]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
riscv: Small fix to CPU compatibility identification
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/rwlock.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_reserv.h>
110
111 #define PFBAK 4
112 #define PFFOR 4
113
114 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
115 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
116
117 #define VM_FAULT_DONTNEED_MIN   1048576
118
119 struct faultstate {
120         vm_page_t m;
121         vm_object_t object;
122         vm_pindex_t pindex;
123         vm_page_t first_m;
124         vm_object_t     first_object;
125         vm_pindex_t first_pindex;
126         vm_map_t map;
127         vm_map_entry_t entry;
128         int map_generation;
129         bool lookup_still_valid;
130         struct vnode *vp;
131 };
132
133 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
134             int ahead);
135 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
136             int backward, int forward, bool obj_locked);
137
138 static int vm_pfault_oom_attempts = 3;
139 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
140     &vm_pfault_oom_attempts, 0,
141     "Number of page allocation attempts in page fault handler before it "
142     "triggers OOM handling");
143
144 static int vm_pfault_oom_wait = 10;
145 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
146     &vm_pfault_oom_wait, 0,
147     "Number of seconds to wait for free pages before retrying "
148     "the page fault handler");
149
150 static inline void
151 release_page(struct faultstate *fs)
152 {
153
154         vm_page_xunbusy(fs->m);
155         vm_page_lock(fs->m);
156         vm_page_deactivate(fs->m);
157         vm_page_unlock(fs->m);
158         fs->m = NULL;
159 }
160
161 static inline void
162 unlock_map(struct faultstate *fs)
163 {
164
165         if (fs->lookup_still_valid) {
166                 vm_map_lookup_done(fs->map, fs->entry);
167                 fs->lookup_still_valid = false;
168         }
169 }
170
171 static void
172 unlock_vp(struct faultstate *fs)
173 {
174
175         if (fs->vp != NULL) {
176                 vput(fs->vp);
177                 fs->vp = NULL;
178         }
179 }
180
181 static void
182 unlock_and_deallocate(struct faultstate *fs)
183 {
184
185         vm_object_pip_wakeup(fs->object);
186         VM_OBJECT_WUNLOCK(fs->object);
187         if (fs->object != fs->first_object) {
188                 VM_OBJECT_WLOCK(fs->first_object);
189                 vm_page_free(fs->first_m);
190                 vm_object_pip_wakeup(fs->first_object);
191                 VM_OBJECT_WUNLOCK(fs->first_object);
192                 fs->first_m = NULL;
193         }
194         vm_object_deallocate(fs->first_object);
195         unlock_map(fs);
196         unlock_vp(fs);
197 }
198
199 static void
200 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
201     vm_prot_t fault_type, int fault_flags, bool set_wd)
202 {
203         bool need_dirty;
204
205         if (((prot & VM_PROT_WRITE) == 0 &&
206             (fault_flags & VM_FAULT_DIRTY) == 0) ||
207             (m->oflags & VPO_UNMANAGED) != 0)
208                 return;
209
210         VM_OBJECT_ASSERT_LOCKED(m->object);
211
212         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
213             (fault_flags & VM_FAULT_WIRE) == 0) ||
214             (fault_flags & VM_FAULT_DIRTY) != 0;
215
216         if (set_wd)
217                 vm_object_set_writeable_dirty(m->object);
218         else
219                 /*
220                  * If two callers of vm_fault_dirty() with set_wd ==
221                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
222                  * flag set, other with flag clear, race, it is
223                  * possible for the no-NOSYNC thread to see m->dirty
224                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
225                  * around manipulation of VPO_NOSYNC and
226                  * vm_page_dirty() call, to avoid the race and keep
227                  * m->oflags consistent.
228                  */
229                 vm_page_lock(m);
230
231         /*
232          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
233          * if the page is already dirty to prevent data written with
234          * the expectation of being synced from not being synced.
235          * Likewise if this entry does not request NOSYNC then make
236          * sure the page isn't marked NOSYNC.  Applications sharing
237          * data should use the same flags to avoid ping ponging.
238          */
239         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
240                 if (m->dirty == 0) {
241                         m->oflags |= VPO_NOSYNC;
242                 }
243         } else {
244                 m->oflags &= ~VPO_NOSYNC;
245         }
246
247         /*
248          * If the fault is a write, we know that this page is being
249          * written NOW so dirty it explicitly to save on
250          * pmap_is_modified() calls later.
251          *
252          * Also, since the page is now dirty, we can possibly tell
253          * the pager to release any swap backing the page.  Calling
254          * the pager requires a write lock on the object.
255          */
256         if (need_dirty)
257                 vm_page_dirty(m);
258         if (!set_wd)
259                 vm_page_unlock(m);
260         else if (need_dirty)
261                 vm_pager_page_unswapped(m);
262 }
263
264 /*
265  * Unlocks fs.first_object and fs.map on success.
266  */
267 static int
268 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
269     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
270 {
271         vm_page_t m, m_map;
272 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
273     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
274     VM_NRESERVLEVEL > 0
275         vm_page_t m_super;
276         int flags;
277 #endif
278         int psind, rv;
279
280         MPASS(fs->vp == NULL);
281         m = vm_page_lookup(fs->first_object, fs->first_pindex);
282         /* A busy page can be mapped for read|execute access. */
283         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
284             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
285                 return (KERN_FAILURE);
286         m_map = m;
287         psind = 0;
288 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
289     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
290     VM_NRESERVLEVEL > 0
291         if ((m->flags & PG_FICTITIOUS) == 0 &&
292             (m_super = vm_reserv_to_superpage(m)) != NULL &&
293             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
294             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
295             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
296             (pagesizes[m_super->psind] - 1)) && !wired &&
297             pmap_ps_enabled(fs->map->pmap)) {
298                 flags = PS_ALL_VALID;
299                 if ((prot & VM_PROT_WRITE) != 0) {
300                         /*
301                          * Create a superpage mapping allowing write access
302                          * only if none of the constituent pages are busy and
303                          * all of them are already dirty (except possibly for
304                          * the page that was faulted on).
305                          */
306                         flags |= PS_NONE_BUSY;
307                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
308                                 flags |= PS_ALL_DIRTY;
309                 }
310                 if (vm_page_ps_test(m_super, flags, m)) {
311                         m_map = m_super;
312                         psind = m_super->psind;
313                         vaddr = rounddown2(vaddr, pagesizes[psind]);
314                         /* Preset the modified bit for dirty superpages. */
315                         if ((flags & PS_ALL_DIRTY) != 0)
316                                 fault_type |= VM_PROT_WRITE;
317                 }
318         }
319 #endif
320         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
321             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
322         if (rv != KERN_SUCCESS)
323                 return (rv);
324         if (m_hold != NULL) {
325                 *m_hold = m;
326                 vm_page_wire(m);
327         }
328         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
329         if (psind == 0 && !wired)
330                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
331         VM_OBJECT_RUNLOCK(fs->first_object);
332         vm_map_lookup_done(fs->map, fs->entry);
333         curthread->td_ru.ru_minflt++;
334         return (KERN_SUCCESS);
335 }
336
337 static void
338 vm_fault_restore_map_lock(struct faultstate *fs)
339 {
340
341         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
342         MPASS(fs->first_object->paging_in_progress > 0);
343
344         if (!vm_map_trylock_read(fs->map)) {
345                 VM_OBJECT_WUNLOCK(fs->first_object);
346                 vm_map_lock_read(fs->map);
347                 VM_OBJECT_WLOCK(fs->first_object);
348         }
349         fs->lookup_still_valid = true;
350 }
351
352 static void
353 vm_fault_populate_check_page(vm_page_t m)
354 {
355
356         /*
357          * Check each page to ensure that the pager is obeying the
358          * interface: the page must be installed in the object, fully
359          * valid, and exclusively busied.
360          */
361         MPASS(m != NULL);
362         MPASS(m->valid == VM_PAGE_BITS_ALL);
363         MPASS(vm_page_xbusied(m));
364 }
365
366 static void
367 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
368     vm_pindex_t last)
369 {
370         vm_page_t m;
371         vm_pindex_t pidx;
372
373         VM_OBJECT_ASSERT_WLOCKED(object);
374         MPASS(first <= last);
375         for (pidx = first, m = vm_page_lookup(object, pidx);
376             pidx <= last; pidx++, m = vm_page_next(m)) {
377                 vm_fault_populate_check_page(m);
378                 vm_page_lock(m);
379                 vm_page_deactivate(m);
380                 vm_page_unlock(m);
381                 vm_page_xunbusy(m);
382         }
383 }
384
385 static int
386 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
387     int fault_flags, boolean_t wired, vm_page_t *m_hold)
388 {
389         struct mtx *m_mtx;
390         vm_offset_t vaddr;
391         vm_page_t m;
392         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
393         int i, npages, psind, rv;
394
395         MPASS(fs->object == fs->first_object);
396         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
397         MPASS(fs->first_object->paging_in_progress > 0);
398         MPASS(fs->first_object->backing_object == NULL);
399         MPASS(fs->lookup_still_valid);
400
401         pager_first = OFF_TO_IDX(fs->entry->offset);
402         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
403         unlock_map(fs);
404         unlock_vp(fs);
405
406         /*
407          * Call the pager (driver) populate() method.
408          *
409          * There is no guarantee that the method will be called again
410          * if the current fault is for read, and a future fault is
411          * for write.  Report the entry's maximum allowed protection
412          * to the driver.
413          */
414         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
415             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
416
417         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
418         if (rv == VM_PAGER_BAD) {
419                 /*
420                  * VM_PAGER_BAD is the backdoor for a pager to request
421                  * normal fault handling.
422                  */
423                 vm_fault_restore_map_lock(fs);
424                 if (fs->map->timestamp != fs->map_generation)
425                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
426                 return (KERN_NOT_RECEIVER);
427         }
428         if (rv != VM_PAGER_OK)
429                 return (KERN_FAILURE); /* AKA SIGSEGV */
430
431         /* Ensure that the driver is obeying the interface. */
432         MPASS(pager_first <= pager_last);
433         MPASS(fs->first_pindex <= pager_last);
434         MPASS(fs->first_pindex >= pager_first);
435         MPASS(pager_last < fs->first_object->size);
436
437         vm_fault_restore_map_lock(fs);
438         if (fs->map->timestamp != fs->map_generation) {
439                 vm_fault_populate_cleanup(fs->first_object, pager_first,
440                     pager_last);
441                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
442         }
443
444         /*
445          * The map is unchanged after our last unlock.  Process the fault.
446          *
447          * The range [pager_first, pager_last] that is given to the
448          * pager is only a hint.  The pager may populate any range
449          * within the object that includes the requested page index.
450          * In case the pager expanded the range, clip it to fit into
451          * the map entry.
452          */
453         map_first = OFF_TO_IDX(fs->entry->offset);
454         if (map_first > pager_first) {
455                 vm_fault_populate_cleanup(fs->first_object, pager_first,
456                     map_first - 1);
457                 pager_first = map_first;
458         }
459         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
460         if (map_last < pager_last) {
461                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
462                     pager_last);
463                 pager_last = map_last;
464         }
465         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
466             pidx <= pager_last;
467             pidx += npages, m = vm_page_next(&m[npages - 1])) {
468                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
469 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
470     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
471                 psind = m->psind;
472                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
473                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
474                     !pmap_ps_enabled(fs->map->pmap) || wired))
475                         psind = 0;
476 #else
477                 psind = 0;
478 #endif          
479                 npages = atop(pagesizes[psind]);
480                 for (i = 0; i < npages; i++) {
481                         vm_fault_populate_check_page(&m[i]);
482                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
483                             fault_flags, true);
484                 }
485                 VM_OBJECT_WUNLOCK(fs->first_object);
486                 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
487                     (wired ? PMAP_ENTER_WIRED : 0), psind);
488 #if defined(__amd64__)
489                 if (psind > 0 && rv == KERN_FAILURE) {
490                         for (i = 0; i < npages; i++) {
491                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
492                                     &m[i], prot, fault_type |
493                                     (wired ? PMAP_ENTER_WIRED : 0), 0);
494                                 MPASS(rv == KERN_SUCCESS);
495                         }
496                 }
497 #else
498                 MPASS(rv == KERN_SUCCESS);
499 #endif
500                 VM_OBJECT_WLOCK(fs->first_object);
501                 m_mtx = NULL;
502                 for (i = 0; i < npages; i++) {
503                         if ((fault_flags & VM_FAULT_WIRE) != 0) {
504                                 vm_page_wire(&m[i]);
505                         } else {
506                                 vm_page_change_lock(&m[i], &m_mtx);
507                                 vm_page_activate(&m[i]);
508                         }
509                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
510                                 *m_hold = &m[i];
511                                 vm_page_wire(&m[i]);
512                         }
513                         vm_page_xunbusy(&m[i]);
514                 }
515                 if (m_mtx != NULL)
516                         mtx_unlock(m_mtx);
517         }
518         curthread->td_ru.ru_majflt++;
519         return (KERN_SUCCESS);
520 }
521
522 /*
523  *      vm_fault:
524  *
525  *      Handle a page fault occurring at the given address,
526  *      requiring the given permissions, in the map specified.
527  *      If successful, the page is inserted into the
528  *      associated physical map.
529  *
530  *      NOTE: the given address should be truncated to the
531  *      proper page address.
532  *
533  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
534  *      a standard error specifying why the fault is fatal is returned.
535  *
536  *      The map in question must be referenced, and remains so.
537  *      Caller may hold no locks.
538  */
539 int
540 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
541     int fault_flags)
542 {
543         struct thread *td;
544         int result;
545
546         td = curthread;
547         if ((td->td_pflags & TDP_NOFAULTING) != 0)
548                 return (KERN_PROTECTION_FAILURE);
549 #ifdef KTRACE
550         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
551                 ktrfault(vaddr, fault_type);
552 #endif
553         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
554             NULL);
555 #ifdef KTRACE
556         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
557                 ktrfaultend(result);
558 #endif
559         return (result);
560 }
561
562 int
563 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
564     int fault_flags, vm_page_t *m_hold)
565 {
566         struct faultstate fs;
567         struct vnode *vp;
568         struct domainset *dset;
569         vm_object_t next_object, retry_object;
570         vm_offset_t e_end, e_start;
571         vm_pindex_t retry_pindex;
572         vm_prot_t prot, retry_prot;
573         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
574         int locked, nera, oom, result, rv;
575         u_char behavior;
576         boolean_t wired;        /* Passed by reference. */
577         bool dead, hardfault, is_first_object_locked;
578
579         VM_CNT_INC(v_vm_faults);
580         fs.vp = NULL;
581         faultcount = 0;
582         nera = -1;
583         hardfault = false;
584
585 RetryFault:
586         oom = 0;
587 RetryFault_oom:
588
589         /*
590          * Find the backing store object and offset into it to begin the
591          * search.
592          */
593         fs.map = map;
594         result = vm_map_lookup(&fs.map, vaddr, fault_type |
595             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
596             &fs.first_pindex, &prot, &wired);
597         if (result != KERN_SUCCESS) {
598                 unlock_vp(&fs);
599                 return (result);
600         }
601
602         fs.map_generation = fs.map->timestamp;
603
604         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
605                 panic("%s: fault on nofault entry, addr: %#lx",
606                     __func__, (u_long)vaddr);
607         }
608
609         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
610             fs.entry->wiring_thread != curthread) {
611                 vm_map_unlock_read(fs.map);
612                 vm_map_lock(fs.map);
613                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
614                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
615                         unlock_vp(&fs);
616                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
617                         vm_map_unlock_and_wait(fs.map, 0);
618                 } else
619                         vm_map_unlock(fs.map);
620                 goto RetryFault;
621         }
622
623         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
624
625         if (wired)
626                 fault_type = prot | (fault_type & VM_PROT_COPY);
627         else
628                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
629                     ("!wired && VM_FAULT_WIRE"));
630
631         /*
632          * Try to avoid lock contention on the top-level object through
633          * special-case handling of some types of page faults, specifically,
634          * those that are both (1) mapping an existing page from the top-
635          * level object and (2) not having to mark that object as containing
636          * dirty pages.  Under these conditions, a read lock on the top-level
637          * object suffices, allowing multiple page faults of a similar type to
638          * run in parallel on the same top-level object.
639          */
640         if (fs.vp == NULL /* avoid locked vnode leak */ &&
641             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
642             /* avoid calling vm_object_set_writeable_dirty() */
643             ((prot & VM_PROT_WRITE) == 0 ||
644             (fs.first_object->type != OBJT_VNODE &&
645             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
646             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
647                 VM_OBJECT_RLOCK(fs.first_object);
648                 if ((prot & VM_PROT_WRITE) == 0 ||
649                     (fs.first_object->type != OBJT_VNODE &&
650                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
651                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
652                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
653                             fault_flags, wired, m_hold);
654                         if (rv == KERN_SUCCESS)
655                                 return (rv);
656                 }
657                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
658                         VM_OBJECT_RUNLOCK(fs.first_object);
659                         VM_OBJECT_WLOCK(fs.first_object);
660                 }
661         } else {
662                 VM_OBJECT_WLOCK(fs.first_object);
663         }
664
665         /*
666          * Make a reference to this object to prevent its disposal while we
667          * are messing with it.  Once we have the reference, the map is free
668          * to be diddled.  Since objects reference their shadows (and copies),
669          * they will stay around as well.
670          *
671          * Bump the paging-in-progress count to prevent size changes (e.g. 
672          * truncation operations) during I/O.
673          */
674         vm_object_reference_locked(fs.first_object);
675         vm_object_pip_add(fs.first_object, 1);
676
677         fs.lookup_still_valid = true;
678
679         fs.first_m = NULL;
680
681         /*
682          * Search for the page at object/offset.
683          */
684         fs.object = fs.first_object;
685         fs.pindex = fs.first_pindex;
686         while (TRUE) {
687                 /*
688                  * If the object is marked for imminent termination,
689                  * we retry here, since the collapse pass has raced
690                  * with us.  Otherwise, if we see terminally dead
691                  * object, return fail.
692                  */
693                 if ((fs.object->flags & OBJ_DEAD) != 0) {
694                         dead = fs.object->type == OBJT_DEAD;
695                         unlock_and_deallocate(&fs);
696                         if (dead)
697                                 return (KERN_PROTECTION_FAILURE);
698                         pause("vmf_de", 1);
699                         goto RetryFault;
700                 }
701
702                 /*
703                  * See if page is resident
704                  */
705                 fs.m = vm_page_lookup(fs.object, fs.pindex);
706                 if (fs.m != NULL) {
707                         /*
708                          * Wait/Retry if the page is busy.  We have to do this
709                          * if the page is either exclusive or shared busy
710                          * because the vm_pager may be using read busy for
711                          * pageouts (and even pageins if it is the vnode
712                          * pager), and we could end up trying to pagein and
713                          * pageout the same page simultaneously.
714                          *
715                          * We can theoretically allow the busy case on a read
716                          * fault if the page is marked valid, but since such
717                          * pages are typically already pmap'd, putting that
718                          * special case in might be more effort then it is 
719                          * worth.  We cannot under any circumstances mess
720                          * around with a shared busied page except, perhaps,
721                          * to pmap it.
722                          */
723                         if (vm_page_busied(fs.m)) {
724                                 /*
725                                  * Reference the page before unlocking and
726                                  * sleeping so that the page daemon is less
727                                  * likely to reclaim it.
728                                  */
729                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
730                                 if (fs.object != fs.first_object) {
731                                         if (!VM_OBJECT_TRYWLOCK(
732                                             fs.first_object)) {
733                                                 VM_OBJECT_WUNLOCK(fs.object);
734                                                 VM_OBJECT_WLOCK(fs.first_object);
735                                                 VM_OBJECT_WLOCK(fs.object);
736                                         }
737                                         vm_page_free(fs.first_m);
738                                         vm_object_pip_wakeup(fs.first_object);
739                                         VM_OBJECT_WUNLOCK(fs.first_object);
740                                         fs.first_m = NULL;
741                                 }
742                                 unlock_map(&fs);
743                                 if (fs.m == vm_page_lookup(fs.object,
744                                     fs.pindex)) {
745                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
746                                 }
747                                 vm_object_pip_wakeup(fs.object);
748                                 VM_OBJECT_WUNLOCK(fs.object);
749                                 VM_CNT_INC(v_intrans);
750                                 vm_object_deallocate(fs.first_object);
751                                 goto RetryFault;
752                         }
753
754                         /*
755                          * Mark page busy for other processes, and the 
756                          * pagedaemon.  If it still isn't completely valid
757                          * (readable), jump to readrest, else break-out ( we
758                          * found the page ).
759                          */
760                         vm_page_xbusy(fs.m);
761                         if (fs.m->valid != VM_PAGE_BITS_ALL)
762                                 goto readrest;
763                         break; /* break to PAGE HAS BEEN FOUND */
764                 }
765                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
766
767                 /*
768                  * Page is not resident.  If the pager might contain the page
769                  * or this is the beginning of the search, allocate a new
770                  * page.  (Default objects are zero-fill, so there is no real
771                  * pager for them.)
772                  */
773                 if (fs.object->type != OBJT_DEFAULT ||
774                     fs.object == fs.first_object) {
775                         if (fs.pindex >= fs.object->size) {
776                                 unlock_and_deallocate(&fs);
777                                 return (KERN_PROTECTION_FAILURE);
778                         }
779
780                         if (fs.object == fs.first_object &&
781                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
782                             fs.first_object->shadow_count == 0) {
783                                 rv = vm_fault_populate(&fs, prot, fault_type,
784                                     fault_flags, wired, m_hold);
785                                 switch (rv) {
786                                 case KERN_SUCCESS:
787                                 case KERN_FAILURE:
788                                         unlock_and_deallocate(&fs);
789                                         return (rv);
790                                 case KERN_RESOURCE_SHORTAGE:
791                                         unlock_and_deallocate(&fs);
792                                         goto RetryFault;
793                                 case KERN_NOT_RECEIVER:
794                                         /*
795                                          * Pager's populate() method
796                                          * returned VM_PAGER_BAD.
797                                          */
798                                         break;
799                                 default:
800                                         panic("inconsistent return codes");
801                                 }
802                         }
803
804                         /*
805                          * Allocate a new page for this object/offset pair.
806                          *
807                          * Unlocked read of the p_flag is harmless. At
808                          * worst, the P_KILLED might be not observed
809                          * there, and allocation can fail, causing
810                          * restart and new reading of the p_flag.
811                          */
812                         dset = fs.object->domain.dr_policy;
813                         if (dset == NULL)
814                                 dset = curthread->td_domain.dr_policy;
815                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
816                             P_KILLED(curproc)) {
817 #if VM_NRESERVLEVEL > 0
818                                 vm_object_color(fs.object, atop(vaddr) -
819                                     fs.pindex);
820 #endif
821                                 alloc_req = P_KILLED(curproc) ?
822                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
823                                 if (fs.object->type != OBJT_VNODE &&
824                                     fs.object->backing_object == NULL)
825                                         alloc_req |= VM_ALLOC_ZERO;
826                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
827                                     alloc_req);
828                         }
829                         if (fs.m == NULL) {
830                                 unlock_and_deallocate(&fs);
831                                 if (vm_pfault_oom_attempts < 0 ||
832                                     oom < vm_pfault_oom_attempts) {
833                                         oom++;
834                                         vm_waitpfault(dset,
835                                             vm_pfault_oom_wait * hz);
836                                         goto RetryFault_oom;
837                                 }
838                                 if (bootverbose)
839                                         printf(
840         "proc %d (%s) failed to alloc page on fault, starting OOM\n",
841                                             curproc->p_pid, curproc->p_comm);
842                                 vm_pageout_oom(VM_OOM_MEM_PF);
843                                 goto RetryFault;
844                         }
845                 }
846
847 readrest:
848                 /*
849                  * At this point, we have either allocated a new page or found
850                  * an existing page that is only partially valid.
851                  *
852                  * We hold a reference on the current object and the page is
853                  * exclusive busied.
854                  */
855
856                 /*
857                  * If the pager for the current object might have the page,
858                  * then determine the number of additional pages to read and
859                  * potentially reprioritize previously read pages for earlier
860                  * reclamation.  These operations should only be performed
861                  * once per page fault.  Even if the current pager doesn't
862                  * have the page, the number of additional pages to read will
863                  * apply to subsequent objects in the shadow chain.
864                  */
865                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
866                     !P_KILLED(curproc)) {
867                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
868                         era = fs.entry->read_ahead;
869                         behavior = vm_map_entry_behavior(fs.entry);
870                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
871                                 nera = 0;
872                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
873                                 nera = VM_FAULT_READ_AHEAD_MAX;
874                                 if (vaddr == fs.entry->next_read)
875                                         vm_fault_dontneed(&fs, vaddr, nera);
876                         } else if (vaddr == fs.entry->next_read) {
877                                 /*
878                                  * This is a sequential fault.  Arithmetically
879                                  * increase the requested number of pages in
880                                  * the read-ahead window.  The requested
881                                  * number of pages is "# of sequential faults
882                                  * x (read ahead min + 1) + read ahead min"
883                                  */
884                                 nera = VM_FAULT_READ_AHEAD_MIN;
885                                 if (era > 0) {
886                                         nera += era + 1;
887                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
888                                                 nera = VM_FAULT_READ_AHEAD_MAX;
889                                 }
890                                 if (era == VM_FAULT_READ_AHEAD_MAX)
891                                         vm_fault_dontneed(&fs, vaddr, nera);
892                         } else {
893                                 /*
894                                  * This is a non-sequential fault.
895                                  */
896                                 nera = 0;
897                         }
898                         if (era != nera) {
899                                 /*
900                                  * A read lock on the map suffices to update
901                                  * the read ahead count safely.
902                                  */
903                                 fs.entry->read_ahead = nera;
904                         }
905
906                         /*
907                          * Prepare for unlocking the map.  Save the map
908                          * entry's start and end addresses, which are used to
909                          * optimize the size of the pager operation below.
910                          * Even if the map entry's addresses change after
911                          * unlocking the map, using the saved addresses is
912                          * safe.
913                          */
914                         e_start = fs.entry->start;
915                         e_end = fs.entry->end;
916                 }
917
918                 /*
919                  * Call the pager to retrieve the page if there is a chance
920                  * that the pager has it, and potentially retrieve additional
921                  * pages at the same time.
922                  */
923                 if (fs.object->type != OBJT_DEFAULT) {
924                         /*
925                          * Release the map lock before locking the vnode or
926                          * sleeping in the pager.  (If the current object has
927                          * a shadow, then an earlier iteration of this loop
928                          * may have already unlocked the map.)
929                          */
930                         unlock_map(&fs);
931
932                         if (fs.object->type == OBJT_VNODE &&
933                             (vp = fs.object->handle) != fs.vp) {
934                                 /*
935                                  * Perform an unlock in case the desired vnode
936                                  * changed while the map was unlocked during a
937                                  * retry.
938                                  */
939                                 unlock_vp(&fs);
940
941                                 locked = VOP_ISLOCKED(vp);
942                                 if (locked != LK_EXCLUSIVE)
943                                         locked = LK_SHARED;
944
945                                 /*
946                                  * We must not sleep acquiring the vnode lock
947                                  * while we have the page exclusive busied or
948                                  * the object's paging-in-progress count
949                                  * incremented.  Otherwise, we could deadlock.
950                                  */
951                                 error = vget(vp, locked | LK_CANRECURSE |
952                                     LK_NOWAIT, curthread);
953                                 if (error != 0) {
954                                         vhold(vp);
955                                         release_page(&fs);
956                                         unlock_and_deallocate(&fs);
957                                         error = vget(vp, locked | LK_RETRY |
958                                             LK_CANRECURSE, curthread);
959                                         vdrop(vp);
960                                         fs.vp = vp;
961                                         KASSERT(error == 0,
962                                             ("vm_fault: vget failed"));
963                                         goto RetryFault;
964                                 }
965                                 fs.vp = vp;
966                         }
967                         KASSERT(fs.vp == NULL || !fs.map->system_map,
968                             ("vm_fault: vnode-backed object mapped by system map"));
969
970                         /*
971                          * Page in the requested page and hint the pager,
972                          * that it may bring up surrounding pages.
973                          */
974                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
975                             P_KILLED(curproc)) {
976                                 behind = 0;
977                                 ahead = 0;
978                         } else {
979                                 /* Is this a sequential fault? */
980                                 if (nera > 0) {
981                                         behind = 0;
982                                         ahead = nera;
983                                 } else {
984                                         /*
985                                          * Request a cluster of pages that is
986                                          * aligned to a VM_FAULT_READ_DEFAULT
987                                          * page offset boundary within the
988                                          * object.  Alignment to a page offset
989                                          * boundary is more likely to coincide
990                                          * with the underlying file system
991                                          * block than alignment to a virtual
992                                          * address boundary.
993                                          */
994                                         cluster_offset = fs.pindex %
995                                             VM_FAULT_READ_DEFAULT;
996                                         behind = ulmin(cluster_offset,
997                                             atop(vaddr - e_start));
998                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
999                                             cluster_offset;
1000                                 }
1001                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
1002                         }
1003                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
1004                             &behind, &ahead);
1005                         if (rv == VM_PAGER_OK) {
1006                                 faultcount = behind + 1 + ahead;
1007                                 hardfault = true;
1008                                 break; /* break to PAGE HAS BEEN FOUND */
1009                         }
1010                         if (rv == VM_PAGER_ERROR)
1011                                 printf("vm_fault: pager read error, pid %d (%s)\n",
1012                                     curproc->p_pid, curproc->p_comm);
1013
1014                         /*
1015                          * If an I/O error occurred or the requested page was
1016                          * outside the range of the pager, clean up and return
1017                          * an error.
1018                          */
1019                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1020                                 if (!vm_page_wired(fs.m))
1021                                         vm_page_free(fs.m);
1022                                 else
1023                                         vm_page_xunbusy(fs.m);
1024                                 fs.m = NULL;
1025                                 unlock_and_deallocate(&fs);
1026                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
1027                                     KERN_PROTECTION_FAILURE);
1028                         }
1029
1030                         /*
1031                          * The requested page does not exist at this object/
1032                          * offset.  Remove the invalid page from the object,
1033                          * waking up anyone waiting for it, and continue on to
1034                          * the next object.  However, if this is the top-level
1035                          * object, we must leave the busy page in place to
1036                          * prevent another process from rushing past us, and
1037                          * inserting the page in that object at the same time
1038                          * that we are.
1039                          */
1040                         if (fs.object != fs.first_object) {
1041                                 if (!vm_page_wired(fs.m))
1042                                         vm_page_free(fs.m);
1043                                 else
1044                                         vm_page_xunbusy(fs.m);
1045                                 fs.m = NULL;
1046                         }
1047                 }
1048
1049                 /*
1050                  * We get here if the object has default pager (or unwiring) 
1051                  * or the pager doesn't have the page.
1052                  */
1053                 if (fs.object == fs.first_object)
1054                         fs.first_m = fs.m;
1055
1056                 /*
1057                  * Move on to the next object.  Lock the next object before
1058                  * unlocking the current one.
1059                  */
1060                 next_object = fs.object->backing_object;
1061                 if (next_object == NULL) {
1062                         /*
1063                          * If there's no object left, fill the page in the top
1064                          * object with zeros.
1065                          */
1066                         if (fs.object != fs.first_object) {
1067                                 vm_object_pip_wakeup(fs.object);
1068                                 VM_OBJECT_WUNLOCK(fs.object);
1069
1070                                 fs.object = fs.first_object;
1071                                 fs.pindex = fs.first_pindex;
1072                                 fs.m = fs.first_m;
1073                                 VM_OBJECT_WLOCK(fs.object);
1074                         }
1075                         fs.first_m = NULL;
1076
1077                         /*
1078                          * Zero the page if necessary and mark it valid.
1079                          */
1080                         if ((fs.m->flags & PG_ZERO) == 0) {
1081                                 pmap_zero_page(fs.m);
1082                         } else {
1083                                 VM_CNT_INC(v_ozfod);
1084                         }
1085                         VM_CNT_INC(v_zfod);
1086                         fs.m->valid = VM_PAGE_BITS_ALL;
1087                         /* Don't try to prefault neighboring pages. */
1088                         faultcount = 1;
1089                         break;  /* break to PAGE HAS BEEN FOUND */
1090                 } else {
1091                         KASSERT(fs.object != next_object,
1092                             ("object loop %p", next_object));
1093                         VM_OBJECT_WLOCK(next_object);
1094                         vm_object_pip_add(next_object, 1);
1095                         if (fs.object != fs.first_object)
1096                                 vm_object_pip_wakeup(fs.object);
1097                         fs.pindex +=
1098                             OFF_TO_IDX(fs.object->backing_object_offset);
1099                         VM_OBJECT_WUNLOCK(fs.object);
1100                         fs.object = next_object;
1101                 }
1102         }
1103
1104         vm_page_assert_xbusied(fs.m);
1105
1106         /*
1107          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1108          * is held.]
1109          */
1110
1111         /*
1112          * If the page is being written, but isn't already owned by the
1113          * top-level object, we have to copy it into a new page owned by the
1114          * top-level object.
1115          */
1116         if (fs.object != fs.first_object) {
1117                 /*
1118                  * We only really need to copy if we want to write it.
1119                  */
1120                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1121                         /*
1122                          * This allows pages to be virtually copied from a 
1123                          * backing_object into the first_object, where the 
1124                          * backing object has no other refs to it, and cannot
1125                          * gain any more refs.  Instead of a bcopy, we just 
1126                          * move the page from the backing object to the 
1127                          * first object.  Note that we must mark the page 
1128                          * dirty in the first object so that it will go out 
1129                          * to swap when needed.
1130                          */
1131                         is_first_object_locked = false;
1132                         if (
1133                                 /*
1134                                  * Only one shadow object
1135                                  */
1136                                 (fs.object->shadow_count == 1) &&
1137                                 /*
1138                                  * No COW refs, except us
1139                                  */
1140                                 (fs.object->ref_count == 1) &&
1141                                 /*
1142                                  * No one else can look this object up
1143                                  */
1144                                 (fs.object->handle == NULL) &&
1145                                 /*
1146                                  * No other ways to look the object up
1147                                  */
1148                                 ((fs.object->type == OBJT_DEFAULT) ||
1149                                  (fs.object->type == OBJT_SWAP)) &&
1150                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1151                                 /*
1152                                  * We don't chase down the shadow chain
1153                                  */
1154                             fs.object == fs.first_object->backing_object) {
1155
1156                                 (void)vm_page_remove(fs.m);
1157                                 vm_page_replace_checked(fs.m, fs.first_object,
1158                                     fs.first_pindex, fs.first_m);
1159                                 vm_page_free(fs.first_m);
1160                                 vm_page_dirty(fs.m);
1161 #if VM_NRESERVLEVEL > 0
1162                                 /*
1163                                  * Rename the reservation.
1164                                  */
1165                                 vm_reserv_rename(fs.m, fs.first_object,
1166                                     fs.object, OFF_TO_IDX(
1167                                     fs.first_object->backing_object_offset));
1168 #endif
1169                                 /*
1170                                  * Removing the page from the backing object
1171                                  * unbusied it.
1172                                  */
1173                                 vm_page_xbusy(fs.m);
1174                                 fs.first_m = fs.m;
1175                                 fs.m = NULL;
1176                                 VM_CNT_INC(v_cow_optim);
1177                         } else {
1178                                 /*
1179                                  * Oh, well, lets copy it.
1180                                  */
1181                                 pmap_copy_page(fs.m, fs.first_m);
1182                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1183                                 if (wired && (fault_flags &
1184                                     VM_FAULT_WIRE) == 0) {
1185                                         vm_page_wire(fs.first_m);
1186                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1187                                 }
1188                                 /*
1189                                  * We no longer need the old page or object.
1190                                  */
1191                                 release_page(&fs);
1192                         }
1193                         /*
1194                          * fs.object != fs.first_object due to above 
1195                          * conditional
1196                          */
1197                         vm_object_pip_wakeup(fs.object);
1198                         VM_OBJECT_WUNLOCK(fs.object);
1199
1200                         /*
1201                          * We only try to prefault read-only mappings to the
1202                          * neighboring pages when this copy-on-write fault is
1203                          * a hard fault.  In other cases, trying to prefault
1204                          * is typically wasted effort.
1205                          */
1206                         if (faultcount == 0)
1207                                 faultcount = 1;
1208
1209                         /*
1210                          * Only use the new page below...
1211                          */
1212                         fs.object = fs.first_object;
1213                         fs.pindex = fs.first_pindex;
1214                         fs.m = fs.first_m;
1215                         if (!is_first_object_locked)
1216                                 VM_OBJECT_WLOCK(fs.object);
1217                         VM_CNT_INC(v_cow_faults);
1218                         curthread->td_cow++;
1219                 } else {
1220                         prot &= ~VM_PROT_WRITE;
1221                 }
1222         }
1223
1224         /*
1225          * We must verify that the maps have not changed since our last
1226          * lookup.
1227          */
1228         if (!fs.lookup_still_valid) {
1229                 if (!vm_map_trylock_read(fs.map)) {
1230                         release_page(&fs);
1231                         unlock_and_deallocate(&fs);
1232                         goto RetryFault;
1233                 }
1234                 fs.lookup_still_valid = true;
1235                 if (fs.map->timestamp != fs.map_generation) {
1236                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1237                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1238
1239                         /*
1240                          * If we don't need the page any longer, put it on the inactive
1241                          * list (the easiest thing to do here).  If no one needs it,
1242                          * pageout will grab it eventually.
1243                          */
1244                         if (result != KERN_SUCCESS) {
1245                                 release_page(&fs);
1246                                 unlock_and_deallocate(&fs);
1247
1248                                 /*
1249                                  * If retry of map lookup would have blocked then
1250                                  * retry fault from start.
1251                                  */
1252                                 if (result == KERN_FAILURE)
1253                                         goto RetryFault;
1254                                 return (result);
1255                         }
1256                         if ((retry_object != fs.first_object) ||
1257                             (retry_pindex != fs.first_pindex)) {
1258                                 release_page(&fs);
1259                                 unlock_and_deallocate(&fs);
1260                                 goto RetryFault;
1261                         }
1262
1263                         /*
1264                          * Check whether the protection has changed or the object has
1265                          * been copied while we left the map unlocked. Changing from
1266                          * read to write permission is OK - we leave the page
1267                          * write-protected, and catch the write fault. Changing from
1268                          * write to read permission means that we can't mark the page
1269                          * write-enabled after all.
1270                          */
1271                         prot &= retry_prot;
1272                         fault_type &= retry_prot;
1273                         if (prot == 0) {
1274                                 release_page(&fs);
1275                                 unlock_and_deallocate(&fs);
1276                                 goto RetryFault;
1277                         }
1278
1279                         /* Reassert because wired may have changed. */
1280                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1281                             ("!wired && VM_FAULT_WIRE"));
1282                 }
1283         }
1284
1285         /*
1286          * If the page was filled by a pager, save the virtual address that
1287          * should be faulted on next under a sequential access pattern to the
1288          * map entry.  A read lock on the map suffices to update this address
1289          * safely.
1290          */
1291         if (hardfault)
1292                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1293
1294         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1295         vm_page_assert_xbusied(fs.m);
1296
1297         /*
1298          * Page must be completely valid or it is not fit to
1299          * map into user space.  vm_pager_get_pages() ensures this.
1300          */
1301         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1302             ("vm_fault: page %p partially invalid", fs.m));
1303         VM_OBJECT_WUNLOCK(fs.object);
1304
1305         /*
1306          * Put this page into the physical map.  We had to do the unlock above
1307          * because pmap_enter() may sleep.  We don't put the page
1308          * back on the active queue until later so that the pageout daemon
1309          * won't find it (yet).
1310          */
1311         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1312             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1313         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1314             wired == 0)
1315                 vm_fault_prefault(&fs, vaddr,
1316                     faultcount > 0 ? behind : PFBAK,
1317                     faultcount > 0 ? ahead : PFFOR, false);
1318         VM_OBJECT_WLOCK(fs.object);
1319
1320         /*
1321          * If the page is not wired down, then put it where the pageout daemon
1322          * can find it.
1323          */
1324         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1325                 vm_page_wire(fs.m);
1326         } else {
1327                 vm_page_lock(fs.m);
1328                 vm_page_activate(fs.m);
1329                 vm_page_unlock(fs.m);
1330         }
1331         if (m_hold != NULL) {
1332                 *m_hold = fs.m;
1333                 vm_page_wire(fs.m);
1334         }
1335         vm_page_xunbusy(fs.m);
1336
1337         /*
1338          * Unlock everything, and return
1339          */
1340         unlock_and_deallocate(&fs);
1341         if (hardfault) {
1342                 VM_CNT_INC(v_io_faults);
1343                 curthread->td_ru.ru_majflt++;
1344 #ifdef RACCT
1345                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1346                         PROC_LOCK(curproc);
1347                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1348                                 racct_add_force(curproc, RACCT_WRITEBPS,
1349                                     PAGE_SIZE + behind * PAGE_SIZE);
1350                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1351                         } else {
1352                                 racct_add_force(curproc, RACCT_READBPS,
1353                                     PAGE_SIZE + ahead * PAGE_SIZE);
1354                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1355                         }
1356                         PROC_UNLOCK(curproc);
1357                 }
1358 #endif
1359         } else 
1360                 curthread->td_ru.ru_minflt++;
1361
1362         return (KERN_SUCCESS);
1363 }
1364
1365 /*
1366  * Speed up the reclamation of pages that precede the faulting pindex within
1367  * the first object of the shadow chain.  Essentially, perform the equivalent
1368  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1369  * the faulting pindex by the cluster size when the pages read by vm_fault()
1370  * cross a cluster-size boundary.  The cluster size is the greater of the
1371  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1372  *
1373  * When "fs->first_object" is a shadow object, the pages in the backing object
1374  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1375  * function must only be concerned with pages in the first object.
1376  */
1377 static void
1378 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1379 {
1380         vm_map_entry_t entry;
1381         vm_object_t first_object, object;
1382         vm_offset_t end, start;
1383         vm_page_t m, m_next;
1384         vm_pindex_t pend, pstart;
1385         vm_size_t size;
1386
1387         object = fs->object;
1388         VM_OBJECT_ASSERT_WLOCKED(object);
1389         first_object = fs->first_object;
1390         if (first_object != object) {
1391                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1392                         VM_OBJECT_WUNLOCK(object);
1393                         VM_OBJECT_WLOCK(first_object);
1394                         VM_OBJECT_WLOCK(object);
1395                 }
1396         }
1397         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1398         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1399                 size = VM_FAULT_DONTNEED_MIN;
1400                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1401                         size = pagesizes[1];
1402                 end = rounddown2(vaddr, size);
1403                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1404                     (entry = fs->entry)->start < end) {
1405                         if (end - entry->start < size)
1406                                 start = entry->start;
1407                         else
1408                                 start = end - size;
1409                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1410                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1411                             entry->start);
1412                         m_next = vm_page_find_least(first_object, pstart);
1413                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1414                             entry->start);
1415                         while ((m = m_next) != NULL && m->pindex < pend) {
1416                                 m_next = TAILQ_NEXT(m, listq);
1417                                 if (m->valid != VM_PAGE_BITS_ALL ||
1418                                     vm_page_busied(m))
1419                                         continue;
1420
1421                                 /*
1422                                  * Don't clear PGA_REFERENCED, since it would
1423                                  * likely represent a reference by a different
1424                                  * process.
1425                                  *
1426                                  * Typically, at this point, prefetched pages
1427                                  * are still in the inactive queue.  Only
1428                                  * pages that triggered page faults are in the
1429                                  * active queue.
1430                                  */
1431                                 vm_page_lock(m);
1432                                 if (!vm_page_inactive(m))
1433                                         vm_page_deactivate(m);
1434                                 vm_page_unlock(m);
1435                         }
1436                 }
1437         }
1438         if (first_object != object)
1439                 VM_OBJECT_WUNLOCK(first_object);
1440 }
1441
1442 /*
1443  * vm_fault_prefault provides a quick way of clustering
1444  * pagefaults into a processes address space.  It is a "cousin"
1445  * of vm_map_pmap_enter, except it runs at page fault time instead
1446  * of mmap time.
1447  */
1448 static void
1449 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1450     int backward, int forward, bool obj_locked)
1451 {
1452         pmap_t pmap;
1453         vm_map_entry_t entry;
1454         vm_object_t backing_object, lobject;
1455         vm_offset_t addr, starta;
1456         vm_pindex_t pindex;
1457         vm_page_t m;
1458         int i;
1459
1460         pmap = fs->map->pmap;
1461         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1462                 return;
1463
1464         entry = fs->entry;
1465
1466         if (addra < backward * PAGE_SIZE) {
1467                 starta = entry->start;
1468         } else {
1469                 starta = addra - backward * PAGE_SIZE;
1470                 if (starta < entry->start)
1471                         starta = entry->start;
1472         }
1473
1474         /*
1475          * Generate the sequence of virtual addresses that are candidates for
1476          * prefaulting in an outward spiral from the faulting virtual address,
1477          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1478          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1479          * If the candidate address doesn't have a backing physical page, then
1480          * the loop immediately terminates.
1481          */
1482         for (i = 0; i < 2 * imax(backward, forward); i++) {
1483                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1484                     PAGE_SIZE);
1485                 if (addr > addra + forward * PAGE_SIZE)
1486                         addr = 0;
1487
1488                 if (addr < starta || addr >= entry->end)
1489                         continue;
1490
1491                 if (!pmap_is_prefaultable(pmap, addr))
1492                         continue;
1493
1494                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1495                 lobject = entry->object.vm_object;
1496                 if (!obj_locked)
1497                         VM_OBJECT_RLOCK(lobject);
1498                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1499                     lobject->type == OBJT_DEFAULT &&
1500                     (backing_object = lobject->backing_object) != NULL) {
1501                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1502                             0, ("vm_fault_prefault: unaligned object offset"));
1503                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1504                         VM_OBJECT_RLOCK(backing_object);
1505                         if (!obj_locked || lobject != entry->object.vm_object)
1506                                 VM_OBJECT_RUNLOCK(lobject);
1507                         lobject = backing_object;
1508                 }
1509                 if (m == NULL) {
1510                         if (!obj_locked || lobject != entry->object.vm_object)
1511                                 VM_OBJECT_RUNLOCK(lobject);
1512                         break;
1513                 }
1514                 if (m->valid == VM_PAGE_BITS_ALL &&
1515                     (m->flags & PG_FICTITIOUS) == 0)
1516                         pmap_enter_quick(pmap, addr, m, entry->protection);
1517                 if (!obj_locked || lobject != entry->object.vm_object)
1518                         VM_OBJECT_RUNLOCK(lobject);
1519         }
1520 }
1521
1522 /*
1523  * Hold each of the physical pages that are mapped by the specified range of
1524  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1525  * and allow the specified types of access, "prot".  If all of the implied
1526  * pages are successfully held, then the number of held pages is returned
1527  * together with pointers to those pages in the array "ma".  However, if any
1528  * of the pages cannot be held, -1 is returned.
1529  */
1530 int
1531 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1532     vm_prot_t prot, vm_page_t *ma, int max_count)
1533 {
1534         vm_offset_t end, va;
1535         vm_page_t *mp;
1536         int count;
1537         boolean_t pmap_failed;
1538
1539         if (len == 0)
1540                 return (0);
1541         end = round_page(addr + len);
1542         addr = trunc_page(addr);
1543
1544         /*
1545          * Check for illegal addresses.
1546          */
1547         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1548                 return (-1);
1549
1550         if (atop(end - addr) > max_count)
1551                 panic("vm_fault_quick_hold_pages: count > max_count");
1552         count = atop(end - addr);
1553
1554         /*
1555          * Most likely, the physical pages are resident in the pmap, so it is
1556          * faster to try pmap_extract_and_hold() first.
1557          */
1558         pmap_failed = FALSE;
1559         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1560                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1561                 if (*mp == NULL)
1562                         pmap_failed = TRUE;
1563                 else if ((prot & VM_PROT_WRITE) != 0 &&
1564                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1565                         /*
1566                          * Explicitly dirty the physical page.  Otherwise, the
1567                          * caller's changes may go unnoticed because they are
1568                          * performed through an unmanaged mapping or by a DMA
1569                          * operation.
1570                          *
1571                          * The object lock is not held here.
1572                          * See vm_page_clear_dirty_mask().
1573                          */
1574                         vm_page_dirty(*mp);
1575                 }
1576         }
1577         if (pmap_failed) {
1578                 /*
1579                  * One or more pages could not be held by the pmap.  Either no
1580                  * page was mapped at the specified virtual address or that
1581                  * mapping had insufficient permissions.  Attempt to fault in
1582                  * and hold these pages.
1583                  *
1584                  * If vm_fault_disable_pagefaults() was called,
1585                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1586                  * acquire MD VM locks, which means we must not call
1587                  * vm_fault_hold().  Some (out of tree) callers mark
1588                  * too wide a code area with vm_fault_disable_pagefaults()
1589                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1590                  * the proper behaviour explicitly.
1591                  */
1592                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1593                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1594                         goto error;
1595                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1596                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1597                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1598                                 goto error;
1599         }
1600         return (count);
1601 error:  
1602         for (mp = ma; mp < ma + count; mp++)
1603                 if (*mp != NULL)
1604                         vm_page_unwire(*mp, PQ_INACTIVE);
1605         return (-1);
1606 }
1607
1608 /*
1609  *      Routine:
1610  *              vm_fault_copy_entry
1611  *      Function:
1612  *              Create new shadow object backing dst_entry with private copy of
1613  *              all underlying pages. When src_entry is equal to dst_entry,
1614  *              function implements COW for wired-down map entry. Otherwise,
1615  *              it forks wired entry into dst_map.
1616  *
1617  *      In/out conditions:
1618  *              The source and destination maps must be locked for write.
1619  *              The source map entry must be wired down (or be a sharing map
1620  *              entry corresponding to a main map entry that is wired down).
1621  */
1622 void
1623 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1624     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1625     vm_ooffset_t *fork_charge)
1626 {
1627         vm_object_t backing_object, dst_object, object, src_object;
1628         vm_pindex_t dst_pindex, pindex, src_pindex;
1629         vm_prot_t access, prot;
1630         vm_offset_t vaddr;
1631         vm_page_t dst_m;
1632         vm_page_t src_m;
1633         boolean_t upgrade;
1634
1635 #ifdef  lint
1636         src_map++;
1637 #endif  /* lint */
1638
1639         upgrade = src_entry == dst_entry;
1640         access = prot = dst_entry->protection;
1641
1642         src_object = src_entry->object.vm_object;
1643         src_pindex = OFF_TO_IDX(src_entry->offset);
1644
1645         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1646                 dst_object = src_object;
1647                 vm_object_reference(dst_object);
1648         } else {
1649                 /*
1650                  * Create the top-level object for the destination entry. (Doesn't
1651                  * actually shadow anything - we copy the pages directly.)
1652                  */
1653                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1654                     atop(dst_entry->end - dst_entry->start));
1655 #if VM_NRESERVLEVEL > 0
1656                 dst_object->flags |= OBJ_COLORED;
1657                 dst_object->pg_color = atop(dst_entry->start);
1658 #endif
1659                 dst_object->domain = src_object->domain;
1660                 dst_object->charge = dst_entry->end - dst_entry->start;
1661         }
1662
1663         VM_OBJECT_WLOCK(dst_object);
1664         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1665             ("vm_fault_copy_entry: vm_object not NULL"));
1666         if (src_object != dst_object) {
1667                 dst_entry->object.vm_object = dst_object;
1668                 dst_entry->offset = 0;
1669                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1670         }
1671         if (fork_charge != NULL) {
1672                 KASSERT(dst_entry->cred == NULL,
1673                     ("vm_fault_copy_entry: leaked swp charge"));
1674                 dst_object->cred = curthread->td_ucred;
1675                 crhold(dst_object->cred);
1676                 *fork_charge += dst_object->charge;
1677         } else if ((dst_object->type == OBJT_DEFAULT ||
1678             dst_object->type == OBJT_SWAP) &&
1679             dst_object->cred == NULL) {
1680                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1681                     dst_entry));
1682                 dst_object->cred = dst_entry->cred;
1683                 dst_entry->cred = NULL;
1684         }
1685
1686         /*
1687          * If not an upgrade, then enter the mappings in the pmap as
1688          * read and/or execute accesses.  Otherwise, enter them as
1689          * write accesses.
1690          *
1691          * A writeable large page mapping is only created if all of
1692          * the constituent small page mappings are modified. Marking
1693          * PTEs as modified on inception allows promotion to happen
1694          * without taking potentially large number of soft faults.
1695          */
1696         if (!upgrade)
1697                 access &= ~VM_PROT_WRITE;
1698
1699         /*
1700          * Loop through all of the virtual pages within the entry's
1701          * range, copying each page from the source object to the
1702          * destination object.  Since the source is wired, those pages
1703          * must exist.  In contrast, the destination is pageable.
1704          * Since the destination object doesn't share any backing storage
1705          * with the source object, all of its pages must be dirtied,
1706          * regardless of whether they can be written.
1707          */
1708         for (vaddr = dst_entry->start, dst_pindex = 0;
1709             vaddr < dst_entry->end;
1710             vaddr += PAGE_SIZE, dst_pindex++) {
1711 again:
1712                 /*
1713                  * Find the page in the source object, and copy it in.
1714                  * Because the source is wired down, the page will be
1715                  * in memory.
1716                  */
1717                 if (src_object != dst_object)
1718                         VM_OBJECT_RLOCK(src_object);
1719                 object = src_object;
1720                 pindex = src_pindex + dst_pindex;
1721                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1722                     (backing_object = object->backing_object) != NULL) {
1723                         /*
1724                          * Unless the source mapping is read-only or
1725                          * it is presently being upgraded from
1726                          * read-only, the first object in the shadow
1727                          * chain should provide all of the pages.  In
1728                          * other words, this loop body should never be
1729                          * executed when the source mapping is already
1730                          * read/write.
1731                          */
1732                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1733                             upgrade,
1734                             ("vm_fault_copy_entry: main object missing page"));
1735
1736                         VM_OBJECT_RLOCK(backing_object);
1737                         pindex += OFF_TO_IDX(object->backing_object_offset);
1738                         if (object != dst_object)
1739                                 VM_OBJECT_RUNLOCK(object);
1740                         object = backing_object;
1741                 }
1742                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1743
1744                 if (object != dst_object) {
1745                         /*
1746                          * Allocate a page in the destination object.
1747                          */
1748                         dst_m = vm_page_alloc(dst_object, (src_object ==
1749                             dst_object ? src_pindex : 0) + dst_pindex,
1750                             VM_ALLOC_NORMAL);
1751                         if (dst_m == NULL) {
1752                                 VM_OBJECT_WUNLOCK(dst_object);
1753                                 VM_OBJECT_RUNLOCK(object);
1754                                 vm_wait(dst_object);
1755                                 VM_OBJECT_WLOCK(dst_object);
1756                                 goto again;
1757                         }
1758                         pmap_copy_page(src_m, dst_m);
1759                         VM_OBJECT_RUNLOCK(object);
1760                         dst_m->dirty = dst_m->valid = src_m->valid;
1761                 } else {
1762                         dst_m = src_m;
1763                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1764                                 goto again;
1765                         if (dst_m->pindex >= dst_object->size)
1766                                 /*
1767                                  * We are upgrading.  Index can occur
1768                                  * out of bounds if the object type is
1769                                  * vnode and the file was truncated.
1770                                  */
1771                                 break;
1772                         vm_page_xbusy(dst_m);
1773                 }
1774                 VM_OBJECT_WUNLOCK(dst_object);
1775
1776                 /*
1777                  * Enter it in the pmap. If a wired, copy-on-write
1778                  * mapping is being replaced by a write-enabled
1779                  * mapping, then wire that new mapping.
1780                  *
1781                  * The page can be invalid if the user called
1782                  * msync(MS_INVALIDATE) or truncated the backing vnode
1783                  * or shared memory object.  In this case, do not
1784                  * insert it into pmap, but still do the copy so that
1785                  * all copies of the wired map entry have similar
1786                  * backing pages.
1787                  */
1788                 if (dst_m->valid == VM_PAGE_BITS_ALL) {
1789                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1790                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1791                 }
1792
1793                 /*
1794                  * Mark it no longer busy, and put it on the active list.
1795                  */
1796                 VM_OBJECT_WLOCK(dst_object);
1797                 
1798                 if (upgrade) {
1799                         if (src_m != dst_m) {
1800                                 vm_page_unwire(src_m, PQ_INACTIVE);
1801                                 vm_page_wire(dst_m);
1802                         } else {
1803                                 KASSERT(vm_page_wired(dst_m),
1804                                     ("dst_m %p is not wired", dst_m));
1805                         }
1806                 } else {
1807                         vm_page_lock(dst_m);
1808                         vm_page_activate(dst_m);
1809                         vm_page_unlock(dst_m);
1810                 }
1811                 vm_page_xunbusy(dst_m);
1812         }
1813         VM_OBJECT_WUNLOCK(dst_object);
1814         if (upgrade) {
1815                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1816                 vm_object_deallocate(src_object);
1817         }
1818 }
1819
1820 /*
1821  * Block entry into the machine-independent layer's page fault handler by
1822  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1823  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1824  * spurious page faults. 
1825  */
1826 int
1827 vm_fault_disable_pagefaults(void)
1828 {
1829
1830         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1831 }
1832
1833 void
1834 vm_fault_enable_pagefaults(int save)
1835 {
1836
1837         curthread_pflags_restore(save);
1838 }