]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
This commit was generated by cvs2svn to compensate for changes in r92899,
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD$
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/lock.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/resourcevar.h>
82 #include <sys/sysctl.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/vm_extern.h>
97
98 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
99
100 #define VM_FAULT_READ_AHEAD 8
101 #define VM_FAULT_READ_BEHIND 7
102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
103
104 struct faultstate {
105         vm_page_t m;
106         vm_object_t object;
107         vm_pindex_t pindex;
108         vm_page_t first_m;
109         vm_object_t     first_object;
110         vm_pindex_t first_pindex;
111         vm_map_t map;
112         vm_map_entry_t entry;
113         int lookup_still_valid;
114         struct vnode *vp;
115 };
116
117 static __inline void
118 release_page(struct faultstate *fs)
119 {
120         vm_page_wakeup(fs->m);
121         vm_page_deactivate(fs->m);
122         fs->m = NULL;
123 }
124
125 static __inline void
126 unlock_map(struct faultstate *fs)
127 {
128         if (fs->lookup_still_valid) {
129                 vm_map_lookup_done(fs->map, fs->entry);
130                 fs->lookup_still_valid = FALSE;
131         }
132 }
133
134 static void
135 _unlock_things(struct faultstate *fs, int dealloc)
136 {
137         GIANT_REQUIRED;
138         vm_object_pip_wakeup(fs->object);
139         if (fs->object != fs->first_object) {
140                 vm_page_free(fs->first_m);
141                 vm_object_pip_wakeup(fs->first_object);
142                 fs->first_m = NULL;
143         }
144         if (dealloc) {
145                 vm_object_deallocate(fs->first_object);
146         }
147         unlock_map(fs); 
148         if (fs->vp != NULL) { 
149                 vput(fs->vp);
150                 fs->vp = NULL;
151         }
152 }
153
154 #define unlock_things(fs) _unlock_things(fs, 0)
155 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
156
157 /*
158  * TRYPAGER - used by vm_fault to calculate whether the pager for the
159  *            current object *might* contain the page.
160  *
161  *            default objects are zero-fill, there is no real pager.
162  */
163 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
164                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
165
166 /*
167  *      vm_fault:
168  *
169  *      Handle a page fault occurring at the given address,
170  *      requiring the given permissions, in the map specified.
171  *      If successful, the page is inserted into the
172  *      associated physical map.
173  *
174  *      NOTE: the given address should be truncated to the
175  *      proper page address.
176  *
177  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
178  *      a standard error specifying why the fault is fatal is returned.
179  *
180  *
181  *      The map in question must be referenced, and remains so.
182  *      Caller may hold no locks.
183  */
184 static int vm_fault1(vm_map_t, vm_offset_t, vm_prot_t, int);
185
186 int
187 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
188          int fault_flags)
189 {
190         int ret;
191
192         mtx_lock(&Giant);
193         /* GIANT_REQUIRED */
194
195         ret = vm_fault1(map, vaddr, fault_type, fault_flags);
196         mtx_unlock(&Giant);
197         return (ret);
198 }
199
200 static int
201 vm_fault1(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
202           int fault_flags)
203 {
204         vm_prot_t prot;
205         int result;
206         boolean_t wired;
207         int map_generation;
208         vm_object_t next_object;
209         vm_page_t marray[VM_FAULT_READ];
210         int hardfault;
211         int faultcount;
212         struct faultstate fs;
213
214         GIANT_REQUIRED;
215
216         cnt.v_vm_faults++;
217         hardfault = 0;
218
219 RetryFault:;
220
221         /*
222          * Find the backing store object and offset into it to begin the
223          * search.
224          */
225         fs.map = map;
226         if ((result = vm_map_lookup(&fs.map, vaddr,
227                 fault_type, &fs.entry, &fs.first_object,
228                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
229                 if ((result != KERN_PROTECTION_FAILURE) ||
230                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
231                         return result;
232                 }
233
234                 /*
235                  * If we are user-wiring a r/w segment, and it is COW, then
236                  * we need to do the COW operation.  Note that we don't COW
237                  * currently RO sections now, because it is NOT desirable
238                  * to COW .text.  We simply keep .text from ever being COW'ed
239                  * and take the heat that one cannot debug wired .text sections.
240                  */
241                 result = vm_map_lookup(&fs.map, vaddr,
242                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
243                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
244                 if (result != KERN_SUCCESS) {
245                         return result;
246                 }
247
248                 /*
249                  * If we don't COW now, on a user wire, the user will never
250                  * be able to write to the mapping.  If we don't make this
251                  * restriction, the bookkeeping would be nearly impossible.
252                  */
253                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
254                         fs.entry->max_protection &= ~VM_PROT_WRITE;
255         }
256
257         map_generation = fs.map->timestamp;
258
259         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
260                 panic("vm_fault: fault on nofault entry, addr: %lx",
261                     (u_long)vaddr);
262         }
263
264         /*
265          * Make a reference to this object to prevent its disposal while we
266          * are messing with it.  Once we have the reference, the map is free
267          * to be diddled.  Since objects reference their shadows (and copies),
268          * they will stay around as well.
269          *
270          * Bump the paging-in-progress count to prevent size changes (e.g. 
271          * truncation operations) during I/O.  This must be done after
272          * obtaining the vnode lock in order to avoid possible deadlocks.
273          */
274         vm_object_reference(fs.first_object);
275         fs.vp = vnode_pager_lock(fs.first_object);
276         vm_object_pip_add(fs.first_object, 1);
277
278         if ((fault_type & VM_PROT_WRITE) &&
279                 (fs.first_object->type == OBJT_VNODE)) {
280                 vm_freeze_copyopts(fs.first_object,
281                         fs.first_pindex, fs.first_pindex + 1);
282         }
283
284         fs.lookup_still_valid = TRUE;
285
286         if (wired)
287                 fault_type = prot;
288
289         fs.first_m = NULL;
290
291         /*
292          * Search for the page at object/offset.
293          */
294         fs.object = fs.first_object;
295         fs.pindex = fs.first_pindex;
296         while (TRUE) {
297                 /*
298                  * If the object is dead, we stop here
299                  */
300                 if (fs.object->flags & OBJ_DEAD) {
301                         unlock_and_deallocate(&fs);
302                         return (KERN_PROTECTION_FAILURE);
303                 }
304
305                 /*
306                  * See if page is resident
307                  */
308                 fs.m = vm_page_lookup(fs.object, fs.pindex);
309                 if (fs.m != NULL) {
310                         int queue, s;
311                         /*
312                          * Wait/Retry if the page is busy.  We have to do this
313                          * if the page is busy via either PG_BUSY or 
314                          * vm_page_t->busy because the vm_pager may be using
315                          * vm_page_t->busy for pageouts ( and even pageins if
316                          * it is the vnode pager ), and we could end up trying
317                          * to pagein and pageout the same page simultaneously.
318                          *
319                          * We can theoretically allow the busy case on a read
320                          * fault if the page is marked valid, but since such
321                          * pages are typically already pmap'd, putting that
322                          * special case in might be more effort then it is 
323                          * worth.  We cannot under any circumstances mess
324                          * around with a vm_page_t->busy page except, perhaps,
325                          * to pmap it.
326                          */
327                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
328                                 unlock_things(&fs);
329                                 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
330                                 cnt.v_intrans++;
331                                 vm_object_deallocate(fs.first_object);
332                                 goto RetryFault;
333                         }
334                         queue = fs.m->queue;
335
336                         s = splvm();
337                         vm_pageq_remove_nowakeup(fs.m);
338                         splx(s);
339
340                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
341                                 vm_page_activate(fs.m);
342                                 unlock_and_deallocate(&fs);
343                                 VM_WAITPFAULT;
344                                 goto RetryFault;
345                         }
346
347                         /*
348                          * Mark page busy for other processes, and the 
349                          * pagedaemon.  If it still isn't completely valid
350                          * (readable), jump to readrest, else break-out ( we
351                          * found the page ).
352                          */
353                         vm_page_busy(fs.m);
354                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
355                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
356                                 goto readrest;
357                         }
358
359                         break;
360                 }
361
362                 /*
363                  * Page is not resident, If this is the search termination
364                  * or the pager might contain the page, allocate a new page.
365                  */
366                 if (TRYPAGER || fs.object == fs.first_object) {
367                         if (fs.pindex >= fs.object->size) {
368                                 unlock_and_deallocate(&fs);
369                                 return (KERN_PROTECTION_FAILURE);
370                         }
371
372                         /*
373                          * Allocate a new page for this object/offset pair.
374                          */
375                         fs.m = NULL;
376                         if (!vm_page_count_severe()) {
377                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
378                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
379                         }
380                         if (fs.m == NULL) {
381                                 unlock_and_deallocate(&fs);
382                                 VM_WAITPFAULT;
383                                 goto RetryFault;
384                         }
385                 }
386
387 readrest:
388                 /*
389                  * We have found a valid page or we have allocated a new page.
390                  * The page thus may not be valid or may not be entirely 
391                  * valid.
392                  *
393                  * Attempt to fault-in the page if there is a chance that the
394                  * pager has it, and potentially fault in additional pages
395                  * at the same time.
396                  */
397                 if (TRYPAGER) {
398                         int rv;
399                         int reqpage;
400                         int ahead, behind;
401                         u_char behavior = vm_map_entry_behavior(fs.entry);
402
403                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
404                                 ahead = 0;
405                                 behind = 0;
406                         } else {
407                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
408                                 if (behind > VM_FAULT_READ_BEHIND)
409                                         behind = VM_FAULT_READ_BEHIND;
410
411                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
412                                 if (ahead > VM_FAULT_READ_AHEAD)
413                                         ahead = VM_FAULT_READ_AHEAD;
414                         }
415
416                         if ((fs.first_object->type != OBJT_DEVICE) &&
417                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
418                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
419                                 fs.pindex >= fs.entry->lastr &&
420                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
421                         ) {
422                                 vm_pindex_t firstpindex, tmppindex;
423
424                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
425                                         firstpindex = 0;
426                                 else
427                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
428
429                                 /*
430                                  * note: partially valid pages cannot be 
431                                  * included in the lookahead - NFS piecemeal
432                                  * writes will barf on it badly.
433                                  */
434                                 for (tmppindex = fs.first_pindex - 1;
435                                         tmppindex >= firstpindex;
436                                         --tmppindex) {
437                                         vm_page_t mt;
438
439                                         mt = vm_page_lookup(fs.first_object, tmppindex);
440                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
441                                                 break;
442                                         if (mt->busy ||
443                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
444                                                 mt->hold_count ||
445                                                 mt->wire_count) 
446                                                 continue;
447                                         if (mt->dirty == 0)
448                                                 vm_page_test_dirty(mt);
449                                         if (mt->dirty) {
450                                                 vm_page_protect(mt, VM_PROT_NONE);
451                                                 vm_page_deactivate(mt);
452                                         } else {
453                                                 vm_page_cache(mt);
454                                         }
455                                 }
456
457                                 ahead += behind;
458                                 behind = 0;
459                         }
460
461                         /*
462                          * now we find out if any other pages should be paged
463                          * in at this time this routine checks to see if the
464                          * pages surrounding this fault reside in the same
465                          * object as the page for this fault.  If they do,
466                          * then they are faulted in also into the object.  The
467                          * array "marray" returned contains an array of
468                          * vm_page_t structs where one of them is the
469                          * vm_page_t passed to the routine.  The reqpage
470                          * return value is the index into the marray for the
471                          * vm_page_t passed to the routine.
472                          *
473                          * fs.m plus the additional pages are PG_BUSY'd.
474                          */
475                         faultcount = vm_fault_additional_pages(
476                             fs.m, behind, ahead, marray, &reqpage);
477
478                         /*
479                          * update lastr imperfectly (we do not know how much
480                          * getpages will actually read), but good enough.
481                          */
482                         fs.entry->lastr = fs.pindex + faultcount - behind;
483
484                         /*
485                          * Call the pager to retrieve the data, if any, after
486                          * releasing the lock on the map.  We hold a ref on
487                          * fs.object and the pages are PG_BUSY'd.
488                          */
489                         unlock_map(&fs);
490
491                         rv = faultcount ?
492                             vm_pager_get_pages(fs.object, marray, faultcount,
493                                 reqpage) : VM_PAGER_FAIL;
494
495                         if (rv == VM_PAGER_OK) {
496                                 /*
497                                  * Found the page. Leave it busy while we play
498                                  * with it.
499                                  */
500
501                                 /*
502                                  * Relookup in case pager changed page. Pager
503                                  * is responsible for disposition of old page
504                                  * if moved.
505                                  */
506                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
507                                 if (!fs.m) {
508                                         unlock_and_deallocate(&fs);
509                                         goto RetryFault;
510                                 }
511
512                                 hardfault++;
513                                 break; /* break to PAGE HAS BEEN FOUND */
514                         }
515                         /*
516                          * Remove the bogus page (which does not exist at this
517                          * object/offset); before doing so, we must get back
518                          * our object lock to preserve our invariant.
519                          *
520                          * Also wake up any other process that may want to bring
521                          * in this page.
522                          *
523                          * If this is the top-level object, we must leave the
524                          * busy page to prevent another process from rushing
525                          * past us, and inserting the page in that object at
526                          * the same time that we are.
527                          */
528                         if (rv == VM_PAGER_ERROR)
529                                 printf("vm_fault: pager read error, pid %d (%s)\n",
530                                     curproc->p_pid, curproc->p_comm);
531                         /*
532                          * Data outside the range of the pager or an I/O error
533                          */
534                         /*
535                          * XXX - the check for kernel_map is a kludge to work
536                          * around having the machine panic on a kernel space
537                          * fault w/ I/O error.
538                          */
539                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
540                                 (rv == VM_PAGER_BAD)) {
541                                 vm_page_free(fs.m);
542                                 fs.m = NULL;
543                                 unlock_and_deallocate(&fs);
544                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
545                         }
546                         if (fs.object != fs.first_object) {
547                                 vm_page_free(fs.m);
548                                 fs.m = NULL;
549                                 /*
550                                  * XXX - we cannot just fall out at this
551                                  * point, m has been freed and is invalid!
552                                  */
553                         }
554                 }
555
556                 /*
557                  * We get here if the object has default pager (or unwiring) 
558                  * or the pager doesn't have the page.
559                  */
560                 if (fs.object == fs.first_object)
561                         fs.first_m = fs.m;
562
563                 /*
564                  * Move on to the next object.  Lock the next object before
565                  * unlocking the current one.
566                  */
567                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
568                 next_object = fs.object->backing_object;
569                 if (next_object == NULL) {
570                         /*
571                          * If there's no object left, fill the page in the top
572                          * object with zeros.
573                          */
574                         if (fs.object != fs.first_object) {
575                                 vm_object_pip_wakeup(fs.object);
576
577                                 fs.object = fs.first_object;
578                                 fs.pindex = fs.first_pindex;
579                                 fs.m = fs.first_m;
580                         }
581                         fs.first_m = NULL;
582
583                         /*
584                          * Zero the page if necessary and mark it valid.
585                          */
586                         if ((fs.m->flags & PG_ZERO) == 0) {
587                                 vm_page_zero_fill(fs.m);
588                         } else {
589                                 cnt.v_ozfod++;
590                         }
591                         cnt.v_zfod++;
592                         fs.m->valid = VM_PAGE_BITS_ALL;
593                         break;  /* break to PAGE HAS BEEN FOUND */
594                 } else {
595                         if (fs.object != fs.first_object) {
596                                 vm_object_pip_wakeup(fs.object);
597                         }
598                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
599                         fs.object = next_object;
600                         vm_object_pip_add(fs.object, 1);
601                 }
602         }
603
604         KASSERT((fs.m->flags & PG_BUSY) != 0,
605             ("vm_fault: not busy after main loop"));
606
607         /*
608          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
609          * is held.]
610          */
611
612         /*
613          * If the page is being written, but isn't already owned by the
614          * top-level object, we have to copy it into a new page owned by the
615          * top-level object.
616          */
617         if (fs.object != fs.first_object) {
618                 /*
619                  * We only really need to copy if we want to write it.
620                  */
621                 if (fault_type & VM_PROT_WRITE) {
622                         /*
623                          * This allows pages to be virtually copied from a 
624                          * backing_object into the first_object, where the 
625                          * backing object has no other refs to it, and cannot
626                          * gain any more refs.  Instead of a bcopy, we just 
627                          * move the page from the backing object to the 
628                          * first object.  Note that we must mark the page 
629                          * dirty in the first object so that it will go out 
630                          * to swap when needed.
631                          */
632                         if (map_generation == fs.map->timestamp &&
633                                 /*
634                                  * Only one shadow object
635                                  */
636                                 (fs.object->shadow_count == 1) &&
637                                 /*
638                                  * No COW refs, except us
639                                  */
640                                 (fs.object->ref_count == 1) &&
641                                 /*
642                                  * No one else can look this object up
643                                  */
644                                 (fs.object->handle == NULL) &&
645                                 /*
646                                  * No other ways to look the object up
647                                  */
648                                 ((fs.object->type == OBJT_DEFAULT) ||
649                                  (fs.object->type == OBJT_SWAP)) &&
650                                 /*
651                                  * We don't chase down the shadow chain
652                                  */
653                                 (fs.object == fs.first_object->backing_object) &&
654
655                                 /*
656                                  * grab the lock if we need to
657                                  */
658                                 (fs.lookup_still_valid ||
659                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curthread) == 0)
660                             ) {
661                                 
662                                 fs.lookup_still_valid = 1;
663                                 /*
664                                  * get rid of the unnecessary page
665                                  */
666                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
667                                 vm_page_free(fs.first_m);
668                                 fs.first_m = NULL;
669
670                                 /*
671                                  * grab the page and put it into the 
672                                  * process'es object.  The page is 
673                                  * automatically made dirty.
674                                  */
675                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
676                                 fs.first_m = fs.m;
677                                 vm_page_busy(fs.first_m);
678                                 fs.m = NULL;
679                                 cnt.v_cow_optim++;
680                         } else {
681                                 /*
682                                  * Oh, well, lets copy it.
683                                  */
684                                 vm_page_copy(fs.m, fs.first_m);
685                         }
686
687                         if (fs.m) {
688                                 /*
689                                  * We no longer need the old page or object.
690                                  */
691                                 release_page(&fs);
692                         }
693
694                         /*
695                          * fs.object != fs.first_object due to above 
696                          * conditional
697                          */
698                         vm_object_pip_wakeup(fs.object);
699
700                         /*
701                          * Only use the new page below...
702                          */
703                         cnt.v_cow_faults++;
704                         fs.m = fs.first_m;
705                         fs.object = fs.first_object;
706                         fs.pindex = fs.first_pindex;
707
708                 } else {
709                         prot &= ~VM_PROT_WRITE;
710                 }
711         }
712
713         /*
714          * We must verify that the maps have not changed since our last
715          * lookup.
716          */
717         if (!fs.lookup_still_valid &&
718                 (fs.map->timestamp != map_generation)) {
719                 vm_object_t retry_object;
720                 vm_pindex_t retry_pindex;
721                 vm_prot_t retry_prot;
722
723                 /*
724                  * Since map entries may be pageable, make sure we can take a
725                  * page fault on them.
726                  */
727
728                 /*
729                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
730                  * avoid a deadlock between the inode and exec_map that can
731                  * occur due to locks being obtained in different orders.
732                  */
733                 if (fs.vp != NULL) {
734                         vput(fs.vp);
735                         fs.vp = NULL;
736                 }
737                 
738                 if (fs.map->infork) {
739                         release_page(&fs);
740                         unlock_and_deallocate(&fs);
741                         goto RetryFault;
742                 }
743
744                 /*
745                  * To avoid trying to write_lock the map while another process
746                  * has it read_locked (in vm_map_pageable), we do not try for
747                  * write permission.  If the page is still writable, we will
748                  * get write permission.  If it is not, or has been marked
749                  * needs_copy, we enter the mapping without write permission,
750                  * and will merely take another fault.
751                  */
752                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
753                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
754                 map_generation = fs.map->timestamp;
755
756                 /*
757                  * If we don't need the page any longer, put it on the active
758                  * list (the easiest thing to do here).  If no one needs it,
759                  * pageout will grab it eventually.
760                  */
761                 if (result != KERN_SUCCESS) {
762                         release_page(&fs);
763                         unlock_and_deallocate(&fs);
764                         return (result);
765                 }
766                 fs.lookup_still_valid = TRUE;
767
768                 if ((retry_object != fs.first_object) ||
769                     (retry_pindex != fs.first_pindex)) {
770                         release_page(&fs);
771                         unlock_and_deallocate(&fs);
772                         goto RetryFault;
773                 }
774                 /*
775                  * Check whether the protection has changed or the object has
776                  * been copied while we left the map unlocked. Changing from
777                  * read to write permission is OK - we leave the page
778                  * write-protected, and catch the write fault. Changing from
779                  * write to read permission means that we can't mark the page
780                  * write-enabled after all.
781                  */
782                 prot &= retry_prot;
783         }
784
785         /*
786          * Put this page into the physical map. We had to do the unlock above
787          * because pmap_enter may cause other faults.   We don't put the page
788          * back on the active queue until later so that the page-out daemon
789          * won't find us (yet).
790          */
791
792         if (prot & VM_PROT_WRITE) {
793                 vm_page_flag_set(fs.m, PG_WRITEABLE);
794                 vm_object_set_writeable_dirty(fs.m->object);
795
796                 /*
797                  * If the fault is a write, we know that this page is being
798                  * written NOW so dirty it explicitly to save on 
799                  * pmap_is_modified() calls later.
800                  *
801                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
802                  * if the page is already dirty to prevent data written with
803                  * the expectation of being synced from not being synced.
804                  * Likewise if this entry does not request NOSYNC then make
805                  * sure the page isn't marked NOSYNC.  Applications sharing
806                  * data should use the same flags to avoid ping ponging.
807                  *
808                  * Also tell the backing pager, if any, that it should remove
809                  * any swap backing since the page is now dirty.
810                  */
811                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
812                         if (fs.m->dirty == 0)
813                                 vm_page_flag_set(fs.m, PG_NOSYNC);
814                 } else {
815                         vm_page_flag_clear(fs.m, PG_NOSYNC);
816                 }
817                 if (fault_flags & VM_FAULT_DIRTY) {
818                         int s;
819                         vm_page_dirty(fs.m);
820                         s = splvm();
821                         vm_pager_page_unswapped(fs.m);
822                         splx(s);
823                 }
824         }
825
826         /*
827          * Page had better still be busy
828          */
829         KASSERT(fs.m->flags & PG_BUSY,
830                 ("vm_fault: page %p not busy!", fs.m));
831         unlock_things(&fs);
832
833         /*
834          * Sanity check: page must be completely valid or it is not fit to
835          * map into user space.  vm_pager_get_pages() ensures this.
836          */
837         if (fs.m->valid != VM_PAGE_BITS_ALL) {
838                 vm_page_zero_invalid(fs.m, TRUE);
839                 printf("Warning: page %p partially invalid on fault\n", fs.m);
840         }
841         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
842         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
843                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
844         }
845         vm_page_flag_clear(fs.m, PG_ZERO);
846         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
847         if (fault_flags & VM_FAULT_HOLD)
848                 vm_page_hold(fs.m);
849
850         /*
851          * If the page is not wired down, then put it where the pageout daemon
852          * can find it.
853          */
854         if (fault_flags & VM_FAULT_WIRE_MASK) {
855                 if (wired)
856                         vm_page_wire(fs.m);
857                 else
858                         vm_page_unwire(fs.m, 1);
859         } else {
860                 vm_page_activate(fs.m);
861         }
862
863         mtx_lock_spin(&sched_lock);
864         if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
865                 if (hardfault) {
866                         curproc->p_stats->p_ru.ru_majflt++;
867                 } else {
868                         curproc->p_stats->p_ru.ru_minflt++;
869                 }
870         }
871         mtx_unlock_spin(&sched_lock);
872
873         /*
874          * Unlock everything, and return
875          */
876         vm_page_wakeup(fs.m);
877         vm_object_deallocate(fs.first_object);
878         return (KERN_SUCCESS);
879
880 }
881
882 /*
883  *      vm_fault_wire:
884  *
885  *      Wire down a range of virtual addresses in a map.
886  */
887 int
888 vm_fault_wire(map, start, end)
889         vm_map_t map;
890         vm_offset_t start, end;
891 {
892
893         vm_offset_t va;
894         pmap_t pmap;
895         int rv;
896
897         pmap = vm_map_pmap(map);
898
899         /*
900          * Inform the physical mapping system that the range of addresses may
901          * not fault, so that page tables and such can be locked down as well.
902          */
903         pmap_pageable(pmap, start, end, FALSE);
904
905         /*
906          * We simulate a fault to get the page and enter it in the physical
907          * map.
908          */
909         for (va = start; va < end; va += PAGE_SIZE) {
910                 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
911                         VM_FAULT_CHANGE_WIRING);
912                 if (rv) {
913                         if (va != start)
914                                 vm_fault_unwire(map, start, va);
915                         return (rv);
916                 }
917         }
918         return (KERN_SUCCESS);
919 }
920
921 /*
922  *      vm_fault_user_wire:
923  *
924  *      Wire down a range of virtual addresses in a map.  This
925  *      is for user mode though, so we only ask for read access
926  *      on currently read only sections.
927  */
928 int
929 vm_fault_user_wire(map, start, end)
930         vm_map_t map;
931         vm_offset_t start, end;
932 {
933
934         vm_offset_t va;
935         pmap_t pmap;
936         int rv;
937
938         GIANT_REQUIRED;
939
940         pmap = vm_map_pmap(map);
941
942         /*
943          * Inform the physical mapping system that the range of addresses may
944          * not fault, so that page tables and such can be locked down as well.
945          */
946         pmap_pageable(pmap, start, end, FALSE);
947
948         /*
949          * We simulate a fault to get the page and enter it in the physical
950          * map.
951          */
952         for (va = start; va < end; va += PAGE_SIZE) {
953                 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
954                 if (rv) {
955                         if (va != start)
956                                 vm_fault_unwire(map, start, va);
957                         return (rv);
958                 }
959         }
960         return (KERN_SUCCESS);
961 }
962
963
964 /*
965  *      vm_fault_unwire:
966  *
967  *      Unwire a range of virtual addresses in a map.
968  */
969 void
970 vm_fault_unwire(map, start, end)
971         vm_map_t map;
972         vm_offset_t start, end;
973 {
974
975         vm_offset_t va, pa;
976         pmap_t pmap;
977
978         pmap = vm_map_pmap(map);
979
980         /*
981          * Since the pages are wired down, we must be able to get their
982          * mappings from the physical map system.
983          */
984         for (va = start; va < end; va += PAGE_SIZE) {
985                 pa = pmap_extract(pmap, va);
986                 if (pa != (vm_offset_t) 0) {
987                         pmap_change_wiring(pmap, va, FALSE);
988                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
989                 }
990         }
991
992         /*
993          * Inform the physical mapping system that the range of addresses may
994          * fault, so that page tables and such may be unwired themselves.
995          */
996         pmap_pageable(pmap, start, end, TRUE);
997
998 }
999
1000 /*
1001  *      Routine:
1002  *              vm_fault_copy_entry
1003  *      Function:
1004  *              Copy all of the pages from a wired-down map entry to another.
1005  *
1006  *      In/out conditions:
1007  *              The source and destination maps must be locked for write.
1008  *              The source map entry must be wired down (or be a sharing map
1009  *              entry corresponding to a main map entry that is wired down).
1010  */
1011 void
1012 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1013         vm_map_t dst_map;
1014         vm_map_t src_map;
1015         vm_map_entry_t dst_entry;
1016         vm_map_entry_t src_entry;
1017 {
1018         vm_object_t dst_object;
1019         vm_object_t src_object;
1020         vm_ooffset_t dst_offset;
1021         vm_ooffset_t src_offset;
1022         vm_prot_t prot;
1023         vm_offset_t vaddr;
1024         vm_page_t dst_m;
1025         vm_page_t src_m;
1026
1027 #ifdef  lint
1028         src_map++;
1029 #endif  /* lint */
1030
1031         src_object = src_entry->object.vm_object;
1032         src_offset = src_entry->offset;
1033
1034         /*
1035          * Create the top-level object for the destination entry. (Doesn't
1036          * actually shadow anything - we copy the pages directly.)
1037          */
1038         dst_object = vm_object_allocate(OBJT_DEFAULT,
1039             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1040
1041         dst_entry->object.vm_object = dst_object;
1042         dst_entry->offset = 0;
1043
1044         prot = dst_entry->max_protection;
1045
1046         /*
1047          * Loop through all of the pages in the entry's range, copying each
1048          * one from the source object (it should be there) to the destination
1049          * object.
1050          */
1051         for (vaddr = dst_entry->start, dst_offset = 0;
1052             vaddr < dst_entry->end;
1053             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1054
1055                 /*
1056                  * Allocate a page in the destination object
1057                  */
1058                 do {
1059                         dst_m = vm_page_alloc(dst_object,
1060                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1061                         if (dst_m == NULL) {
1062                                 VM_WAIT;
1063                         }
1064                 } while (dst_m == NULL);
1065
1066                 /*
1067                  * Find the page in the source object, and copy it in.
1068                  * (Because the source is wired down, the page will be in
1069                  * memory.)
1070                  */
1071                 src_m = vm_page_lookup(src_object,
1072                         OFF_TO_IDX(dst_offset + src_offset));
1073                 if (src_m == NULL)
1074                         panic("vm_fault_copy_wired: page missing");
1075
1076                 vm_page_copy(src_m, dst_m);
1077
1078                 /*
1079                  * Enter it in the pmap...
1080                  */
1081                 vm_page_flag_clear(dst_m, PG_ZERO);
1082                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1083                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1084
1085                 /*
1086                  * Mark it no longer busy, and put it on the active list.
1087                  */
1088                 vm_page_activate(dst_m);
1089                 vm_page_wakeup(dst_m);
1090         }
1091 }
1092
1093
1094 /*
1095  * This routine checks around the requested page for other pages that
1096  * might be able to be faulted in.  This routine brackets the viable
1097  * pages for the pages to be paged in.
1098  *
1099  * Inputs:
1100  *      m, rbehind, rahead
1101  *
1102  * Outputs:
1103  *  marray (array of vm_page_t), reqpage (index of requested page)
1104  *
1105  * Return value:
1106  *  number of pages in marray
1107  *
1108  * This routine can't block.
1109  */
1110 static int
1111 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1112         vm_page_t m;
1113         int rbehind;
1114         int rahead;
1115         vm_page_t *marray;
1116         int *reqpage;
1117 {
1118         int i,j;
1119         vm_object_t object;
1120         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1121         vm_page_t rtm;
1122         int cbehind, cahead;
1123
1124         GIANT_REQUIRED;
1125
1126         object = m->object;
1127         pindex = m->pindex;
1128
1129         /*
1130          * we don't fault-ahead for device pager
1131          */
1132         if (object->type == OBJT_DEVICE) {
1133                 *reqpage = 0;
1134                 marray[0] = m;
1135                 return 1;
1136         }
1137
1138         /*
1139          * if the requested page is not available, then give up now
1140          */
1141         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1142                 return 0;
1143         }
1144
1145         if ((cbehind == 0) && (cahead == 0)) {
1146                 *reqpage = 0;
1147                 marray[0] = m;
1148                 return 1;
1149         }
1150
1151         if (rahead > cahead) {
1152                 rahead = cahead;
1153         }
1154
1155         if (rbehind > cbehind) {
1156                 rbehind = cbehind;
1157         }
1158
1159         /*
1160          * try to do any readahead that we might have free pages for.
1161          */
1162         if ((rahead + rbehind) >
1163                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1164                 pagedaemon_wakeup();
1165                 marray[0] = m;
1166                 *reqpage = 0;
1167                 return 1;
1168         }
1169
1170         /*
1171          * scan backward for the read behind pages -- in memory 
1172          */
1173         if (pindex > 0) {
1174                 if (rbehind > pindex) {
1175                         rbehind = pindex;
1176                         startpindex = 0;
1177                 } else {
1178                         startpindex = pindex - rbehind;
1179                 }
1180
1181                 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1182                         if (vm_page_lookup(object, tpindex)) {
1183                                 startpindex = tpindex + 1;
1184                                 break;
1185                         }
1186                         if (tpindex == 0)
1187                                 break;
1188                 }
1189
1190                 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1191
1192                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1193                         if (rtm == NULL) {
1194                                 for (j = 0; j < i; j++) {
1195                                         vm_page_free(marray[j]);
1196                                 }
1197                                 marray[0] = m;
1198                                 *reqpage = 0;
1199                                 return 1;
1200                         }
1201
1202                         marray[i] = rtm;
1203                 }
1204         } else {
1205                 startpindex = 0;
1206                 i = 0;
1207         }
1208
1209         marray[i] = m;
1210         /* page offset of the required page */
1211         *reqpage = i;
1212
1213         tpindex = pindex + 1;
1214         i++;
1215
1216         /*
1217          * scan forward for the read ahead pages
1218          */
1219         endpindex = tpindex + rahead;
1220         if (endpindex > object->size)
1221                 endpindex = object->size;
1222
1223         for (; tpindex < endpindex; i++, tpindex++) {
1224
1225                 if (vm_page_lookup(object, tpindex)) {
1226                         break;
1227                 }
1228
1229                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1230                 if (rtm == NULL) {
1231                         break;
1232                 }
1233
1234                 marray[i] = rtm;
1235         }
1236
1237         /* return number of bytes of pages */
1238         return i;
1239 }