
2745         pp = g_dev_getprovider(dev);
2746         if (pp == NULL)
2747                 return (ENODEV);
2748         mtx_lock(&sw_dev_mtx);
2749         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2750                 cp = sp->sw_id;
2751                 if (cp != NULL && cp->provider == pp) {
2752                         mtx_unlock(&sw_dev_mtx);
2753                         return (EBUSY);
2754                 }
2755         }
2756         mtx_unlock(&sw_dev_mtx);
2757         if (gp == NULL)
2758                 gp = g_new_geomf(&g_swap_class, "swap");
2759         cp = g_new_consumer(gp);
2760         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2761         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2762         g_attach(cp, pp);
2763         /*
2764          * XXX: Every time you think you can improve the margin for
2765          * footshooting, somebody depends on the ability to do so:
2766          * savecore(8) wants to write to our swapdev so we cannot
2767          * set an exclusive count :-(
2768          */
2769         error = g_access(cp, 1, 1, 0);
2770         if (error != 0) {
2771                 g_detach(cp);
2772                 g_destroy_consumer(cp);
2773                 return (error);
2774         }
2775         nblks = pp->mediasize / DEV_BSIZE;
2776         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2777             swapgeom_close, dev2udev(dev),
2778             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2779         return (0);
2780 }
2781
2782 static int
2783 swapongeom(struct vnode *vp)
2784 {
2785         int error;
2786
2787         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2788         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2789                 error = ENOENT;
2790         } else {
2791                 g_topology_lock();
2792                 error = swapongeom_locked(vp->v_rdev, vp);
2793                 g_topology_unlock();
2794         }
2795         VOP_UNLOCK(vp, 0);
2796         return (error);
2797 }
2798
2799 /*
2800  * VNODE backend
2801  *
2802  * This is used mainly for network filesystem (read: probably only tested
2803  * with NFS) swapfiles.
2804  *
2805  */
2806
2807 static void
2808 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2809 {
2810         struct vnode *vp2;
2811
2812         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2813
2814         vp2 = sp->sw_id;
2815         vhold(vp2);
2816         if (bp->b_iocmd == BIO_WRITE) {
2817                 if (bp->b_bufobj)
2818                         bufobj_wdrop(bp->b_bufobj);
2819                 bufobj_wref(&vp2->v_bufobj);
2820         }
2821         if (bp->b_bufobj != &vp2->v_bufobj)
2822                 bp->b_bufobj = &vp2->v_bufobj;
2823         bp->b_vp = vp2;
2824         bp->b_iooffset = dbtob(bp->b_blkno);
2825         bstrategy(bp);
2826         return;
2827 }
2828
2829 static void
2830 swapdev_close(struct thread *td, struct swdevt *sp)
2831 {
2832
2833         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2834         vrele(sp->sw_vp);
2835 }
2836
2837
2838 static int
2839 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2840 {
2841         struct swdevt *sp;
2842         int error;
2843
2844         if (nblks == 0)
2845                 return (ENXIO);
2846         mtx_lock(&sw_dev_mtx);
2847         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2848                 if (sp->sw_id == vp) {
2849                         mtx_unlock(&sw_dev_mtx);
2850                         return (EBUSY);
2851                 }
2852         }
2853         mtx_unlock(&sw_dev_mtx);
2854
2855         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2856 #ifdef MAC
2857         error = mac_system_check_swapon(td->td_ucred, vp);
2858         if (error == 0)
2859 #endif
2860                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2861         (void) VOP_UNLOCK(vp, 0);
2862         if (error)
2863                 return (error);
2864
2865         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2866             NODEV, 0);
2867         return (0);
2868 }
2869
2870 static int
2871 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2872 {
2873         int error, new, n;
2874
2875         new = nsw_wcount_async_max;
2876         error = sysctl_handle_int(oidp, &new, 0, req);
2877         if (error != 0 || req->newptr == NULL)
2878                 return (error);
2879
2880         if (new > nswbuf / 2 || new < 1)
2881                 return (EINVAL);
2882
2883         mtx_lock(&pbuf_mtx);
2884         while (nsw_wcount_async_max != new) {
2885                 /*
2886                  * Adjust difference.  If the current async count is too low,
2887                  * we will need to sqeeze our update slowly in.  Sleep with a
2888                  * higher priority than getpbuf() to finish faster.
2889                  */
2890                 n = new - nsw_wcount_async_max;
2891                 if (nsw_wcount_async + n >= 0) {
2892                         nsw_wcount_async += n;
2893                         nsw_wcount_async_max += n;
2894                         wakeup(&nsw_wcount_async);
2895                 } else {
2896                         nsw_wcount_async_max -= nsw_wcount_async;
2897                         nsw_wcount_async = 0;
2898                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2899                             "swpsysctl", 0);
2900                 }
2901         }
2902         mtx_unlock(&pbuf_mtx);
2903
2904         return (0);
2905 }