]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt, libc++,
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/eventhandler.h>
83 #include <sys/fcntl.h>
84 #include <sys/lock.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/malloc.h>
89 #include <sys/pctrie.h>
90 #include <sys/priv.h>
91 #include <sys/proc.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/systm.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158     &swap_reserved, 0, sysctl_page_shift, "A", 
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161     &swap_total, 0, sysctl_page_shift, "A", 
162     "Total amount of available swap storage.");
163
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170     "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173     "Maximum amount of swap supported");
174
175 /* bits from overcommit */
176 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
177 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
178 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
179
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183         uint64_t newval;
184         u_long value = *(u_long *)arg1;
185
186         newval = ((uint64_t)value) << PAGE_SHIFT;
187         return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193
194         return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200         u_long r, s, prev, pincr;
201         int res, error;
202         static int curfail;
203         static struct timeval lastfail;
204         struct uidinfo *uip;
205
206         uip = cred->cr_ruidinfo;
207
208         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209             (uintmax_t)incr));
210
211 #ifdef RACCT
212         if (racct_enable) {
213                 PROC_LOCK(curproc);
214                 error = racct_add(curproc, RACCT_SWAP, incr);
215                 PROC_UNLOCK(curproc);
216                 if (error != 0)
217                         return (0);
218         }
219 #endif
220
221         pincr = atop(incr);
222         res = 0;
223         prev = atomic_fetchadd_long(&swap_reserved, pincr);
224         r = prev + pincr;
225         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227                     vm_wire_count();
228         } else
229                 s = 0;
230         s += swap_total;
231         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233                 res = 1;
234         } else {
235                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236                 if (prev < pincr)
237                         panic("swap_reserved < incr on overcommit fail");
238         }
239         if (res) {
240                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244                         res = 0;
245                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246                         if (prev < pincr)
247                                 panic("uip->ui_vmsize < incr on overcommit fail");
248                 }
249         }
250         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252                     uip->ui_uid, curproc->p_pid, incr);
253         }
254
255 #ifdef RACCT
256         if (racct_enable && !res) {
257                 PROC_LOCK(curproc);
258                 racct_sub(curproc, RACCT_SWAP, incr);
259                 PROC_UNLOCK(curproc);
260         }
261 #endif
262
263         return (res);
264 }
265
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269         struct uidinfo *uip;
270         u_long pincr;
271
272         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273             (uintmax_t)incr));
274
275         PROC_LOCK(curproc);
276 #ifdef RACCT
277         if (racct_enable)
278                 racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280         pincr = atop(incr);
281         atomic_add_long(&swap_reserved, pincr);
282         uip = curproc->p_ucred->cr_ruidinfo;
283         atomic_add_long(&uip->ui_vmsize, pincr);
284         PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290         struct ucred *cred;
291
292         PROC_LOCK(curproc);
293         cred = curproc->p_ucred;
294         swap_release_by_cred(decr, cred);
295         PROC_UNLOCK(curproc);
296 }
297
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301         u_long prev, pdecr;
302         struct uidinfo *uip;
303
304         uip = cred->cr_ruidinfo;
305
306         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307             (uintmax_t)decr));
308
309         pdecr = atop(decr);
310         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311         if (prev < pdecr)
312                 panic("swap_reserved < decr");
313
314         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315         if (prev < pdecr)
316                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318         if (racct_enable)
319                 racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322
323 #define SWM_POP         0x01    /* pop out                      */
324
325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
328 static int nsw_wcount_async;    /* limit async write buffers */
329 static int nsw_wcount_async_max;/* assigned maximum                     */
330 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
331
332 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
333 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
334     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
335     "Maximum running async swap ops");
336 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
337 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
338     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
339     "Swap Fragmentation Info");
340
341 static struct sx sw_alloc_sx;
342
343 /*
344  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
345  * of searching a named list by hashing it just a little.
346  */
347
348 #define NOBJLISTS               8
349
350 #define NOBJLIST(handle)        \
351         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
352
353 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
354 static uma_zone_t swwbuf_zone;
355 static uma_zone_t swrbuf_zone;
356 static uma_zone_t swblk_zone;
357 static uma_zone_t swpctrie_zone;
358
359 /*
360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
361  * calls hooked from other parts of the VM system and do not appear here.
362  * (see vm/swap_pager.h).
363  */
364 static vm_object_t
365                 swap_pager_alloc(void *handle, vm_ooffset_t size,
366                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
367 static void     swap_pager_dealloc(vm_object_t object);
368 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
369     int *);
370 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
371     int *, pgo_getpages_iodone_t, void *);
372 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
373 static boolean_t
374                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
375 static void     swap_pager_init(void);
376 static void     swap_pager_unswapped(vm_page_t);
377 static void     swap_pager_swapoff(struct swdevt *sp);
378
379 struct pagerops swappagerops = {
380         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
381         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
382         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
383         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
384         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
385         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
386         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
387         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
388 };
389
390 /*
391  * swap_*() routines are externally accessible.  swp_*() routines are
392  * internal.
393  */
394 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
395 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
396
397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
398     "Maximum size of a swap block in pages");
399
400 static void     swp_sizecheck(void);
401 static void     swp_pager_async_iodone(struct buf *bp);
402 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
403 static int      swapongeom(struct vnode *);
404 static int      swaponvp(struct thread *, struct vnode *, u_long);
405 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
406
407 /*
408  * Swap bitmap functions
409  */
410 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
411 static daddr_t  swp_pager_getswapspace(int *npages, int limit);
412
413 /*
414  * Metadata functions
415  */
416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
418 static void swp_pager_meta_free_all(vm_object_t);
419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
420
421 static void
422 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
423 {
424
425         *start = SWAPBLK_NONE;
426         *num = 0;
427 }
428
429 static void
430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
431 {
432
433         if (*start + *num == addr) {
434                 (*num)++;
435         } else {
436                 swp_pager_freeswapspace(*start, *num);
437                 *start = addr;
438                 *num = 1;
439         }
440 }
441
442 static void *
443 swblk_trie_alloc(struct pctrie *ptree)
444 {
445
446         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
447             M_USE_RESERVE : 0)));
448 }
449
450 static void
451 swblk_trie_free(struct pctrie *ptree, void *node)
452 {
453
454         uma_zfree(swpctrie_zone, node);
455 }
456
457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
458
459 /*
460  * SWP_SIZECHECK() -    update swap_pager_full indication
461  *
462  *      update the swap_pager_almost_full indication and warn when we are
463  *      about to run out of swap space, using lowat/hiwat hysteresis.
464  *
465  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
466  *
467  *      No restrictions on call
468  *      This routine may not block.
469  */
470 static void
471 swp_sizecheck(void)
472 {
473
474         if (swap_pager_avail < nswap_lowat) {
475                 if (swap_pager_almost_full == 0) {
476                         printf("swap_pager: out of swap space\n");
477                         swap_pager_almost_full = 1;
478                 }
479         } else {
480                 swap_pager_full = 0;
481                 if (swap_pager_avail > nswap_hiwat)
482                         swap_pager_almost_full = 0;
483         }
484 }
485
486 /*
487  * SWAP_PAGER_INIT() -  initialize the swap pager!
488  *
489  *      Expected to be started from system init.  NOTE:  This code is run
490  *      before much else so be careful what you depend on.  Most of the VM
491  *      system has yet to be initialized at this point.
492  */
493 static void
494 swap_pager_init(void)
495 {
496         /*
497          * Initialize object lists
498          */
499         int i;
500
501         for (i = 0; i < NOBJLISTS; ++i)
502                 TAILQ_INIT(&swap_pager_object_list[i]);
503         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
504         sx_init(&sw_alloc_sx, "swspsx");
505         sx_init(&swdev_syscall_lock, "swsysc");
506 }
507
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *      Expected to be started from pageout process once, prior to entering
512  *      its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517         unsigned long n, n2;
518
519         /*
520          * Number of in-transit swap bp operations.  Don't
521          * exhaust the pbufs completely.  Make sure we
522          * initialize workable values (0 will work for hysteresis
523          * but it isn't very efficient).
524          *
525          * The nsw_cluster_max is constrained by the bp->b_pages[]
526          * array (MAXPHYS/PAGE_SIZE) and our locally defined
527          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528          * constrained by the swap device interleave stripe size.
529          *
530          * Currently we hardwire nsw_wcount_async to 4.  This limit is
531          * designed to prevent other I/O from having high latencies due to
532          * our pageout I/O.  The value 4 works well for one or two active swap
533          * devices but is probably a little low if you have more.  Even so,
534          * a higher value would probably generate only a limited improvement
535          * with three or four active swap devices since the system does not
536          * typically have to pageout at extreme bandwidths.   We will want
537          * at least 2 per swap devices, and 4 is a pretty good value if you
538          * have one NFS swap device due to the command/ack latency over NFS.
539          * So it all works out pretty well.
540          */
541         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
542
543         nsw_wcount_async = 4;
544         nsw_wcount_async_max = nsw_wcount_async;
545         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
546
547         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
548         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
549
550         /*
551          * Initialize our zone, taking the user's requested size or
552          * estimating the number we need based on the number of pages
553          * in the system.
554          */
555         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
556             vm_cnt.v_page_count / 2;
557         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
558             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
559         if (swpctrie_zone == NULL)
560                 panic("failed to create swap pctrie zone.");
561         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
562             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
563         if (swblk_zone == NULL)
564                 panic("failed to create swap blk zone.");
565         n2 = n;
566         do {
567                 if (uma_zone_reserve_kva(swblk_zone, n))
568                         break;
569                 /*
570                  * if the allocation failed, try a zone two thirds the
571                  * size of the previous attempt.
572                  */
573                 n -= ((n + 2) / 3);
574         } while (n > 0);
575
576         /*
577          * Often uma_zone_reserve_kva() cannot reserve exactly the
578          * requested size.  Account for the difference when
579          * calculating swap_maxpages.
580          */
581         n = uma_zone_get_max(swblk_zone);
582
583         if (n < n2)
584                 printf("Swap blk zone entries changed from %lu to %lu.\n",
585                     n2, n);
586         swap_maxpages = n * SWAP_META_PAGES;
587         swzone = n * sizeof(struct swblk);
588         if (!uma_zone_reserve_kva(swpctrie_zone, n))
589                 printf("Cannot reserve swap pctrie zone, "
590                     "reduce kern.maxswzone.\n");
591 }
592
593 static vm_object_t
594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
595     vm_ooffset_t offset)
596 {
597         vm_object_t object;
598
599         if (cred != NULL) {
600                 if (!swap_reserve_by_cred(size, cred))
601                         return (NULL);
602                 crhold(cred);
603         }
604
605         /*
606          * The un_pager.swp.swp_blks trie is initialized by
607          * vm_object_allocate() to ensure the correct order of
608          * visibility to other threads.
609          */
610         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
611             PAGE_MASK + size));
612
613         object->handle = handle;
614         if (cred != NULL) {
615                 object->cred = cred;
616                 object->charge = size;
617         }
618         return (object);
619 }
620
621 /*
622  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
623  *                      its metadata structures.
624  *
625  *      This routine is called from the mmap and fork code to create a new
626  *      OBJT_SWAP object.
627  *
628  *      This routine must ensure that no live duplicate is created for
629  *      the named object request, which is protected against by
630  *      holding the sw_alloc_sx lock in case handle != NULL.
631  */
632 static vm_object_t
633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
634     vm_ooffset_t offset, struct ucred *cred)
635 {
636         vm_object_t object;
637
638         if (handle != NULL) {
639                 /*
640                  * Reference existing named region or allocate new one.  There
641                  * should not be a race here against swp_pager_meta_build()
642                  * as called from vm_page_remove() in regards to the lookup
643                  * of the handle.
644                  */
645                 sx_xlock(&sw_alloc_sx);
646                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
647                 if (object == NULL) {
648                         object = swap_pager_alloc_init(handle, cred, size,
649                             offset);
650                         if (object != NULL) {
651                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
652                                     object, pager_object_list);
653                         }
654                 }
655                 sx_xunlock(&sw_alloc_sx);
656         } else {
657                 object = swap_pager_alloc_init(handle, cred, size, offset);
658         }
659         return (object);
660 }
661
662 /*
663  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
664  *
665  *      The swap backing for the object is destroyed.  The code is
666  *      designed such that we can reinstantiate it later, but this
667  *      routine is typically called only when the entire object is
668  *      about to be destroyed.
669  *
670  *      The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675
676         VM_OBJECT_ASSERT_WLOCKED(object);
677         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
678
679         /*
680          * Remove from list right away so lookups will fail if we block for
681          * pageout completion.
682          */
683         if (object->handle != NULL) {
684                 VM_OBJECT_WUNLOCK(object);
685                 sx_xlock(&sw_alloc_sx);
686                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
687                     pager_object_list);
688                 sx_xunlock(&sw_alloc_sx);
689                 VM_OBJECT_WLOCK(object);
690         }
691
692         vm_object_pip_wait(object, "swpdea");
693
694         /*
695          * Free all remaining metadata.  We only bother to free it from
696          * the swap meta data.  We do not attempt to free swapblk's still
697          * associated with vm_page_t's for this object.  We do not care
698          * if paging is still in progress on some objects.
699          */
700         swp_pager_meta_free_all(object);
701         object->handle = NULL;
702         object->type = OBJT_DEAD;
703 }
704
705 /************************************************************************
706  *                      SWAP PAGER BITMAP ROUTINES                      *
707  ************************************************************************/
708
709 /*
710  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
711  *
712  *      Allocate swap for up to the requested number of pages, and at
713  *      least a minimum number of pages.  The starting swap block number
714  *      (a page index) is returned or SWAPBLK_NONE if the allocation
715  *      failed.
716  *
717  *      Also has the side effect of advising that somebody made a mistake
718  *      when they configured swap and didn't configure enough.
719  *
720  *      This routine may not sleep.
721  *
722  *      We allocate in round-robin fashion from the configured devices.
723  */
724 static daddr_t
725 swp_pager_getswapspace(int *io_npages, int limit)
726 {
727         daddr_t blk;
728         struct swdevt *sp;
729         int mpages, npages;
730
731         blk = SWAPBLK_NONE;
732         npages = mpages = *io_npages;
733         mtx_lock(&sw_dev_mtx);
734         sp = swdevhd;
735         while (!TAILQ_EMPTY(&swtailq)) {
736                 if (sp == NULL)
737                         sp = TAILQ_FIRST(&swtailq);
738                 if ((sp->sw_flags & SW_CLOSING) == 0)
739                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
740                 if (blk != SWAPBLK_NONE)
741                         break;
742                 sp = TAILQ_NEXT(sp, sw_list);
743                 if (swdevhd == sp) {
744                         if (npages <= limit)
745                                 break;
746                         mpages = npages - 1;
747                         npages >>= 1;
748                 }
749         }
750         if (blk != SWAPBLK_NONE) {
751                 *io_npages = npages;
752                 blk += sp->sw_first;
753                 sp->sw_used += npages;
754                 swap_pager_avail -= npages;
755                 swp_sizecheck();
756                 swdevhd = TAILQ_NEXT(sp, sw_list);
757         } else {
758                 if (swap_pager_full != 2) {
759                         printf("swp_pager_getswapspace(%d): failed\n",
760                             *io_npages);
761                         swap_pager_full = 2;
762                         swap_pager_almost_full = 1;
763                 }
764                 swdevhd = NULL;
765         }
766         mtx_unlock(&sw_dev_mtx);
767         return (blk);
768 }
769
770 static bool
771 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
772 {
773
774         return (blk >= sp->sw_first && blk < sp->sw_end);
775 }
776
777 static void
778 swp_pager_strategy(struct buf *bp)
779 {
780         struct swdevt *sp;
781
782         mtx_lock(&sw_dev_mtx);
783         TAILQ_FOREACH(sp, &swtailq, sw_list) {
784                 if (swp_pager_isondev(bp->b_blkno, sp)) {
785                         mtx_unlock(&sw_dev_mtx);
786                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
787                             unmapped_buf_allowed) {
788                                 bp->b_data = unmapped_buf;
789                                 bp->b_offset = 0;
790                         } else {
791                                 pmap_qenter((vm_offset_t)bp->b_data,
792                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
793                         }
794                         sp->sw_strategy(bp, sp);
795                         return;
796                 }
797         }
798         panic("Swapdev not found");
799 }
800
801
802 /*
803  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
804  *
805  *      This routine returns the specified swap blocks back to the bitmap.
806  *
807  *      This routine may not sleep.
808  */
809 static void
810 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
811 {
812         struct swdevt *sp;
813
814         if (npages == 0)
815                 return;
816         mtx_lock(&sw_dev_mtx);
817         TAILQ_FOREACH(sp, &swtailq, sw_list) {
818                 if (swp_pager_isondev(blk, sp)) {
819                         sp->sw_used -= npages;
820                         /*
821                          * If we are attempting to stop swapping on
822                          * this device, we don't want to mark any
823                          * blocks free lest they be reused.
824                          */
825                         if ((sp->sw_flags & SW_CLOSING) == 0) {
826                                 blist_free(sp->sw_blist, blk - sp->sw_first,
827                                     npages);
828                                 swap_pager_avail += npages;
829                                 swp_sizecheck();
830                         }
831                         mtx_unlock(&sw_dev_mtx);
832                         return;
833                 }
834         }
835         panic("Swapdev not found");
836 }
837
838 /*
839  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
840  */
841 static int
842 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
843 {
844         struct sbuf sbuf;
845         struct swdevt *sp;
846         const char *devname;
847         int error;
848
849         error = sysctl_wire_old_buffer(req, 0);
850         if (error != 0)
851                 return (error);
852         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
853         mtx_lock(&sw_dev_mtx);
854         TAILQ_FOREACH(sp, &swtailq, sw_list) {
855                 if (vn_isdisk(sp->sw_vp, NULL))
856                         devname = devtoname(sp->sw_vp->v_rdev);
857                 else
858                         devname = "[file]";
859                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
860                 blist_stats(sp->sw_blist, &sbuf);
861         }
862         mtx_unlock(&sw_dev_mtx);
863         error = sbuf_finish(&sbuf);
864         sbuf_delete(&sbuf);
865         return (error);
866 }
867
868 /*
869  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
870  *                              range within an object.
871  *
872  *      This is a globally accessible routine.
873  *
874  *      This routine removes swapblk assignments from swap metadata.
875  *
876  *      The external callers of this routine typically have already destroyed
877  *      or renamed vm_page_t's associated with this range in the object so
878  *      we should be ok.
879  *
880  *      The object must be locked.
881  */
882 void
883 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
884 {
885
886         swp_pager_meta_free(object, start, size);
887 }
888
889 /*
890  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
891  *
892  *      Assigns swap blocks to the specified range within the object.  The
893  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
894  *
895  *      Returns 0 on success, -1 on failure.
896  */
897 int
898 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
899 {
900         daddr_t addr, blk, n_free, s_free;
901         int i, j, n;
902
903         swp_pager_init_freerange(&s_free, &n_free);
904         VM_OBJECT_WLOCK(object);
905         for (i = 0; i < size; i += n) {
906                 n = min(BLIST_MAX_ALLOC, size - i);
907                 blk = swp_pager_getswapspace(&n, 1);
908                 if (blk == SWAPBLK_NONE) {
909                         swp_pager_meta_free(object, start, i);
910                         VM_OBJECT_WUNLOCK(object);
911                         return (-1);
912                 }
913                 for (j = 0; j < n; ++j) {
914                         addr = swp_pager_meta_build(object,
915                             start + i + j, blk + j);
916                         if (addr != SWAPBLK_NONE)
917                                 swp_pager_update_freerange(&s_free, &n_free,
918                                     addr);
919                 }
920         }
921         swp_pager_freeswapspace(s_free, n_free);
922         VM_OBJECT_WUNLOCK(object);
923         return (0);
924 }
925
926 /*
927  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
928  *                      and destroy the source.
929  *
930  *      Copy any valid swapblks from the source to the destination.  In
931  *      cases where both the source and destination have a valid swapblk,
932  *      we keep the destination's.
933  *
934  *      This routine is allowed to sleep.  It may sleep allocating metadata
935  *      indirectly through swp_pager_meta_build() or if paging is still in
936  *      progress on the source.
937  *
938  *      The source object contains no vm_page_t's (which is just as well)
939  *
940  *      The source object is of type OBJT_SWAP.
941  *
942  *      The source and destination objects must be locked.
943  *      Both object locks may temporarily be released.
944  */
945 void
946 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
947     vm_pindex_t offset, int destroysource)
948 {
949         vm_pindex_t i;
950         daddr_t dstaddr, n_free, s_free, srcaddr;
951
952         VM_OBJECT_ASSERT_WLOCKED(srcobject);
953         VM_OBJECT_ASSERT_WLOCKED(dstobject);
954
955         /*
956          * If destroysource is set, we remove the source object from the
957          * swap_pager internal queue now.
958          */
959         if (destroysource && srcobject->handle != NULL) {
960                 vm_object_pip_add(srcobject, 1);
961                 VM_OBJECT_WUNLOCK(srcobject);
962                 vm_object_pip_add(dstobject, 1);
963                 VM_OBJECT_WUNLOCK(dstobject);
964                 sx_xlock(&sw_alloc_sx);
965                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
966                     pager_object_list);
967                 sx_xunlock(&sw_alloc_sx);
968                 VM_OBJECT_WLOCK(dstobject);
969                 vm_object_pip_wakeup(dstobject);
970                 VM_OBJECT_WLOCK(srcobject);
971                 vm_object_pip_wakeup(srcobject);
972         }
973
974         /*
975          * Transfer source to destination.
976          */
977         swp_pager_init_freerange(&s_free, &n_free);
978         for (i = 0; i < dstobject->size; ++i) {
979                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
980                 if (srcaddr == SWAPBLK_NONE)
981                         continue;
982                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
983                 if (dstaddr != SWAPBLK_NONE) {
984                         /*
985                          * Destination has valid swapblk or it is represented
986                          * by a resident page.  We destroy the source block.
987                          */
988                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
989                         continue;
990                 }
991
992                 /*
993                  * Destination has no swapblk and is not resident,
994                  * copy source.
995                  *
996                  * swp_pager_meta_build() can sleep.
997                  */
998                 vm_object_pip_add(srcobject, 1);
999                 VM_OBJECT_WUNLOCK(srcobject);
1000                 vm_object_pip_add(dstobject, 1);
1001                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1002                 KASSERT(dstaddr == SWAPBLK_NONE,
1003                     ("Unexpected destination swapblk"));
1004                 vm_object_pip_wakeup(dstobject);
1005                 VM_OBJECT_WLOCK(srcobject);
1006                 vm_object_pip_wakeup(srcobject);
1007         }
1008         swp_pager_freeswapspace(s_free, n_free);
1009
1010         /*
1011          * Free left over swap blocks in source.
1012          *
1013          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1014          * double-remove the object from the swap queues.
1015          */
1016         if (destroysource) {
1017                 swp_pager_meta_free_all(srcobject);
1018                 /*
1019                  * Reverting the type is not necessary, the caller is going
1020                  * to destroy srcobject directly, but I'm doing it here
1021                  * for consistency since we've removed the object from its
1022                  * queues.
1023                  */
1024                 srcobject->type = OBJT_DEFAULT;
1025         }
1026 }
1027
1028 /*
1029  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1030  *                              the requested page.
1031  *
1032  *      We determine whether good backing store exists for the requested
1033  *      page and return TRUE if it does, FALSE if it doesn't.
1034  *
1035  *      If TRUE, we also try to determine how much valid, contiguous backing
1036  *      store exists before and after the requested page.
1037  */
1038 static boolean_t
1039 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1040     int *after)
1041 {
1042         daddr_t blk, blk0;
1043         int i;
1044
1045         VM_OBJECT_ASSERT_LOCKED(object);
1046
1047         /*
1048          * do we have good backing store at the requested index ?
1049          */
1050         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1051         if (blk0 == SWAPBLK_NONE) {
1052                 if (before)
1053                         *before = 0;
1054                 if (after)
1055                         *after = 0;
1056                 return (FALSE);
1057         }
1058
1059         /*
1060          * find backwards-looking contiguous good backing store
1061          */
1062         if (before != NULL) {
1063                 for (i = 1; i < SWB_NPAGES; i++) {
1064                         if (i > pindex)
1065                                 break;
1066                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1067                         if (blk != blk0 - i)
1068                                 break;
1069                 }
1070                 *before = i - 1;
1071         }
1072
1073         /*
1074          * find forward-looking contiguous good backing store
1075          */
1076         if (after != NULL) {
1077                 for (i = 1; i < SWB_NPAGES; i++) {
1078                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1079                         if (blk != blk0 + i)
1080                                 break;
1081                 }
1082                 *after = i - 1;
1083         }
1084         return (TRUE);
1085 }
1086
1087 /*
1088  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1089  *
1090  *      This removes any associated swap backing store, whether valid or
1091  *      not, from the page.
1092  *
1093  *      This routine is typically called when a page is made dirty, at
1094  *      which point any associated swap can be freed.  MADV_FREE also
1095  *      calls us in a special-case situation
1096  *
1097  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1098  *      should make the page dirty before calling this routine.  This routine
1099  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1100  *      depends on it.
1101  *
1102  *      This routine may not sleep.
1103  *
1104  *      The object containing the page must be locked.
1105  */
1106 static void
1107 swap_pager_unswapped(vm_page_t m)
1108 {
1109         daddr_t srcaddr;
1110
1111         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1112         if (srcaddr != SWAPBLK_NONE)
1113                 swp_pager_freeswapspace(srcaddr, 1);
1114 }
1115
1116 /*
1117  * swap_pager_getpages() - bring pages in from swap
1118  *
1119  *      Attempt to page in the pages in array "ma" of length "count".  The
1120  *      caller may optionally specify that additional pages preceding and
1121  *      succeeding the specified range be paged in.  The number of such pages
1122  *      is returned in the "rbehind" and "rahead" parameters, and they will
1123  *      be in the inactive queue upon return.
1124  *
1125  *      The pages in "ma" must be busied and will remain busied upon return.
1126  */
1127 static int
1128 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1129     int *rahead)
1130 {
1131         struct buf *bp;
1132         vm_page_t bm, mpred, msucc, p;
1133         vm_pindex_t pindex;
1134         daddr_t blk;
1135         int i, maxahead, maxbehind, reqcount;
1136
1137         reqcount = count;
1138
1139         /*
1140          * Determine the final number of read-behind pages and
1141          * allocate them BEFORE releasing the object lock.  Otherwise,
1142          * there can be a problematic race with vm_object_split().
1143          * Specifically, vm_object_split() might first transfer pages
1144          * that precede ma[0] in the current object to a new object,
1145          * and then this function incorrectly recreates those pages as
1146          * read-behind pages in the current object.
1147          */
1148         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1149                 return (VM_PAGER_FAIL);
1150
1151         /*
1152          * Clip the readahead and readbehind ranges to exclude resident pages.
1153          */
1154         if (rahead != NULL) {
1155                 KASSERT(reqcount - 1 <= maxahead,
1156                     ("page count %d extends beyond swap block", reqcount));
1157                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1158                 pindex = ma[reqcount - 1]->pindex;
1159                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1160                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1161                         *rahead = msucc->pindex - pindex - 1;
1162         }
1163         if (rbehind != NULL) {
1164                 *rbehind = imin(*rbehind, maxbehind);
1165                 pindex = ma[0]->pindex;
1166                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1167                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1168                         *rbehind = pindex - mpred->pindex - 1;
1169         }
1170
1171         bm = ma[0];
1172         for (i = 0; i < count; i++)
1173                 ma[i]->oflags |= VPO_SWAPINPROG;
1174
1175         /*
1176          * Allocate readahead and readbehind pages.
1177          */
1178         if (rbehind != NULL) {
1179                 for (i = 1; i <= *rbehind; i++) {
1180                         p = vm_page_alloc(object, ma[0]->pindex - i,
1181                             VM_ALLOC_NORMAL);
1182                         if (p == NULL)
1183                                 break;
1184                         p->oflags |= VPO_SWAPINPROG;
1185                         bm = p;
1186                 }
1187                 *rbehind = i - 1;
1188         }
1189         if (rahead != NULL) {
1190                 for (i = 0; i < *rahead; i++) {
1191                         p = vm_page_alloc(object,
1192                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1193                         if (p == NULL)
1194                                 break;
1195                         p->oflags |= VPO_SWAPINPROG;
1196                 }
1197                 *rahead = i;
1198         }
1199         if (rbehind != NULL)
1200                 count += *rbehind;
1201         if (rahead != NULL)
1202                 count += *rahead;
1203
1204         vm_object_pip_add(object, count);
1205
1206         pindex = bm->pindex;
1207         blk = swp_pager_meta_ctl(object, pindex, 0);
1208         KASSERT(blk != SWAPBLK_NONE,
1209             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1210
1211         VM_OBJECT_WUNLOCK(object);
1212         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1213         /* Pages cannot leave the object while busy. */
1214         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1215                 MPASS(p->pindex == bm->pindex + i);
1216                 bp->b_pages[i] = p;
1217         }
1218
1219         bp->b_flags |= B_PAGING;
1220         bp->b_iocmd = BIO_READ;
1221         bp->b_iodone = swp_pager_async_iodone;
1222         bp->b_rcred = crhold(thread0.td_ucred);
1223         bp->b_wcred = crhold(thread0.td_ucred);
1224         bp->b_blkno = blk;
1225         bp->b_bcount = PAGE_SIZE * count;
1226         bp->b_bufsize = PAGE_SIZE * count;
1227         bp->b_npages = count;
1228         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1229         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1230
1231         VM_CNT_INC(v_swapin);
1232         VM_CNT_ADD(v_swappgsin, count);
1233
1234         /*
1235          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1236          * this point because we automatically release it on completion.
1237          * Instead, we look at the one page we are interested in which we
1238          * still hold a lock on even through the I/O completion.
1239          *
1240          * The other pages in our ma[] array are also released on completion,
1241          * so we cannot assume they are valid anymore either.
1242          *
1243          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1244          */
1245         BUF_KERNPROC(bp);
1246         swp_pager_strategy(bp);
1247
1248         /*
1249          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1250          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1251          * is set in the metadata for each page in the request.
1252          */
1253         VM_OBJECT_WLOCK(object);
1254         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1255                 ma[0]->oflags |= VPO_SWAPSLEEP;
1256                 VM_CNT_INC(v_intrans);
1257                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1258                     "swread", hz * 20)) {
1259                         printf(
1260 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1261                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1262                 }
1263         }
1264
1265         /*
1266          * If we had an unrecoverable read error pages will not be valid.
1267          */
1268         for (i = 0; i < reqcount; i++)
1269                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1270                         return (VM_PAGER_ERROR);
1271
1272         return (VM_PAGER_OK);
1273
1274         /*
1275          * A final note: in a low swap situation, we cannot deallocate swap
1276          * and mark a page dirty here because the caller is likely to mark
1277          * the page clean when we return, causing the page to possibly revert
1278          * to all-zero's later.
1279          */
1280 }
1281
1282 /*
1283  *      swap_pager_getpages_async():
1284  *
1285  *      Right now this is emulation of asynchronous operation on top of
1286  *      swap_pager_getpages().
1287  */
1288 static int
1289 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1290     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1291 {
1292         int r, error;
1293
1294         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1295         VM_OBJECT_WUNLOCK(object);
1296         switch (r) {
1297         case VM_PAGER_OK:
1298                 error = 0;
1299                 break;
1300         case VM_PAGER_ERROR:
1301                 error = EIO;
1302                 break;
1303         case VM_PAGER_FAIL:
1304                 error = EINVAL;
1305                 break;
1306         default:
1307                 panic("unhandled swap_pager_getpages() error %d", r);
1308         }
1309         (iodone)(arg, ma, count, error);
1310         VM_OBJECT_WLOCK(object);
1311
1312         return (r);
1313 }
1314
1315 /*
1316  *      swap_pager_putpages:
1317  *
1318  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1319  *
1320  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1321  *      are automatically converted to SWAP objects.
1322  *
1323  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1324  *      vm_page reservation system coupled with properly written VFS devices
1325  *      should ensure that no low-memory deadlock occurs.  This is an area
1326  *      which needs work.
1327  *
1328  *      The parent has N vm_object_pip_add() references prior to
1329  *      calling us and will remove references for rtvals[] that are
1330  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1331  *      completion.
1332  *
1333  *      The parent has soft-busy'd the pages it passes us and will unbusy
1334  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1335  *      We need to unbusy the rest on I/O completion.
1336  */
1337 static void
1338 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1339     int flags, int *rtvals)
1340 {
1341         int i, n;
1342         boolean_t sync;
1343         daddr_t addr, n_free, s_free;
1344
1345         swp_pager_init_freerange(&s_free, &n_free);
1346         if (count && ma[0]->object != object) {
1347                 panic("swap_pager_putpages: object mismatch %p/%p",
1348                     object,
1349                     ma[0]->object
1350                 );
1351         }
1352
1353         /*
1354          * Step 1
1355          *
1356          * Turn object into OBJT_SWAP
1357          * check for bogus sysops
1358          * force sync if not pageout process
1359          */
1360         if (object->type != OBJT_SWAP) {
1361                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1362                 KASSERT(addr == SWAPBLK_NONE,
1363                     ("unexpected object swap block"));
1364         }
1365         VM_OBJECT_WUNLOCK(object);
1366
1367         n = 0;
1368         if (curproc != pageproc)
1369                 sync = TRUE;
1370         else
1371                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1372
1373         /*
1374          * Step 2
1375          *
1376          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1377          * The page is left dirty until the pageout operation completes
1378          * successfully.
1379          */
1380         for (i = 0; i < count; i += n) {
1381                 int j;
1382                 struct buf *bp;
1383                 daddr_t blk;
1384
1385                 /*
1386                  * Maximum I/O size is limited by a number of factors.
1387                  */
1388                 n = min(BLIST_MAX_ALLOC, count - i);
1389                 n = min(n, nsw_cluster_max);
1390
1391                 /* Get a block of swap of size up to size n. */
1392                 blk = swp_pager_getswapspace(&n, 4);
1393                 if (blk == SWAPBLK_NONE) {
1394                         for (j = 0; j < n; ++j)
1395                                 rtvals[i+j] = VM_PAGER_FAIL;
1396                         continue;
1397                 }
1398
1399                 /*
1400                  * All I/O parameters have been satisfied, build the I/O
1401                  * request and assign the swap space.
1402                  */
1403                 if (sync != TRUE) {
1404                         mtx_lock(&swbuf_mtx);
1405                         while (nsw_wcount_async == 0)
1406                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1407                                     "swbufa", 0);
1408                         nsw_wcount_async--;
1409                         mtx_unlock(&swbuf_mtx);
1410                 }
1411                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1412                 if (sync != TRUE)
1413                         bp->b_flags = B_ASYNC;
1414                 bp->b_flags |= B_PAGING;
1415                 bp->b_iocmd = BIO_WRITE;
1416
1417                 bp->b_rcred = crhold(thread0.td_ucred);
1418                 bp->b_wcred = crhold(thread0.td_ucred);
1419                 bp->b_bcount = PAGE_SIZE * n;
1420                 bp->b_bufsize = PAGE_SIZE * n;
1421                 bp->b_blkno = blk;
1422
1423                 VM_OBJECT_WLOCK(object);
1424                 for (j = 0; j < n; ++j) {
1425                         vm_page_t mreq = ma[i+j];
1426
1427                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1428                             blk + j);
1429                         if (addr != SWAPBLK_NONE)
1430                                 swp_pager_update_freerange(&s_free, &n_free,
1431                                     addr);
1432                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1433                         mreq->oflags |= VPO_SWAPINPROG;
1434                         bp->b_pages[j] = mreq;
1435                 }
1436                 VM_OBJECT_WUNLOCK(object);
1437                 bp->b_npages = n;
1438                 /*
1439                  * Must set dirty range for NFS to work.
1440                  */
1441                 bp->b_dirtyoff = 0;
1442                 bp->b_dirtyend = bp->b_bcount;
1443
1444                 VM_CNT_INC(v_swapout);
1445                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1446
1447                 /*
1448                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1449                  * can call the async completion routine at the end of a
1450                  * synchronous I/O operation.  Otherwise, our caller would
1451                  * perform duplicate unbusy and wakeup operations on the page
1452                  * and object, respectively.
1453                  */
1454                 for (j = 0; j < n; j++)
1455                         rtvals[i + j] = VM_PAGER_PEND;
1456
1457                 /*
1458                  * asynchronous
1459                  *
1460                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1461                  */
1462                 if (sync == FALSE) {
1463                         bp->b_iodone = swp_pager_async_iodone;
1464                         BUF_KERNPROC(bp);
1465                         swp_pager_strategy(bp);
1466                         continue;
1467                 }
1468
1469                 /*
1470                  * synchronous
1471                  *
1472                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1473                  */
1474                 bp->b_iodone = bdone;
1475                 swp_pager_strategy(bp);
1476
1477                 /*
1478                  * Wait for the sync I/O to complete.
1479                  */
1480                 bwait(bp, PVM, "swwrt");
1481
1482                 /*
1483                  * Now that we are through with the bp, we can call the
1484                  * normal async completion, which frees everything up.
1485                  */
1486                 swp_pager_async_iodone(bp);
1487         }
1488         VM_OBJECT_WLOCK(object);
1489         swp_pager_freeswapspace(s_free, n_free);
1490 }
1491
1492 /*
1493  *      swp_pager_async_iodone:
1494  *
1495  *      Completion routine for asynchronous reads and writes from/to swap.
1496  *      Also called manually by synchronous code to finish up a bp.
1497  *
1498  *      This routine may not sleep.
1499  */
1500 static void
1501 swp_pager_async_iodone(struct buf *bp)
1502 {
1503         int i;
1504         vm_object_t object = NULL;
1505
1506         /*
1507          * Report error - unless we ran out of memory, in which case
1508          * we've already logged it in swapgeom_strategy().
1509          */
1510         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1511                 printf(
1512                     "swap_pager: I/O error - %s failed; blkno %ld,"
1513                         "size %ld, error %d\n",
1514                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1515                     (long)bp->b_blkno,
1516                     (long)bp->b_bcount,
1517                     bp->b_error
1518                 );
1519         }
1520
1521         /*
1522          * remove the mapping for kernel virtual
1523          */
1524         if (buf_mapped(bp))
1525                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1526         else
1527                 bp->b_data = bp->b_kvabase;
1528
1529         if (bp->b_npages) {
1530                 object = bp->b_pages[0]->object;
1531                 VM_OBJECT_WLOCK(object);
1532         }
1533
1534         /*
1535          * cleanup pages.  If an error occurs writing to swap, we are in
1536          * very serious trouble.  If it happens to be a disk error, though,
1537          * we may be able to recover by reassigning the swap later on.  So
1538          * in this case we remove the m->swapblk assignment for the page
1539          * but do not free it in the rlist.  The errornous block(s) are thus
1540          * never reallocated as swap.  Redirty the page and continue.
1541          */
1542         for (i = 0; i < bp->b_npages; ++i) {
1543                 vm_page_t m = bp->b_pages[i];
1544
1545                 m->oflags &= ~VPO_SWAPINPROG;
1546                 if (m->oflags & VPO_SWAPSLEEP) {
1547                         m->oflags &= ~VPO_SWAPSLEEP;
1548                         wakeup(&object->paging_in_progress);
1549                 }
1550
1551                 if (bp->b_ioflags & BIO_ERROR) {
1552                         /*
1553                          * If an error occurs I'd love to throw the swapblk
1554                          * away without freeing it back to swapspace, so it
1555                          * can never be used again.  But I can't from an
1556                          * interrupt.
1557                          */
1558                         if (bp->b_iocmd == BIO_READ) {
1559                                 /*
1560                                  * NOTE: for reads, m->dirty will probably
1561                                  * be overridden by the original caller of
1562                                  * getpages so don't play cute tricks here.
1563                                  */
1564                                 m->valid = 0;
1565                         } else {
1566                                 /*
1567                                  * If a write error occurs, reactivate page
1568                                  * so it doesn't clog the inactive list,
1569                                  * then finish the I/O.
1570                                  */
1571                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1572                                 vm_page_lock(m);
1573                                 vm_page_activate(m);
1574                                 vm_page_unlock(m);
1575                                 vm_page_sunbusy(m);
1576                         }
1577                 } else if (bp->b_iocmd == BIO_READ) {
1578                         /*
1579                          * NOTE: for reads, m->dirty will probably be
1580                          * overridden by the original caller of getpages so
1581                          * we cannot set them in order to free the underlying
1582                          * swap in a low-swap situation.  I don't think we'd
1583                          * want to do that anyway, but it was an optimization
1584                          * that existed in the old swapper for a time before
1585                          * it got ripped out due to precisely this problem.
1586                          */
1587                         KASSERT(!pmap_page_is_mapped(m),
1588                             ("swp_pager_async_iodone: page %p is mapped", m));
1589                         KASSERT(m->dirty == 0,
1590                             ("swp_pager_async_iodone: page %p is dirty", m));
1591
1592                         m->valid = VM_PAGE_BITS_ALL;
1593                         if (i < bp->b_pgbefore ||
1594                             i >= bp->b_npages - bp->b_pgafter)
1595                                 vm_page_readahead_finish(m);
1596                 } else {
1597                         /*
1598                          * For write success, clear the dirty
1599                          * status, then finish the I/O ( which decrements the
1600                          * busy count and possibly wakes waiter's up ).
1601                          * A page is only written to swap after a period of
1602                          * inactivity.  Therefore, we do not expect it to be
1603                          * reused.
1604                          */
1605                         KASSERT(!pmap_page_is_write_mapped(m),
1606                             ("swp_pager_async_iodone: page %p is not write"
1607                             " protected", m));
1608                         vm_page_undirty(m);
1609                         vm_page_lock(m);
1610                         vm_page_deactivate_noreuse(m);
1611                         vm_page_unlock(m);
1612                         vm_page_sunbusy(m);
1613                 }
1614         }
1615
1616         /*
1617          * adjust pip.  NOTE: the original parent may still have its own
1618          * pip refs on the object.
1619          */
1620         if (object != NULL) {
1621                 vm_object_pip_wakeupn(object, bp->b_npages);
1622                 VM_OBJECT_WUNLOCK(object);
1623         }
1624
1625         /*
1626          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1627          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1628          * trigger a KASSERT in relpbuf().
1629          */
1630         if (bp->b_vp) {
1631                     bp->b_vp = NULL;
1632                     bp->b_bufobj = NULL;
1633         }
1634         /*
1635          * release the physical I/O buffer
1636          */
1637         if (bp->b_flags & B_ASYNC) {
1638                 mtx_lock(&swbuf_mtx);
1639                 if (++nsw_wcount_async == 1)
1640                         wakeup(&nsw_wcount_async);
1641                 mtx_unlock(&swbuf_mtx);
1642         }
1643         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1644 }
1645
1646 int
1647 swap_pager_nswapdev(void)
1648 {
1649
1650         return (nswapdev);
1651 }
1652
1653 static void
1654 swp_pager_force_dirty(vm_page_t m)
1655 {
1656
1657         vm_page_dirty(m);
1658 #ifdef INVARIANTS
1659         vm_page_lock(m);
1660         if (!vm_page_wired(m) && m->queue == PQ_NONE)
1661                 panic("page %p is neither wired nor queued", m);
1662         vm_page_unlock(m);
1663 #endif
1664         vm_page_xunbusy(m);
1665 }
1666
1667 static void
1668 swp_pager_force_launder(vm_page_t m)
1669 {
1670
1671         vm_page_dirty(m);
1672         vm_page_lock(m);
1673         vm_page_launder(m);
1674         vm_page_unlock(m);
1675         vm_page_xunbusy(m);
1676 }
1677
1678 /*
1679  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1680  *
1681  *      This routine dissociates the page at the given index within an object
1682  *      from its backing store, paging it in if it does not reside in memory.
1683  *      If the page is paged in, it is marked dirty and placed in the laundry
1684  *      queue.  The page is marked dirty because it no longer has backing
1685  *      store.  It is placed in the laundry queue because it has not been
1686  *      accessed recently.  Otherwise, it would already reside in memory.
1687  *
1688  *      We also attempt to swap in all other pages in the swap block.
1689  *      However, we only guarantee that the one at the specified index is
1690  *      paged in.
1691  *
1692  *      XXX - The code to page the whole block in doesn't work, so we
1693  *            revert to the one-by-one behavior for now.  Sigh.
1694  */
1695 static void
1696 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1697 {
1698         vm_page_t m;
1699
1700         vm_object_pip_add(object, 1);
1701         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1702         if (m->valid == VM_PAGE_BITS_ALL) {
1703                 vm_object_pip_wakeup(object);
1704                 swp_pager_force_dirty(m);
1705                 vm_pager_page_unswapped(m);
1706                 return;
1707         }
1708
1709         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1710                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1711         vm_object_pip_wakeup(object);
1712         swp_pager_force_launder(m);
1713         vm_pager_page_unswapped(m);
1714 }
1715
1716 /*
1717  *      swap_pager_swapoff_object:
1718  *
1719  *      Page in all of the pages that have been paged out for an object
1720  *      from a given swap device.
1721  */
1722 static void
1723 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1724 {
1725         struct swblk *sb;
1726         vm_pindex_t pi;
1727         int i;
1728
1729         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1730             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1731                 pi = sb->p + SWAP_META_PAGES;
1732                 for (i = 0; i < SWAP_META_PAGES; i++) {
1733                         if (sb->d[i] == SWAPBLK_NONE)
1734                                 continue;
1735                         if (swp_pager_isondev(sb->d[i], sp))
1736                                 swp_pager_force_pagein(object, sb->p + i);
1737                 }
1738         }
1739 }
1740
1741 /*
1742  *      swap_pager_swapoff:
1743  *
1744  *      Page in all of the pages that have been paged out to the
1745  *      given device.  The corresponding blocks in the bitmap must be
1746  *      marked as allocated and the device must be flagged SW_CLOSING.
1747  *      There may be no processes swapped out to the device.
1748  *
1749  *      This routine may block.
1750  */
1751 static void
1752 swap_pager_swapoff(struct swdevt *sp)
1753 {
1754         vm_object_t object;
1755         int retries;
1756
1757         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1758
1759         retries = 0;
1760 full_rescan:
1761         mtx_lock(&vm_object_list_mtx);
1762         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1763                 if (object->type != OBJT_SWAP)
1764                         continue;
1765                 mtx_unlock(&vm_object_list_mtx);
1766                 /* Depends on type-stability. */
1767                 VM_OBJECT_WLOCK(object);
1768
1769                 /*
1770                  * Dead objects are eventually terminated on their own.
1771                  */
1772                 if ((object->flags & OBJ_DEAD) != 0)
1773                         goto next_obj;
1774
1775                 /*
1776                  * Sync with fences placed after pctrie
1777                  * initialization.  We must not access pctrie below
1778                  * unless we checked that our object is swap and not
1779                  * dead.
1780                  */
1781                 atomic_thread_fence_acq();
1782                 if (object->type != OBJT_SWAP)
1783                         goto next_obj;
1784
1785                 swap_pager_swapoff_object(sp, object);
1786 next_obj:
1787                 VM_OBJECT_WUNLOCK(object);
1788                 mtx_lock(&vm_object_list_mtx);
1789         }
1790         mtx_unlock(&vm_object_list_mtx);
1791
1792         if (sp->sw_used) {
1793                 /*
1794                  * Objects may be locked or paging to the device being
1795                  * removed, so we will miss their pages and need to
1796                  * make another pass.  We have marked this device as
1797                  * SW_CLOSING, so the activity should finish soon.
1798                  */
1799                 retries++;
1800                 if (retries > 100) {
1801                         panic("swapoff: failed to locate %d swap blocks",
1802                             sp->sw_used);
1803                 }
1804                 pause("swpoff", hz / 20);
1805                 goto full_rescan;
1806         }
1807         EVENTHANDLER_INVOKE(swapoff, sp);
1808 }
1809
1810 /************************************************************************
1811  *                              SWAP META DATA                          *
1812  ************************************************************************
1813  *
1814  *      These routines manipulate the swap metadata stored in the
1815  *      OBJT_SWAP object.
1816  *
1817  *      Swap metadata is implemented with a global hash and not directly
1818  *      linked into the object.  Instead the object simply contains
1819  *      appropriate tracking counters.
1820  */
1821
1822 /*
1823  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1824  */
1825 static bool
1826 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1827 {
1828         int i;
1829
1830         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1831         for (i = start; i < limit; i++) {
1832                 if (sb->d[i] != SWAPBLK_NONE)
1833                         return (false);
1834         }
1835         return (true);
1836 }
1837    
1838 /*
1839  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1840  *
1841  *      We first convert the object to a swap object if it is a default
1842  *      object.
1843  *
1844  *      The specified swapblk is added to the object's swap metadata.  If
1845  *      the swapblk is not valid, it is freed instead.  Any previously
1846  *      assigned swapblk is returned.
1847  */
1848 static daddr_t
1849 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1850 {
1851         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1852         struct swblk *sb, *sb1;
1853         vm_pindex_t modpi, rdpi;
1854         daddr_t prev_swapblk;
1855         int error, i;
1856
1857         VM_OBJECT_ASSERT_WLOCKED(object);
1858
1859         /*
1860          * Convert default object to swap object if necessary
1861          */
1862         if (object->type != OBJT_SWAP) {
1863                 pctrie_init(&object->un_pager.swp.swp_blks);
1864
1865                 /*
1866                  * Ensure that swap_pager_swapoff()'s iteration over
1867                  * object_list does not see a garbage pctrie.
1868                  */
1869                 atomic_thread_fence_rel();
1870
1871                 object->type = OBJT_SWAP;
1872                 KASSERT(object->handle == NULL, ("default pager with handle"));
1873         }
1874
1875         rdpi = rounddown(pindex, SWAP_META_PAGES);
1876         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1877         if (sb == NULL) {
1878                 if (swapblk == SWAPBLK_NONE)
1879                         return (SWAPBLK_NONE);
1880                 for (;;) {
1881                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1882                             pageproc ? M_USE_RESERVE : 0));
1883                         if (sb != NULL) {
1884                                 sb->p = rdpi;
1885                                 for (i = 0; i < SWAP_META_PAGES; i++)
1886                                         sb->d[i] = SWAPBLK_NONE;
1887                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1888                                     1, 0))
1889                                         printf("swblk zone ok\n");
1890                                 break;
1891                         }
1892                         VM_OBJECT_WUNLOCK(object);
1893                         if (uma_zone_exhausted(swblk_zone)) {
1894                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1895                                     0, 1))
1896                                         printf("swap blk zone exhausted, "
1897                                             "increase kern.maxswzone\n");
1898                                 vm_pageout_oom(VM_OOM_SWAPZ);
1899                                 pause("swzonxb", 10);
1900                         } else
1901                                 uma_zwait(swblk_zone);
1902                         VM_OBJECT_WLOCK(object);
1903                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1904                             rdpi);
1905                         if (sb != NULL)
1906                                 /*
1907                                  * Somebody swapped out a nearby page,
1908                                  * allocating swblk at the rdpi index,
1909                                  * while we dropped the object lock.
1910                                  */
1911                                 goto allocated;
1912                 }
1913                 for (;;) {
1914                         error = SWAP_PCTRIE_INSERT(
1915                             &object->un_pager.swp.swp_blks, sb);
1916                         if (error == 0) {
1917                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1918                                     1, 0))
1919                                         printf("swpctrie zone ok\n");
1920                                 break;
1921                         }
1922                         VM_OBJECT_WUNLOCK(object);
1923                         if (uma_zone_exhausted(swpctrie_zone)) {
1924                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1925                                     0, 1))
1926                                         printf("swap pctrie zone exhausted, "
1927                                             "increase kern.maxswzone\n");
1928                                 vm_pageout_oom(VM_OOM_SWAPZ);
1929                                 pause("swzonxp", 10);
1930                         } else
1931                                 uma_zwait(swpctrie_zone);
1932                         VM_OBJECT_WLOCK(object);
1933                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1934                             rdpi);
1935                         if (sb1 != NULL) {
1936                                 uma_zfree(swblk_zone, sb);
1937                                 sb = sb1;
1938                                 goto allocated;
1939                         }
1940                 }
1941         }
1942 allocated:
1943         MPASS(sb->p == rdpi);
1944
1945         modpi = pindex % SWAP_META_PAGES;
1946         /* Return prior contents of metadata. */
1947         prev_swapblk = sb->d[modpi];
1948         /* Enter block into metadata. */
1949         sb->d[modpi] = swapblk;
1950
1951         /*
1952          * Free the swblk if we end up with the empty page run.
1953          */
1954         if (swapblk == SWAPBLK_NONE &&
1955             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1956                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1957                 uma_zfree(swblk_zone, sb);
1958         }
1959         return (prev_swapblk);
1960 }
1961
1962 /*
1963  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1964  *
1965  *      The requested range of blocks is freed, with any associated swap
1966  *      returned to the swap bitmap.
1967  *
1968  *      This routine will free swap metadata structures as they are cleaned
1969  *      out.  This routine does *NOT* operate on swap metadata associated
1970  *      with resident pages.
1971  */
1972 static void
1973 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1974 {
1975         struct swblk *sb;
1976         daddr_t n_free, s_free;
1977         vm_pindex_t last;
1978         int i, limit, start;
1979
1980         VM_OBJECT_ASSERT_WLOCKED(object);
1981         if (object->type != OBJT_SWAP || count == 0)
1982                 return;
1983
1984         swp_pager_init_freerange(&s_free, &n_free);
1985         last = pindex + count;
1986         for (;;) {
1987                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1988                     rounddown(pindex, SWAP_META_PAGES));
1989                 if (sb == NULL || sb->p >= last)
1990                         break;
1991                 start = pindex > sb->p ? pindex - sb->p : 0;
1992                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1993                     SWAP_META_PAGES;
1994                 for (i = start; i < limit; i++) {
1995                         if (sb->d[i] == SWAPBLK_NONE)
1996                                 continue;
1997                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1998                         sb->d[i] = SWAPBLK_NONE;
1999                 }
2000                 pindex = sb->p + SWAP_META_PAGES;
2001                 if (swp_pager_swblk_empty(sb, 0, start) &&
2002                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2003                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2004                             sb->p);
2005                         uma_zfree(swblk_zone, sb);
2006                 }
2007         }
2008         swp_pager_freeswapspace(s_free, n_free);
2009 }
2010
2011 /*
2012  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2013  *
2014  *      This routine locates and destroys all swap metadata associated with
2015  *      an object.
2016  */
2017 static void
2018 swp_pager_meta_free_all(vm_object_t object)
2019 {
2020         struct swblk *sb;
2021         daddr_t n_free, s_free;
2022         vm_pindex_t pindex;
2023         int i;
2024
2025         VM_OBJECT_ASSERT_WLOCKED(object);
2026         if (object->type != OBJT_SWAP)
2027                 return;
2028
2029         swp_pager_init_freerange(&s_free, &n_free);
2030         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2031             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2032                 pindex = sb->p + SWAP_META_PAGES;
2033                 for (i = 0; i < SWAP_META_PAGES; i++) {
2034                         if (sb->d[i] == SWAPBLK_NONE)
2035                                 continue;
2036                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2037                 }
2038                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2039                 uma_zfree(swblk_zone, sb);
2040         }
2041         swp_pager_freeswapspace(s_free, n_free);
2042 }
2043
2044 /*
2045  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2046  *
2047  *      This routine is capable of looking up, or removing swapblk
2048  *      assignments in the swap meta data.  It returns the swapblk being
2049  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2050  *
2051  *      When acting on a busy resident page and paging is in progress, we
2052  *      have to wait until paging is complete but otherwise can act on the
2053  *      busy page.
2054  *
2055  *      SWM_POP         remove from meta data but do not free it
2056  */
2057 static daddr_t
2058 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2059 {
2060         struct swblk *sb;
2061         daddr_t r1;
2062
2063         if ((flags & SWM_POP) != 0)
2064                 VM_OBJECT_ASSERT_WLOCKED(object);
2065         else
2066                 VM_OBJECT_ASSERT_LOCKED(object);
2067
2068         /*
2069          * The meta data only exists if the object is OBJT_SWAP
2070          * and even then might not be allocated yet.
2071          */
2072         if (object->type != OBJT_SWAP)
2073                 return (SWAPBLK_NONE);
2074
2075         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2076             rounddown(pindex, SWAP_META_PAGES));
2077         if (sb == NULL)
2078                 return (SWAPBLK_NONE);
2079         r1 = sb->d[pindex % SWAP_META_PAGES];
2080         if (r1 == SWAPBLK_NONE)
2081                 return (SWAPBLK_NONE);
2082         if ((flags & SWM_POP) != 0) {
2083                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2084                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2085                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2086                             rounddown(pindex, SWAP_META_PAGES));
2087                         uma_zfree(swblk_zone, sb);
2088                 }
2089         }
2090         return (r1);
2091 }
2092
2093 /*
2094  * Returns the least page index which is greater than or equal to the
2095  * parameter pindex and for which there is a swap block allocated.
2096  * Returns object's size if the object's type is not swap or if there
2097  * are no allocated swap blocks for the object after the requested
2098  * pindex.
2099  */
2100 vm_pindex_t
2101 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2102 {
2103         struct swblk *sb;
2104         int i;
2105
2106         VM_OBJECT_ASSERT_LOCKED(object);
2107         if (object->type != OBJT_SWAP)
2108                 return (object->size);
2109
2110         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2111             rounddown(pindex, SWAP_META_PAGES));
2112         if (sb == NULL)
2113                 return (object->size);
2114         if (sb->p < pindex) {
2115                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2116                         if (sb->d[i] != SWAPBLK_NONE)
2117                                 return (sb->p + i);
2118                 }
2119                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2120                     roundup(pindex, SWAP_META_PAGES));
2121                 if (sb == NULL)
2122                         return (object->size);
2123         }
2124         for (i = 0; i < SWAP_META_PAGES; i++) {
2125                 if (sb->d[i] != SWAPBLK_NONE)
2126                         return (sb->p + i);
2127         }
2128
2129         /*
2130          * We get here if a swblk is present in the trie but it
2131          * doesn't map any blocks.
2132          */
2133         MPASS(0);
2134         return (object->size);
2135 }
2136
2137 /*
2138  * System call swapon(name) enables swapping on device name,
2139  * which must be in the swdevsw.  Return EBUSY
2140  * if already swapping on this device.
2141  */
2142 #ifndef _SYS_SYSPROTO_H_
2143 struct swapon_args {
2144         char *name;
2145 };
2146 #endif
2147
2148 /*
2149  * MPSAFE
2150  */
2151 /* ARGSUSED */
2152 int
2153 sys_swapon(struct thread *td, struct swapon_args *uap)
2154 {
2155         struct vattr attr;
2156         struct vnode *vp;
2157         struct nameidata nd;
2158         int error;
2159
2160         error = priv_check(td, PRIV_SWAPON);
2161         if (error)
2162                 return (error);
2163
2164         sx_xlock(&swdev_syscall_lock);
2165
2166         /*
2167          * Swap metadata may not fit in the KVM if we have physical
2168          * memory of >1GB.
2169          */
2170         if (swblk_zone == NULL) {
2171                 error = ENOMEM;
2172                 goto done;
2173         }
2174
2175         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2176             uap->name, td);
2177         error = namei(&nd);
2178         if (error)
2179                 goto done;
2180
2181         NDFREE(&nd, NDF_ONLY_PNBUF);
2182         vp = nd.ni_vp;
2183
2184         if (vn_isdisk(vp, &error)) {
2185                 error = swapongeom(vp);
2186         } else if (vp->v_type == VREG &&
2187             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2188             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2189                 /*
2190                  * Allow direct swapping to NFS regular files in the same
2191                  * way that nfs_mountroot() sets up diskless swapping.
2192                  */
2193                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2194         }
2195
2196         if (error)
2197                 vrele(vp);
2198 done:
2199         sx_xunlock(&swdev_syscall_lock);
2200         return (error);
2201 }
2202
2203 /*
2204  * Check that the total amount of swap currently configured does not
2205  * exceed half the theoretical maximum.  If it does, print a warning
2206  * message.
2207  */
2208 static void
2209 swapon_check_swzone(void)
2210 {
2211         unsigned long maxpages, npages;
2212
2213         npages = swap_total;
2214         /* absolute maximum we can handle assuming 100% efficiency */
2215         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2216
2217         /* recommend using no more than half that amount */
2218         if (npages > maxpages / 2) {
2219                 printf("warning: total configured swap (%lu pages) "
2220                     "exceeds maximum recommended amount (%lu pages).\n",
2221                     npages, maxpages / 2);
2222                 printf("warning: increase kern.maxswzone "
2223                     "or reduce amount of swap.\n");
2224         }
2225 }
2226
2227 static void
2228 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2229     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2230 {
2231         struct swdevt *sp, *tsp;
2232         swblk_t dvbase;
2233         u_long mblocks;
2234
2235         /*
2236          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2237          * First chop nblks off to page-align it, then convert.
2238          *
2239          * sw->sw_nblks is in page-sized chunks now too.
2240          */
2241         nblks &= ~(ctodb(1) - 1);
2242         nblks = dbtoc(nblks);
2243
2244         /*
2245          * If we go beyond this, we get overflows in the radix
2246          * tree bitmap code.
2247          */
2248         mblocks = 0x40000000 / BLIST_META_RADIX;
2249         if (nblks > mblocks) {
2250                 printf(
2251     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2252                     mblocks / 1024 / 1024 * PAGE_SIZE);
2253                 nblks = mblocks;
2254         }
2255
2256         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2257         sp->sw_vp = vp;
2258         sp->sw_id = id;
2259         sp->sw_dev = dev;
2260         sp->sw_nblks = nblks;
2261         sp->sw_used = 0;
2262         sp->sw_strategy = strategy;
2263         sp->sw_close = close;
2264         sp->sw_flags = flags;
2265
2266         sp->sw_blist = blist_create(nblks, M_WAITOK);
2267         /*
2268          * Do not free the first two block in order to avoid overwriting
2269          * any bsd label at the front of the partition
2270          */
2271         blist_free(sp->sw_blist, 2, nblks - 2);
2272
2273         dvbase = 0;
2274         mtx_lock(&sw_dev_mtx);
2275         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2276                 if (tsp->sw_end >= dvbase) {
2277                         /*
2278                          * We put one uncovered page between the devices
2279                          * in order to definitively prevent any cross-device
2280                          * I/O requests
2281                          */
2282                         dvbase = tsp->sw_end + 1;
2283                 }
2284         }
2285         sp->sw_first = dvbase;
2286         sp->sw_end = dvbase + nblks;
2287         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2288         nswapdev++;
2289         swap_pager_avail += nblks - 2;
2290         swap_total += nblks;
2291         swapon_check_swzone();
2292         swp_sizecheck();
2293         mtx_unlock(&sw_dev_mtx);
2294         EVENTHANDLER_INVOKE(swapon, sp);
2295 }
2296
2297 /*
2298  * SYSCALL: swapoff(devname)
2299  *
2300  * Disable swapping on the given device.
2301  *
2302  * XXX: Badly designed system call: it should use a device index
2303  * rather than filename as specification.  We keep sw_vp around
2304  * only to make this work.
2305  */
2306 #ifndef _SYS_SYSPROTO_H_
2307 struct swapoff_args {
2308         char *name;
2309 };
2310 #endif
2311
2312 /*
2313  * MPSAFE
2314  */
2315 /* ARGSUSED */
2316 int
2317 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2318 {
2319         struct vnode *vp;
2320         struct nameidata nd;
2321         struct swdevt *sp;
2322         int error;
2323
2324         error = priv_check(td, PRIV_SWAPOFF);
2325         if (error)
2326                 return (error);
2327
2328         sx_xlock(&swdev_syscall_lock);
2329
2330         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2331             td);
2332         error = namei(&nd);
2333         if (error)
2334                 goto done;
2335         NDFREE(&nd, NDF_ONLY_PNBUF);
2336         vp = nd.ni_vp;
2337
2338         mtx_lock(&sw_dev_mtx);
2339         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2340                 if (sp->sw_vp == vp)
2341                         break;
2342         }
2343         mtx_unlock(&sw_dev_mtx);
2344         if (sp == NULL) {
2345                 error = EINVAL;
2346                 goto done;
2347         }
2348         error = swapoff_one(sp, td->td_ucred);
2349 done:
2350         sx_xunlock(&swdev_syscall_lock);
2351         return (error);
2352 }
2353
2354 static int
2355 swapoff_one(struct swdevt *sp, struct ucred *cred)
2356 {
2357         u_long nblks;
2358 #ifdef MAC
2359         int error;
2360 #endif
2361
2362         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2363 #ifdef MAC
2364         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2365         error = mac_system_check_swapoff(cred, sp->sw_vp);
2366         (void) VOP_UNLOCK(sp->sw_vp, 0);
2367         if (error != 0)
2368                 return (error);
2369 #endif
2370         nblks = sp->sw_nblks;
2371
2372         /*
2373          * We can turn off this swap device safely only if the
2374          * available virtual memory in the system will fit the amount
2375          * of data we will have to page back in, plus an epsilon so
2376          * the system doesn't become critically low on swap space.
2377          */
2378         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2379                 return (ENOMEM);
2380
2381         /*
2382          * Prevent further allocations on this device.
2383          */
2384         mtx_lock(&sw_dev_mtx);
2385         sp->sw_flags |= SW_CLOSING;
2386         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2387         swap_total -= nblks;
2388         mtx_unlock(&sw_dev_mtx);
2389
2390         /*
2391          * Page in the contents of the device and close it.
2392          */
2393         swap_pager_swapoff(sp);
2394
2395         sp->sw_close(curthread, sp);
2396         mtx_lock(&sw_dev_mtx);
2397         sp->sw_id = NULL;
2398         TAILQ_REMOVE(&swtailq, sp, sw_list);
2399         nswapdev--;
2400         if (nswapdev == 0) {
2401                 swap_pager_full = 2;
2402                 swap_pager_almost_full = 1;
2403         }
2404         if (swdevhd == sp)
2405                 swdevhd = NULL;
2406         mtx_unlock(&sw_dev_mtx);
2407         blist_destroy(sp->sw_blist);
2408         free(sp, M_VMPGDATA);
2409         return (0);
2410 }
2411
2412 void
2413 swapoff_all(void)
2414 {
2415         struct swdevt *sp, *spt;
2416         const char *devname;
2417         int error;
2418
2419         sx_xlock(&swdev_syscall_lock);
2420
2421         mtx_lock(&sw_dev_mtx);
2422         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2423                 mtx_unlock(&sw_dev_mtx);
2424                 if (vn_isdisk(sp->sw_vp, NULL))
2425                         devname = devtoname(sp->sw_vp->v_rdev);
2426                 else
2427                         devname = "[file]";
2428                 error = swapoff_one(sp, thread0.td_ucred);
2429                 if (error != 0) {
2430                         printf("Cannot remove swap device %s (error=%d), "
2431                             "skipping.\n", devname, error);
2432                 } else if (bootverbose) {
2433                         printf("Swap device %s removed.\n", devname);
2434                 }
2435                 mtx_lock(&sw_dev_mtx);
2436         }
2437         mtx_unlock(&sw_dev_mtx);
2438
2439         sx_xunlock(&swdev_syscall_lock);
2440 }
2441
2442 void
2443 swap_pager_status(int *total, int *used)
2444 {
2445         struct swdevt *sp;
2446
2447         *total = 0;
2448         *used = 0;
2449         mtx_lock(&sw_dev_mtx);
2450         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2451                 *total += sp->sw_nblks;
2452                 *used += sp->sw_used;
2453         }
2454         mtx_unlock(&sw_dev_mtx);
2455 }
2456
2457 int
2458 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2459 {
2460         struct swdevt *sp;
2461         const char *tmp_devname;
2462         int error, n;
2463
2464         n = 0;
2465         error = ENOENT;
2466         mtx_lock(&sw_dev_mtx);
2467         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2468                 if (n != name) {
2469                         n++;
2470                         continue;
2471                 }
2472                 xs->xsw_version = XSWDEV_VERSION;
2473                 xs->xsw_dev = sp->sw_dev;
2474                 xs->xsw_flags = sp->sw_flags;
2475                 xs->xsw_nblks = sp->sw_nblks;
2476                 xs->xsw_used = sp->sw_used;
2477                 if (devname != NULL) {
2478                         if (vn_isdisk(sp->sw_vp, NULL))
2479                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2480                         else
2481                                 tmp_devname = "[file]";
2482                         strncpy(devname, tmp_devname, len);
2483                 }
2484                 error = 0;
2485                 break;
2486         }
2487         mtx_unlock(&sw_dev_mtx);
2488         return (error);
2489 }
2490
2491 #if defined(COMPAT_FREEBSD11)
2492 #define XSWDEV_VERSION_11       1
2493 struct xswdev11 {
2494         u_int   xsw_version;
2495         uint32_t xsw_dev;
2496         int     xsw_flags;
2497         int     xsw_nblks;
2498         int     xsw_used;
2499 };
2500 #endif
2501
2502 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2503 struct xswdev32 {
2504         u_int   xsw_version;
2505         u_int   xsw_dev1, xsw_dev2;
2506         int     xsw_flags;
2507         int     xsw_nblks;
2508         int     xsw_used;
2509 };
2510 #endif
2511
2512 static int
2513 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2514 {
2515         struct xswdev xs;
2516 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2517         struct xswdev32 xs32;
2518 #endif
2519 #if defined(COMPAT_FREEBSD11)
2520         struct xswdev11 xs11;
2521 #endif
2522         int error;
2523
2524         if (arg2 != 1)                  /* name length */
2525                 return (EINVAL);
2526         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2527         if (error != 0)
2528                 return (error);
2529 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2530         if (req->oldlen == sizeof(xs32)) {
2531                 xs32.xsw_version = XSWDEV_VERSION;
2532                 xs32.xsw_dev1 = xs.xsw_dev;
2533                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2534                 xs32.xsw_flags = xs.xsw_flags;
2535                 xs32.xsw_nblks = xs.xsw_nblks;
2536                 xs32.xsw_used = xs.xsw_used;
2537                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2538                 return (error);
2539         }
2540 #endif
2541 #if defined(COMPAT_FREEBSD11)
2542         if (req->oldlen == sizeof(xs11)) {
2543                 xs11.xsw_version = XSWDEV_VERSION_11;
2544                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2545                 xs11.xsw_flags = xs.xsw_flags;
2546                 xs11.xsw_nblks = xs.xsw_nblks;
2547                 xs11.xsw_used = xs.xsw_used;
2548                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2549                 return (error);
2550         }
2551 #endif
2552         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2553         return (error);
2554 }
2555
2556 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2557     "Number of swap devices");
2558 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2559     sysctl_vm_swap_info,
2560     "Swap statistics by device");
2561
2562 /*
2563  * Count the approximate swap usage in pages for a vmspace.  The
2564  * shadowed or not yet copied on write swap blocks are not accounted.
2565  * The map must be locked.
2566  */
2567 long
2568 vmspace_swap_count(struct vmspace *vmspace)
2569 {
2570         vm_map_t map;
2571         vm_map_entry_t cur;
2572         vm_object_t object;
2573         struct swblk *sb;
2574         vm_pindex_t e, pi;
2575         long count;
2576         int i;
2577
2578         map = &vmspace->vm_map;
2579         count = 0;
2580
2581         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2582                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2583                         continue;
2584                 object = cur->object.vm_object;
2585                 if (object == NULL || object->type != OBJT_SWAP)
2586                         continue;
2587                 VM_OBJECT_RLOCK(object);
2588                 if (object->type != OBJT_SWAP)
2589                         goto unlock;
2590                 pi = OFF_TO_IDX(cur->offset);
2591                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2592                 for (;; pi = sb->p + SWAP_META_PAGES) {
2593                         sb = SWAP_PCTRIE_LOOKUP_GE(
2594                             &object->un_pager.swp.swp_blks, pi);
2595                         if (sb == NULL || sb->p >= e)
2596                                 break;
2597                         for (i = 0; i < SWAP_META_PAGES; i++) {
2598                                 if (sb->p + i < e &&
2599                                     sb->d[i] != SWAPBLK_NONE)
2600                                         count++;
2601                         }
2602                 }
2603 unlock:
2604                 VM_OBJECT_RUNLOCK(object);
2605         }
2606         return (count);
2607 }
2608
2609 /*
2610  * GEOM backend
2611  *
2612  * Swapping onto disk devices.
2613  *
2614  */
2615
2616 static g_orphan_t swapgeom_orphan;
2617
2618 static struct g_class g_swap_class = {
2619         .name = "SWAP",
2620         .version = G_VERSION,
2621         .orphan = swapgeom_orphan,
2622 };
2623
2624 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2625
2626
2627 static void
2628 swapgeom_close_ev(void *arg, int flags)
2629 {
2630         struct g_consumer *cp;
2631
2632         cp = arg;
2633         g_access(cp, -1, -1, 0);
2634         g_detach(cp);
2635         g_destroy_consumer(cp);
2636 }
2637
2638 /*
2639  * Add a reference to the g_consumer for an inflight transaction.
2640  */
2641 static void
2642 swapgeom_acquire(struct g_consumer *cp)
2643 {
2644
2645         mtx_assert(&sw_dev_mtx, MA_OWNED);
2646         cp->index++;
2647 }
2648
2649 /*
2650  * Remove a reference from the g_consumer.  Post a close event if all
2651  * references go away, since the function might be called from the
2652  * biodone context.
2653  */
2654 static void
2655 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2656 {
2657
2658         mtx_assert(&sw_dev_mtx, MA_OWNED);
2659         cp->index--;
2660         if (cp->index == 0) {
2661                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2662                         sp->sw_id = NULL;
2663         }
2664 }
2665
2666 static void
2667 swapgeom_done(struct bio *bp2)
2668 {
2669         struct swdevt *sp;
2670         struct buf *bp;
2671         struct g_consumer *cp;
2672
2673         bp = bp2->bio_caller2;
2674         cp = bp2->bio_from;
2675         bp->b_ioflags = bp2->bio_flags;
2676         if (bp2->bio_error)
2677                 bp->b_ioflags |= BIO_ERROR;
2678         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2679         bp->b_error = bp2->bio_error;
2680         bp->b_caller1 = NULL;
2681         bufdone(bp);
2682         sp = bp2->bio_caller1;
2683         mtx_lock(&sw_dev_mtx);
2684         swapgeom_release(cp, sp);
2685         mtx_unlock(&sw_dev_mtx);
2686         g_destroy_bio(bp2);
2687 }
2688
2689 static void
2690 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2691 {
2692         struct bio *bio;
2693         struct g_consumer *cp;
2694
2695         mtx_lock(&sw_dev_mtx);
2696         cp = sp->sw_id;
2697         if (cp == NULL) {
2698                 mtx_unlock(&sw_dev_mtx);
2699                 bp->b_error = ENXIO;
2700                 bp->b_ioflags |= BIO_ERROR;
2701                 bufdone(bp);
2702                 return;
2703         }
2704         swapgeom_acquire(cp);
2705         mtx_unlock(&sw_dev_mtx);
2706         if (bp->b_iocmd == BIO_WRITE)
2707                 bio = g_new_bio();
2708         else
2709                 bio = g_alloc_bio();
2710         if (bio == NULL) {
2711                 mtx_lock(&sw_dev_mtx);
2712                 swapgeom_release(cp, sp);
2713                 mtx_unlock(&sw_dev_mtx);
2714                 bp->b_error = ENOMEM;
2715                 bp->b_ioflags |= BIO_ERROR;
2716                 printf("swap_pager: cannot allocate bio\n");
2717                 bufdone(bp);
2718                 return;
2719         }
2720
2721         bp->b_caller1 = bio;
2722         bio->bio_caller1 = sp;
2723         bio->bio_caller2 = bp;
2724         bio->bio_cmd = bp->b_iocmd;
2725         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2726         bio->bio_length = bp->b_bcount;
2727         bio->bio_done = swapgeom_done;
2728         if (!buf_mapped(bp)) {
2729                 bio->bio_ma = bp->b_pages;
2730                 bio->bio_data = unmapped_buf;
2731                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2732                 bio->bio_ma_n = bp->b_npages;
2733                 bio->bio_flags |= BIO_UNMAPPED;
2734         } else {
2735                 bio->bio_data = bp->b_data;
2736                 bio->bio_ma = NULL;
2737         }
2738         g_io_request(bio, cp);
2739         return;
2740 }
2741
2742 static void
2743 swapgeom_orphan(struct g_consumer *cp)
2744 {
2745         struct swdevt *sp;
2746         int destroy;
2747
2748         mtx_lock(&sw_dev_mtx);
2749         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2750                 if (sp->sw_id == cp) {
2751                         sp->sw_flags |= SW_CLOSING;
2752                         break;
2753                 }
2754         }
2755         /*
2756          * Drop reference we were created with. Do directly since we're in a
2757          * special context where we don't have to queue the call to
2758          * swapgeom_close_ev().
2759          */
2760         cp->index--;
2761         destroy = ((sp != NULL) && (cp->index == 0));
2762         if (destroy)
2763                 sp->sw_id = NULL;
2764         mtx_unlock(&sw_dev_mtx);
2765         if (destroy)
2766                 swapgeom_close_ev(cp, 0);
2767 }
2768
2769 static void
2770 swapgeom_close(struct thread *td, struct swdevt *sw)
2771 {
2772         struct g_consumer *cp;
2773
2774         mtx_lock(&sw_dev_mtx);
2775         cp = sw->sw_id;
2776         sw->sw_id = NULL;
2777         mtx_unlock(&sw_dev_mtx);
2778
2779         /*
2780          * swapgeom_close() may be called from the biodone context,
2781          * where we cannot perform topology changes.  Delegate the
2782          * work to the events thread.
2783          */
2784         if (cp != NULL)
2785                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2786 }
2787
2788 static int
2789 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2790 {
2791         struct g_provider *pp;
2792         struct g_consumer *cp;
2793         static struct g_geom *gp;
2794         struct swdevt *sp;
2795         u_long nblks;
2796         int error;
2797
2798         pp = g_dev_getprovider(dev);
2799         if (pp == NULL)
2800                 return (ENODEV);
2801         mtx_lock(&sw_dev_mtx);
2802         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2803                 cp = sp->sw_id;
2804                 if (cp != NULL && cp->provider == pp) {
2805                         mtx_unlock(&sw_dev_mtx);
2806                         return (EBUSY);
2807                 }
2808         }
2809         mtx_unlock(&sw_dev_mtx);
2810         if (gp == NULL)
2811                 gp = g_new_geomf(&g_swap_class, "swap");
2812         cp = g_new_consumer(gp);
2813         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2814         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2815         g_attach(cp, pp);
2816         /*
2817          * XXX: Every time you think you can improve the margin for
2818          * footshooting, somebody depends on the ability to do so:
2819          * savecore(8) wants to write to our swapdev so we cannot
2820          * set an exclusive count :-(
2821          */
2822         error = g_access(cp, 1, 1, 0);
2823         if (error != 0) {
2824                 g_detach(cp);
2825                 g_destroy_consumer(cp);
2826                 return (error);
2827         }
2828         nblks = pp->mediasize / DEV_BSIZE;
2829         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2830             swapgeom_close, dev2udev(dev),
2831             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2832         return (0);
2833 }
2834
2835 static int
2836 swapongeom(struct vnode *vp)
2837 {
2838         int error;
2839
2840         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2841         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2842                 error = ENOENT;
2843         } else {
2844                 g_topology_lock();
2845                 error = swapongeom_locked(vp->v_rdev, vp);
2846                 g_topology_unlock();
2847         }
2848         VOP_UNLOCK(vp, 0);
2849         return (error);
2850 }
2851
2852 /*
2853  * VNODE backend
2854  *
2855  * This is used mainly for network filesystem (read: probably only tested
2856  * with NFS) swapfiles.
2857  *
2858  */
2859
2860 static void
2861 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2862 {
2863         struct vnode *vp2;
2864
2865         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2866
2867         vp2 = sp->sw_id;
2868         vhold(vp2);
2869         if (bp->b_iocmd == BIO_WRITE) {
2870                 if (bp->b_bufobj)
2871                         bufobj_wdrop(bp->b_bufobj);
2872                 bufobj_wref(&vp2->v_bufobj);
2873         }
2874         if (bp->b_bufobj != &vp2->v_bufobj)
2875                 bp->b_bufobj = &vp2->v_bufobj;
2876         bp->b_vp = vp2;
2877         bp->b_iooffset = dbtob(bp->b_blkno);
2878         bstrategy(bp);
2879         return;
2880 }
2881
2882 static void
2883 swapdev_close(struct thread *td, struct swdevt *sp)
2884 {
2885
2886         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2887         vrele(sp->sw_vp);
2888 }
2889
2890
2891 static int
2892 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2893 {
2894         struct swdevt *sp;
2895         int error;
2896
2897         if (nblks == 0)
2898                 return (ENXIO);
2899         mtx_lock(&sw_dev_mtx);
2900         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2901                 if (sp->sw_id == vp) {
2902                         mtx_unlock(&sw_dev_mtx);
2903                         return (EBUSY);
2904                 }
2905         }
2906         mtx_unlock(&sw_dev_mtx);
2907
2908         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2909 #ifdef MAC
2910         error = mac_system_check_swapon(td->td_ucred, vp);
2911         if (error == 0)
2912 #endif
2913                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2914         (void) VOP_UNLOCK(vp, 0);
2915         if (error)
2916                 return (error);
2917
2918         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2919             NODEV, 0);
2920         return (0);
2921 }
2922
2923 static int
2924 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2925 {
2926         int error, new, n;
2927
2928         new = nsw_wcount_async_max;
2929         error = sysctl_handle_int(oidp, &new, 0, req);
2930         if (error != 0 || req->newptr == NULL)
2931                 return (error);
2932
2933         if (new > nswbuf / 2 || new < 1)
2934                 return (EINVAL);
2935
2936         mtx_lock(&swbuf_mtx);
2937         while (nsw_wcount_async_max != new) {
2938                 /*
2939                  * Adjust difference.  If the current async count is too low,
2940                  * we will need to sqeeze our update slowly in.  Sleep with a
2941                  * higher priority than getpbuf() to finish faster.
2942                  */
2943                 n = new - nsw_wcount_async_max;
2944                 if (nsw_wcount_async + n >= 0) {
2945                         nsw_wcount_async += n;
2946                         nsw_wcount_async_max += n;
2947                         wakeup(&nsw_wcount_async);
2948                 } else {
2949                         nsw_wcount_async_max -= nsw_wcount_async;
2950                         nsw_wcount_async = 0;
2951                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2952                             "swpsysctl", 0);
2953                 }
2954         }
2955         mtx_unlock(&swbuf_mtx);
2956
2957         return (0);
2958 }