]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Add Makefile entry to install two new example files.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100
101 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
102
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106
107 static int prefault_pageorder[] = {
108         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
109         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
110         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
111         -4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120
121 struct faultstate {
122         vm_page_t m;
123         vm_object_t object;
124         vm_pindex_t pindex;
125         vm_page_t first_m;
126         vm_object_t     first_object;
127         vm_pindex_t first_pindex;
128         vm_map_t map;
129         vm_map_entry_t entry;
130         int lookup_still_valid;
131         struct vnode *vp;
132         int vfslocked;
133 };
134
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138
139         vm_page_wakeup(fs->m);
140         vm_page_lock(fs->m);
141         vm_page_deactivate(fs->m);
142         vm_page_unlock(fs->m);
143         fs->m = NULL;
144 }
145
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149
150         if (fs->lookup_still_valid) {
151                 vm_map_lookup_done(fs->map, fs->entry);
152                 fs->lookup_still_valid = FALSE;
153         }
154 }
155
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159
160         vm_object_pip_wakeup(fs->object);
161         VM_OBJECT_UNLOCK(fs->object);
162         if (fs->object != fs->first_object) {
163                 VM_OBJECT_LOCK(fs->first_object);
164                 vm_page_lock(fs->first_m);
165                 vm_page_free(fs->first_m);
166                 vm_page_unlock(fs->first_m);
167                 vm_object_pip_wakeup(fs->first_object);
168                 VM_OBJECT_UNLOCK(fs->first_object);
169                 fs->first_m = NULL;
170         }
171         vm_object_deallocate(fs->first_object);
172         unlock_map(fs); 
173         if (fs->vp != NULL) { 
174                 vput(fs->vp);
175                 fs->vp = NULL;
176         }
177         VFS_UNLOCK_GIANT(fs->vfslocked);
178         fs->vfslocked = 0;
179 }
180
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *            current object *might* contain the page.
184  *
185  *            default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
188                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189
190 /*
191  *      vm_fault:
192  *
193  *      Handle a page fault occurring at the given address,
194  *      requiring the given permissions, in the map specified.
195  *      If successful, the page is inserted into the
196  *      associated physical map.
197  *
198  *      NOTE: the given address should be truncated to the
199  *      proper page address.
200  *
201  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *      a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *      The map in question must be referenced, and remains so.
206  *      Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210          int fault_flags)
211 {
212         vm_prot_t prot;
213         int is_first_object_locked, result;
214         boolean_t growstack, wired;
215         int map_generation;
216         vm_object_t next_object;
217         vm_page_t marray[VM_FAULT_READ], mt, mt_prev;
218         int hardfault;
219         int faultcount, ahead, behind, alloc_req;
220         struct faultstate fs;
221         struct vnode *vp;
222         int locked, error;
223
224         hardfault = 0;
225         growstack = TRUE;
226         PCPU_INC(cnt.v_vm_faults);
227         fs.vp = NULL;
228         fs.vfslocked = 0;
229         faultcount = behind = 0;
230
231 RetryFault:;
232
233         /*
234          * Find the backing store object and offset into it to begin the
235          * search.
236          */
237         fs.map = map;
238         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
239             &fs.first_object, &fs.first_pindex, &prot, &wired);
240         if (result != KERN_SUCCESS) {
241                 if (growstack && result == KERN_INVALID_ADDRESS &&
242                     map != kernel_map) {
243                         result = vm_map_growstack(curproc, vaddr);
244                         if (result != KERN_SUCCESS)
245                                 return (KERN_FAILURE);
246                         growstack = FALSE;
247                         goto RetryFault;
248                 }
249                 return (result);
250         }
251
252         map_generation = fs.map->timestamp;
253
254         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
255                 panic("vm_fault: fault on nofault entry, addr: %lx",
256                     (u_long)vaddr);
257         }
258
259         /*
260          * Make a reference to this object to prevent its disposal while we
261          * are messing with it.  Once we have the reference, the map is free
262          * to be diddled.  Since objects reference their shadows (and copies),
263          * they will stay around as well.
264          *
265          * Bump the paging-in-progress count to prevent size changes (e.g. 
266          * truncation operations) during I/O.  This must be done after
267          * obtaining the vnode lock in order to avoid possible deadlocks.
268          */
269         VM_OBJECT_LOCK(fs.first_object);
270         vm_object_reference_locked(fs.first_object);
271         vm_object_pip_add(fs.first_object, 1);
272
273         fs.lookup_still_valid = TRUE;
274
275         if (wired)
276                 fault_type = prot | (fault_type & VM_PROT_COPY);
277
278         fs.first_m = NULL;
279
280         /*
281          * Search for the page at object/offset.
282          */
283         fs.object = fs.first_object;
284         fs.pindex = fs.first_pindex;
285         while (TRUE) {
286                 /*
287                  * If the object is dead, we stop here
288                  */
289                 if (fs.object->flags & OBJ_DEAD) {
290                         unlock_and_deallocate(&fs);
291                         return (KERN_PROTECTION_FAILURE);
292                 }
293
294                 /*
295                  * See if page is resident
296                  */
297                 fs.m = vm_page_lookup(fs.object, fs.pindex);
298                 if (fs.m != NULL) {
299                         /* 
300                          * check for page-based copy on write.
301                          * We check fs.object == fs.first_object so
302                          * as to ensure the legacy COW mechanism is
303                          * used when the page in question is part of
304                          * a shadow object.  Otherwise, vm_page_cowfault()
305                          * removes the page from the backing object, 
306                          * which is not what we want.
307                          */
308                         vm_page_lock(fs.m);
309                         if ((fs.m->cow) && 
310                             (fault_type & VM_PROT_WRITE) &&
311                             (fs.object == fs.first_object)) {
312                                 vm_page_cowfault(fs.m);
313                                 unlock_and_deallocate(&fs);
314                                 goto RetryFault;
315                         }
316
317                         /*
318                          * Wait/Retry if the page is busy.  We have to do this
319                          * if the page is busy via either VPO_BUSY or 
320                          * vm_page_t->busy because the vm_pager may be using
321                          * vm_page_t->busy for pageouts ( and even pageins if
322                          * it is the vnode pager ), and we could end up trying
323                          * to pagein and pageout the same page simultaneously.
324                          *
325                          * We can theoretically allow the busy case on a read
326                          * fault if the page is marked valid, but since such
327                          * pages are typically already pmap'd, putting that
328                          * special case in might be more effort then it is 
329                          * worth.  We cannot under any circumstances mess
330                          * around with a vm_page_t->busy page except, perhaps,
331                          * to pmap it.
332                          */
333                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
334                                 /*
335                                  * Reference the page before unlocking and
336                                  * sleeping so that the page daemon is less
337                                  * likely to reclaim it. 
338                                  */
339                                 vm_page_lock_queues();
340                                 vm_page_flag_set(fs.m, PG_REFERENCED);
341                                 vm_page_unlock_queues();
342                                 vm_page_unlock(fs.m);
343                                 if (fs.object != fs.first_object) {
344                                         if (!VM_OBJECT_TRYLOCK(
345                                             fs.first_object)) {
346                                                 VM_OBJECT_UNLOCK(fs.object);
347                                                 VM_OBJECT_LOCK(fs.first_object);
348                                                 VM_OBJECT_LOCK(fs.object);
349                                         }
350                                         vm_page_lock(fs.first_m);
351                                         vm_page_free(fs.first_m);
352                                         vm_page_unlock(fs.first_m);
353                                         vm_object_pip_wakeup(fs.first_object);
354                                         VM_OBJECT_UNLOCK(fs.first_object);
355                                         fs.first_m = NULL;
356                                 }
357                                 unlock_map(&fs);
358                                 if (fs.m == vm_page_lookup(fs.object,
359                                     fs.pindex)) {
360                                         vm_page_sleep_if_busy(fs.m, TRUE,
361                                             "vmpfw");
362                                 }
363                                 vm_object_pip_wakeup(fs.object);
364                                 VM_OBJECT_UNLOCK(fs.object);
365                                 PCPU_INC(cnt.v_intrans);
366                                 vm_object_deallocate(fs.first_object);
367                                 goto RetryFault;
368                         }
369                         vm_pageq_remove(fs.m);
370                         vm_page_unlock(fs.m);
371
372                         /*
373                          * Mark page busy for other processes, and the 
374                          * pagedaemon.  If it still isn't completely valid
375                          * (readable), jump to readrest, else break-out ( we
376                          * found the page ).
377                          */
378                         vm_page_busy(fs.m);
379                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
380                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
381                                 goto readrest;
382                         }
383
384                         break;
385                 }
386
387                 /*
388                  * Page is not resident, If this is the search termination
389                  * or the pager might contain the page, allocate a new page.
390                  */
391                 if (TRYPAGER || fs.object == fs.first_object) {
392                         if (fs.pindex >= fs.object->size) {
393                                 unlock_and_deallocate(&fs);
394                                 return (KERN_PROTECTION_FAILURE);
395                         }
396
397                         /*
398                          * Allocate a new page for this object/offset pair.
399                          *
400                          * Unlocked read of the p_flag is harmless. At
401                          * worst, the P_KILLED might be not observed
402                          * there, and allocation can fail, causing
403                          * restart and new reading of the p_flag.
404                          */
405                         fs.m = NULL;
406                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
407 #if VM_NRESERVLEVEL > 0
408                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
409                                         fs.object->flags |= OBJ_COLORED;
410                                         fs.object->pg_color = atop(vaddr) -
411                                             fs.pindex;
412                                 }
413 #endif
414                                 alloc_req = P_KILLED(curproc) ?
415                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
416                                 if (fs.object->type != OBJT_VNODE &&
417                                     fs.object->backing_object == NULL)
418                                         alloc_req |= VM_ALLOC_ZERO;
419                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
420                                     alloc_req);
421                         }
422                         if (fs.m == NULL) {
423                                 unlock_and_deallocate(&fs);
424                                 VM_WAITPFAULT;
425                                 goto RetryFault;
426                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
427                                 break;
428                 }
429
430 readrest:
431                 /*
432                  * We have found a valid page or we have allocated a new page.
433                  * The page thus may not be valid or may not be entirely 
434                  * valid.
435                  *
436                  * Attempt to fault-in the page if there is a chance that the
437                  * pager has it, and potentially fault in additional pages
438                  * at the same time.
439                  */
440                 if (TRYPAGER) {
441                         int rv;
442                         int reqpage = 0;
443                         u_char behavior = vm_map_entry_behavior(fs.entry);
444
445                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
446                             P_KILLED(curproc)) {
447                                 ahead = 0;
448                                 behind = 0;
449                         } else {
450                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
451                                 if (behind > VM_FAULT_READ_BEHIND)
452                                         behind = VM_FAULT_READ_BEHIND;
453
454                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
455                                 if (ahead > VM_FAULT_READ_AHEAD)
456                                         ahead = VM_FAULT_READ_AHEAD;
457                         }
458                         is_first_object_locked = FALSE;
459                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
460                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
461                               fs.pindex >= fs.entry->lastr &&
462                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
463                             (fs.first_object == fs.object ||
464                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
465                             fs.first_object->type != OBJT_DEVICE &&
466                             fs.first_object->type != OBJT_PHYS &&
467                             fs.first_object->type != OBJT_SG) {
468                                 vm_pindex_t firstpindex;
469
470                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
471                                         firstpindex = 0;
472                                 else
473                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
474                                 mt = fs.first_object != fs.object ?
475                                     fs.first_m : fs.m;
476                                 KASSERT(mt != NULL, ("vm_fault: missing mt"));
477                                 KASSERT((mt->oflags & VPO_BUSY) != 0,
478                                     ("vm_fault: mt %p not busy", mt));
479                                 mt_prev = vm_page_prev(mt);
480
481                                 /*
482                                  * note: partially valid pages cannot be 
483                                  * included in the lookahead - NFS piecemeal
484                                  * writes will barf on it badly.
485                                  */
486                                 while ((mt = mt_prev) != NULL &&
487                                     mt->pindex >= firstpindex &&
488                                     mt->valid == VM_PAGE_BITS_ALL) {
489                                         mt_prev = vm_page_prev(mt);
490                                         if (mt->busy ||
491                                             (mt->oflags & VPO_BUSY))
492                                                 continue;
493                                         vm_page_lock(mt);
494                                         if (mt->hold_count ||
495                                             mt->wire_count) {
496                                                 vm_page_unlock(mt);
497                                                 continue;
498                                         }
499                                         pmap_remove_all(mt);
500                                         if (mt->dirty != 0)
501                                                 vm_page_deactivate(mt);
502                                         else
503                                                 vm_page_cache(mt);
504                                         vm_page_unlock(mt);
505                                 }
506                                 ahead += behind;
507                                 behind = 0;
508                         }
509                         if (is_first_object_locked)
510                                 VM_OBJECT_UNLOCK(fs.first_object);
511
512                         /*
513                          * Call the pager to retrieve the data, if any, after
514                          * releasing the lock on the map.  We hold a ref on
515                          * fs.object and the pages are VPO_BUSY'd.
516                          */
517                         unlock_map(&fs);
518
519 vnode_lock:
520                         if (fs.object->type == OBJT_VNODE) {
521                                 vp = fs.object->handle;
522                                 if (vp == fs.vp)
523                                         goto vnode_locked;
524                                 else if (fs.vp != NULL) {
525                                         vput(fs.vp);
526                                         fs.vp = NULL;
527                                 }
528                                 locked = VOP_ISLOCKED(vp);
529
530                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
531                                         fs.vfslocked = 1;
532                                         if (!mtx_trylock(&Giant)) {
533                                                 VM_OBJECT_UNLOCK(fs.object);
534                                                 mtx_lock(&Giant);
535                                                 VM_OBJECT_LOCK(fs.object);
536                                                 goto vnode_lock;
537                                         }
538                                 }
539                                 if (locked != LK_EXCLUSIVE)
540                                         locked = LK_SHARED;
541                                 /* Do not sleep for vnode lock while fs.m is busy */
542                                 error = vget(vp, locked | LK_CANRECURSE |
543                                     LK_NOWAIT, curthread);
544                                 if (error != 0) {
545                                         int vfslocked;
546
547                                         vfslocked = fs.vfslocked;
548                                         fs.vfslocked = 0; /* Keep Giant */
549                                         vhold(vp);
550                                         release_page(&fs);
551                                         unlock_and_deallocate(&fs);
552                                         error = vget(vp, locked | LK_RETRY |
553                                             LK_CANRECURSE, curthread);
554                                         vdrop(vp);
555                                         fs.vp = vp;
556                                         fs.vfslocked = vfslocked;
557                                         KASSERT(error == 0,
558                                             ("vm_fault: vget failed"));
559                                         goto RetryFault;
560                                 }
561                                 fs.vp = vp;
562                         }
563 vnode_locked:
564                         KASSERT(fs.vp == NULL || !fs.map->system_map,
565                             ("vm_fault: vnode-backed object mapped by system map"));
566
567                         /*
568                          * now we find out if any other pages should be paged
569                          * in at this time this routine checks to see if the
570                          * pages surrounding this fault reside in the same
571                          * object as the page for this fault.  If they do,
572                          * then they are faulted in also into the object.  The
573                          * array "marray" returned contains an array of
574                          * vm_page_t structs where one of them is the
575                          * vm_page_t passed to the routine.  The reqpage
576                          * return value is the index into the marray for the
577                          * vm_page_t passed to the routine.
578                          *
579                          * fs.m plus the additional pages are VPO_BUSY'd.
580                          */
581                         faultcount = vm_fault_additional_pages(
582                             fs.m, behind, ahead, marray, &reqpage);
583
584                         rv = faultcount ?
585                             vm_pager_get_pages(fs.object, marray, faultcount,
586                                 reqpage) : VM_PAGER_FAIL;
587
588                         if (rv == VM_PAGER_OK) {
589                                 /*
590                                  * Found the page. Leave it busy while we play
591                                  * with it.
592                                  */
593
594                                 /*
595                                  * Relookup in case pager changed page. Pager
596                                  * is responsible for disposition of old page
597                                  * if moved.
598                                  */
599                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
600                                 if (!fs.m) {
601                                         unlock_and_deallocate(&fs);
602                                         goto RetryFault;
603                                 }
604
605                                 hardfault++;
606                                 break; /* break to PAGE HAS BEEN FOUND */
607                         }
608                         /*
609                          * Remove the bogus page (which does not exist at this
610                          * object/offset); before doing so, we must get back
611                          * our object lock to preserve our invariant.
612                          *
613                          * Also wake up any other process that may want to bring
614                          * in this page.
615                          *
616                          * If this is the top-level object, we must leave the
617                          * busy page to prevent another process from rushing
618                          * past us, and inserting the page in that object at
619                          * the same time that we are.
620                          */
621                         if (rv == VM_PAGER_ERROR)
622                                 printf("vm_fault: pager read error, pid %d (%s)\n",
623                                     curproc->p_pid, curproc->p_comm);
624                         /*
625                          * Data outside the range of the pager or an I/O error
626                          */
627                         /*
628                          * XXX - the check for kernel_map is a kludge to work
629                          * around having the machine panic on a kernel space
630                          * fault w/ I/O error.
631                          */
632                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
633                                 (rv == VM_PAGER_BAD)) {
634                                 vm_page_lock(fs.m);
635                                 vm_page_free(fs.m);
636                                 vm_page_unlock(fs.m);
637                                 fs.m = NULL;
638                                 unlock_and_deallocate(&fs);
639                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
640                         }
641                         if (fs.object != fs.first_object) {
642                                 vm_page_lock(fs.m);
643                                 vm_page_free(fs.m);
644                                 vm_page_unlock(fs.m);
645                                 fs.m = NULL;
646                                 /*
647                                  * XXX - we cannot just fall out at this
648                                  * point, m has been freed and is invalid!
649                                  */
650                         }
651                 }
652
653                 /*
654                  * We get here if the object has default pager (or unwiring) 
655                  * or the pager doesn't have the page.
656                  */
657                 if (fs.object == fs.first_object)
658                         fs.first_m = fs.m;
659
660                 /*
661                  * Move on to the next object.  Lock the next object before
662                  * unlocking the current one.
663                  */
664                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
665                 next_object = fs.object->backing_object;
666                 if (next_object == NULL) {
667                         /*
668                          * If there's no object left, fill the page in the top
669                          * object with zeros.
670                          */
671                         if (fs.object != fs.first_object) {
672                                 vm_object_pip_wakeup(fs.object);
673                                 VM_OBJECT_UNLOCK(fs.object);
674
675                                 fs.object = fs.first_object;
676                                 fs.pindex = fs.first_pindex;
677                                 fs.m = fs.first_m;
678                                 VM_OBJECT_LOCK(fs.object);
679                         }
680                         fs.first_m = NULL;
681
682                         /*
683                          * Zero the page if necessary and mark it valid.
684                          */
685                         if ((fs.m->flags & PG_ZERO) == 0) {
686                                 pmap_zero_page(fs.m);
687                         } else {
688                                 PCPU_INC(cnt.v_ozfod);
689                         }
690                         PCPU_INC(cnt.v_zfod);
691                         fs.m->valid = VM_PAGE_BITS_ALL;
692                         break;  /* break to PAGE HAS BEEN FOUND */
693                 } else {
694                         KASSERT(fs.object != next_object,
695                             ("object loop %p", next_object));
696                         VM_OBJECT_LOCK(next_object);
697                         vm_object_pip_add(next_object, 1);
698                         if (fs.object != fs.first_object)
699                                 vm_object_pip_wakeup(fs.object);
700                         VM_OBJECT_UNLOCK(fs.object);
701                         fs.object = next_object;
702                 }
703         }
704
705         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
706             ("vm_fault: not busy after main loop"));
707
708         /*
709          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
710          * is held.]
711          */
712
713         /*
714          * If the page is being written, but isn't already owned by the
715          * top-level object, we have to copy it into a new page owned by the
716          * top-level object.
717          */
718         if (fs.object != fs.first_object) {
719                 /*
720                  * We only really need to copy if we want to write it.
721                  */
722                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
723                         /*
724                          * This allows pages to be virtually copied from a 
725                          * backing_object into the first_object, where the 
726                          * backing object has no other refs to it, and cannot
727                          * gain any more refs.  Instead of a bcopy, we just 
728                          * move the page from the backing object to the 
729                          * first object.  Note that we must mark the page 
730                          * dirty in the first object so that it will go out 
731                          * to swap when needed.
732                          */
733                         is_first_object_locked = FALSE;
734                         if (
735                                 /*
736                                  * Only one shadow object
737                                  */
738                                 (fs.object->shadow_count == 1) &&
739                                 /*
740                                  * No COW refs, except us
741                                  */
742                                 (fs.object->ref_count == 1) &&
743                                 /*
744                                  * No one else can look this object up
745                                  */
746                                 (fs.object->handle == NULL) &&
747                                 /*
748                                  * No other ways to look the object up
749                                  */
750                                 ((fs.object->type == OBJT_DEFAULT) ||
751                                  (fs.object->type == OBJT_SWAP)) &&
752                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
753                                 /*
754                                  * We don't chase down the shadow chain
755                                  */
756                             fs.object == fs.first_object->backing_object) {
757                                 /*
758                                  * get rid of the unnecessary page
759                                  */
760                                 vm_page_lock(fs.first_m);
761                                 vm_page_free(fs.first_m);
762                                 vm_page_unlock(fs.first_m);
763                                 /*
764                                  * grab the page and put it into the 
765                                  * process'es object.  The page is 
766                                  * automatically made dirty.
767                                  */
768                                 vm_page_lock(fs.m);
769                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
770                                 vm_page_unlock(fs.m);
771                                 vm_page_busy(fs.m);
772                                 fs.first_m = fs.m;
773                                 fs.m = NULL;
774                                 PCPU_INC(cnt.v_cow_optim);
775                         } else {
776                                 /*
777                                  * Oh, well, lets copy it.
778                                  */
779                                 pmap_copy_page(fs.m, fs.first_m);
780                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
781                                 if (wired && (fault_flags &
782                                     VM_FAULT_CHANGE_WIRING) == 0) {
783                                         vm_page_lock(fs.first_m);
784                                         vm_page_wire(fs.first_m);
785                                         vm_page_unlock(fs.first_m);
786                                         
787                                         vm_page_lock(fs.m);
788                                         vm_page_unwire(fs.m, FALSE);
789                                         vm_page_unlock(fs.m);
790                                 }
791                                 /*
792                                  * We no longer need the old page or object.
793                                  */
794                                 release_page(&fs);
795                         }
796                         /*
797                          * fs.object != fs.first_object due to above 
798                          * conditional
799                          */
800                         vm_object_pip_wakeup(fs.object);
801                         VM_OBJECT_UNLOCK(fs.object);
802                         /*
803                          * Only use the new page below...
804                          */
805                         fs.object = fs.first_object;
806                         fs.pindex = fs.first_pindex;
807                         fs.m = fs.first_m;
808                         if (!is_first_object_locked)
809                                 VM_OBJECT_LOCK(fs.object);
810                         PCPU_INC(cnt.v_cow_faults);
811                 } else {
812                         prot &= ~VM_PROT_WRITE;
813                 }
814         }
815
816         /*
817          * We must verify that the maps have not changed since our last
818          * lookup.
819          */
820         if (!fs.lookup_still_valid) {
821                 vm_object_t retry_object;
822                 vm_pindex_t retry_pindex;
823                 vm_prot_t retry_prot;
824
825                 if (!vm_map_trylock_read(fs.map)) {
826                         release_page(&fs);
827                         unlock_and_deallocate(&fs);
828                         goto RetryFault;
829                 }
830                 fs.lookup_still_valid = TRUE;
831                 if (fs.map->timestamp != map_generation) {
832                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
833                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
834
835                         /*
836                          * If we don't need the page any longer, put it on the inactive
837                          * list (the easiest thing to do here).  If no one needs it,
838                          * pageout will grab it eventually.
839                          */
840                         if (result != KERN_SUCCESS) {
841                                 release_page(&fs);
842                                 unlock_and_deallocate(&fs);
843
844                                 /*
845                                  * If retry of map lookup would have blocked then
846                                  * retry fault from start.
847                                  */
848                                 if (result == KERN_FAILURE)
849                                         goto RetryFault;
850                                 return (result);
851                         }
852                         if ((retry_object != fs.first_object) ||
853                             (retry_pindex != fs.first_pindex)) {
854                                 release_page(&fs);
855                                 unlock_and_deallocate(&fs);
856                                 goto RetryFault;
857                         }
858
859                         /*
860                          * Check whether the protection has changed or the object has
861                          * been copied while we left the map unlocked. Changing from
862                          * read to write permission is OK - we leave the page
863                          * write-protected, and catch the write fault. Changing from
864                          * write to read permission means that we can't mark the page
865                          * write-enabled after all.
866                          */
867                         prot &= retry_prot;
868                 }
869         }
870         /*
871          * If the page was filled by a pager, update the map entry's
872          * last read offset.  Since the pager does not return the
873          * actual set of pages that it read, this update is based on
874          * the requested set.  Typically, the requested and actual
875          * sets are the same.
876          *
877          * XXX The following assignment modifies the map
878          * without holding a write lock on it.
879          */
880         if (hardfault)
881                 fs.entry->lastr = fs.pindex + faultcount - behind;
882
883         if (prot & VM_PROT_WRITE) {
884                 vm_object_set_writeable_dirty(fs.object);
885
886                 /*
887                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
888                  * if the page is already dirty to prevent data written with
889                  * the expectation of being synced from not being synced.
890                  * Likewise if this entry does not request NOSYNC then make
891                  * sure the page isn't marked NOSYNC.  Applications sharing
892                  * data should use the same flags to avoid ping ponging.
893                  */
894                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
895                         if (fs.m->dirty == 0)
896                                 fs.m->oflags |= VPO_NOSYNC;
897                 } else {
898                         fs.m->oflags &= ~VPO_NOSYNC;
899                 }
900
901                 /*
902                  * If the fault is a write, we know that this page is being
903                  * written NOW so dirty it explicitly to save on 
904                  * pmap_is_modified() calls later.
905                  *
906                  * Also tell the backing pager, if any, that it should remove
907                  * any swap backing since the page is now dirty.
908                  */
909                 if ((fault_type & VM_PROT_WRITE) != 0 &&
910                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
911                         vm_page_dirty(fs.m);
912                         vm_pager_page_unswapped(fs.m);
913                 }
914         }
915
916         /*
917          * Page had better still be busy
918          */
919         KASSERT(fs.m->oflags & VPO_BUSY,
920                 ("vm_fault: page %p not busy!", fs.m));
921         /*
922          * Page must be completely valid or it is not fit to
923          * map into user space.  vm_pager_get_pages() ensures this.
924          */
925         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
926             ("vm_fault: page %p partially invalid", fs.m));
927         VM_OBJECT_UNLOCK(fs.object);
928
929         /*
930          * Put this page into the physical map.  We had to do the unlock above
931          * because pmap_enter() may sleep.  We don't put the page
932          * back on the active queue until later so that the pageout daemon
933          * won't find it (yet).
934          */
935         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
936         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
937                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
938         VM_OBJECT_LOCK(fs.object);
939         vm_page_lock(fs.m);
940
941         /*
942          * If the page is not wired down, then put it where the pageout daemon
943          * can find it.
944          */
945         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
946                 if (wired)
947                         vm_page_wire(fs.m);
948                 else
949                         vm_page_unwire(fs.m, 1);
950         } else
951                 vm_page_activate(fs.m);
952         vm_page_unlock(fs.m);
953         vm_page_wakeup(fs.m);
954
955         /*
956          * Unlock everything, and return
957          */
958         unlock_and_deallocate(&fs);
959         if (hardfault)
960                 curthread->td_ru.ru_majflt++;
961         else
962                 curthread->td_ru.ru_minflt++;
963
964         return (KERN_SUCCESS);
965 }
966
967 /*
968  * vm_fault_prefault provides a quick way of clustering
969  * pagefaults into a processes address space.  It is a "cousin"
970  * of vm_map_pmap_enter, except it runs at page fault time instead
971  * of mmap time.
972  */
973 static void
974 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
975 {
976         int i;
977         vm_offset_t addr, starta;
978         vm_pindex_t pindex;
979         vm_page_t m;
980         vm_object_t object;
981
982         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
983                 return;
984
985         object = entry->object.vm_object;
986
987         starta = addra - PFBAK * PAGE_SIZE;
988         if (starta < entry->start) {
989                 starta = entry->start;
990         } else if (starta > addra) {
991                 starta = 0;
992         }
993
994         for (i = 0; i < PAGEORDER_SIZE; i++) {
995                 vm_object_t backing_object, lobject;
996
997                 addr = addra + prefault_pageorder[i];
998                 if (addr > addra + (PFFOR * PAGE_SIZE))
999                         addr = 0;
1000
1001                 if (addr < starta || addr >= entry->end)
1002                         continue;
1003
1004                 if (!pmap_is_prefaultable(pmap, addr))
1005                         continue;
1006
1007                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1008                 lobject = object;
1009                 VM_OBJECT_LOCK(lobject);
1010                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1011                     lobject->type == OBJT_DEFAULT &&
1012                     (backing_object = lobject->backing_object) != NULL) {
1013                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1014                             0, ("vm_fault_prefault: unaligned object offset"));
1015                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1016                         VM_OBJECT_LOCK(backing_object);
1017                         VM_OBJECT_UNLOCK(lobject);
1018                         lobject = backing_object;
1019                 }
1020                 /*
1021                  * give-up when a page is not in memory
1022                  */
1023                 if (m == NULL) {
1024                         VM_OBJECT_UNLOCK(lobject);
1025                         break;
1026                 }
1027                 if (m->valid == VM_PAGE_BITS_ALL &&
1028                     (m->flags & PG_FICTITIOUS) == 0)
1029                         pmap_enter_quick(pmap, addr, m, entry->protection);
1030                 VM_OBJECT_UNLOCK(lobject);
1031         }
1032 }
1033
1034 /*
1035  *      vm_fault_quick:
1036  *
1037  *      Ensure that the requested virtual address, which may be in userland,
1038  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1039  */
1040 int
1041 vm_fault_quick(caddr_t v, int prot)
1042 {
1043         int r;
1044
1045         if (prot & VM_PROT_WRITE)
1046                 r = subyte(v, fubyte(v));
1047         else
1048                 r = fubyte(v);
1049         return(r);
1050 }
1051
1052 /*
1053  *      vm_fault_wire:
1054  *
1055  *      Wire down a range of virtual addresses in a map.
1056  */
1057 int
1058 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1059     boolean_t fictitious)
1060 {
1061         vm_offset_t va;
1062         int rv;
1063
1064         /*
1065          * We simulate a fault to get the page and enter it in the physical
1066          * map.  For user wiring, we only ask for read access on currently
1067          * read-only sections.
1068          */
1069         for (va = start; va < end; va += PAGE_SIZE) {
1070                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1071                 if (rv) {
1072                         if (va != start)
1073                                 vm_fault_unwire(map, start, va, fictitious);
1074                         return (rv);
1075                 }
1076         }
1077         return (KERN_SUCCESS);
1078 }
1079
1080 /*
1081  *      vm_fault_unwire:
1082  *
1083  *      Unwire a range of virtual addresses in a map.
1084  */
1085 void
1086 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1087     boolean_t fictitious)
1088 {
1089         vm_paddr_t pa;
1090         vm_offset_t va;
1091         vm_page_t m;
1092         pmap_t pmap;
1093
1094         pmap = vm_map_pmap(map);
1095
1096         /*
1097          * Since the pages are wired down, we must be able to get their
1098          * mappings from the physical map system.
1099          */
1100         for (va = start; va < end; va += PAGE_SIZE) {
1101                 pa = pmap_extract(pmap, va);
1102                 if (pa != 0) {
1103                         pmap_change_wiring(pmap, va, FALSE);
1104                         if (!fictitious) {
1105                                 m = PHYS_TO_VM_PAGE(pa);
1106                                 vm_page_lock(m);
1107                                 vm_page_unwire(m, TRUE);
1108                                 vm_page_unlock(m);
1109                         }
1110                 }
1111         }
1112 }
1113
1114 /*
1115  *      Routine:
1116  *              vm_fault_copy_entry
1117  *      Function:
1118  *              Create new shadow object backing dst_entry with private copy of
1119  *              all underlying pages. When src_entry is equal to dst_entry,
1120  *              function implements COW for wired-down map entry. Otherwise,
1121  *              it forks wired entry into dst_map.
1122  *
1123  *      In/out conditions:
1124  *              The source and destination maps must be locked for write.
1125  *              The source map entry must be wired down (or be a sharing map
1126  *              entry corresponding to a main map entry that is wired down).
1127  */
1128 void
1129 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1130     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1131     vm_ooffset_t *fork_charge)
1132 {
1133         vm_object_t backing_object, dst_object, object, src_object;
1134         vm_pindex_t dst_pindex, pindex, src_pindex;
1135         vm_prot_t access, prot;
1136         vm_offset_t vaddr;
1137         vm_page_t dst_m;
1138         vm_page_t src_m;
1139         boolean_t src_readonly, upgrade;
1140
1141 #ifdef  lint
1142         src_map++;
1143 #endif  /* lint */
1144
1145         upgrade = src_entry == dst_entry;
1146
1147         src_object = src_entry->object.vm_object;
1148         src_pindex = OFF_TO_IDX(src_entry->offset);
1149         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1150
1151         /*
1152          * Create the top-level object for the destination entry. (Doesn't
1153          * actually shadow anything - we copy the pages directly.)
1154          */
1155         dst_object = vm_object_allocate(OBJT_DEFAULT,
1156             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1157 #if VM_NRESERVLEVEL > 0
1158         dst_object->flags |= OBJ_COLORED;
1159         dst_object->pg_color = atop(dst_entry->start);
1160 #endif
1161
1162         VM_OBJECT_LOCK(dst_object);
1163         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1164             ("vm_fault_copy_entry: vm_object not NULL"));
1165         dst_entry->object.vm_object = dst_object;
1166         dst_entry->offset = 0;
1167         dst_object->charge = dst_entry->end - dst_entry->start;
1168         if (fork_charge != NULL) {
1169                 KASSERT(dst_entry->uip == NULL,
1170                     ("vm_fault_copy_entry: leaked swp charge"));
1171                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1172                 uihold(dst_object->uip);
1173                 *fork_charge += dst_object->charge;
1174         } else {
1175                 dst_object->uip = dst_entry->uip;
1176                 dst_entry->uip = NULL;
1177         }
1178         access = prot = dst_entry->protection;
1179         /*
1180          * If not an upgrade, then enter the mappings in the pmap as
1181          * read and/or execute accesses.  Otherwise, enter them as
1182          * write accesses.
1183          *
1184          * A writeable large page mapping is only created if all of
1185          * the constituent small page mappings are modified. Marking
1186          * PTEs as modified on inception allows promotion to happen
1187          * without taking potentially large number of soft faults.
1188          */
1189         if (!upgrade)
1190                 access &= ~VM_PROT_WRITE;
1191
1192         /*
1193          * Loop through all of the pages in the entry's range, copying each
1194          * one from the source object (it should be there) to the destination
1195          * object.
1196          */
1197         for (vaddr = dst_entry->start, dst_pindex = 0;
1198             vaddr < dst_entry->end;
1199             vaddr += PAGE_SIZE, dst_pindex++) {
1200
1201                 /*
1202                  * Allocate a page in the destination object.
1203                  */
1204                 do {
1205                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1206                             VM_ALLOC_NORMAL);
1207                         if (dst_m == NULL) {
1208                                 VM_OBJECT_UNLOCK(dst_object);
1209                                 VM_WAIT;
1210                                 VM_OBJECT_LOCK(dst_object);
1211                         }
1212                 } while (dst_m == NULL);
1213
1214                 /*
1215                  * Find the page in the source object, and copy it in.
1216                  * (Because the source is wired down, the page will be in
1217                  * memory.)
1218                  */
1219                 VM_OBJECT_LOCK(src_object);
1220                 object = src_object;
1221                 pindex = src_pindex + dst_pindex;
1222                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1223                     src_readonly &&
1224                     (backing_object = object->backing_object) != NULL) {
1225                         /*
1226                          * Allow fallback to backing objects if we are reading.
1227                          */
1228                         VM_OBJECT_LOCK(backing_object);
1229                         pindex += OFF_TO_IDX(object->backing_object_offset);
1230                         VM_OBJECT_UNLOCK(object);
1231                         object = backing_object;
1232                 }
1233                 if (src_m == NULL)
1234                         panic("vm_fault_copy_wired: page missing");
1235                 pmap_copy_page(src_m, dst_m);
1236                 VM_OBJECT_UNLOCK(object);
1237                 dst_m->valid = VM_PAGE_BITS_ALL;
1238                 VM_OBJECT_UNLOCK(dst_object);
1239
1240                 /*
1241                  * Enter it in the pmap. If a wired, copy-on-write
1242                  * mapping is being replaced by a write-enabled
1243                  * mapping, then wire that new mapping.
1244                  */
1245                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1246
1247                 /*
1248                  * Mark it no longer busy, and put it on the active list.
1249                  */
1250                 VM_OBJECT_LOCK(dst_object);
1251                 
1252                 if (upgrade) {
1253                         vm_page_lock(src_m);
1254                         vm_page_unwire(src_m, 0);
1255                         vm_page_unlock(src_m);
1256
1257                         vm_page_lock(dst_m);
1258                         vm_page_wire(dst_m);
1259                         vm_page_unlock(dst_m);
1260                 } else {
1261                         vm_page_lock(dst_m);
1262                         vm_page_activate(dst_m);
1263                         vm_page_unlock(dst_m);
1264                 }
1265                 vm_page_wakeup(dst_m);
1266         }
1267         VM_OBJECT_UNLOCK(dst_object);
1268         if (upgrade) {
1269                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1270                 vm_object_deallocate(src_object);
1271         }
1272 }
1273
1274
1275 /*
1276  * This routine checks around the requested page for other pages that
1277  * might be able to be faulted in.  This routine brackets the viable
1278  * pages for the pages to be paged in.
1279  *
1280  * Inputs:
1281  *      m, rbehind, rahead
1282  *
1283  * Outputs:
1284  *  marray (array of vm_page_t), reqpage (index of requested page)
1285  *
1286  * Return value:
1287  *  number of pages in marray
1288  */
1289 static int
1290 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1291         vm_page_t m;
1292         int rbehind;
1293         int rahead;
1294         vm_page_t *marray;
1295         int *reqpage;
1296 {
1297         int i,j;
1298         vm_object_t object;
1299         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1300         vm_page_t rtm;
1301         int cbehind, cahead;
1302
1303         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1304
1305         object = m->object;
1306         pindex = m->pindex;
1307         cbehind = cahead = 0;
1308
1309         /*
1310          * if the requested page is not available, then give up now
1311          */
1312         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1313                 return 0;
1314         }
1315
1316         if ((cbehind == 0) && (cahead == 0)) {
1317                 *reqpage = 0;
1318                 marray[0] = m;
1319                 return 1;
1320         }
1321
1322         if (rahead > cahead) {
1323                 rahead = cahead;
1324         }
1325
1326         if (rbehind > cbehind) {
1327                 rbehind = cbehind;
1328         }
1329
1330         /*
1331          * scan backward for the read behind pages -- in memory 
1332          */
1333         if (pindex > 0) {
1334                 if (rbehind > pindex) {
1335                         rbehind = pindex;
1336                         startpindex = 0;
1337                 } else {
1338                         startpindex = pindex - rbehind;
1339                 }
1340
1341                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1342                     rtm->pindex >= startpindex)
1343                         startpindex = rtm->pindex + 1;
1344
1345                 /* tpindex is unsigned; beware of numeric underflow. */
1346                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1347                     tpindex < pindex; i++, tpindex--) {
1348
1349                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1350                             VM_ALLOC_IFNOTCACHED);
1351                         if (rtm == NULL) {
1352                                 /*
1353                                  * Shift the allocated pages to the
1354                                  * beginning of the array.
1355                                  */
1356                                 for (j = 0; j < i; j++) {
1357                                         marray[j] = marray[j + tpindex + 1 -
1358                                             startpindex];
1359                                 }
1360                                 break;
1361                         }
1362
1363                         marray[tpindex - startpindex] = rtm;
1364                 }
1365         } else {
1366                 startpindex = 0;
1367                 i = 0;
1368         }
1369
1370         marray[i] = m;
1371         /* page offset of the required page */
1372         *reqpage = i;
1373
1374         tpindex = pindex + 1;
1375         i++;
1376
1377         /*
1378          * scan forward for the read ahead pages
1379          */
1380         endpindex = tpindex + rahead;
1381         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1382                 endpindex = rtm->pindex;
1383         if (endpindex > object->size)
1384                 endpindex = object->size;
1385
1386         for (; tpindex < endpindex; i++, tpindex++) {
1387
1388                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1389                     VM_ALLOC_IFNOTCACHED);
1390                 if (rtm == NULL) {
1391                         break;
1392                 }
1393
1394                 marray[i] = rtm;
1395         }
1396
1397         /* return number of pages */
1398         return i;
1399 }