]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Merged ^/head r283871 through r284187.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 #ifdef KTRACE
92 #include <sys/ktrace.h>
93 #endif
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_reserv.h>
106
107 #define PFBAK 4
108 #define PFFOR 4
109
110 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
111
112 #define VM_FAULT_READ_BEHIND    8
113 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
114 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
115 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
116 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
117
118 #define VM_FAULT_DONTNEED_MIN   1048576
119
120 struct faultstate {
121         vm_page_t m;
122         vm_object_t object;
123         vm_pindex_t pindex;
124         vm_page_t first_m;
125         vm_object_t     first_object;
126         vm_pindex_t first_pindex;
127         vm_map_t map;
128         vm_map_entry_t entry;
129         int lookup_still_valid;
130         struct vnode *vp;
131 };
132
133 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
134             int ahead);
135 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
136             int faultcount, int reqpage);
137
138 static inline void
139 release_page(struct faultstate *fs)
140 {
141
142         vm_page_xunbusy(fs->m);
143         vm_page_lock(fs->m);
144         vm_page_deactivate(fs->m);
145         vm_page_unlock(fs->m);
146         fs->m = NULL;
147 }
148
149 static inline void
150 unlock_map(struct faultstate *fs)
151 {
152
153         if (fs->lookup_still_valid) {
154                 vm_map_lookup_done(fs->map, fs->entry);
155                 fs->lookup_still_valid = FALSE;
156         }
157 }
158
159 static void
160 unlock_and_deallocate(struct faultstate *fs)
161 {
162
163         vm_object_pip_wakeup(fs->object);
164         VM_OBJECT_WUNLOCK(fs->object);
165         if (fs->object != fs->first_object) {
166                 VM_OBJECT_WLOCK(fs->first_object);
167                 vm_page_lock(fs->first_m);
168                 vm_page_free(fs->first_m);
169                 vm_page_unlock(fs->first_m);
170                 vm_object_pip_wakeup(fs->first_object);
171                 VM_OBJECT_WUNLOCK(fs->first_object);
172                 fs->first_m = NULL;
173         }
174         vm_object_deallocate(fs->first_object);
175         unlock_map(fs); 
176         if (fs->vp != NULL) { 
177                 vput(fs->vp);
178                 fs->vp = NULL;
179         }
180 }
181
182 static void
183 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
184     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
185 {
186         boolean_t need_dirty;
187
188         if (((prot & VM_PROT_WRITE) == 0 &&
189             (fault_flags & VM_FAULT_DIRTY) == 0) ||
190             (m->oflags & VPO_UNMANAGED) != 0)
191                 return;
192
193         VM_OBJECT_ASSERT_LOCKED(m->object);
194
195         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
196             (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
197             (fault_flags & VM_FAULT_DIRTY) != 0;
198
199         if (set_wd)
200                 vm_object_set_writeable_dirty(m->object);
201         else
202                 /*
203                  * If two callers of vm_fault_dirty() with set_wd ==
204                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
205                  * flag set, other with flag clear, race, it is
206                  * possible for the no-NOSYNC thread to see m->dirty
207                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
208                  * around manipulation of VPO_NOSYNC and
209                  * vm_page_dirty() call, to avoid the race and keep
210                  * m->oflags consistent.
211                  */
212                 vm_page_lock(m);
213
214         /*
215          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
216          * if the page is already dirty to prevent data written with
217          * the expectation of being synced from not being synced.
218          * Likewise if this entry does not request NOSYNC then make
219          * sure the page isn't marked NOSYNC.  Applications sharing
220          * data should use the same flags to avoid ping ponging.
221          */
222         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
223                 if (m->dirty == 0) {
224                         m->oflags |= VPO_NOSYNC;
225                 }
226         } else {
227                 m->oflags &= ~VPO_NOSYNC;
228         }
229
230         /*
231          * If the fault is a write, we know that this page is being
232          * written NOW so dirty it explicitly to save on
233          * pmap_is_modified() calls later.
234          *
235          * Also tell the backing pager, if any, that it should remove
236          * any swap backing since the page is now dirty.
237          */
238         if (need_dirty)
239                 vm_page_dirty(m);
240         if (!set_wd)
241                 vm_page_unlock(m);
242         if (need_dirty)
243                 vm_pager_page_unswapped(m);
244 }
245
246 /*
247  * TRYPAGER - used by vm_fault to calculate whether the pager for the
248  *            current object *might* contain the page.
249  *
250  *            default objects are zero-fill, there is no real pager.
251  */
252 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
253                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
254
255 /*
256  *      vm_fault:
257  *
258  *      Handle a page fault occurring at the given address,
259  *      requiring the given permissions, in the map specified.
260  *      If successful, the page is inserted into the
261  *      associated physical map.
262  *
263  *      NOTE: the given address should be truncated to the
264  *      proper page address.
265  *
266  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
267  *      a standard error specifying why the fault is fatal is returned.
268  *
269  *      The map in question must be referenced, and remains so.
270  *      Caller may hold no locks.
271  */
272 int
273 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
274     int fault_flags)
275 {
276         struct thread *td;
277         int result;
278
279         td = curthread;
280         if ((td->td_pflags & TDP_NOFAULTING) != 0)
281                 return (KERN_PROTECTION_FAILURE);
282 #ifdef KTRACE
283         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
284                 ktrfault(vaddr, fault_type);
285 #endif
286         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
287             NULL);
288 #ifdef KTRACE
289         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
290                 ktrfaultend(result);
291 #endif
292         return (result);
293 }
294
295 int
296 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
297     int fault_flags, vm_page_t *m_hold)
298 {
299         vm_prot_t prot;
300         int alloc_req, era, faultcount, nera, reqpage, result;
301         boolean_t growstack, is_first_object_locked, wired;
302         int map_generation;
303         vm_object_t next_object;
304         vm_page_t marray[VM_FAULT_READ_MAX];
305         int hardfault;
306         struct faultstate fs;
307         struct vnode *vp;
308         vm_page_t m;
309         int ahead, behind, cluster_offset, error, locked;
310
311         hardfault = 0;
312         growstack = TRUE;
313         PCPU_INC(cnt.v_vm_faults);
314         fs.vp = NULL;
315         faultcount = reqpage = 0;
316
317 RetryFault:;
318
319         /*
320          * Find the backing store object and offset into it to begin the
321          * search.
322          */
323         fs.map = map;
324         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
325             &fs.first_object, &fs.first_pindex, &prot, &wired);
326         if (result != KERN_SUCCESS) {
327                 if (growstack && result == KERN_INVALID_ADDRESS &&
328                     map != kernel_map) {
329                         result = vm_map_growstack(curproc, vaddr);
330                         if (result != KERN_SUCCESS)
331                                 return (KERN_FAILURE);
332                         growstack = FALSE;
333                         goto RetryFault;
334                 }
335                 return (result);
336         }
337
338         map_generation = fs.map->timestamp;
339
340         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
341                 panic("vm_fault: fault on nofault entry, addr: %lx",
342                     (u_long)vaddr);
343         }
344
345         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
346             fs.entry->wiring_thread != curthread) {
347                 vm_map_unlock_read(fs.map);
348                 vm_map_lock(fs.map);
349                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
350                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
351                         if (fs.vp != NULL) {
352                                 vput(fs.vp);
353                                 fs.vp = NULL;
354                         }
355                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
356                         vm_map_unlock_and_wait(fs.map, 0);
357                 } else
358                         vm_map_unlock(fs.map);
359                 goto RetryFault;
360         }
361
362         if (wired)
363                 fault_type = prot | (fault_type & VM_PROT_COPY);
364
365         if (fs.vp == NULL /* avoid locked vnode leak */ &&
366             (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
367             /* avoid calling vm_object_set_writeable_dirty() */
368             ((prot & VM_PROT_WRITE) == 0 ||
369             (fs.first_object->type != OBJT_VNODE &&
370             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
371             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
372                 VM_OBJECT_RLOCK(fs.first_object);
373                 if ((prot & VM_PROT_WRITE) != 0 &&
374                     (fs.first_object->type == OBJT_VNODE ||
375                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
376                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
377                         goto fast_failed;
378                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
379                 /* A busy page can be mapped for read|execute access. */
380                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
381                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
382                         goto fast_failed;
383                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
384                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
385                    0), 0);
386                 if (result != KERN_SUCCESS)
387                         goto fast_failed;
388                 if (m_hold != NULL) {
389                         *m_hold = m;
390                         vm_page_lock(m);
391                         vm_page_hold(m);
392                         vm_page_unlock(m);
393                 }
394                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
395                     FALSE);
396                 VM_OBJECT_RUNLOCK(fs.first_object);
397                 if (!wired)
398                         vm_fault_prefault(&fs, vaddr, 0, 0);
399                 vm_map_lookup_done(fs.map, fs.entry);
400                 curthread->td_ru.ru_minflt++;
401                 return (KERN_SUCCESS);
402 fast_failed:
403                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
404                         VM_OBJECT_RUNLOCK(fs.first_object);
405                         VM_OBJECT_WLOCK(fs.first_object);
406                 }
407         } else {
408                 VM_OBJECT_WLOCK(fs.first_object);
409         }
410
411         /*
412          * Make a reference to this object to prevent its disposal while we
413          * are messing with it.  Once we have the reference, the map is free
414          * to be diddled.  Since objects reference their shadows (and copies),
415          * they will stay around as well.
416          *
417          * Bump the paging-in-progress count to prevent size changes (e.g. 
418          * truncation operations) during I/O.  This must be done after
419          * obtaining the vnode lock in order to avoid possible deadlocks.
420          */
421         vm_object_reference_locked(fs.first_object);
422         vm_object_pip_add(fs.first_object, 1);
423
424         fs.lookup_still_valid = TRUE;
425
426         fs.first_m = NULL;
427
428         /*
429          * Search for the page at object/offset.
430          */
431         fs.object = fs.first_object;
432         fs.pindex = fs.first_pindex;
433         while (TRUE) {
434                 /*
435                  * If the object is dead, we stop here
436                  */
437                 if (fs.object->flags & OBJ_DEAD) {
438                         unlock_and_deallocate(&fs);
439                         return (KERN_PROTECTION_FAILURE);
440                 }
441
442                 /*
443                  * See if page is resident
444                  */
445                 fs.m = vm_page_lookup(fs.object, fs.pindex);
446                 if (fs.m != NULL) {
447                         /*
448                          * Wait/Retry if the page is busy.  We have to do this
449                          * if the page is either exclusive or shared busy
450                          * because the vm_pager may be using read busy for
451                          * pageouts (and even pageins if it is the vnode
452                          * pager), and we could end up trying to pagein and
453                          * pageout the same page simultaneously.
454                          *
455                          * We can theoretically allow the busy case on a read
456                          * fault if the page is marked valid, but since such
457                          * pages are typically already pmap'd, putting that
458                          * special case in might be more effort then it is 
459                          * worth.  We cannot under any circumstances mess
460                          * around with a shared busied page except, perhaps,
461                          * to pmap it.
462                          */
463                         if (vm_page_busied(fs.m)) {
464                                 /*
465                                  * Reference the page before unlocking and
466                                  * sleeping so that the page daemon is less
467                                  * likely to reclaim it. 
468                                  */
469                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
470                                 if (fs.object != fs.first_object) {
471                                         if (!VM_OBJECT_TRYWLOCK(
472                                             fs.first_object)) {
473                                                 VM_OBJECT_WUNLOCK(fs.object);
474                                                 VM_OBJECT_WLOCK(fs.first_object);
475                                                 VM_OBJECT_WLOCK(fs.object);
476                                         }
477                                         vm_page_lock(fs.first_m);
478                                         vm_page_free(fs.first_m);
479                                         vm_page_unlock(fs.first_m);
480                                         vm_object_pip_wakeup(fs.first_object);
481                                         VM_OBJECT_WUNLOCK(fs.first_object);
482                                         fs.first_m = NULL;
483                                 }
484                                 unlock_map(&fs);
485                                 if (fs.m == vm_page_lookup(fs.object,
486                                     fs.pindex)) {
487                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
488                                 }
489                                 vm_object_pip_wakeup(fs.object);
490                                 VM_OBJECT_WUNLOCK(fs.object);
491                                 PCPU_INC(cnt.v_intrans);
492                                 vm_object_deallocate(fs.first_object);
493                                 goto RetryFault;
494                         }
495                         vm_page_lock(fs.m);
496                         vm_page_remque(fs.m);
497                         vm_page_unlock(fs.m);
498
499                         /*
500                          * Mark page busy for other processes, and the 
501                          * pagedaemon.  If it still isn't completely valid
502                          * (readable), jump to readrest, else break-out ( we
503                          * found the page ).
504                          */
505                         vm_page_xbusy(fs.m);
506                         if (fs.m->valid != VM_PAGE_BITS_ALL)
507                                 goto readrest;
508                         break;
509                 }
510
511                 /*
512                  * Page is not resident, If this is the search termination
513                  * or the pager might contain the page, allocate a new page.
514                  */
515                 if (TRYPAGER || fs.object == fs.first_object) {
516                         if (fs.pindex >= fs.object->size) {
517                                 unlock_and_deallocate(&fs);
518                                 return (KERN_PROTECTION_FAILURE);
519                         }
520
521                         /*
522                          * Allocate a new page for this object/offset pair.
523                          *
524                          * Unlocked read of the p_flag is harmless. At
525                          * worst, the P_KILLED might be not observed
526                          * there, and allocation can fail, causing
527                          * restart and new reading of the p_flag.
528                          */
529                         fs.m = NULL;
530                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
531 #if VM_NRESERVLEVEL > 0
532                                 vm_object_color(fs.object, atop(vaddr) -
533                                     fs.pindex);
534 #endif
535                                 alloc_req = P_KILLED(curproc) ?
536                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
537                                 if (fs.object->type != OBJT_VNODE &&
538                                     fs.object->backing_object == NULL)
539                                         alloc_req |= VM_ALLOC_ZERO;
540                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
541                                     alloc_req);
542                         }
543                         if (fs.m == NULL) {
544                                 unlock_and_deallocate(&fs);
545                                 VM_WAITPFAULT;
546                                 goto RetryFault;
547                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
548                                 break;
549                 }
550
551 readrest:
552                 /*
553                  * We have found a valid page or we have allocated a new page.
554                  * The page thus may not be valid or may not be entirely 
555                  * valid.
556                  *
557                  * Attempt to fault-in the page if there is a chance that the
558                  * pager has it, and potentially fault in additional pages
559                  * at the same time.
560                  */
561                 if (TRYPAGER) {
562                         int rv;
563                         u_char behavior = vm_map_entry_behavior(fs.entry);
564
565                         era = fs.entry->read_ahead;
566                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
567                             P_KILLED(curproc)) {
568                                 behind = 0;
569                                 nera = 0;
570                                 ahead = 0;
571                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
572                                 behind = 0;
573                                 nera = VM_FAULT_READ_AHEAD_MAX;
574                                 ahead = nera;
575                                 if (fs.pindex == fs.entry->next_read)
576                                         vm_fault_dontneed(&fs, vaddr, ahead);
577                         } else if (fs.pindex == fs.entry->next_read) {
578                                 /*
579                                  * This is a sequential fault.  Arithmetically
580                                  * increase the requested number of pages in
581                                  * the read-ahead window.  The requested
582                                  * number of pages is "# of sequential faults
583                                  * x (read ahead min + 1) + read ahead min"
584                                  */
585                                 behind = 0;
586                                 nera = VM_FAULT_READ_AHEAD_MIN;
587                                 if (era > 0) {
588                                         nera += era + 1;
589                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
590                                                 nera = VM_FAULT_READ_AHEAD_MAX;
591                                 }
592                                 ahead = nera;
593                                 if (era == VM_FAULT_READ_AHEAD_MAX)
594                                         vm_fault_dontneed(&fs, vaddr, ahead);
595                         } else {
596                                 /*
597                                  * This is a non-sequential fault.  Request a
598                                  * cluster of pages that is aligned to a
599                                  * VM_FAULT_READ_DEFAULT page offset boundary
600                                  * within the object.  Alignment to a page
601                                  * offset boundary is more likely to coincide
602                                  * with the underlying file system block than
603                                  * alignment to a virtual address boundary.
604                                  */
605                                 cluster_offset = fs.pindex %
606                                     VM_FAULT_READ_DEFAULT;
607                                 behind = ulmin(cluster_offset,
608                                     atop(vaddr - fs.entry->start));
609                                 nera = 0;
610                                 ahead = VM_FAULT_READ_DEFAULT - 1 -
611                                     cluster_offset;
612                         }
613                         ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1);
614                         if (era != nera)
615                                 fs.entry->read_ahead = nera;
616
617                         /*
618                          * Call the pager to retrieve the data, if any, after
619                          * releasing the lock on the map.  We hold a ref on
620                          * fs.object and the pages are exclusive busied.
621                          */
622                         unlock_map(&fs);
623
624                         if (fs.object->type == OBJT_VNODE) {
625                                 vp = fs.object->handle;
626                                 if (vp == fs.vp)
627                                         goto vnode_locked;
628                                 else if (fs.vp != NULL) {
629                                         vput(fs.vp);
630                                         fs.vp = NULL;
631                                 }
632                                 locked = VOP_ISLOCKED(vp);
633
634                                 if (locked != LK_EXCLUSIVE)
635                                         locked = LK_SHARED;
636                                 /* Do not sleep for vnode lock while fs.m is busy */
637                                 error = vget(vp, locked | LK_CANRECURSE |
638                                     LK_NOWAIT, curthread);
639                                 if (error != 0) {
640                                         vhold(vp);
641                                         release_page(&fs);
642                                         unlock_and_deallocate(&fs);
643                                         error = vget(vp, locked | LK_RETRY |
644                                             LK_CANRECURSE, curthread);
645                                         vdrop(vp);
646                                         fs.vp = vp;
647                                         KASSERT(error == 0,
648                                             ("vm_fault: vget failed"));
649                                         goto RetryFault;
650                                 }
651                                 fs.vp = vp;
652                         }
653 vnode_locked:
654                         KASSERT(fs.vp == NULL || !fs.map->system_map,
655                             ("vm_fault: vnode-backed object mapped by system map"));
656
657                         /*
658                          * now we find out if any other pages should be paged
659                          * in at this time this routine checks to see if the
660                          * pages surrounding this fault reside in the same
661                          * object as the page for this fault.  If they do,
662                          * then they are faulted in also into the object.  The
663                          * array "marray" returned contains an array of
664                          * vm_page_t structs where one of them is the
665                          * vm_page_t passed to the routine.  The reqpage
666                          * return value is the index into the marray for the
667                          * vm_page_t passed to the routine.
668                          *
669                          * fs.m plus the additional pages are exclusive busied.
670                          */
671                         faultcount = vm_fault_additional_pages(
672                             fs.m, behind, ahead, marray, &reqpage);
673
674                         rv = faultcount ?
675                             vm_pager_get_pages(fs.object, marray, faultcount,
676                                 reqpage) : VM_PAGER_FAIL;
677
678                         if (rv == VM_PAGER_OK) {
679                                 /*
680                                  * Found the page. Leave it busy while we play
681                                  * with it.
682                                  */
683
684                                 /*
685                                  * Relookup in case pager changed page. Pager
686                                  * is responsible for disposition of old page
687                                  * if moved.
688                                  */
689                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
690                                 if (!fs.m) {
691                                         unlock_and_deallocate(&fs);
692                                         goto RetryFault;
693                                 }
694
695                                 hardfault++;
696                                 break; /* break to PAGE HAS BEEN FOUND */
697                         }
698                         /*
699                          * Remove the bogus page (which does not exist at this
700                          * object/offset); before doing so, we must get back
701                          * our object lock to preserve our invariant.
702                          *
703                          * Also wake up any other process that may want to bring
704                          * in this page.
705                          *
706                          * If this is the top-level object, we must leave the
707                          * busy page to prevent another process from rushing
708                          * past us, and inserting the page in that object at
709                          * the same time that we are.
710                          */
711                         if (rv == VM_PAGER_ERROR)
712                                 printf("vm_fault: pager read error, pid %d (%s)\n",
713                                     curproc->p_pid, curproc->p_comm);
714                         /*
715                          * Data outside the range of the pager or an I/O error
716                          */
717                         /*
718                          * XXX - the check for kernel_map is a kludge to work
719                          * around having the machine panic on a kernel space
720                          * fault w/ I/O error.
721                          */
722                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
723                                 (rv == VM_PAGER_BAD)) {
724                                 vm_page_lock(fs.m);
725                                 vm_page_free(fs.m);
726                                 vm_page_unlock(fs.m);
727                                 fs.m = NULL;
728                                 unlock_and_deallocate(&fs);
729                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
730                         }
731                         if (fs.object != fs.first_object) {
732                                 vm_page_lock(fs.m);
733                                 vm_page_free(fs.m);
734                                 vm_page_unlock(fs.m);
735                                 fs.m = NULL;
736                                 /*
737                                  * XXX - we cannot just fall out at this
738                                  * point, m has been freed and is invalid!
739                                  */
740                         }
741                 }
742
743                 /*
744                  * We get here if the object has default pager (or unwiring) 
745                  * or the pager doesn't have the page.
746                  */
747                 if (fs.object == fs.first_object)
748                         fs.first_m = fs.m;
749
750                 /*
751                  * Move on to the next object.  Lock the next object before
752                  * unlocking the current one.
753                  */
754                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
755                 next_object = fs.object->backing_object;
756                 if (next_object == NULL) {
757                         /*
758                          * If there's no object left, fill the page in the top
759                          * object with zeros.
760                          */
761                         if (fs.object != fs.first_object) {
762                                 vm_object_pip_wakeup(fs.object);
763                                 VM_OBJECT_WUNLOCK(fs.object);
764
765                                 fs.object = fs.first_object;
766                                 fs.pindex = fs.first_pindex;
767                                 fs.m = fs.first_m;
768                                 VM_OBJECT_WLOCK(fs.object);
769                         }
770                         fs.first_m = NULL;
771
772                         /*
773                          * Zero the page if necessary and mark it valid.
774                          */
775                         if ((fs.m->flags & PG_ZERO) == 0) {
776                                 pmap_zero_page(fs.m);
777                         } else {
778                                 PCPU_INC(cnt.v_ozfod);
779                         }
780                         PCPU_INC(cnt.v_zfod);
781                         fs.m->valid = VM_PAGE_BITS_ALL;
782                         /* Don't try to prefault neighboring pages. */
783                         faultcount = 1;
784                         break;  /* break to PAGE HAS BEEN FOUND */
785                 } else {
786                         KASSERT(fs.object != next_object,
787                             ("object loop %p", next_object));
788                         VM_OBJECT_WLOCK(next_object);
789                         vm_object_pip_add(next_object, 1);
790                         if (fs.object != fs.first_object)
791                                 vm_object_pip_wakeup(fs.object);
792                         VM_OBJECT_WUNLOCK(fs.object);
793                         fs.object = next_object;
794                 }
795         }
796
797         vm_page_assert_xbusied(fs.m);
798
799         /*
800          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
801          * is held.]
802          */
803
804         /*
805          * If the page is being written, but isn't already owned by the
806          * top-level object, we have to copy it into a new page owned by the
807          * top-level object.
808          */
809         if (fs.object != fs.first_object) {
810                 /*
811                  * We only really need to copy if we want to write it.
812                  */
813                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
814                         /*
815                          * This allows pages to be virtually copied from a 
816                          * backing_object into the first_object, where the 
817                          * backing object has no other refs to it, and cannot
818                          * gain any more refs.  Instead of a bcopy, we just 
819                          * move the page from the backing object to the 
820                          * first object.  Note that we must mark the page 
821                          * dirty in the first object so that it will go out 
822                          * to swap when needed.
823                          */
824                         is_first_object_locked = FALSE;
825                         if (
826                                 /*
827                                  * Only one shadow object
828                                  */
829                                 (fs.object->shadow_count == 1) &&
830                                 /*
831                                  * No COW refs, except us
832                                  */
833                                 (fs.object->ref_count == 1) &&
834                                 /*
835                                  * No one else can look this object up
836                                  */
837                                 (fs.object->handle == NULL) &&
838                                 /*
839                                  * No other ways to look the object up
840                                  */
841                                 ((fs.object->type == OBJT_DEFAULT) ||
842                                  (fs.object->type == OBJT_SWAP)) &&
843                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
844                                 /*
845                                  * We don't chase down the shadow chain
846                                  */
847                             fs.object == fs.first_object->backing_object) {
848                                 /*
849                                  * get rid of the unnecessary page
850                                  */
851                                 vm_page_lock(fs.first_m);
852                                 vm_page_free(fs.first_m);
853                                 vm_page_unlock(fs.first_m);
854                                 /*
855                                  * grab the page and put it into the 
856                                  * process'es object.  The page is 
857                                  * automatically made dirty.
858                                  */
859                                 if (vm_page_rename(fs.m, fs.first_object,
860                                     fs.first_pindex)) {
861                                         unlock_and_deallocate(&fs);
862                                         goto RetryFault;
863                                 }
864 #if VM_NRESERVLEVEL > 0
865                                 /*
866                                  * Rename the reservation.
867                                  */
868                                 vm_reserv_rename(fs.m, fs.first_object,
869                                     fs.object, OFF_TO_IDX(
870                                     fs.first_object->backing_object_offset));
871 #endif
872                                 vm_page_xbusy(fs.m);
873                                 fs.first_m = fs.m;
874                                 fs.m = NULL;
875                                 PCPU_INC(cnt.v_cow_optim);
876                         } else {
877                                 /*
878                                  * Oh, well, lets copy it.
879                                  */
880                                 pmap_copy_page(fs.m, fs.first_m);
881                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
882                                 if (wired && (fault_flags &
883                                     VM_FAULT_CHANGE_WIRING) == 0) {
884                                         vm_page_lock(fs.first_m);
885                                         vm_page_wire(fs.first_m);
886                                         vm_page_unlock(fs.first_m);
887                                         
888                                         vm_page_lock(fs.m);
889                                         vm_page_unwire(fs.m, PQ_INACTIVE);
890                                         vm_page_unlock(fs.m);
891                                 }
892                                 /*
893                                  * We no longer need the old page or object.
894                                  */
895                                 release_page(&fs);
896                         }
897                         /*
898                          * fs.object != fs.first_object due to above 
899                          * conditional
900                          */
901                         vm_object_pip_wakeup(fs.object);
902                         VM_OBJECT_WUNLOCK(fs.object);
903                         /*
904                          * Only use the new page below...
905                          */
906                         fs.object = fs.first_object;
907                         fs.pindex = fs.first_pindex;
908                         fs.m = fs.first_m;
909                         if (!is_first_object_locked)
910                                 VM_OBJECT_WLOCK(fs.object);
911                         PCPU_INC(cnt.v_cow_faults);
912                         curthread->td_cow++;
913                 } else {
914                         prot &= ~VM_PROT_WRITE;
915                 }
916         }
917
918         /*
919          * We must verify that the maps have not changed since our last
920          * lookup.
921          */
922         if (!fs.lookup_still_valid) {
923                 vm_object_t retry_object;
924                 vm_pindex_t retry_pindex;
925                 vm_prot_t retry_prot;
926
927                 if (!vm_map_trylock_read(fs.map)) {
928                         release_page(&fs);
929                         unlock_and_deallocate(&fs);
930                         goto RetryFault;
931                 }
932                 fs.lookup_still_valid = TRUE;
933                 if (fs.map->timestamp != map_generation) {
934                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
935                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
936
937                         /*
938                          * If we don't need the page any longer, put it on the inactive
939                          * list (the easiest thing to do here).  If no one needs it,
940                          * pageout will grab it eventually.
941                          */
942                         if (result != KERN_SUCCESS) {
943                                 release_page(&fs);
944                                 unlock_and_deallocate(&fs);
945
946                                 /*
947                                  * If retry of map lookup would have blocked then
948                                  * retry fault from start.
949                                  */
950                                 if (result == KERN_FAILURE)
951                                         goto RetryFault;
952                                 return (result);
953                         }
954                         if ((retry_object != fs.first_object) ||
955                             (retry_pindex != fs.first_pindex)) {
956                                 release_page(&fs);
957                                 unlock_and_deallocate(&fs);
958                                 goto RetryFault;
959                         }
960
961                         /*
962                          * Check whether the protection has changed or the object has
963                          * been copied while we left the map unlocked. Changing from
964                          * read to write permission is OK - we leave the page
965                          * write-protected, and catch the write fault. Changing from
966                          * write to read permission means that we can't mark the page
967                          * write-enabled after all.
968                          */
969                         prot &= retry_prot;
970                 }
971         }
972         /*
973          * If the page was filled by a pager, update the map entry's
974          * last read offset.  Since the pager does not return the
975          * actual set of pages that it read, this update is based on
976          * the requested set.  Typically, the requested and actual
977          * sets are the same.
978          *
979          * XXX The following assignment modifies the map
980          * without holding a write lock on it.
981          */
982         if (hardfault)
983                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
984
985         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
986         vm_page_assert_xbusied(fs.m);
987
988         /*
989          * Page must be completely valid or it is not fit to
990          * map into user space.  vm_pager_get_pages() ensures this.
991          */
992         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
993             ("vm_fault: page %p partially invalid", fs.m));
994         VM_OBJECT_WUNLOCK(fs.object);
995
996         /*
997          * Put this page into the physical map.  We had to do the unlock above
998          * because pmap_enter() may sleep.  We don't put the page
999          * back on the active queue until later so that the pageout daemon
1000          * won't find it (yet).
1001          */
1002         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1003             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1004         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
1005             wired == 0)
1006                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1007         VM_OBJECT_WLOCK(fs.object);
1008         vm_page_lock(fs.m);
1009
1010         /*
1011          * If the page is not wired down, then put it where the pageout daemon
1012          * can find it.
1013          */
1014         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
1015                 if (wired)
1016                         vm_page_wire(fs.m);
1017                 else
1018                         vm_page_unwire(fs.m, PQ_ACTIVE);
1019         } else
1020                 vm_page_activate(fs.m);
1021         if (m_hold != NULL) {
1022                 *m_hold = fs.m;
1023                 vm_page_hold(fs.m);
1024         }
1025         vm_page_unlock(fs.m);
1026         vm_page_xunbusy(fs.m);
1027
1028         /*
1029          * Unlock everything, and return
1030          */
1031         unlock_and_deallocate(&fs);
1032         if (hardfault) {
1033                 PCPU_INC(cnt.v_io_faults);
1034                 curthread->td_ru.ru_majflt++;
1035         } else 
1036                 curthread->td_ru.ru_minflt++;
1037
1038         return (KERN_SUCCESS);
1039 }
1040
1041 /*
1042  * Speed up the reclamation of pages that precede the faulting pindex within
1043  * the first object of the shadow chain.  Essentially, perform the equivalent
1044  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1045  * the faulting pindex by the cluster size when the pages read by vm_fault()
1046  * cross a cluster-size boundary.  The cluster size is the greater of the
1047  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1048  *
1049  * When "fs->first_object" is a shadow object, the pages in the backing object
1050  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1051  * function must only be concerned with pages in the first object.
1052  */
1053 static void
1054 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1055 {
1056         vm_map_entry_t entry;
1057         vm_object_t first_object, object;
1058         vm_offset_t end, start;
1059         vm_page_t m, m_next;
1060         vm_pindex_t pend, pstart;
1061         vm_size_t size;
1062
1063         object = fs->object;
1064         VM_OBJECT_ASSERT_WLOCKED(object);
1065         first_object = fs->first_object;
1066         if (first_object != object) {
1067                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1068                         VM_OBJECT_WUNLOCK(object);
1069                         VM_OBJECT_WLOCK(first_object);
1070                         VM_OBJECT_WLOCK(object);
1071                 }
1072         }
1073         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1074         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1075                 size = VM_FAULT_DONTNEED_MIN;
1076                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1077                         size = pagesizes[1];
1078                 end = rounddown2(vaddr, size);
1079                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1080                     (entry = fs->entry)->start < end) {
1081                         if (end - entry->start < size)
1082                                 start = entry->start;
1083                         else
1084                                 start = end - size;
1085                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1086                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1087                             entry->start);
1088                         m_next = vm_page_find_least(first_object, pstart);
1089                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1090                             entry->start);
1091                         while ((m = m_next) != NULL && m->pindex < pend) {
1092                                 m_next = TAILQ_NEXT(m, listq);
1093                                 if (m->valid != VM_PAGE_BITS_ALL ||
1094                                     vm_page_busied(m))
1095                                         continue;
1096                                 vm_page_lock(m);
1097                                 if (m->hold_count == 0 && m->wire_count == 0)
1098                                         vm_page_advise(m, MADV_DONTNEED);
1099                                 vm_page_unlock(m);
1100                         }
1101                 }
1102         }
1103         if (first_object != object)
1104                 VM_OBJECT_WUNLOCK(first_object);
1105 }
1106
1107 /*
1108  * vm_fault_prefault provides a quick way of clustering
1109  * pagefaults into a processes address space.  It is a "cousin"
1110  * of vm_map_pmap_enter, except it runs at page fault time instead
1111  * of mmap time.
1112  */
1113 static void
1114 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1115     int faultcount, int reqpage)
1116 {
1117         pmap_t pmap;
1118         vm_map_entry_t entry;
1119         vm_object_t backing_object, lobject;
1120         vm_offset_t addr, starta;
1121         vm_pindex_t pindex;
1122         vm_page_t m;
1123         int backward, forward, i;
1124
1125         pmap = fs->map->pmap;
1126         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1127                 return;
1128
1129         if (faultcount > 0) {
1130                 backward = reqpage;
1131                 forward = faultcount - reqpage - 1;
1132         } else {
1133                 backward = PFBAK;
1134                 forward = PFFOR;
1135         }
1136         entry = fs->entry;
1137
1138         starta = addra - backward * PAGE_SIZE;
1139         if (starta < entry->start) {
1140                 starta = entry->start;
1141         } else if (starta > addra) {
1142                 starta = 0;
1143         }
1144
1145         /*
1146          * Generate the sequence of virtual addresses that are candidates for
1147          * prefaulting in an outward spiral from the faulting virtual address,
1148          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1149          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1150          * If the candidate address doesn't have a backing physical page, then
1151          * the loop immediately terminates.
1152          */
1153         for (i = 0; i < 2 * imax(backward, forward); i++) {
1154                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1155                     PAGE_SIZE);
1156                 if (addr > addra + forward * PAGE_SIZE)
1157                         addr = 0;
1158
1159                 if (addr < starta || addr >= entry->end)
1160                         continue;
1161
1162                 if (!pmap_is_prefaultable(pmap, addr))
1163                         continue;
1164
1165                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1166                 lobject = entry->object.vm_object;
1167                 VM_OBJECT_RLOCK(lobject);
1168                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1169                     lobject->type == OBJT_DEFAULT &&
1170                     (backing_object = lobject->backing_object) != NULL) {
1171                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1172                             0, ("vm_fault_prefault: unaligned object offset"));
1173                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1174                         VM_OBJECT_RLOCK(backing_object);
1175                         VM_OBJECT_RUNLOCK(lobject);
1176                         lobject = backing_object;
1177                 }
1178                 if (m == NULL) {
1179                         VM_OBJECT_RUNLOCK(lobject);
1180                         break;
1181                 }
1182                 if (m->valid == VM_PAGE_BITS_ALL &&
1183                     (m->flags & PG_FICTITIOUS) == 0)
1184                         pmap_enter_quick(pmap, addr, m, entry->protection);
1185                 VM_OBJECT_RUNLOCK(lobject);
1186         }
1187 }
1188
1189 /*
1190  * Hold each of the physical pages that are mapped by the specified range of
1191  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1192  * and allow the specified types of access, "prot".  If all of the implied
1193  * pages are successfully held, then the number of held pages is returned
1194  * together with pointers to those pages in the array "ma".  However, if any
1195  * of the pages cannot be held, -1 is returned.
1196  */
1197 int
1198 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1199     vm_prot_t prot, vm_page_t *ma, int max_count)
1200 {
1201         vm_offset_t end, va;
1202         vm_page_t *mp;
1203         int count;
1204         boolean_t pmap_failed;
1205
1206         if (len == 0)
1207                 return (0);
1208         end = round_page(addr + len);
1209         addr = trunc_page(addr);
1210
1211         /*
1212          * Check for illegal addresses.
1213          */
1214         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1215                 return (-1);
1216
1217         if (atop(end - addr) > max_count)
1218                 panic("vm_fault_quick_hold_pages: count > max_count");
1219         count = atop(end - addr);
1220
1221         /*
1222          * Most likely, the physical pages are resident in the pmap, so it is
1223          * faster to try pmap_extract_and_hold() first.
1224          */
1225         pmap_failed = FALSE;
1226         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1227                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1228                 if (*mp == NULL)
1229                         pmap_failed = TRUE;
1230                 else if ((prot & VM_PROT_WRITE) != 0 &&
1231                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1232                         /*
1233                          * Explicitly dirty the physical page.  Otherwise, the
1234                          * caller's changes may go unnoticed because they are
1235                          * performed through an unmanaged mapping or by a DMA
1236                          * operation.
1237                          *
1238                          * The object lock is not held here.
1239                          * See vm_page_clear_dirty_mask().
1240                          */
1241                         vm_page_dirty(*mp);
1242                 }
1243         }
1244         if (pmap_failed) {
1245                 /*
1246                  * One or more pages could not be held by the pmap.  Either no
1247                  * page was mapped at the specified virtual address or that
1248                  * mapping had insufficient permissions.  Attempt to fault in
1249                  * and hold these pages.
1250                  */
1251                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1252                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1253                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1254                                 goto error;
1255         }
1256         return (count);
1257 error:  
1258         for (mp = ma; mp < ma + count; mp++)
1259                 if (*mp != NULL) {
1260                         vm_page_lock(*mp);
1261                         vm_page_unhold(*mp);
1262                         vm_page_unlock(*mp);
1263                 }
1264         return (-1);
1265 }
1266
1267 /*
1268  *      Routine:
1269  *              vm_fault_copy_entry
1270  *      Function:
1271  *              Create new shadow object backing dst_entry with private copy of
1272  *              all underlying pages. When src_entry is equal to dst_entry,
1273  *              function implements COW for wired-down map entry. Otherwise,
1274  *              it forks wired entry into dst_map.
1275  *
1276  *      In/out conditions:
1277  *              The source and destination maps must be locked for write.
1278  *              The source map entry must be wired down (or be a sharing map
1279  *              entry corresponding to a main map entry that is wired down).
1280  */
1281 void
1282 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1283     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1284     vm_ooffset_t *fork_charge)
1285 {
1286         vm_object_t backing_object, dst_object, object, src_object;
1287         vm_pindex_t dst_pindex, pindex, src_pindex;
1288         vm_prot_t access, prot;
1289         vm_offset_t vaddr;
1290         vm_page_t dst_m;
1291         vm_page_t src_m;
1292         boolean_t upgrade;
1293
1294 #ifdef  lint
1295         src_map++;
1296 #endif  /* lint */
1297
1298         upgrade = src_entry == dst_entry;
1299         access = prot = dst_entry->protection;
1300
1301         src_object = src_entry->object.vm_object;
1302         src_pindex = OFF_TO_IDX(src_entry->offset);
1303
1304         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1305                 dst_object = src_object;
1306                 vm_object_reference(dst_object);
1307         } else {
1308                 /*
1309                  * Create the top-level object for the destination entry. (Doesn't
1310                  * actually shadow anything - we copy the pages directly.)
1311                  */
1312                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1313                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1314 #if VM_NRESERVLEVEL > 0
1315                 dst_object->flags |= OBJ_COLORED;
1316                 dst_object->pg_color = atop(dst_entry->start);
1317 #endif
1318         }
1319
1320         VM_OBJECT_WLOCK(dst_object);
1321         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1322             ("vm_fault_copy_entry: vm_object not NULL"));
1323         if (src_object != dst_object) {
1324                 dst_entry->object.vm_object = dst_object;
1325                 dst_entry->offset = 0;
1326                 dst_object->charge = dst_entry->end - dst_entry->start;
1327         }
1328         if (fork_charge != NULL) {
1329                 KASSERT(dst_entry->cred == NULL,
1330                     ("vm_fault_copy_entry: leaked swp charge"));
1331                 dst_object->cred = curthread->td_ucred;
1332                 crhold(dst_object->cred);
1333                 *fork_charge += dst_object->charge;
1334         } else if (dst_object->cred == NULL) {
1335                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1336                     dst_entry));
1337                 dst_object->cred = dst_entry->cred;
1338                 dst_entry->cred = NULL;
1339         }
1340
1341         /*
1342          * If not an upgrade, then enter the mappings in the pmap as
1343          * read and/or execute accesses.  Otherwise, enter them as
1344          * write accesses.
1345          *
1346          * A writeable large page mapping is only created if all of
1347          * the constituent small page mappings are modified. Marking
1348          * PTEs as modified on inception allows promotion to happen
1349          * without taking potentially large number of soft faults.
1350          */
1351         if (!upgrade)
1352                 access &= ~VM_PROT_WRITE;
1353
1354         /*
1355          * Loop through all of the virtual pages within the entry's
1356          * range, copying each page from the source object to the
1357          * destination object.  Since the source is wired, those pages
1358          * must exist.  In contrast, the destination is pageable.
1359          * Since the destination object does share any backing storage
1360          * with the source object, all of its pages must be dirtied,
1361          * regardless of whether they can be written.
1362          */
1363         for (vaddr = dst_entry->start, dst_pindex = 0;
1364             vaddr < dst_entry->end;
1365             vaddr += PAGE_SIZE, dst_pindex++) {
1366 again:
1367                 /*
1368                  * Find the page in the source object, and copy it in.
1369                  * Because the source is wired down, the page will be
1370                  * in memory.
1371                  */
1372                 if (src_object != dst_object)
1373                         VM_OBJECT_RLOCK(src_object);
1374                 object = src_object;
1375                 pindex = src_pindex + dst_pindex;
1376                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1377                     (backing_object = object->backing_object) != NULL) {
1378                         /*
1379                          * Unless the source mapping is read-only or
1380                          * it is presently being upgraded from
1381                          * read-only, the first object in the shadow
1382                          * chain should provide all of the pages.  In
1383                          * other words, this loop body should never be
1384                          * executed when the source mapping is already
1385                          * read/write.
1386                          */
1387                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1388                             upgrade,
1389                             ("vm_fault_copy_entry: main object missing page"));
1390
1391                         VM_OBJECT_RLOCK(backing_object);
1392                         pindex += OFF_TO_IDX(object->backing_object_offset);
1393                         if (object != dst_object)
1394                                 VM_OBJECT_RUNLOCK(object);
1395                         object = backing_object;
1396                 }
1397                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1398
1399                 if (object != dst_object) {
1400                         /*
1401                          * Allocate a page in the destination object.
1402                          */
1403                         dst_m = vm_page_alloc(dst_object, (src_object ==
1404                             dst_object ? src_pindex : 0) + dst_pindex,
1405                             VM_ALLOC_NORMAL);
1406                         if (dst_m == NULL) {
1407                                 VM_OBJECT_WUNLOCK(dst_object);
1408                                 VM_OBJECT_RUNLOCK(object);
1409                                 VM_WAIT;
1410                                 VM_OBJECT_WLOCK(dst_object);
1411                                 goto again;
1412                         }
1413                         pmap_copy_page(src_m, dst_m);
1414                         VM_OBJECT_RUNLOCK(object);
1415                         dst_m->valid = VM_PAGE_BITS_ALL;
1416                         dst_m->dirty = VM_PAGE_BITS_ALL;
1417                 } else {
1418                         dst_m = src_m;
1419                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1420                                 goto again;
1421                         vm_page_xbusy(dst_m);
1422                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1423                             ("invalid dst page %p", dst_m));
1424                 }
1425                 VM_OBJECT_WUNLOCK(dst_object);
1426
1427                 /*
1428                  * Enter it in the pmap. If a wired, copy-on-write
1429                  * mapping is being replaced by a write-enabled
1430                  * mapping, then wire that new mapping.
1431                  */
1432                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1433                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1434
1435                 /*
1436                  * Mark it no longer busy, and put it on the active list.
1437                  */
1438                 VM_OBJECT_WLOCK(dst_object);
1439                 
1440                 if (upgrade) {
1441                         if (src_m != dst_m) {
1442                                 vm_page_lock(src_m);
1443                                 vm_page_unwire(src_m, PQ_INACTIVE);
1444                                 vm_page_unlock(src_m);
1445                                 vm_page_lock(dst_m);
1446                                 vm_page_wire(dst_m);
1447                                 vm_page_unlock(dst_m);
1448                         } else {
1449                                 KASSERT(dst_m->wire_count > 0,
1450                                     ("dst_m %p is not wired", dst_m));
1451                         }
1452                 } else {
1453                         vm_page_lock(dst_m);
1454                         vm_page_activate(dst_m);
1455                         vm_page_unlock(dst_m);
1456                 }
1457                 vm_page_xunbusy(dst_m);
1458         }
1459         VM_OBJECT_WUNLOCK(dst_object);
1460         if (upgrade) {
1461                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1462                 vm_object_deallocate(src_object);
1463         }
1464 }
1465
1466
1467 /*
1468  * This routine checks around the requested page for other pages that
1469  * might be able to be faulted in.  This routine brackets the viable
1470  * pages for the pages to be paged in.
1471  *
1472  * Inputs:
1473  *      m, rbehind, rahead
1474  *
1475  * Outputs:
1476  *  marray (array of vm_page_t), reqpage (index of requested page)
1477  *
1478  * Return value:
1479  *  number of pages in marray
1480  */
1481 static int
1482 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1483         vm_page_t m;
1484         int rbehind;
1485         int rahead;
1486         vm_page_t *marray;
1487         int *reqpage;
1488 {
1489         int i,j;
1490         vm_object_t object;
1491         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1492         vm_page_t rtm;
1493         int cbehind, cahead;
1494
1495         VM_OBJECT_ASSERT_WLOCKED(m->object);
1496
1497         object = m->object;
1498         pindex = m->pindex;
1499         cbehind = cahead = 0;
1500
1501         /*
1502          * if the requested page is not available, then give up now
1503          */
1504         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1505                 return 0;
1506         }
1507
1508         if ((cbehind == 0) && (cahead == 0)) {
1509                 *reqpage = 0;
1510                 marray[0] = m;
1511                 return 1;
1512         }
1513
1514         if (rahead > cahead) {
1515                 rahead = cahead;
1516         }
1517
1518         if (rbehind > cbehind) {
1519                 rbehind = cbehind;
1520         }
1521
1522         /*
1523          * scan backward for the read behind pages -- in memory 
1524          */
1525         if (pindex > 0) {
1526                 if (rbehind > pindex) {
1527                         rbehind = pindex;
1528                         startpindex = 0;
1529                 } else {
1530                         startpindex = pindex - rbehind;
1531                 }
1532
1533                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1534                     rtm->pindex >= startpindex)
1535                         startpindex = rtm->pindex + 1;
1536
1537                 /* tpindex is unsigned; beware of numeric underflow. */
1538                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1539                     tpindex < pindex; i++, tpindex--) {
1540
1541                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1542                             VM_ALLOC_IFNOTCACHED);
1543                         if (rtm == NULL) {
1544                                 /*
1545                                  * Shift the allocated pages to the
1546                                  * beginning of the array.
1547                                  */
1548                                 for (j = 0; j < i; j++) {
1549                                         marray[j] = marray[j + tpindex + 1 -
1550                                             startpindex];
1551                                 }
1552                                 break;
1553                         }
1554
1555                         marray[tpindex - startpindex] = rtm;
1556                 }
1557         } else {
1558                 startpindex = 0;
1559                 i = 0;
1560         }
1561
1562         marray[i] = m;
1563         /* page offset of the required page */
1564         *reqpage = i;
1565
1566         tpindex = pindex + 1;
1567         i++;
1568
1569         /*
1570          * scan forward for the read ahead pages
1571          */
1572         endpindex = tpindex + rahead;
1573         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1574                 endpindex = rtm->pindex;
1575         if (endpindex > object->size)
1576                 endpindex = object->size;
1577
1578         for (; tpindex < endpindex; i++, tpindex++) {
1579
1580                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1581                     VM_ALLOC_IFNOTCACHED);
1582                 if (rtm == NULL) {
1583                         break;
1584                 }
1585
1586                 marray[i] = rtm;
1587         }
1588
1589         /* return number of pages */
1590         return i;
1591 }
1592
1593 /*
1594  * Block entry into the machine-independent layer's page fault handler by
1595  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1596  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1597  * spurious page faults. 
1598  */
1599 int
1600 vm_fault_disable_pagefaults(void)
1601 {
1602
1603         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1604 }
1605
1606 void
1607 vm_fault_enable_pagefaults(int save)
1608 {
1609
1610         curthread_pflags_restore(save);
1611 }