]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Merge ACPICA 20091214.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100
101 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
102
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106
107 static int prefault_pageorder[] = {
108         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
109         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
110         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
111         -4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120
121 struct faultstate {
122         vm_page_t m;
123         vm_object_t object;
124         vm_pindex_t pindex;
125         vm_page_t first_m;
126         vm_object_t     first_object;
127         vm_pindex_t first_pindex;
128         vm_map_t map;
129         vm_map_entry_t entry;
130         int lookup_still_valid;
131         struct vnode *vp;
132         int vfslocked;
133 };
134
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138
139         vm_page_wakeup(fs->m);
140         vm_page_lock_queues();
141         vm_page_deactivate(fs->m);
142         vm_page_unlock_queues();
143         fs->m = NULL;
144 }
145
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149
150         if (fs->lookup_still_valid) {
151                 vm_map_lookup_done(fs->map, fs->entry);
152                 fs->lookup_still_valid = FALSE;
153         }
154 }
155
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159
160         vm_object_pip_wakeup(fs->object);
161         VM_OBJECT_UNLOCK(fs->object);
162         if (fs->object != fs->first_object) {
163                 VM_OBJECT_LOCK(fs->first_object);
164                 vm_page_lock_queues();
165                 vm_page_free(fs->first_m);
166                 vm_page_unlock_queues();
167                 vm_object_pip_wakeup(fs->first_object);
168                 VM_OBJECT_UNLOCK(fs->first_object);
169                 fs->first_m = NULL;
170         }
171         vm_object_deallocate(fs->first_object);
172         unlock_map(fs); 
173         if (fs->vp != NULL) { 
174                 vput(fs->vp);
175                 fs->vp = NULL;
176         }
177         VFS_UNLOCK_GIANT(fs->vfslocked);
178         fs->vfslocked = 0;
179 }
180
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *            current object *might* contain the page.
184  *
185  *            default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
188                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189
190 /*
191  *      vm_fault:
192  *
193  *      Handle a page fault occurring at the given address,
194  *      requiring the given permissions, in the map specified.
195  *      If successful, the page is inserted into the
196  *      associated physical map.
197  *
198  *      NOTE: the given address should be truncated to the
199  *      proper page address.
200  *
201  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *      a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *      The map in question must be referenced, and remains so.
206  *      Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210          int fault_flags)
211 {
212         vm_prot_t prot;
213         int is_first_object_locked, result;
214         boolean_t are_queues_locked, growstack, wired;
215         int map_generation;
216         vm_object_t next_object;
217         vm_page_t marray[VM_FAULT_READ];
218         int hardfault;
219         int faultcount, ahead, behind;
220         struct faultstate fs;
221         struct vnode *vp;
222         int locked, error;
223
224         hardfault = 0;
225         growstack = TRUE;
226         PCPU_INC(cnt.v_vm_faults);
227         fs.vp = NULL;
228         fs.vfslocked = 0;
229         faultcount = behind = 0;
230
231 RetryFault:;
232
233         /*
234          * Find the backing store object and offset into it to begin the
235          * search.
236          */
237         fs.map = map;
238         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
239             &fs.first_object, &fs.first_pindex, &prot, &wired);
240         if (result != KERN_SUCCESS) {
241                 if (growstack && result == KERN_INVALID_ADDRESS &&
242                     map != kernel_map) {
243                         result = vm_map_growstack(curproc, vaddr);
244                         if (result != KERN_SUCCESS)
245                                 return (KERN_FAILURE);
246                         growstack = FALSE;
247                         goto RetryFault;
248                 }
249                 return (result);
250         }
251
252         map_generation = fs.map->timestamp;
253
254         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
255                 panic("vm_fault: fault on nofault entry, addr: %lx",
256                     (u_long)vaddr);
257         }
258
259         /*
260          * Make a reference to this object to prevent its disposal while we
261          * are messing with it.  Once we have the reference, the map is free
262          * to be diddled.  Since objects reference their shadows (and copies),
263          * they will stay around as well.
264          *
265          * Bump the paging-in-progress count to prevent size changes (e.g. 
266          * truncation operations) during I/O.  This must be done after
267          * obtaining the vnode lock in order to avoid possible deadlocks.
268          */
269         VM_OBJECT_LOCK(fs.first_object);
270         vm_object_reference_locked(fs.first_object);
271         vm_object_pip_add(fs.first_object, 1);
272
273         fs.lookup_still_valid = TRUE;
274
275         if (wired)
276                 fault_type = prot | (fault_type & VM_PROT_COPY);
277
278         fs.first_m = NULL;
279
280         /*
281          * Search for the page at object/offset.
282          */
283         fs.object = fs.first_object;
284         fs.pindex = fs.first_pindex;
285         while (TRUE) {
286                 /*
287                  * If the object is dead, we stop here
288                  */
289                 if (fs.object->flags & OBJ_DEAD) {
290                         unlock_and_deallocate(&fs);
291                         return (KERN_PROTECTION_FAILURE);
292                 }
293
294                 /*
295                  * See if page is resident
296                  */
297                 fs.m = vm_page_lookup(fs.object, fs.pindex);
298                 if (fs.m != NULL) {
299                         /* 
300                          * check for page-based copy on write.
301                          * We check fs.object == fs.first_object so
302                          * as to ensure the legacy COW mechanism is
303                          * used when the page in question is part of
304                          * a shadow object.  Otherwise, vm_page_cowfault()
305                          * removes the page from the backing object, 
306                          * which is not what we want.
307                          */
308                         vm_page_lock_queues();
309                         if ((fs.m->cow) && 
310                             (fault_type & VM_PROT_WRITE) &&
311                             (fs.object == fs.first_object)) {
312                                 vm_page_cowfault(fs.m);
313                                 vm_page_unlock_queues();
314                                 unlock_and_deallocate(&fs);
315                                 goto RetryFault;
316                         }
317
318                         /*
319                          * Wait/Retry if the page is busy.  We have to do this
320                          * if the page is busy via either VPO_BUSY or 
321                          * vm_page_t->busy because the vm_pager may be using
322                          * vm_page_t->busy for pageouts ( and even pageins if
323                          * it is the vnode pager ), and we could end up trying
324                          * to pagein and pageout the same page simultaneously.
325                          *
326                          * We can theoretically allow the busy case on a read
327                          * fault if the page is marked valid, but since such
328                          * pages are typically already pmap'd, putting that
329                          * special case in might be more effort then it is 
330                          * worth.  We cannot under any circumstances mess
331                          * around with a vm_page_t->busy page except, perhaps,
332                          * to pmap it.
333                          */
334                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
335                                 vm_page_unlock_queues();
336                                 VM_OBJECT_UNLOCK(fs.object);
337                                 if (fs.object != fs.first_object) {
338                                         VM_OBJECT_LOCK(fs.first_object);
339                                         vm_page_lock_queues();
340                                         vm_page_free(fs.first_m);
341                                         vm_page_unlock_queues();
342                                         vm_object_pip_wakeup(fs.first_object);
343                                         VM_OBJECT_UNLOCK(fs.first_object);
344                                         fs.first_m = NULL;
345                                 }
346                                 unlock_map(&fs);
347                                 VM_OBJECT_LOCK(fs.object);
348                                 if (fs.m == vm_page_lookup(fs.object,
349                                     fs.pindex)) {
350                                         vm_page_sleep_if_busy(fs.m, TRUE,
351                                             "vmpfw");
352                                 }
353                                 vm_object_pip_wakeup(fs.object);
354                                 VM_OBJECT_UNLOCK(fs.object);
355                                 PCPU_INC(cnt.v_intrans);
356                                 vm_object_deallocate(fs.first_object);
357                                 goto RetryFault;
358                         }
359                         vm_pageq_remove(fs.m);
360                         vm_page_unlock_queues();
361
362                         /*
363                          * Mark page busy for other processes, and the 
364                          * pagedaemon.  If it still isn't completely valid
365                          * (readable), jump to readrest, else break-out ( we
366                          * found the page ).
367                          */
368                         vm_page_busy(fs.m);
369                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
370                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
371                                 goto readrest;
372                         }
373
374                         break;
375                 }
376
377                 /*
378                  * Page is not resident, If this is the search termination
379                  * or the pager might contain the page, allocate a new page.
380                  */
381                 if (TRYPAGER || fs.object == fs.first_object) {
382                         if (fs.pindex >= fs.object->size) {
383                                 unlock_and_deallocate(&fs);
384                                 return (KERN_PROTECTION_FAILURE);
385                         }
386
387                         /*
388                          * Allocate a new page for this object/offset pair.
389                          */
390                         fs.m = NULL;
391                         if (!vm_page_count_severe()) {
392 #if VM_NRESERVLEVEL > 0
393                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
394                                         fs.object->flags |= OBJ_COLORED;
395                                         fs.object->pg_color = atop(vaddr) -
396                                             fs.pindex;
397                                 }
398 #endif
399                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
400                                     (fs.object->type == OBJT_VNODE ||
401                                      fs.object->backing_object != NULL) ?
402                                     VM_ALLOC_NORMAL : VM_ALLOC_ZERO);
403                         }
404                         if (fs.m == NULL) {
405                                 unlock_and_deallocate(&fs);
406                                 VM_WAITPFAULT;
407                                 goto RetryFault;
408                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
409                                 break;
410                 }
411
412 readrest:
413                 /*
414                  * We have found a valid page or we have allocated a new page.
415                  * The page thus may not be valid or may not be entirely 
416                  * valid.
417                  *
418                  * Attempt to fault-in the page if there is a chance that the
419                  * pager has it, and potentially fault in additional pages
420                  * at the same time.
421                  */
422                 if (TRYPAGER) {
423                         int rv;
424                         int reqpage = 0;
425                         u_char behavior = vm_map_entry_behavior(fs.entry);
426
427                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
428                                 ahead = 0;
429                                 behind = 0;
430                         } else {
431                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
432                                 if (behind > VM_FAULT_READ_BEHIND)
433                                         behind = VM_FAULT_READ_BEHIND;
434
435                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
436                                 if (ahead > VM_FAULT_READ_AHEAD)
437                                         ahead = VM_FAULT_READ_AHEAD;
438                         }
439                         is_first_object_locked = FALSE;
440                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
441                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
442                               fs.pindex >= fs.entry->lastr &&
443                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
444                             (fs.first_object == fs.object ||
445                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
446                             fs.first_object->type != OBJT_DEVICE &&
447                             fs.first_object->type != OBJT_PHYS &&
448                             fs.first_object->type != OBJT_SG) {
449                                 vm_pindex_t firstpindex, tmppindex;
450
451                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
452                                         firstpindex = 0;
453                                 else
454                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
455
456                                 are_queues_locked = FALSE;
457                                 /*
458                                  * note: partially valid pages cannot be 
459                                  * included in the lookahead - NFS piecemeal
460                                  * writes will barf on it badly.
461                                  */
462                                 for (tmppindex = fs.first_pindex - 1;
463                                         tmppindex >= firstpindex;
464                                         --tmppindex) {
465                                         vm_page_t mt;
466
467                                         mt = vm_page_lookup(fs.first_object, tmppindex);
468                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
469                                                 break;
470                                         if (mt->busy ||
471                                             (mt->oflags & VPO_BUSY))
472                                                 continue;
473                                         if (!are_queues_locked) {
474                                                 are_queues_locked = TRUE;
475                                                 vm_page_lock_queues();
476                                         }
477                                         if (mt->hold_count ||
478                                                 mt->wire_count) 
479                                                 continue;
480                                         pmap_remove_all(mt);
481                                         if (mt->dirty) {
482                                                 vm_page_deactivate(mt);
483                                         } else {
484                                                 vm_page_cache(mt);
485                                         }
486                                 }
487                                 if (are_queues_locked)
488                                         vm_page_unlock_queues();
489                                 ahead += behind;
490                                 behind = 0;
491                         }
492                         if (is_first_object_locked)
493                                 VM_OBJECT_UNLOCK(fs.first_object);
494
495                         /*
496                          * Call the pager to retrieve the data, if any, after
497                          * releasing the lock on the map.  We hold a ref on
498                          * fs.object and the pages are VPO_BUSY'd.
499                          */
500                         unlock_map(&fs);
501
502 vnode_lock:
503                         if (fs.object->type == OBJT_VNODE) {
504                                 vp = fs.object->handle;
505                                 if (vp == fs.vp)
506                                         goto vnode_locked;
507                                 else if (fs.vp != NULL) {
508                                         vput(fs.vp);
509                                         fs.vp = NULL;
510                                 }
511                                 locked = VOP_ISLOCKED(vp);
512
513                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
514                                         fs.vfslocked = 1;
515                                         if (!mtx_trylock(&Giant)) {
516                                                 VM_OBJECT_UNLOCK(fs.object);
517                                                 mtx_lock(&Giant);
518                                                 VM_OBJECT_LOCK(fs.object);
519                                                 goto vnode_lock;
520                                         }
521                                 }
522                                 if (locked != LK_EXCLUSIVE)
523                                         locked = LK_SHARED;
524                                 /* Do not sleep for vnode lock while fs.m is busy */
525                                 error = vget(vp, locked | LK_CANRECURSE |
526                                     LK_NOWAIT, curthread);
527                                 if (error != 0) {
528                                         int vfslocked;
529
530                                         vfslocked = fs.vfslocked;
531                                         fs.vfslocked = 0; /* Keep Giant */
532                                         vhold(vp);
533                                         release_page(&fs);
534                                         unlock_and_deallocate(&fs);
535                                         error = vget(vp, locked | LK_RETRY |
536                                             LK_CANRECURSE, curthread);
537                                         vdrop(vp);
538                                         fs.vp = vp;
539                                         fs.vfslocked = vfslocked;
540                                         KASSERT(error == 0,
541                                             ("vm_fault: vget failed"));
542                                         goto RetryFault;
543                                 }
544                                 fs.vp = vp;
545                         }
546 vnode_locked:
547                         KASSERT(fs.vp == NULL || !fs.map->system_map,
548                             ("vm_fault: vnode-backed object mapped by system map"));
549
550                         /*
551                          * now we find out if any other pages should be paged
552                          * in at this time this routine checks to see if the
553                          * pages surrounding this fault reside in the same
554                          * object as the page for this fault.  If they do,
555                          * then they are faulted in also into the object.  The
556                          * array "marray" returned contains an array of
557                          * vm_page_t structs where one of them is the
558                          * vm_page_t passed to the routine.  The reqpage
559                          * return value is the index into the marray for the
560                          * vm_page_t passed to the routine.
561                          *
562                          * fs.m plus the additional pages are VPO_BUSY'd.
563                          */
564                         faultcount = vm_fault_additional_pages(
565                             fs.m, behind, ahead, marray, &reqpage);
566
567                         rv = faultcount ?
568                             vm_pager_get_pages(fs.object, marray, faultcount,
569                                 reqpage) : VM_PAGER_FAIL;
570
571                         if (rv == VM_PAGER_OK) {
572                                 /*
573                                  * Found the page. Leave it busy while we play
574                                  * with it.
575                                  */
576
577                                 /*
578                                  * Relookup in case pager changed page. Pager
579                                  * is responsible for disposition of old page
580                                  * if moved.
581                                  */
582                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
583                                 if (!fs.m) {
584                                         unlock_and_deallocate(&fs);
585                                         goto RetryFault;
586                                 }
587
588                                 hardfault++;
589                                 break; /* break to PAGE HAS BEEN FOUND */
590                         }
591                         /*
592                          * Remove the bogus page (which does not exist at this
593                          * object/offset); before doing so, we must get back
594                          * our object lock to preserve our invariant.
595                          *
596                          * Also wake up any other process that may want to bring
597                          * in this page.
598                          *
599                          * If this is the top-level object, we must leave the
600                          * busy page to prevent another process from rushing
601                          * past us, and inserting the page in that object at
602                          * the same time that we are.
603                          */
604                         if (rv == VM_PAGER_ERROR)
605                                 printf("vm_fault: pager read error, pid %d (%s)\n",
606                                     curproc->p_pid, curproc->p_comm);
607                         /*
608                          * Data outside the range of the pager or an I/O error
609                          */
610                         /*
611                          * XXX - the check for kernel_map is a kludge to work
612                          * around having the machine panic on a kernel space
613                          * fault w/ I/O error.
614                          */
615                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
616                                 (rv == VM_PAGER_BAD)) {
617                                 vm_page_lock_queues();
618                                 vm_page_free(fs.m);
619                                 vm_page_unlock_queues();
620                                 fs.m = NULL;
621                                 unlock_and_deallocate(&fs);
622                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
623                         }
624                         if (fs.object != fs.first_object) {
625                                 vm_page_lock_queues();
626                                 vm_page_free(fs.m);
627                                 vm_page_unlock_queues();
628                                 fs.m = NULL;
629                                 /*
630                                  * XXX - we cannot just fall out at this
631                                  * point, m has been freed and is invalid!
632                                  */
633                         }
634                 }
635
636                 /*
637                  * We get here if the object has default pager (or unwiring) 
638                  * or the pager doesn't have the page.
639                  */
640                 if (fs.object == fs.first_object)
641                         fs.first_m = fs.m;
642
643                 /*
644                  * Move on to the next object.  Lock the next object before
645                  * unlocking the current one.
646                  */
647                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
648                 next_object = fs.object->backing_object;
649                 if (next_object == NULL) {
650                         /*
651                          * If there's no object left, fill the page in the top
652                          * object with zeros.
653                          */
654                         if (fs.object != fs.first_object) {
655                                 vm_object_pip_wakeup(fs.object);
656                                 VM_OBJECT_UNLOCK(fs.object);
657
658                                 fs.object = fs.first_object;
659                                 fs.pindex = fs.first_pindex;
660                                 fs.m = fs.first_m;
661                                 VM_OBJECT_LOCK(fs.object);
662                         }
663                         fs.first_m = NULL;
664
665                         /*
666                          * Zero the page if necessary and mark it valid.
667                          */
668                         if ((fs.m->flags & PG_ZERO) == 0) {
669                                 pmap_zero_page(fs.m);
670                         } else {
671                                 PCPU_INC(cnt.v_ozfod);
672                         }
673                         PCPU_INC(cnt.v_zfod);
674                         fs.m->valid = VM_PAGE_BITS_ALL;
675                         break;  /* break to PAGE HAS BEEN FOUND */
676                 } else {
677                         KASSERT(fs.object != next_object,
678                             ("object loop %p", next_object));
679                         VM_OBJECT_LOCK(next_object);
680                         vm_object_pip_add(next_object, 1);
681                         if (fs.object != fs.first_object)
682                                 vm_object_pip_wakeup(fs.object);
683                         VM_OBJECT_UNLOCK(fs.object);
684                         fs.object = next_object;
685                 }
686         }
687
688         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
689             ("vm_fault: not busy after main loop"));
690
691         /*
692          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
693          * is held.]
694          */
695
696         /*
697          * If the page is being written, but isn't already owned by the
698          * top-level object, we have to copy it into a new page owned by the
699          * top-level object.
700          */
701         if (fs.object != fs.first_object) {
702                 /*
703                  * We only really need to copy if we want to write it.
704                  */
705                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
706                         /*
707                          * This allows pages to be virtually copied from a 
708                          * backing_object into the first_object, where the 
709                          * backing object has no other refs to it, and cannot
710                          * gain any more refs.  Instead of a bcopy, we just 
711                          * move the page from the backing object to the 
712                          * first object.  Note that we must mark the page 
713                          * dirty in the first object so that it will go out 
714                          * to swap when needed.
715                          */
716                         is_first_object_locked = FALSE;
717                         if (
718                                 /*
719                                  * Only one shadow object
720                                  */
721                                 (fs.object->shadow_count == 1) &&
722                                 /*
723                                  * No COW refs, except us
724                                  */
725                                 (fs.object->ref_count == 1) &&
726                                 /*
727                                  * No one else can look this object up
728                                  */
729                                 (fs.object->handle == NULL) &&
730                                 /*
731                                  * No other ways to look the object up
732                                  */
733                                 ((fs.object->type == OBJT_DEFAULT) ||
734                                  (fs.object->type == OBJT_SWAP)) &&
735                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
736                                 /*
737                                  * We don't chase down the shadow chain
738                                  */
739                             fs.object == fs.first_object->backing_object) {
740                                 vm_page_lock_queues();
741                                 /*
742                                  * get rid of the unnecessary page
743                                  */
744                                 vm_page_free(fs.first_m);
745                                 /*
746                                  * grab the page and put it into the 
747                                  * process'es object.  The page is 
748                                  * automatically made dirty.
749                                  */
750                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
751                                 vm_page_unlock_queues();
752                                 vm_page_busy(fs.m);
753                                 fs.first_m = fs.m;
754                                 fs.m = NULL;
755                                 PCPU_INC(cnt.v_cow_optim);
756                         } else {
757                                 /*
758                                  * Oh, well, lets copy it.
759                                  */
760                                 pmap_copy_page(fs.m, fs.first_m);
761                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
762                                 if (wired && (fault_flags &
763                                     VM_FAULT_CHANGE_WIRING) == 0) {
764                                         vm_page_lock_queues();
765                                         vm_page_wire(fs.first_m);
766                                         vm_page_unwire(fs.m, FALSE);
767                                         vm_page_unlock_queues();
768                                 }
769                                 /*
770                                  * We no longer need the old page or object.
771                                  */
772                                 release_page(&fs);
773                         }
774                         /*
775                          * fs.object != fs.first_object due to above 
776                          * conditional
777                          */
778                         vm_object_pip_wakeup(fs.object);
779                         VM_OBJECT_UNLOCK(fs.object);
780                         /*
781                          * Only use the new page below...
782                          */
783                         fs.object = fs.first_object;
784                         fs.pindex = fs.first_pindex;
785                         fs.m = fs.first_m;
786                         if (!is_first_object_locked)
787                                 VM_OBJECT_LOCK(fs.object);
788                         PCPU_INC(cnt.v_cow_faults);
789                 } else {
790                         prot &= ~VM_PROT_WRITE;
791                 }
792         }
793
794         /*
795          * We must verify that the maps have not changed since our last
796          * lookup.
797          */
798         if (!fs.lookup_still_valid) {
799                 vm_object_t retry_object;
800                 vm_pindex_t retry_pindex;
801                 vm_prot_t retry_prot;
802
803                 if (!vm_map_trylock_read(fs.map)) {
804                         release_page(&fs);
805                         unlock_and_deallocate(&fs);
806                         goto RetryFault;
807                 }
808                 fs.lookup_still_valid = TRUE;
809                 if (fs.map->timestamp != map_generation) {
810                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
811                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
812
813                         /*
814                          * If we don't need the page any longer, put it on the inactive
815                          * list (the easiest thing to do here).  If no one needs it,
816                          * pageout will grab it eventually.
817                          */
818                         if (result != KERN_SUCCESS) {
819                                 release_page(&fs);
820                                 unlock_and_deallocate(&fs);
821
822                                 /*
823                                  * If retry of map lookup would have blocked then
824                                  * retry fault from start.
825                                  */
826                                 if (result == KERN_FAILURE)
827                                         goto RetryFault;
828                                 return (result);
829                         }
830                         if ((retry_object != fs.first_object) ||
831                             (retry_pindex != fs.first_pindex)) {
832                                 release_page(&fs);
833                                 unlock_and_deallocate(&fs);
834                                 goto RetryFault;
835                         }
836
837                         /*
838                          * Check whether the protection has changed or the object has
839                          * been copied while we left the map unlocked. Changing from
840                          * read to write permission is OK - we leave the page
841                          * write-protected, and catch the write fault. Changing from
842                          * write to read permission means that we can't mark the page
843                          * write-enabled after all.
844                          */
845                         prot &= retry_prot;
846                 }
847         }
848         /*
849          * If the page was filled by a pager, update the map entry's
850          * last read offset.  Since the pager does not return the
851          * actual set of pages that it read, this update is based on
852          * the requested set.  Typically, the requested and actual
853          * sets are the same.
854          *
855          * XXX The following assignment modifies the map
856          * without holding a write lock on it.
857          */
858         if (hardfault)
859                 fs.entry->lastr = fs.pindex + faultcount - behind;
860
861         if (prot & VM_PROT_WRITE) {
862                 vm_object_set_writeable_dirty(fs.object);
863
864                 /*
865                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
866                  * if the page is already dirty to prevent data written with
867                  * the expectation of being synced from not being synced.
868                  * Likewise if this entry does not request NOSYNC then make
869                  * sure the page isn't marked NOSYNC.  Applications sharing
870                  * data should use the same flags to avoid ping ponging.
871                  */
872                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
873                         if (fs.m->dirty == 0)
874                                 fs.m->oflags |= VPO_NOSYNC;
875                 } else {
876                         fs.m->oflags &= ~VPO_NOSYNC;
877                 }
878
879                 /*
880                  * If the fault is a write, we know that this page is being
881                  * written NOW so dirty it explicitly to save on 
882                  * pmap_is_modified() calls later.
883                  *
884                  * Also tell the backing pager, if any, that it should remove
885                  * any swap backing since the page is now dirty.
886                  */
887                 if ((fault_type & VM_PROT_WRITE) != 0 &&
888                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
889                         vm_page_dirty(fs.m);
890                         vm_pager_page_unswapped(fs.m);
891                 }
892         }
893
894         /*
895          * Page had better still be busy
896          */
897         KASSERT(fs.m->oflags & VPO_BUSY,
898                 ("vm_fault: page %p not busy!", fs.m));
899         /*
900          * Page must be completely valid or it is not fit to
901          * map into user space.  vm_pager_get_pages() ensures this.
902          */
903         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
904             ("vm_fault: page %p partially invalid", fs.m));
905         VM_OBJECT_UNLOCK(fs.object);
906
907         /*
908          * Put this page into the physical map.  We had to do the unlock above
909          * because pmap_enter() may sleep.  We don't put the page
910          * back on the active queue until later so that the pageout daemon
911          * won't find it (yet).
912          */
913         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
914         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
915                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
916         VM_OBJECT_LOCK(fs.object);
917         vm_page_lock_queues();
918         vm_page_flag_set(fs.m, PG_REFERENCED);
919
920         /*
921          * If the page is not wired down, then put it where the pageout daemon
922          * can find it.
923          */
924         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
925                 if (wired)
926                         vm_page_wire(fs.m);
927                 else
928                         vm_page_unwire(fs.m, 1);
929         } else {
930                 vm_page_activate(fs.m);
931         }
932         vm_page_unlock_queues();
933         vm_page_wakeup(fs.m);
934
935         /*
936          * Unlock everything, and return
937          */
938         unlock_and_deallocate(&fs);
939         if (hardfault)
940                 curthread->td_ru.ru_majflt++;
941         else
942                 curthread->td_ru.ru_minflt++;
943
944         return (KERN_SUCCESS);
945 }
946
947 /*
948  * vm_fault_prefault provides a quick way of clustering
949  * pagefaults into a processes address space.  It is a "cousin"
950  * of vm_map_pmap_enter, except it runs at page fault time instead
951  * of mmap time.
952  */
953 static void
954 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
955 {
956         int i;
957         vm_offset_t addr, starta;
958         vm_pindex_t pindex;
959         vm_page_t m;
960         vm_object_t object;
961
962         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
963                 return;
964
965         object = entry->object.vm_object;
966
967         starta = addra - PFBAK * PAGE_SIZE;
968         if (starta < entry->start) {
969                 starta = entry->start;
970         } else if (starta > addra) {
971                 starta = 0;
972         }
973
974         for (i = 0; i < PAGEORDER_SIZE; i++) {
975                 vm_object_t backing_object, lobject;
976
977                 addr = addra + prefault_pageorder[i];
978                 if (addr > addra + (PFFOR * PAGE_SIZE))
979                         addr = 0;
980
981                 if (addr < starta || addr >= entry->end)
982                         continue;
983
984                 if (!pmap_is_prefaultable(pmap, addr))
985                         continue;
986
987                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
988                 lobject = object;
989                 VM_OBJECT_LOCK(lobject);
990                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
991                     lobject->type == OBJT_DEFAULT &&
992                     (backing_object = lobject->backing_object) != NULL) {
993                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
994                             0, ("vm_fault_prefault: unaligned object offset"));
995                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
996                         VM_OBJECT_LOCK(backing_object);
997                         VM_OBJECT_UNLOCK(lobject);
998                         lobject = backing_object;
999                 }
1000                 /*
1001                  * give-up when a page is not in memory
1002                  */
1003                 if (m == NULL) {
1004                         VM_OBJECT_UNLOCK(lobject);
1005                         break;
1006                 }
1007                 if (m->valid == VM_PAGE_BITS_ALL &&
1008                     (m->flags & PG_FICTITIOUS) == 0) {
1009                         vm_page_lock_queues();
1010                         pmap_enter_quick(pmap, addr, m, entry->protection);
1011                         vm_page_unlock_queues();
1012                 }
1013                 VM_OBJECT_UNLOCK(lobject);
1014         }
1015 }
1016
1017 /*
1018  *      vm_fault_quick:
1019  *
1020  *      Ensure that the requested virtual address, which may be in userland,
1021  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1022  */
1023 int
1024 vm_fault_quick(caddr_t v, int prot)
1025 {
1026         int r;
1027
1028         if (prot & VM_PROT_WRITE)
1029                 r = subyte(v, fubyte(v));
1030         else
1031                 r = fubyte(v);
1032         return(r);
1033 }
1034
1035 /*
1036  *      vm_fault_wire:
1037  *
1038  *      Wire down a range of virtual addresses in a map.
1039  */
1040 int
1041 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1042     boolean_t fictitious)
1043 {
1044         vm_offset_t va;
1045         int rv;
1046
1047         /*
1048          * We simulate a fault to get the page and enter it in the physical
1049          * map.  For user wiring, we only ask for read access on currently
1050          * read-only sections.
1051          */
1052         for (va = start; va < end; va += PAGE_SIZE) {
1053                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1054                 if (rv) {
1055                         if (va != start)
1056                                 vm_fault_unwire(map, start, va, fictitious);
1057                         return (rv);
1058                 }
1059         }
1060         return (KERN_SUCCESS);
1061 }
1062
1063 /*
1064  *      vm_fault_unwire:
1065  *
1066  *      Unwire a range of virtual addresses in a map.
1067  */
1068 void
1069 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1070     boolean_t fictitious)
1071 {
1072         vm_paddr_t pa;
1073         vm_offset_t va;
1074         pmap_t pmap;
1075
1076         pmap = vm_map_pmap(map);
1077
1078         /*
1079          * Since the pages are wired down, we must be able to get their
1080          * mappings from the physical map system.
1081          */
1082         for (va = start; va < end; va += PAGE_SIZE) {
1083                 pa = pmap_extract(pmap, va);
1084                 if (pa != 0) {
1085                         pmap_change_wiring(pmap, va, FALSE);
1086                         if (!fictitious) {
1087                                 vm_page_lock_queues();
1088                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1089                                 vm_page_unlock_queues();
1090                         }
1091                 }
1092         }
1093 }
1094
1095 /*
1096  *      Routine:
1097  *              vm_fault_copy_entry
1098  *      Function:
1099  *              Create new shadow object backing dst_entry with private copy of
1100  *              all underlying pages. When src_entry is equal to dst_entry,
1101  *              function implements COW for wired-down map entry. Otherwise,
1102  *              it forks wired entry into dst_map.
1103  *
1104  *      In/out conditions:
1105  *              The source and destination maps must be locked for write.
1106  *              The source map entry must be wired down (or be a sharing map
1107  *              entry corresponding to a main map entry that is wired down).
1108  */
1109 void
1110 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1111     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1112     vm_ooffset_t *fork_charge)
1113 {
1114         vm_object_t backing_object, dst_object, object, src_object;
1115         vm_pindex_t dst_pindex, pindex, src_pindex;
1116         vm_prot_t access, prot;
1117         vm_offset_t vaddr;
1118         vm_page_t dst_m;
1119         vm_page_t src_m;
1120         boolean_t src_readonly, upgrade;
1121
1122 #ifdef  lint
1123         src_map++;
1124 #endif  /* lint */
1125
1126         upgrade = src_entry == dst_entry;
1127
1128         src_object = src_entry->object.vm_object;
1129         src_pindex = OFF_TO_IDX(src_entry->offset);
1130         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1131
1132         /*
1133          * Create the top-level object for the destination entry. (Doesn't
1134          * actually shadow anything - we copy the pages directly.)
1135          */
1136         dst_object = vm_object_allocate(OBJT_DEFAULT,
1137             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1138 #if VM_NRESERVLEVEL > 0
1139         dst_object->flags |= OBJ_COLORED;
1140         dst_object->pg_color = atop(dst_entry->start);
1141 #endif
1142
1143         VM_OBJECT_LOCK(dst_object);
1144         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1145             ("vm_fault_copy_entry: vm_object not NULL"));
1146         dst_entry->object.vm_object = dst_object;
1147         dst_entry->offset = 0;
1148         dst_object->charge = dst_entry->end - dst_entry->start;
1149         if (fork_charge != NULL) {
1150                 KASSERT(dst_entry->uip == NULL,
1151                     ("vm_fault_copy_entry: leaked swp charge"));
1152                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1153                 uihold(dst_object->uip);
1154                 *fork_charge += dst_object->charge;
1155         } else {
1156                 dst_object->uip = dst_entry->uip;
1157                 dst_entry->uip = NULL;
1158         }
1159         access = prot = dst_entry->protection;
1160         /*
1161          * If not an upgrade, then enter the mappings in the pmap as
1162          * read and/or execute accesses.  Otherwise, enter them as
1163          * write accesses.
1164          *
1165          * A writeable large page mapping is only created if all of
1166          * the constituent small page mappings are modified. Marking
1167          * PTEs as modified on inception allows promotion to happen
1168          * without taking potentially large number of soft faults.
1169          */
1170         if (!upgrade)
1171                 access &= ~VM_PROT_WRITE;
1172
1173         /*
1174          * Loop through all of the pages in the entry's range, copying each
1175          * one from the source object (it should be there) to the destination
1176          * object.
1177          */
1178         for (vaddr = dst_entry->start, dst_pindex = 0;
1179             vaddr < dst_entry->end;
1180             vaddr += PAGE_SIZE, dst_pindex++) {
1181
1182                 /*
1183                  * Allocate a page in the destination object.
1184                  */
1185                 do {
1186                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1187                             VM_ALLOC_NORMAL);
1188                         if (dst_m == NULL) {
1189                                 VM_OBJECT_UNLOCK(dst_object);
1190                                 VM_WAIT;
1191                                 VM_OBJECT_LOCK(dst_object);
1192                         }
1193                 } while (dst_m == NULL);
1194
1195                 /*
1196                  * Find the page in the source object, and copy it in.
1197                  * (Because the source is wired down, the page will be in
1198                  * memory.)
1199                  */
1200                 VM_OBJECT_LOCK(src_object);
1201                 object = src_object;
1202                 pindex = src_pindex + dst_pindex;
1203                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1204                     src_readonly &&
1205                     (backing_object = object->backing_object) != NULL) {
1206                         /*
1207                          * Allow fallback to backing objects if we are reading.
1208                          */
1209                         VM_OBJECT_LOCK(backing_object);
1210                         pindex += OFF_TO_IDX(object->backing_object_offset);
1211                         VM_OBJECT_UNLOCK(object);
1212                         object = backing_object;
1213                 }
1214                 if (src_m == NULL)
1215                         panic("vm_fault_copy_wired: page missing");
1216                 pmap_copy_page(src_m, dst_m);
1217                 VM_OBJECT_UNLOCK(object);
1218                 dst_m->valid = VM_PAGE_BITS_ALL;
1219                 VM_OBJECT_UNLOCK(dst_object);
1220
1221                 /*
1222                  * Enter it in the pmap. If a wired, copy-on-write
1223                  * mapping is being replaced by a write-enabled
1224                  * mapping, then wire that new mapping.
1225                  */
1226                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1227
1228                 /*
1229                  * Mark it no longer busy, and put it on the active list.
1230                  */
1231                 VM_OBJECT_LOCK(dst_object);
1232                 vm_page_lock_queues();
1233                 if (upgrade) {
1234                         vm_page_unwire(src_m, 0);
1235                         vm_page_wire(dst_m);
1236                 } else
1237                         vm_page_activate(dst_m);
1238                 vm_page_unlock_queues();
1239                 vm_page_wakeup(dst_m);
1240         }
1241         VM_OBJECT_UNLOCK(dst_object);
1242         if (upgrade) {
1243                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1244                 vm_object_deallocate(src_object);
1245         }
1246 }
1247
1248
1249 /*
1250  * This routine checks around the requested page for other pages that
1251  * might be able to be faulted in.  This routine brackets the viable
1252  * pages for the pages to be paged in.
1253  *
1254  * Inputs:
1255  *      m, rbehind, rahead
1256  *
1257  * Outputs:
1258  *  marray (array of vm_page_t), reqpage (index of requested page)
1259  *
1260  * Return value:
1261  *  number of pages in marray
1262  */
1263 static int
1264 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1265         vm_page_t m;
1266         int rbehind;
1267         int rahead;
1268         vm_page_t *marray;
1269         int *reqpage;
1270 {
1271         int i,j;
1272         vm_object_t object;
1273         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1274         vm_page_t rtm;
1275         int cbehind, cahead;
1276
1277         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1278
1279         object = m->object;
1280         pindex = m->pindex;
1281         cbehind = cahead = 0;
1282
1283         /*
1284          * if the requested page is not available, then give up now
1285          */
1286         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1287                 return 0;
1288         }
1289
1290         if ((cbehind == 0) && (cahead == 0)) {
1291                 *reqpage = 0;
1292                 marray[0] = m;
1293                 return 1;
1294         }
1295
1296         if (rahead > cahead) {
1297                 rahead = cahead;
1298         }
1299
1300         if (rbehind > cbehind) {
1301                 rbehind = cbehind;
1302         }
1303
1304         /*
1305          * scan backward for the read behind pages -- in memory 
1306          */
1307         if (pindex > 0) {
1308                 if (rbehind > pindex) {
1309                         rbehind = pindex;
1310                         startpindex = 0;
1311                 } else {
1312                         startpindex = pindex - rbehind;
1313                 }
1314
1315                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1316                     rtm->pindex >= startpindex)
1317                         startpindex = rtm->pindex + 1;
1318
1319                 /* tpindex is unsigned; beware of numeric underflow. */
1320                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1321                     tpindex < pindex; i++, tpindex--) {
1322
1323                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1324                             VM_ALLOC_IFNOTCACHED);
1325                         if (rtm == NULL) {
1326                                 /*
1327                                  * Shift the allocated pages to the
1328                                  * beginning of the array.
1329                                  */
1330                                 for (j = 0; j < i; j++) {
1331                                         marray[j] = marray[j + tpindex + 1 -
1332                                             startpindex];
1333                                 }
1334                                 break;
1335                         }
1336
1337                         marray[tpindex - startpindex] = rtm;
1338                 }
1339         } else {
1340                 startpindex = 0;
1341                 i = 0;
1342         }
1343
1344         marray[i] = m;
1345         /* page offset of the required page */
1346         *reqpage = i;
1347
1348         tpindex = pindex + 1;
1349         i++;
1350
1351         /*
1352          * scan forward for the read ahead pages
1353          */
1354         endpindex = tpindex + rahead;
1355         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1356                 endpindex = rtm->pindex;
1357         if (endpindex > object->size)
1358                 endpindex = object->size;
1359
1360         for (; tpindex < endpindex; i++, tpindex++) {
1361
1362                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1363                     VM_ALLOC_IFNOTCACHED);
1364                 if (rtm == NULL) {
1365                         break;
1366                 }
1367
1368                 marray[i] = rtm;
1369         }
1370
1371         /* return number of pages */
1372         return i;
1373 }