]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
MFV r299425:
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107
108 #define PFBAK 4
109 #define PFFOR 4
110
111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113
114 #define VM_FAULT_DONTNEED_MIN   1048576
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130             int ahead);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int backward, int forward);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = FALSE;
152         }
153 }
154
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158
159         vm_object_pip_wakeup(fs->object);
160         VM_OBJECT_WUNLOCK(fs->object);
161         if (fs->object != fs->first_object) {
162                 VM_OBJECT_WLOCK(fs->first_object);
163                 vm_page_lock(fs->first_m);
164                 vm_page_free(fs->first_m);
165                 vm_page_unlock(fs->first_m);
166                 vm_object_pip_wakeup(fs->first_object);
167                 VM_OBJECT_WUNLOCK(fs->first_object);
168                 fs->first_m = NULL;
169         }
170         vm_object_deallocate(fs->first_object);
171         unlock_map(fs); 
172         if (fs->vp != NULL) { 
173                 vput(fs->vp);
174                 fs->vp = NULL;
175         }
176 }
177
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182         boolean_t need_dirty;
183
184         if (((prot & VM_PROT_WRITE) == 0 &&
185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
186             (m->oflags & VPO_UNMANAGED) != 0)
187                 return;
188
189         VM_OBJECT_ASSERT_LOCKED(m->object);
190
191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192             (fault_flags & VM_FAULT_WIRE) == 0) ||
193             (fault_flags & VM_FAULT_DIRTY) != 0;
194
195         if (set_wd)
196                 vm_object_set_writeable_dirty(m->object);
197         else
198                 /*
199                  * If two callers of vm_fault_dirty() with set_wd ==
200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201                  * flag set, other with flag clear, race, it is
202                  * possible for the no-NOSYNC thread to see m->dirty
203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204                  * around manipulation of VPO_NOSYNC and
205                  * vm_page_dirty() call, to avoid the race and keep
206                  * m->oflags consistent.
207                  */
208                 vm_page_lock(m);
209
210         /*
211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212          * if the page is already dirty to prevent data written with
213          * the expectation of being synced from not being synced.
214          * Likewise if this entry does not request NOSYNC then make
215          * sure the page isn't marked NOSYNC.  Applications sharing
216          * data should use the same flags to avoid ping ponging.
217          */
218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219                 if (m->dirty == 0) {
220                         m->oflags |= VPO_NOSYNC;
221                 }
222         } else {
223                 m->oflags &= ~VPO_NOSYNC;
224         }
225
226         /*
227          * If the fault is a write, we know that this page is being
228          * written NOW so dirty it explicitly to save on
229          * pmap_is_modified() calls later.
230          *
231          * Also tell the backing pager, if any, that it should remove
232          * any swap backing since the page is now dirty.
233          */
234         if (need_dirty)
235                 vm_page_dirty(m);
236         if (!set_wd)
237                 vm_page_unlock(m);
238         if (need_dirty)
239                 vm_pager_page_unswapped(m);
240 }
241
242 /*
243  *      vm_fault:
244  *
245  *      Handle a page fault occurring at the given address,
246  *      requiring the given permissions, in the map specified.
247  *      If successful, the page is inserted into the
248  *      associated physical map.
249  *
250  *      NOTE: the given address should be truncated to the
251  *      proper page address.
252  *
253  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
254  *      a standard error specifying why the fault is fatal is returned.
255  *
256  *      The map in question must be referenced, and remains so.
257  *      Caller may hold no locks.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261     int fault_flags)
262 {
263         struct thread *td;
264         int result;
265
266         td = curthread;
267         if ((td->td_pflags & TDP_NOFAULTING) != 0)
268                 return (KERN_PROTECTION_FAILURE);
269 #ifdef KTRACE
270         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271                 ktrfault(vaddr, fault_type);
272 #endif
273         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274             NULL);
275 #ifdef KTRACE
276         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277                 ktrfaultend(result);
278 #endif
279         return (result);
280 }
281
282 int
283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284     int fault_flags, vm_page_t *m_hold)
285 {
286         vm_prot_t prot;
287         int alloc_req, era, faultcount, nera, result;
288         boolean_t growstack, is_first_object_locked, wired;
289         int map_generation;
290         vm_object_t next_object;
291         int hardfault;
292         struct faultstate fs;
293         struct vnode *vp;
294         vm_page_t m;
295         int ahead, behind, cluster_offset, error, locked;
296
297         hardfault = 0;
298         growstack = TRUE;
299         PCPU_INC(cnt.v_vm_faults);
300         fs.vp = NULL;
301         faultcount = 0;
302
303 RetryFault:;
304
305         /*
306          * Find the backing store object and offset into it to begin the
307          * search.
308          */
309         fs.map = map;
310         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
311             &fs.first_object, &fs.first_pindex, &prot, &wired);
312         if (result != KERN_SUCCESS) {
313                 if (growstack && result == KERN_INVALID_ADDRESS &&
314                     map != kernel_map) {
315                         result = vm_map_growstack(curproc, vaddr);
316                         if (result != KERN_SUCCESS)
317                                 return (KERN_FAILURE);
318                         growstack = FALSE;
319                         goto RetryFault;
320                 }
321                 return (result);
322         }
323
324         map_generation = fs.map->timestamp;
325
326         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
327                 panic("vm_fault: fault on nofault entry, addr: %lx",
328                     (u_long)vaddr);
329         }
330
331         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
332             fs.entry->wiring_thread != curthread) {
333                 vm_map_unlock_read(fs.map);
334                 vm_map_lock(fs.map);
335                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
336                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
337                         if (fs.vp != NULL) {
338                                 vput(fs.vp);
339                                 fs.vp = NULL;
340                         }
341                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
342                         vm_map_unlock_and_wait(fs.map, 0);
343                 } else
344                         vm_map_unlock(fs.map);
345                 goto RetryFault;
346         }
347
348         if (wired)
349                 fault_type = prot | (fault_type & VM_PROT_COPY);
350         else
351                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
352                     ("!wired && VM_FAULT_WIRE"));
353
354         if (fs.vp == NULL /* avoid locked vnode leak */ &&
355             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
356             /* avoid calling vm_object_set_writeable_dirty() */
357             ((prot & VM_PROT_WRITE) == 0 ||
358             (fs.first_object->type != OBJT_VNODE &&
359             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
360             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
361                 VM_OBJECT_RLOCK(fs.first_object);
362                 if ((prot & VM_PROT_WRITE) != 0 &&
363                     (fs.first_object->type == OBJT_VNODE ||
364                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
365                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
366                         goto fast_failed;
367                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
368                 /* A busy page can be mapped for read|execute access. */
369                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
370                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
371                         goto fast_failed;
372                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
373                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
374                    0), 0);
375                 if (result != KERN_SUCCESS)
376                         goto fast_failed;
377                 if (m_hold != NULL) {
378                         *m_hold = m;
379                         vm_page_lock(m);
380                         vm_page_hold(m);
381                         vm_page_unlock(m);
382                 }
383                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
384                     FALSE);
385                 VM_OBJECT_RUNLOCK(fs.first_object);
386                 if (!wired)
387                         vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
388                 vm_map_lookup_done(fs.map, fs.entry);
389                 curthread->td_ru.ru_minflt++;
390                 return (KERN_SUCCESS);
391 fast_failed:
392                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
393                         VM_OBJECT_RUNLOCK(fs.first_object);
394                         VM_OBJECT_WLOCK(fs.first_object);
395                 }
396         } else {
397                 VM_OBJECT_WLOCK(fs.first_object);
398         }
399
400         /*
401          * Make a reference to this object to prevent its disposal while we
402          * are messing with it.  Once we have the reference, the map is free
403          * to be diddled.  Since objects reference their shadows (and copies),
404          * they will stay around as well.
405          *
406          * Bump the paging-in-progress count to prevent size changes (e.g. 
407          * truncation operations) during I/O.  This must be done after
408          * obtaining the vnode lock in order to avoid possible deadlocks.
409          */
410         vm_object_reference_locked(fs.first_object);
411         vm_object_pip_add(fs.first_object, 1);
412
413         fs.lookup_still_valid = TRUE;
414
415         fs.first_m = NULL;
416
417         /*
418          * Search for the page at object/offset.
419          */
420         fs.object = fs.first_object;
421         fs.pindex = fs.first_pindex;
422         while (TRUE) {
423                 /*
424                  * If the object is dead, we stop here
425                  */
426                 if (fs.object->flags & OBJ_DEAD) {
427                         unlock_and_deallocate(&fs);
428                         return (KERN_PROTECTION_FAILURE);
429                 }
430
431                 /*
432                  * See if page is resident
433                  */
434                 fs.m = vm_page_lookup(fs.object, fs.pindex);
435                 if (fs.m != NULL) {
436                         /*
437                          * Wait/Retry if the page is busy.  We have to do this
438                          * if the page is either exclusive or shared busy
439                          * because the vm_pager may be using read busy for
440                          * pageouts (and even pageins if it is the vnode
441                          * pager), and we could end up trying to pagein and
442                          * pageout the same page simultaneously.
443                          *
444                          * We can theoretically allow the busy case on a read
445                          * fault if the page is marked valid, but since such
446                          * pages are typically already pmap'd, putting that
447                          * special case in might be more effort then it is 
448                          * worth.  We cannot under any circumstances mess
449                          * around with a shared busied page except, perhaps,
450                          * to pmap it.
451                          */
452                         if (vm_page_busied(fs.m)) {
453                                 /*
454                                  * Reference the page before unlocking and
455                                  * sleeping so that the page daemon is less
456                                  * likely to reclaim it. 
457                                  */
458                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
459                                 if (fs.object != fs.first_object) {
460                                         if (!VM_OBJECT_TRYWLOCK(
461                                             fs.first_object)) {
462                                                 VM_OBJECT_WUNLOCK(fs.object);
463                                                 VM_OBJECT_WLOCK(fs.first_object);
464                                                 VM_OBJECT_WLOCK(fs.object);
465                                         }
466                                         vm_page_lock(fs.first_m);
467                                         vm_page_free(fs.first_m);
468                                         vm_page_unlock(fs.first_m);
469                                         vm_object_pip_wakeup(fs.first_object);
470                                         VM_OBJECT_WUNLOCK(fs.first_object);
471                                         fs.first_m = NULL;
472                                 }
473                                 unlock_map(&fs);
474                                 if (fs.m == vm_page_lookup(fs.object,
475                                     fs.pindex)) {
476                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
477                                 }
478                                 vm_object_pip_wakeup(fs.object);
479                                 VM_OBJECT_WUNLOCK(fs.object);
480                                 PCPU_INC(cnt.v_intrans);
481                                 vm_object_deallocate(fs.first_object);
482                                 goto RetryFault;
483                         }
484                         vm_page_lock(fs.m);
485                         vm_page_remque(fs.m);
486                         vm_page_unlock(fs.m);
487
488                         /*
489                          * Mark page busy for other processes, and the 
490                          * pagedaemon.  If it still isn't completely valid
491                          * (readable), jump to readrest, else break-out ( we
492                          * found the page ).
493                          */
494                         vm_page_xbusy(fs.m);
495                         if (fs.m->valid != VM_PAGE_BITS_ALL)
496                                 goto readrest;
497                         break;
498                 }
499
500                 /*
501                  * Page is not resident.  If this is the search termination
502                  * or the pager might contain the page, allocate a new page.
503                  * Default objects are zero-fill, there is no real pager.
504                  */
505                 if (fs.object->type != OBJT_DEFAULT ||
506                     fs.object == fs.first_object) {
507                         if (fs.pindex >= fs.object->size) {
508                                 unlock_and_deallocate(&fs);
509                                 return (KERN_PROTECTION_FAILURE);
510                         }
511
512                         /*
513                          * Allocate a new page for this object/offset pair.
514                          *
515                          * Unlocked read of the p_flag is harmless. At
516                          * worst, the P_KILLED might be not observed
517                          * there, and allocation can fail, causing
518                          * restart and new reading of the p_flag.
519                          */
520                         fs.m = NULL;
521                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
522 #if VM_NRESERVLEVEL > 0
523                                 vm_object_color(fs.object, atop(vaddr) -
524                                     fs.pindex);
525 #endif
526                                 alloc_req = P_KILLED(curproc) ?
527                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
528                                 if (fs.object->type != OBJT_VNODE &&
529                                     fs.object->backing_object == NULL)
530                                         alloc_req |= VM_ALLOC_ZERO;
531                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
532                                     alloc_req);
533                         }
534                         if (fs.m == NULL) {
535                                 unlock_and_deallocate(&fs);
536                                 VM_WAITPFAULT;
537                                 goto RetryFault;
538                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
539                                 break;
540                 }
541
542 readrest:
543                 /*
544                  * We have found a valid page or we have allocated a new page.
545                  * The page thus may not be valid or may not be entirely 
546                  * valid.
547                  *
548                  * Attempt to fault-in the page if there is a chance that the
549                  * pager has it, and potentially fault in additional pages
550                  * at the same time.  For default objects simply provide
551                  * zero-filled pages.
552                  */
553                 if (fs.object->type != OBJT_DEFAULT) {
554                         int rv;
555                         u_char behavior = vm_map_entry_behavior(fs.entry);
556
557                         era = fs.entry->read_ahead;
558                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
559                             P_KILLED(curproc)) {
560                                 behind = 0;
561                                 nera = 0;
562                                 ahead = 0;
563                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
564                                 behind = 0;
565                                 nera = VM_FAULT_READ_AHEAD_MAX;
566                                 ahead = nera;
567                                 if (fs.pindex == fs.entry->next_read)
568                                         vm_fault_dontneed(&fs, vaddr, ahead);
569                         } else if (fs.pindex == fs.entry->next_read) {
570                                 /*
571                                  * This is a sequential fault.  Arithmetically
572                                  * increase the requested number of pages in
573                                  * the read-ahead window.  The requested
574                                  * number of pages is "# of sequential faults
575                                  * x (read ahead min + 1) + read ahead min"
576                                  */
577                                 behind = 0;
578                                 nera = VM_FAULT_READ_AHEAD_MIN;
579                                 if (era > 0) {
580                                         nera += era + 1;
581                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
582                                                 nera = VM_FAULT_READ_AHEAD_MAX;
583                                 }
584                                 ahead = nera;
585                                 if (era == VM_FAULT_READ_AHEAD_MAX)
586                                         vm_fault_dontneed(&fs, vaddr, ahead);
587                         } else {
588                                 /*
589                                  * This is a non-sequential fault.  Request a
590                                  * cluster of pages that is aligned to a
591                                  * VM_FAULT_READ_DEFAULT page offset boundary
592                                  * within the object.  Alignment to a page
593                                  * offset boundary is more likely to coincide
594                                  * with the underlying file system block than
595                                  * alignment to a virtual address boundary.
596                                  */
597                                 cluster_offset = fs.pindex %
598                                     VM_FAULT_READ_DEFAULT;
599                                 behind = ulmin(cluster_offset,
600                                     atop(vaddr - fs.entry->start));
601                                 nera = 0;
602                                 ahead = VM_FAULT_READ_DEFAULT - 1 -
603                                     cluster_offset;
604                         }
605                         ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1);
606                         if (era != nera)
607                                 fs.entry->read_ahead = nera;
608
609                         /*
610                          * Call the pager to retrieve the data, if any, after
611                          * releasing the lock on the map.  We hold a ref on
612                          * fs.object and the pages are exclusive busied.
613                          */
614                         unlock_map(&fs);
615
616                         if (fs.object->type == OBJT_VNODE) {
617                                 vp = fs.object->handle;
618                                 if (vp == fs.vp)
619                                         goto vnode_locked;
620                                 else if (fs.vp != NULL) {
621                                         vput(fs.vp);
622                                         fs.vp = NULL;
623                                 }
624                                 locked = VOP_ISLOCKED(vp);
625
626                                 if (locked != LK_EXCLUSIVE)
627                                         locked = LK_SHARED;
628                                 /* Do not sleep for vnode lock while fs.m is busy */
629                                 error = vget(vp, locked | LK_CANRECURSE |
630                                     LK_NOWAIT, curthread);
631                                 if (error != 0) {
632                                         vhold(vp);
633                                         release_page(&fs);
634                                         unlock_and_deallocate(&fs);
635                                         error = vget(vp, locked | LK_RETRY |
636                                             LK_CANRECURSE, curthread);
637                                         vdrop(vp);
638                                         fs.vp = vp;
639                                         KASSERT(error == 0,
640                                             ("vm_fault: vget failed"));
641                                         goto RetryFault;
642                                 }
643                                 fs.vp = vp;
644                         }
645 vnode_locked:
646                         KASSERT(fs.vp == NULL || !fs.map->system_map,
647                             ("vm_fault: vnode-backed object mapped by system map"));
648
649                         /*
650                          * Page in the requested page and hint the pager,
651                          * that it may bring up surrounding pages.
652                          */
653                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
654                             &behind, &ahead);
655                         if (rv == VM_PAGER_OK) {
656                                 faultcount = behind + 1 + ahead;
657                                 hardfault++;
658                                 break; /* break to PAGE HAS BEEN FOUND */
659                         }
660                         /*
661                          * Remove the bogus page (which does not exist at this
662                          * object/offset); before doing so, we must get back
663                          * our object lock to preserve our invariant.
664                          *
665                          * Also wake up any other process that may want to bring
666                          * in this page.
667                          *
668                          * If this is the top-level object, we must leave the
669                          * busy page to prevent another process from rushing
670                          * past us, and inserting the page in that object at
671                          * the same time that we are.
672                          */
673                         if (rv == VM_PAGER_ERROR)
674                                 printf("vm_fault: pager read error, pid %d (%s)\n",
675                                     curproc->p_pid, curproc->p_comm);
676                         /*
677                          * Data outside the range of the pager or an I/O error
678                          */
679                         /*
680                          * XXX - the check for kernel_map is a kludge to work
681                          * around having the machine panic on a kernel space
682                          * fault w/ I/O error.
683                          */
684                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
685                                 (rv == VM_PAGER_BAD)) {
686                                 vm_page_lock(fs.m);
687                                 vm_page_free(fs.m);
688                                 vm_page_unlock(fs.m);
689                                 fs.m = NULL;
690                                 unlock_and_deallocate(&fs);
691                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
692                         }
693                         if (fs.object != fs.first_object) {
694                                 vm_page_lock(fs.m);
695                                 vm_page_free(fs.m);
696                                 vm_page_unlock(fs.m);
697                                 fs.m = NULL;
698                                 /*
699                                  * XXX - we cannot just fall out at this
700                                  * point, m has been freed and is invalid!
701                                  */
702                         }
703                 }
704
705                 /*
706                  * We get here if the object has default pager (or unwiring) 
707                  * or the pager doesn't have the page.
708                  */
709                 if (fs.object == fs.first_object)
710                         fs.first_m = fs.m;
711
712                 /*
713                  * Move on to the next object.  Lock the next object before
714                  * unlocking the current one.
715                  */
716                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
717                 next_object = fs.object->backing_object;
718                 if (next_object == NULL) {
719                         /*
720                          * If there's no object left, fill the page in the top
721                          * object with zeros.
722                          */
723                         if (fs.object != fs.first_object) {
724                                 vm_object_pip_wakeup(fs.object);
725                                 VM_OBJECT_WUNLOCK(fs.object);
726
727                                 fs.object = fs.first_object;
728                                 fs.pindex = fs.first_pindex;
729                                 fs.m = fs.first_m;
730                                 VM_OBJECT_WLOCK(fs.object);
731                         }
732                         fs.first_m = NULL;
733
734                         /*
735                          * Zero the page if necessary and mark it valid.
736                          */
737                         if ((fs.m->flags & PG_ZERO) == 0) {
738                                 pmap_zero_page(fs.m);
739                         } else {
740                                 PCPU_INC(cnt.v_ozfod);
741                         }
742                         PCPU_INC(cnt.v_zfod);
743                         fs.m->valid = VM_PAGE_BITS_ALL;
744                         /* Don't try to prefault neighboring pages. */
745                         faultcount = 1;
746                         break;  /* break to PAGE HAS BEEN FOUND */
747                 } else {
748                         KASSERT(fs.object != next_object,
749                             ("object loop %p", next_object));
750                         VM_OBJECT_WLOCK(next_object);
751                         vm_object_pip_add(next_object, 1);
752                         if (fs.object != fs.first_object)
753                                 vm_object_pip_wakeup(fs.object);
754                         VM_OBJECT_WUNLOCK(fs.object);
755                         fs.object = next_object;
756                 }
757         }
758
759         vm_page_assert_xbusied(fs.m);
760
761         /*
762          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
763          * is held.]
764          */
765
766         /*
767          * If the page is being written, but isn't already owned by the
768          * top-level object, we have to copy it into a new page owned by the
769          * top-level object.
770          */
771         if (fs.object != fs.first_object) {
772                 /*
773                  * We only really need to copy if we want to write it.
774                  */
775                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
776                         /*
777                          * This allows pages to be virtually copied from a 
778                          * backing_object into the first_object, where the 
779                          * backing object has no other refs to it, and cannot
780                          * gain any more refs.  Instead of a bcopy, we just 
781                          * move the page from the backing object to the 
782                          * first object.  Note that we must mark the page 
783                          * dirty in the first object so that it will go out 
784                          * to swap when needed.
785                          */
786                         is_first_object_locked = FALSE;
787                         if (
788                                 /*
789                                  * Only one shadow object
790                                  */
791                                 (fs.object->shadow_count == 1) &&
792                                 /*
793                                  * No COW refs, except us
794                                  */
795                                 (fs.object->ref_count == 1) &&
796                                 /*
797                                  * No one else can look this object up
798                                  */
799                                 (fs.object->handle == NULL) &&
800                                 /*
801                                  * No other ways to look the object up
802                                  */
803                                 ((fs.object->type == OBJT_DEFAULT) ||
804                                  (fs.object->type == OBJT_SWAP)) &&
805                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
806                                 /*
807                                  * We don't chase down the shadow chain
808                                  */
809                             fs.object == fs.first_object->backing_object) {
810                                 /*
811                                  * get rid of the unnecessary page
812                                  */
813                                 vm_page_lock(fs.first_m);
814                                 vm_page_remove(fs.first_m);
815                                 vm_page_unlock(fs.first_m);
816                                 /*
817                                  * grab the page and put it into the 
818                                  * process'es object.  The page is 
819                                  * automatically made dirty.
820                                  */
821                                 if (vm_page_rename(fs.m, fs.first_object,
822                                     fs.first_pindex)) {
823                                         VM_OBJECT_WUNLOCK(fs.first_object);
824                                         unlock_and_deallocate(&fs);
825                                         goto RetryFault;
826                                 }
827                                 vm_page_lock(fs.first_m);
828                                 vm_page_free(fs.first_m);
829                                 vm_page_unlock(fs.first_m);
830 #if VM_NRESERVLEVEL > 0
831                                 /*
832                                  * Rename the reservation.
833                                  */
834                                 vm_reserv_rename(fs.m, fs.first_object,
835                                     fs.object, OFF_TO_IDX(
836                                     fs.first_object->backing_object_offset));
837 #endif
838                                 vm_page_xbusy(fs.m);
839                                 fs.first_m = fs.m;
840                                 fs.m = NULL;
841                                 PCPU_INC(cnt.v_cow_optim);
842                         } else {
843                                 /*
844                                  * Oh, well, lets copy it.
845                                  */
846                                 pmap_copy_page(fs.m, fs.first_m);
847                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
848                                 if (wired && (fault_flags &
849                                     VM_FAULT_WIRE) == 0) {
850                                         vm_page_lock(fs.first_m);
851                                         vm_page_wire(fs.first_m);
852                                         vm_page_unlock(fs.first_m);
853                                         
854                                         vm_page_lock(fs.m);
855                                         vm_page_unwire(fs.m, PQ_INACTIVE);
856                                         vm_page_unlock(fs.m);
857                                 }
858                                 /*
859                                  * We no longer need the old page or object.
860                                  */
861                                 release_page(&fs);
862                         }
863                         /*
864                          * fs.object != fs.first_object due to above 
865                          * conditional
866                          */
867                         vm_object_pip_wakeup(fs.object);
868                         VM_OBJECT_WUNLOCK(fs.object);
869                         /*
870                          * Only use the new page below...
871                          */
872                         fs.object = fs.first_object;
873                         fs.pindex = fs.first_pindex;
874                         fs.m = fs.first_m;
875                         if (!is_first_object_locked)
876                                 VM_OBJECT_WLOCK(fs.object);
877                         PCPU_INC(cnt.v_cow_faults);
878                         curthread->td_cow++;
879                 } else {
880                         prot &= ~VM_PROT_WRITE;
881                 }
882         }
883
884         /*
885          * We must verify that the maps have not changed since our last
886          * lookup.
887          */
888         if (!fs.lookup_still_valid) {
889                 vm_object_t retry_object;
890                 vm_pindex_t retry_pindex;
891                 vm_prot_t retry_prot;
892
893                 if (!vm_map_trylock_read(fs.map)) {
894                         release_page(&fs);
895                         unlock_and_deallocate(&fs);
896                         goto RetryFault;
897                 }
898                 fs.lookup_still_valid = TRUE;
899                 if (fs.map->timestamp != map_generation) {
900                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
901                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
902
903                         /*
904                          * If we don't need the page any longer, put it on the inactive
905                          * list (the easiest thing to do here).  If no one needs it,
906                          * pageout will grab it eventually.
907                          */
908                         if (result != KERN_SUCCESS) {
909                                 release_page(&fs);
910                                 unlock_and_deallocate(&fs);
911
912                                 /*
913                                  * If retry of map lookup would have blocked then
914                                  * retry fault from start.
915                                  */
916                                 if (result == KERN_FAILURE)
917                                         goto RetryFault;
918                                 return (result);
919                         }
920                         if ((retry_object != fs.first_object) ||
921                             (retry_pindex != fs.first_pindex)) {
922                                 release_page(&fs);
923                                 unlock_and_deallocate(&fs);
924                                 goto RetryFault;
925                         }
926
927                         /*
928                          * Check whether the protection has changed or the object has
929                          * been copied while we left the map unlocked. Changing from
930                          * read to write permission is OK - we leave the page
931                          * write-protected, and catch the write fault. Changing from
932                          * write to read permission means that we can't mark the page
933                          * write-enabled after all.
934                          */
935                         prot &= retry_prot;
936                 }
937         }
938         /*
939          * If the page was filled by a pager, update the map entry's
940          * last read offset.
941          *
942          * XXX The following assignment modifies the map
943          * without holding a write lock on it.
944          */
945         if (hardfault)
946                 fs.entry->next_read = fs.pindex + ahead + 1;
947
948         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
949         vm_page_assert_xbusied(fs.m);
950
951         /*
952          * Page must be completely valid or it is not fit to
953          * map into user space.  vm_pager_get_pages() ensures this.
954          */
955         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
956             ("vm_fault: page %p partially invalid", fs.m));
957         VM_OBJECT_WUNLOCK(fs.object);
958
959         /*
960          * Put this page into the physical map.  We had to do the unlock above
961          * because pmap_enter() may sleep.  We don't put the page
962          * back on the active queue until later so that the pageout daemon
963          * won't find it (yet).
964          */
965         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
966             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
967         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
968             wired == 0)
969                 vm_fault_prefault(&fs, vaddr,
970                     faultcount > 0 ? behind : PFBAK,
971                     faultcount > 0 ? ahead : PFFOR);
972         VM_OBJECT_WLOCK(fs.object);
973         vm_page_lock(fs.m);
974
975         /*
976          * If the page is not wired down, then put it where the pageout daemon
977          * can find it.
978          */
979         if ((fault_flags & VM_FAULT_WIRE) != 0) {
980                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
981                 vm_page_wire(fs.m);
982         } else
983                 vm_page_activate(fs.m);
984         if (m_hold != NULL) {
985                 *m_hold = fs.m;
986                 vm_page_hold(fs.m);
987         }
988         vm_page_unlock(fs.m);
989         vm_page_xunbusy(fs.m);
990
991         /*
992          * Unlock everything, and return
993          */
994         unlock_and_deallocate(&fs);
995         if (hardfault) {
996                 PCPU_INC(cnt.v_io_faults);
997                 curthread->td_ru.ru_majflt++;
998 #ifdef RACCT
999                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1000                         PROC_LOCK(curproc);
1001                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1002                                 racct_add_force(curproc, RACCT_WRITEBPS,
1003                                     PAGE_SIZE + behind * PAGE_SIZE);
1004                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1005                         } else {
1006                                 racct_add_force(curproc, RACCT_READBPS,
1007                                     PAGE_SIZE + ahead * PAGE_SIZE);
1008                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1009                         }
1010                         PROC_UNLOCK(curproc);
1011                 }
1012 #endif
1013         } else 
1014                 curthread->td_ru.ru_minflt++;
1015
1016         return (KERN_SUCCESS);
1017 }
1018
1019 /*
1020  * Speed up the reclamation of pages that precede the faulting pindex within
1021  * the first object of the shadow chain.  Essentially, perform the equivalent
1022  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1023  * the faulting pindex by the cluster size when the pages read by vm_fault()
1024  * cross a cluster-size boundary.  The cluster size is the greater of the
1025  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1026  *
1027  * When "fs->first_object" is a shadow object, the pages in the backing object
1028  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1029  * function must only be concerned with pages in the first object.
1030  */
1031 static void
1032 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1033 {
1034         vm_map_entry_t entry;
1035         vm_object_t first_object, object;
1036         vm_offset_t end, start;
1037         vm_page_t m, m_next;
1038         vm_pindex_t pend, pstart;
1039         vm_size_t size;
1040
1041         object = fs->object;
1042         VM_OBJECT_ASSERT_WLOCKED(object);
1043         first_object = fs->first_object;
1044         if (first_object != object) {
1045                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1046                         VM_OBJECT_WUNLOCK(object);
1047                         VM_OBJECT_WLOCK(first_object);
1048                         VM_OBJECT_WLOCK(object);
1049                 }
1050         }
1051         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1052         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1053                 size = VM_FAULT_DONTNEED_MIN;
1054                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1055                         size = pagesizes[1];
1056                 end = rounddown2(vaddr, size);
1057                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1058                     (entry = fs->entry)->start < end) {
1059                         if (end - entry->start < size)
1060                                 start = entry->start;
1061                         else
1062                                 start = end - size;
1063                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1064                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1065                             entry->start);
1066                         m_next = vm_page_find_least(first_object, pstart);
1067                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1068                             entry->start);
1069                         while ((m = m_next) != NULL && m->pindex < pend) {
1070                                 m_next = TAILQ_NEXT(m, listq);
1071                                 if (m->valid != VM_PAGE_BITS_ALL ||
1072                                     vm_page_busied(m))
1073                                         continue;
1074
1075                                 /*
1076                                  * Don't clear PGA_REFERENCED, since it would
1077                                  * likely represent a reference by a different
1078                                  * process.
1079                                  *
1080                                  * Typically, at this point, prefetched pages
1081                                  * are still in the inactive queue.  Only
1082                                  * pages that triggered page faults are in the
1083                                  * active queue.
1084                                  */
1085                                 vm_page_lock(m);
1086                                 vm_page_deactivate(m);
1087                                 vm_page_unlock(m);
1088                         }
1089                 }
1090         }
1091         if (first_object != object)
1092                 VM_OBJECT_WUNLOCK(first_object);
1093 }
1094
1095 /*
1096  * vm_fault_prefault provides a quick way of clustering
1097  * pagefaults into a processes address space.  It is a "cousin"
1098  * of vm_map_pmap_enter, except it runs at page fault time instead
1099  * of mmap time.
1100  */
1101 static void
1102 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1103     int backward, int forward)
1104 {
1105         pmap_t pmap;
1106         vm_map_entry_t entry;
1107         vm_object_t backing_object, lobject;
1108         vm_offset_t addr, starta;
1109         vm_pindex_t pindex;
1110         vm_page_t m;
1111         int i;
1112
1113         pmap = fs->map->pmap;
1114         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1115                 return;
1116
1117         entry = fs->entry;
1118
1119         starta = addra - backward * PAGE_SIZE;
1120         if (starta < entry->start) {
1121                 starta = entry->start;
1122         } else if (starta > addra) {
1123                 starta = 0;
1124         }
1125
1126         /*
1127          * Generate the sequence of virtual addresses that are candidates for
1128          * prefaulting in an outward spiral from the faulting virtual address,
1129          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1130          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1131          * If the candidate address doesn't have a backing physical page, then
1132          * the loop immediately terminates.
1133          */
1134         for (i = 0; i < 2 * imax(backward, forward); i++) {
1135                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1136                     PAGE_SIZE);
1137                 if (addr > addra + forward * PAGE_SIZE)
1138                         addr = 0;
1139
1140                 if (addr < starta || addr >= entry->end)
1141                         continue;
1142
1143                 if (!pmap_is_prefaultable(pmap, addr))
1144                         continue;
1145
1146                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1147                 lobject = entry->object.vm_object;
1148                 VM_OBJECT_RLOCK(lobject);
1149                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1150                     lobject->type == OBJT_DEFAULT &&
1151                     (backing_object = lobject->backing_object) != NULL) {
1152                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1153                             0, ("vm_fault_prefault: unaligned object offset"));
1154                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1155                         VM_OBJECT_RLOCK(backing_object);
1156                         VM_OBJECT_RUNLOCK(lobject);
1157                         lobject = backing_object;
1158                 }
1159                 if (m == NULL) {
1160                         VM_OBJECT_RUNLOCK(lobject);
1161                         break;
1162                 }
1163                 if (m->valid == VM_PAGE_BITS_ALL &&
1164                     (m->flags & PG_FICTITIOUS) == 0)
1165                         pmap_enter_quick(pmap, addr, m, entry->protection);
1166                 VM_OBJECT_RUNLOCK(lobject);
1167         }
1168 }
1169
1170 /*
1171  * Hold each of the physical pages that are mapped by the specified range of
1172  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1173  * and allow the specified types of access, "prot".  If all of the implied
1174  * pages are successfully held, then the number of held pages is returned
1175  * together with pointers to those pages in the array "ma".  However, if any
1176  * of the pages cannot be held, -1 is returned.
1177  */
1178 int
1179 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1180     vm_prot_t prot, vm_page_t *ma, int max_count)
1181 {
1182         vm_offset_t end, va;
1183         vm_page_t *mp;
1184         int count;
1185         boolean_t pmap_failed;
1186
1187         if (len == 0)
1188                 return (0);
1189         end = round_page(addr + len);
1190         addr = trunc_page(addr);
1191
1192         /*
1193          * Check for illegal addresses.
1194          */
1195         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1196                 return (-1);
1197
1198         if (atop(end - addr) > max_count)
1199                 panic("vm_fault_quick_hold_pages: count > max_count");
1200         count = atop(end - addr);
1201
1202         /*
1203          * Most likely, the physical pages are resident in the pmap, so it is
1204          * faster to try pmap_extract_and_hold() first.
1205          */
1206         pmap_failed = FALSE;
1207         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1208                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1209                 if (*mp == NULL)
1210                         pmap_failed = TRUE;
1211                 else if ((prot & VM_PROT_WRITE) != 0 &&
1212                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1213                         /*
1214                          * Explicitly dirty the physical page.  Otherwise, the
1215                          * caller's changes may go unnoticed because they are
1216                          * performed through an unmanaged mapping or by a DMA
1217                          * operation.
1218                          *
1219                          * The object lock is not held here.
1220                          * See vm_page_clear_dirty_mask().
1221                          */
1222                         vm_page_dirty(*mp);
1223                 }
1224         }
1225         if (pmap_failed) {
1226                 /*
1227                  * One or more pages could not be held by the pmap.  Either no
1228                  * page was mapped at the specified virtual address or that
1229                  * mapping had insufficient permissions.  Attempt to fault in
1230                  * and hold these pages.
1231                  */
1232                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1233                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1234                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1235                                 goto error;
1236         }
1237         return (count);
1238 error:  
1239         for (mp = ma; mp < ma + count; mp++)
1240                 if (*mp != NULL) {
1241                         vm_page_lock(*mp);
1242                         vm_page_unhold(*mp);
1243                         vm_page_unlock(*mp);
1244                 }
1245         return (-1);
1246 }
1247
1248 /*
1249  *      Routine:
1250  *              vm_fault_copy_entry
1251  *      Function:
1252  *              Create new shadow object backing dst_entry with private copy of
1253  *              all underlying pages. When src_entry is equal to dst_entry,
1254  *              function implements COW for wired-down map entry. Otherwise,
1255  *              it forks wired entry into dst_map.
1256  *
1257  *      In/out conditions:
1258  *              The source and destination maps must be locked for write.
1259  *              The source map entry must be wired down (or be a sharing map
1260  *              entry corresponding to a main map entry that is wired down).
1261  */
1262 void
1263 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1264     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1265     vm_ooffset_t *fork_charge)
1266 {
1267         vm_object_t backing_object, dst_object, object, src_object;
1268         vm_pindex_t dst_pindex, pindex, src_pindex;
1269         vm_prot_t access, prot;
1270         vm_offset_t vaddr;
1271         vm_page_t dst_m;
1272         vm_page_t src_m;
1273         boolean_t upgrade;
1274
1275 #ifdef  lint
1276         src_map++;
1277 #endif  /* lint */
1278
1279         upgrade = src_entry == dst_entry;
1280         access = prot = dst_entry->protection;
1281
1282         src_object = src_entry->object.vm_object;
1283         src_pindex = OFF_TO_IDX(src_entry->offset);
1284
1285         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1286                 dst_object = src_object;
1287                 vm_object_reference(dst_object);
1288         } else {
1289                 /*
1290                  * Create the top-level object for the destination entry. (Doesn't
1291                  * actually shadow anything - we copy the pages directly.)
1292                  */
1293                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1294                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1295 #if VM_NRESERVLEVEL > 0
1296                 dst_object->flags |= OBJ_COLORED;
1297                 dst_object->pg_color = atop(dst_entry->start);
1298 #endif
1299         }
1300
1301         VM_OBJECT_WLOCK(dst_object);
1302         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1303             ("vm_fault_copy_entry: vm_object not NULL"));
1304         if (src_object != dst_object) {
1305                 dst_entry->object.vm_object = dst_object;
1306                 dst_entry->offset = 0;
1307                 dst_object->charge = dst_entry->end - dst_entry->start;
1308         }
1309         if (fork_charge != NULL) {
1310                 KASSERT(dst_entry->cred == NULL,
1311                     ("vm_fault_copy_entry: leaked swp charge"));
1312                 dst_object->cred = curthread->td_ucred;
1313                 crhold(dst_object->cred);
1314                 *fork_charge += dst_object->charge;
1315         } else if (dst_object->cred == NULL) {
1316                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1317                     dst_entry));
1318                 dst_object->cred = dst_entry->cred;
1319                 dst_entry->cred = NULL;
1320         }
1321
1322         /*
1323          * If not an upgrade, then enter the mappings in the pmap as
1324          * read and/or execute accesses.  Otherwise, enter them as
1325          * write accesses.
1326          *
1327          * A writeable large page mapping is only created if all of
1328          * the constituent small page mappings are modified. Marking
1329          * PTEs as modified on inception allows promotion to happen
1330          * without taking potentially large number of soft faults.
1331          */
1332         if (!upgrade)
1333                 access &= ~VM_PROT_WRITE;
1334
1335         /*
1336          * Loop through all of the virtual pages within the entry's
1337          * range, copying each page from the source object to the
1338          * destination object.  Since the source is wired, those pages
1339          * must exist.  In contrast, the destination is pageable.
1340          * Since the destination object does share any backing storage
1341          * with the source object, all of its pages must be dirtied,
1342          * regardless of whether they can be written.
1343          */
1344         for (vaddr = dst_entry->start, dst_pindex = 0;
1345             vaddr < dst_entry->end;
1346             vaddr += PAGE_SIZE, dst_pindex++) {
1347 again:
1348                 /*
1349                  * Find the page in the source object, and copy it in.
1350                  * Because the source is wired down, the page will be
1351                  * in memory.
1352                  */
1353                 if (src_object != dst_object)
1354                         VM_OBJECT_RLOCK(src_object);
1355                 object = src_object;
1356                 pindex = src_pindex + dst_pindex;
1357                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1358                     (backing_object = object->backing_object) != NULL) {
1359                         /*
1360                          * Unless the source mapping is read-only or
1361                          * it is presently being upgraded from
1362                          * read-only, the first object in the shadow
1363                          * chain should provide all of the pages.  In
1364                          * other words, this loop body should never be
1365                          * executed when the source mapping is already
1366                          * read/write.
1367                          */
1368                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1369                             upgrade,
1370                             ("vm_fault_copy_entry: main object missing page"));
1371
1372                         VM_OBJECT_RLOCK(backing_object);
1373                         pindex += OFF_TO_IDX(object->backing_object_offset);
1374                         if (object != dst_object)
1375                                 VM_OBJECT_RUNLOCK(object);
1376                         object = backing_object;
1377                 }
1378                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1379
1380                 if (object != dst_object) {
1381                         /*
1382                          * Allocate a page in the destination object.
1383                          */
1384                         dst_m = vm_page_alloc(dst_object, (src_object ==
1385                             dst_object ? src_pindex : 0) + dst_pindex,
1386                             VM_ALLOC_NORMAL);
1387                         if (dst_m == NULL) {
1388                                 VM_OBJECT_WUNLOCK(dst_object);
1389                                 VM_OBJECT_RUNLOCK(object);
1390                                 VM_WAIT;
1391                                 VM_OBJECT_WLOCK(dst_object);
1392                                 goto again;
1393                         }
1394                         pmap_copy_page(src_m, dst_m);
1395                         VM_OBJECT_RUNLOCK(object);
1396                         dst_m->valid = VM_PAGE_BITS_ALL;
1397                         dst_m->dirty = VM_PAGE_BITS_ALL;
1398                 } else {
1399                         dst_m = src_m;
1400                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1401                                 goto again;
1402                         vm_page_xbusy(dst_m);
1403                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1404                             ("invalid dst page %p", dst_m));
1405                 }
1406                 VM_OBJECT_WUNLOCK(dst_object);
1407
1408                 /*
1409                  * Enter it in the pmap. If a wired, copy-on-write
1410                  * mapping is being replaced by a write-enabled
1411                  * mapping, then wire that new mapping.
1412                  */
1413                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1414                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1415
1416                 /*
1417                  * Mark it no longer busy, and put it on the active list.
1418                  */
1419                 VM_OBJECT_WLOCK(dst_object);
1420                 
1421                 if (upgrade) {
1422                         if (src_m != dst_m) {
1423                                 vm_page_lock(src_m);
1424                                 vm_page_unwire(src_m, PQ_INACTIVE);
1425                                 vm_page_unlock(src_m);
1426                                 vm_page_lock(dst_m);
1427                                 vm_page_wire(dst_m);
1428                                 vm_page_unlock(dst_m);
1429                         } else {
1430                                 KASSERT(dst_m->wire_count > 0,
1431                                     ("dst_m %p is not wired", dst_m));
1432                         }
1433                 } else {
1434                         vm_page_lock(dst_m);
1435                         vm_page_activate(dst_m);
1436                         vm_page_unlock(dst_m);
1437                 }
1438                 vm_page_xunbusy(dst_m);
1439         }
1440         VM_OBJECT_WUNLOCK(dst_object);
1441         if (upgrade) {
1442                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1443                 vm_object_deallocate(src_object);
1444         }
1445 }
1446
1447 /*
1448  * Block entry into the machine-independent layer's page fault handler by
1449  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1450  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1451  * spurious page faults. 
1452  */
1453 int
1454 vm_fault_disable_pagefaults(void)
1455 {
1456
1457         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1458 }
1459
1460 void
1461 vm_fault_enable_pagefaults(int save)
1462 {
1463
1464         curthread_pflags_restore(save);
1465 }