]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
For 32-bit machines rollback the default number of vnode pager pbufs
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/resourcevar.h>
90 #include <sys/rwlock.h>
91 #include <sys/sysctl.h>
92 #include <sys/vmmeter.h>
93 #include <sys/vnode.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109
110 #define PFBAK 4
111 #define PFFOR 4
112
113 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
114 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
115
116 #define VM_FAULT_DONTNEED_MIN   1048576
117
118 struct faultstate {
119         vm_page_t m;
120         vm_object_t object;
121         vm_pindex_t pindex;
122         vm_page_t first_m;
123         vm_object_t     first_object;
124         vm_pindex_t first_pindex;
125         vm_map_t map;
126         vm_map_entry_t entry;
127         int map_generation;
128         bool lookup_still_valid;
129         struct vnode *vp;
130 };
131
132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
133             int ahead);
134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
135             int backward, int forward, bool obj_locked);
136
137 static inline void
138 release_page(struct faultstate *fs)
139 {
140
141         vm_page_xunbusy(fs->m);
142         vm_page_lock(fs->m);
143         vm_page_deactivate(fs->m);
144         vm_page_unlock(fs->m);
145         fs->m = NULL;
146 }
147
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151
152         if (fs->lookup_still_valid) {
153                 vm_map_lookup_done(fs->map, fs->entry);
154                 fs->lookup_still_valid = false;
155         }
156 }
157
158 static void
159 unlock_vp(struct faultstate *fs)
160 {
161
162         if (fs->vp != NULL) {
163                 vput(fs->vp);
164                 fs->vp = NULL;
165         }
166 }
167
168 static void
169 unlock_and_deallocate(struct faultstate *fs)
170 {
171
172         vm_object_pip_wakeup(fs->object);
173         VM_OBJECT_WUNLOCK(fs->object);
174         if (fs->object != fs->first_object) {
175                 VM_OBJECT_WLOCK(fs->first_object);
176                 vm_page_lock(fs->first_m);
177                 vm_page_free(fs->first_m);
178                 vm_page_unlock(fs->first_m);
179                 vm_object_pip_wakeup(fs->first_object);
180                 VM_OBJECT_WUNLOCK(fs->first_object);
181                 fs->first_m = NULL;
182         }
183         vm_object_deallocate(fs->first_object);
184         unlock_map(fs);
185         unlock_vp(fs);
186 }
187
188 static void
189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
190     vm_prot_t fault_type, int fault_flags, bool set_wd)
191 {
192         bool need_dirty;
193
194         if (((prot & VM_PROT_WRITE) == 0 &&
195             (fault_flags & VM_FAULT_DIRTY) == 0) ||
196             (m->oflags & VPO_UNMANAGED) != 0)
197                 return;
198
199         VM_OBJECT_ASSERT_LOCKED(m->object);
200
201         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
202             (fault_flags & VM_FAULT_WIRE) == 0) ||
203             (fault_flags & VM_FAULT_DIRTY) != 0;
204
205         if (set_wd)
206                 vm_object_set_writeable_dirty(m->object);
207         else
208                 /*
209                  * If two callers of vm_fault_dirty() with set_wd ==
210                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
211                  * flag set, other with flag clear, race, it is
212                  * possible for the no-NOSYNC thread to see m->dirty
213                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
214                  * around manipulation of VPO_NOSYNC and
215                  * vm_page_dirty() call, to avoid the race and keep
216                  * m->oflags consistent.
217                  */
218                 vm_page_lock(m);
219
220         /*
221          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
222          * if the page is already dirty to prevent data written with
223          * the expectation of being synced from not being synced.
224          * Likewise if this entry does not request NOSYNC then make
225          * sure the page isn't marked NOSYNC.  Applications sharing
226          * data should use the same flags to avoid ping ponging.
227          */
228         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
229                 if (m->dirty == 0) {
230                         m->oflags |= VPO_NOSYNC;
231                 }
232         } else {
233                 m->oflags &= ~VPO_NOSYNC;
234         }
235
236         /*
237          * If the fault is a write, we know that this page is being
238          * written NOW so dirty it explicitly to save on
239          * pmap_is_modified() calls later.
240          *
241          * Also, since the page is now dirty, we can possibly tell
242          * the pager to release any swap backing the page.  Calling
243          * the pager requires a write lock on the object.
244          */
245         if (need_dirty)
246                 vm_page_dirty(m);
247         if (!set_wd)
248                 vm_page_unlock(m);
249         else if (need_dirty)
250                 vm_pager_page_unswapped(m);
251 }
252
253 static void
254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
255 {
256
257         if (m_hold != NULL) {
258                 *m_hold = m;
259                 vm_page_lock(m);
260                 vm_page_hold(m);
261                 vm_page_unlock(m);
262         }
263 }
264
265 /*
266  * Unlocks fs.first_object and fs.map on success.
267  */
268 static int
269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
270     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
271 {
272         vm_page_t m, m_map;
273 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
274     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
275     VM_NRESERVLEVEL > 0
276         vm_page_t m_super;
277         int flags;
278 #endif
279         int psind, rv;
280
281         MPASS(fs->vp == NULL);
282         m = vm_page_lookup(fs->first_object, fs->first_pindex);
283         /* A busy page can be mapped for read|execute access. */
284         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
285             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
286                 return (KERN_FAILURE);
287         m_map = m;
288         psind = 0;
289 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
290     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
291     VM_NRESERVLEVEL > 0
292         if ((m->flags & PG_FICTITIOUS) == 0 &&
293             (m_super = vm_reserv_to_superpage(m)) != NULL &&
294             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
295             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
296             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
297             (pagesizes[m_super->psind] - 1)) &&
298             pmap_ps_enabled(fs->map->pmap)) {
299                 flags = PS_ALL_VALID;
300                 if ((prot & VM_PROT_WRITE) != 0) {
301                         /*
302                          * Create a superpage mapping allowing write access
303                          * only if none of the constituent pages are busy and
304                          * all of them are already dirty (except possibly for
305                          * the page that was faulted on).
306                          */
307                         flags |= PS_NONE_BUSY;
308                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
309                                 flags |= PS_ALL_DIRTY;
310                 }
311                 if (vm_page_ps_test(m_super, flags, m)) {
312                         m_map = m_super;
313                         psind = m_super->psind;
314                         vaddr = rounddown2(vaddr, pagesizes[psind]);
315                         /* Preset the modified bit for dirty superpages. */
316                         if ((flags & PS_ALL_DIRTY) != 0)
317                                 fault_type |= VM_PROT_WRITE;
318                 }
319         }
320 #endif
321         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
322             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
323         if (rv != KERN_SUCCESS)
324                 return (rv);
325         vm_fault_fill_hold(m_hold, m);
326         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
327         if (psind == 0 && !wired)
328                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
329         VM_OBJECT_RUNLOCK(fs->first_object);
330         vm_map_lookup_done(fs->map, fs->entry);
331         curthread->td_ru.ru_minflt++;
332         return (KERN_SUCCESS);
333 }
334
335 static void
336 vm_fault_restore_map_lock(struct faultstate *fs)
337 {
338
339         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
340         MPASS(fs->first_object->paging_in_progress > 0);
341
342         if (!vm_map_trylock_read(fs->map)) {
343                 VM_OBJECT_WUNLOCK(fs->first_object);
344                 vm_map_lock_read(fs->map);
345                 VM_OBJECT_WLOCK(fs->first_object);
346         }
347         fs->lookup_still_valid = true;
348 }
349
350 static void
351 vm_fault_populate_check_page(vm_page_t m)
352 {
353
354         /*
355          * Check each page to ensure that the pager is obeying the
356          * interface: the page must be installed in the object, fully
357          * valid, and exclusively busied.
358          */
359         MPASS(m != NULL);
360         MPASS(m->valid == VM_PAGE_BITS_ALL);
361         MPASS(vm_page_xbusied(m));
362 }
363
364 static void
365 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
366     vm_pindex_t last)
367 {
368         vm_page_t m;
369         vm_pindex_t pidx;
370
371         VM_OBJECT_ASSERT_WLOCKED(object);
372         MPASS(first <= last);
373         for (pidx = first, m = vm_page_lookup(object, pidx);
374             pidx <= last; pidx++, m = vm_page_next(m)) {
375                 vm_fault_populate_check_page(m);
376                 vm_page_lock(m);
377                 vm_page_deactivate(m);
378                 vm_page_unlock(m);
379                 vm_page_xunbusy(m);
380         }
381 }
382
383 static int
384 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
385     int fault_flags, boolean_t wired, vm_page_t *m_hold)
386 {
387         struct mtx *m_mtx;
388         vm_offset_t vaddr;
389         vm_page_t m;
390         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
391         int i, npages, psind, rv;
392
393         MPASS(fs->object == fs->first_object);
394         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
395         MPASS(fs->first_object->paging_in_progress > 0);
396         MPASS(fs->first_object->backing_object == NULL);
397         MPASS(fs->lookup_still_valid);
398
399         pager_first = OFF_TO_IDX(fs->entry->offset);
400         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
401         unlock_map(fs);
402         unlock_vp(fs);
403
404         /*
405          * Call the pager (driver) populate() method.
406          *
407          * There is no guarantee that the method will be called again
408          * if the current fault is for read, and a future fault is
409          * for write.  Report the entry's maximum allowed protection
410          * to the driver.
411          */
412         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
413             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
414
415         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
416         if (rv == VM_PAGER_BAD) {
417                 /*
418                  * VM_PAGER_BAD is the backdoor for a pager to request
419                  * normal fault handling.
420                  */
421                 vm_fault_restore_map_lock(fs);
422                 if (fs->map->timestamp != fs->map_generation)
423                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
424                 return (KERN_NOT_RECEIVER);
425         }
426         if (rv != VM_PAGER_OK)
427                 return (KERN_FAILURE); /* AKA SIGSEGV */
428
429         /* Ensure that the driver is obeying the interface. */
430         MPASS(pager_first <= pager_last);
431         MPASS(fs->first_pindex <= pager_last);
432         MPASS(fs->first_pindex >= pager_first);
433         MPASS(pager_last < fs->first_object->size);
434
435         vm_fault_restore_map_lock(fs);
436         if (fs->map->timestamp != fs->map_generation) {
437                 vm_fault_populate_cleanup(fs->first_object, pager_first,
438                     pager_last);
439                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
440         }
441
442         /*
443          * The map is unchanged after our last unlock.  Process the fault.
444          *
445          * The range [pager_first, pager_last] that is given to the
446          * pager is only a hint.  The pager may populate any range
447          * within the object that includes the requested page index.
448          * In case the pager expanded the range, clip it to fit into
449          * the map entry.
450          */
451         map_first = OFF_TO_IDX(fs->entry->offset);
452         if (map_first > pager_first) {
453                 vm_fault_populate_cleanup(fs->first_object, pager_first,
454                     map_first - 1);
455                 pager_first = map_first;
456         }
457         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
458         if (map_last < pager_last) {
459                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
460                     pager_last);
461                 pager_last = map_last;
462         }
463         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
464             pidx <= pager_last;
465             pidx += npages, m = vm_page_next(&m[npages - 1])) {
466                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
467 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
468     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
469                 psind = m->psind;
470                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
471                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
472                     !pmap_ps_enabled(fs->map->pmap)))
473                         psind = 0;
474 #else
475                 psind = 0;
476 #endif          
477                 npages = atop(pagesizes[psind]);
478                 for (i = 0; i < npages; i++) {
479                         vm_fault_populate_check_page(&m[i]);
480                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
481                             fault_flags, true);
482                 }
483                 VM_OBJECT_WUNLOCK(fs->first_object);
484                 pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | (wired ?
485                     PMAP_ENTER_WIRED : 0), psind);
486                 VM_OBJECT_WLOCK(fs->first_object);
487                 m_mtx = NULL;
488                 for (i = 0; i < npages; i++) {
489                         vm_page_change_lock(&m[i], &m_mtx);
490                         if ((fault_flags & VM_FAULT_WIRE) != 0)
491                                 vm_page_wire(&m[i]);
492                         else
493                                 vm_page_activate(&m[i]);
494                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
495                                 *m_hold = &m[i];
496                                 vm_page_hold(&m[i]);
497                         }
498                         vm_page_xunbusy_maybelocked(&m[i]);
499                 }
500                 if (m_mtx != NULL)
501                         mtx_unlock(m_mtx);
502         }
503         curthread->td_ru.ru_majflt++;
504         return (KERN_SUCCESS);
505 }
506
507 /*
508  *      vm_fault:
509  *
510  *      Handle a page fault occurring at the given address,
511  *      requiring the given permissions, in the map specified.
512  *      If successful, the page is inserted into the
513  *      associated physical map.
514  *
515  *      NOTE: the given address should be truncated to the
516  *      proper page address.
517  *
518  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
519  *      a standard error specifying why the fault is fatal is returned.
520  *
521  *      The map in question must be referenced, and remains so.
522  *      Caller may hold no locks.
523  */
524 int
525 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
526     int fault_flags)
527 {
528         struct thread *td;
529         int result;
530
531         td = curthread;
532         if ((td->td_pflags & TDP_NOFAULTING) != 0)
533                 return (KERN_PROTECTION_FAILURE);
534 #ifdef KTRACE
535         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
536                 ktrfault(vaddr, fault_type);
537 #endif
538         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
539             NULL);
540 #ifdef KTRACE
541         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
542                 ktrfaultend(result);
543 #endif
544         return (result);
545 }
546
547 int
548 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
549     int fault_flags, vm_page_t *m_hold)
550 {
551         struct faultstate fs;
552         struct vnode *vp;
553         struct domainset *dset;
554         vm_object_t next_object, retry_object;
555         vm_offset_t e_end, e_start;
556         vm_pindex_t retry_pindex;
557         vm_prot_t prot, retry_prot;
558         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
559         int locked, nera, result, rv;
560         u_char behavior;
561         boolean_t wired;        /* Passed by reference. */
562         bool dead, hardfault, is_first_object_locked;
563
564         VM_CNT_INC(v_vm_faults);
565         fs.vp = NULL;
566         faultcount = 0;
567         nera = -1;
568         hardfault = false;
569
570 RetryFault:;
571
572         /*
573          * Find the backing store object and offset into it to begin the
574          * search.
575          */
576         fs.map = map;
577         result = vm_map_lookup(&fs.map, vaddr, fault_type |
578             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
579             &fs.first_pindex, &prot, &wired);
580         if (result != KERN_SUCCESS) {
581                 unlock_vp(&fs);
582                 return (result);
583         }
584
585         fs.map_generation = fs.map->timestamp;
586
587         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
588                 panic("%s: fault on nofault entry, addr: %#lx",
589                     __func__, (u_long)vaddr);
590         }
591
592         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
593             fs.entry->wiring_thread != curthread) {
594                 vm_map_unlock_read(fs.map);
595                 vm_map_lock(fs.map);
596                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
597                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
598                         unlock_vp(&fs);
599                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
600                         vm_map_unlock_and_wait(fs.map, 0);
601                 } else
602                         vm_map_unlock(fs.map);
603                 goto RetryFault;
604         }
605
606         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
607
608         if (wired)
609                 fault_type = prot | (fault_type & VM_PROT_COPY);
610         else
611                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
612                     ("!wired && VM_FAULT_WIRE"));
613
614         /*
615          * Try to avoid lock contention on the top-level object through
616          * special-case handling of some types of page faults, specifically,
617          * those that are both (1) mapping an existing page from the top-
618          * level object and (2) not having to mark that object as containing
619          * dirty pages.  Under these conditions, a read lock on the top-level
620          * object suffices, allowing multiple page faults of a similar type to
621          * run in parallel on the same top-level object.
622          */
623         if (fs.vp == NULL /* avoid locked vnode leak */ &&
624             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
625             /* avoid calling vm_object_set_writeable_dirty() */
626             ((prot & VM_PROT_WRITE) == 0 ||
627             (fs.first_object->type != OBJT_VNODE &&
628             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
629             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
630                 VM_OBJECT_RLOCK(fs.first_object);
631                 if ((prot & VM_PROT_WRITE) == 0 ||
632                     (fs.first_object->type != OBJT_VNODE &&
633                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
634                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
635                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
636                             fault_flags, wired, m_hold);
637                         if (rv == KERN_SUCCESS)
638                                 return (rv);
639                 }
640                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
641                         VM_OBJECT_RUNLOCK(fs.first_object);
642                         VM_OBJECT_WLOCK(fs.first_object);
643                 }
644         } else {
645                 VM_OBJECT_WLOCK(fs.first_object);
646         }
647
648         /*
649          * Make a reference to this object to prevent its disposal while we
650          * are messing with it.  Once we have the reference, the map is free
651          * to be diddled.  Since objects reference their shadows (and copies),
652          * they will stay around as well.
653          *
654          * Bump the paging-in-progress count to prevent size changes (e.g. 
655          * truncation operations) during I/O.
656          */
657         vm_object_reference_locked(fs.first_object);
658         vm_object_pip_add(fs.first_object, 1);
659
660         fs.lookup_still_valid = true;
661
662         fs.first_m = NULL;
663
664         /*
665          * Search for the page at object/offset.
666          */
667         fs.object = fs.first_object;
668         fs.pindex = fs.first_pindex;
669         while (TRUE) {
670                 /*
671                  * If the object is marked for imminent termination,
672                  * we retry here, since the collapse pass has raced
673                  * with us.  Otherwise, if we see terminally dead
674                  * object, return fail.
675                  */
676                 if ((fs.object->flags & OBJ_DEAD) != 0) {
677                         dead = fs.object->type == OBJT_DEAD;
678                         unlock_and_deallocate(&fs);
679                         if (dead)
680                                 return (KERN_PROTECTION_FAILURE);
681                         pause("vmf_de", 1);
682                         goto RetryFault;
683                 }
684
685                 /*
686                  * See if page is resident
687                  */
688                 fs.m = vm_page_lookup(fs.object, fs.pindex);
689                 if (fs.m != NULL) {
690                         /*
691                          * Wait/Retry if the page is busy.  We have to do this
692                          * if the page is either exclusive or shared busy
693                          * because the vm_pager may be using read busy for
694                          * pageouts (and even pageins if it is the vnode
695                          * pager), and we could end up trying to pagein and
696                          * pageout the same page simultaneously.
697                          *
698                          * We can theoretically allow the busy case on a read
699                          * fault if the page is marked valid, but since such
700                          * pages are typically already pmap'd, putting that
701                          * special case in might be more effort then it is 
702                          * worth.  We cannot under any circumstances mess
703                          * around with a shared busied page except, perhaps,
704                          * to pmap it.
705                          */
706                         if (vm_page_busied(fs.m)) {
707                                 /*
708                                  * Reference the page before unlocking and
709                                  * sleeping so that the page daemon is less
710                                  * likely to reclaim it.
711                                  */
712                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
713                                 if (fs.object != fs.first_object) {
714                                         if (!VM_OBJECT_TRYWLOCK(
715                                             fs.first_object)) {
716                                                 VM_OBJECT_WUNLOCK(fs.object);
717                                                 VM_OBJECT_WLOCK(fs.first_object);
718                                                 VM_OBJECT_WLOCK(fs.object);
719                                         }
720                                         vm_page_lock(fs.first_m);
721                                         vm_page_free(fs.first_m);
722                                         vm_page_unlock(fs.first_m);
723                                         vm_object_pip_wakeup(fs.first_object);
724                                         VM_OBJECT_WUNLOCK(fs.first_object);
725                                         fs.first_m = NULL;
726                                 }
727                                 unlock_map(&fs);
728                                 if (fs.m == vm_page_lookup(fs.object,
729                                     fs.pindex)) {
730                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
731                                 }
732                                 vm_object_pip_wakeup(fs.object);
733                                 VM_OBJECT_WUNLOCK(fs.object);
734                                 VM_CNT_INC(v_intrans);
735                                 vm_object_deallocate(fs.first_object);
736                                 goto RetryFault;
737                         }
738
739                         /*
740                          * Mark page busy for other processes, and the 
741                          * pagedaemon.  If it still isn't completely valid
742                          * (readable), jump to readrest, else break-out ( we
743                          * found the page ).
744                          */
745                         vm_page_xbusy(fs.m);
746                         if (fs.m->valid != VM_PAGE_BITS_ALL)
747                                 goto readrest;
748                         break; /* break to PAGE HAS BEEN FOUND */
749                 }
750                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
751
752                 /*
753                  * Page is not resident.  If the pager might contain the page
754                  * or this is the beginning of the search, allocate a new
755                  * page.  (Default objects are zero-fill, so there is no real
756                  * pager for them.)
757                  */
758                 if (fs.object->type != OBJT_DEFAULT ||
759                     fs.object == fs.first_object) {
760                         if (fs.pindex >= fs.object->size) {
761                                 unlock_and_deallocate(&fs);
762                                 return (KERN_PROTECTION_FAILURE);
763                         }
764
765                         if (fs.object == fs.first_object &&
766                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
767                             fs.first_object->shadow_count == 0) {
768                                 rv = vm_fault_populate(&fs, prot, fault_type,
769                                     fault_flags, wired, m_hold);
770                                 switch (rv) {
771                                 case KERN_SUCCESS:
772                                 case KERN_FAILURE:
773                                         unlock_and_deallocate(&fs);
774                                         return (rv);
775                                 case KERN_RESOURCE_SHORTAGE:
776                                         unlock_and_deallocate(&fs);
777                                         goto RetryFault;
778                                 case KERN_NOT_RECEIVER:
779                                         /*
780                                          * Pager's populate() method
781                                          * returned VM_PAGER_BAD.
782                                          */
783                                         break;
784                                 default:
785                                         panic("inconsistent return codes");
786                                 }
787                         }
788
789                         /*
790                          * Allocate a new page for this object/offset pair.
791                          *
792                          * Unlocked read of the p_flag is harmless. At
793                          * worst, the P_KILLED might be not observed
794                          * there, and allocation can fail, causing
795                          * restart and new reading of the p_flag.
796                          */
797                         dset = fs.object->domain.dr_policy;
798                         if (dset == NULL)
799                                 dset = curthread->td_domain.dr_policy;
800                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
801                             P_KILLED(curproc)) {
802 #if VM_NRESERVLEVEL > 0
803                                 vm_object_color(fs.object, atop(vaddr) -
804                                     fs.pindex);
805 #endif
806                                 alloc_req = P_KILLED(curproc) ?
807                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
808                                 if (fs.object->type != OBJT_VNODE &&
809                                     fs.object->backing_object == NULL)
810                                         alloc_req |= VM_ALLOC_ZERO;
811                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
812                                     alloc_req);
813                         }
814                         if (fs.m == NULL) {
815                                 unlock_and_deallocate(&fs);
816                                 vm_waitpfault(dset);
817                                 goto RetryFault;
818                         }
819                 }
820
821 readrest:
822                 /*
823                  * At this point, we have either allocated a new page or found
824                  * an existing page that is only partially valid.
825                  *
826                  * We hold a reference on the current object and the page is
827                  * exclusive busied.
828                  */
829
830                 /*
831                  * If the pager for the current object might have the page,
832                  * then determine the number of additional pages to read and
833                  * potentially reprioritize previously read pages for earlier
834                  * reclamation.  These operations should only be performed
835                  * once per page fault.  Even if the current pager doesn't
836                  * have the page, the number of additional pages to read will
837                  * apply to subsequent objects in the shadow chain.
838                  */
839                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
840                     !P_KILLED(curproc)) {
841                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
842                         era = fs.entry->read_ahead;
843                         behavior = vm_map_entry_behavior(fs.entry);
844                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
845                                 nera = 0;
846                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
847                                 nera = VM_FAULT_READ_AHEAD_MAX;
848                                 if (vaddr == fs.entry->next_read)
849                                         vm_fault_dontneed(&fs, vaddr, nera);
850                         } else if (vaddr == fs.entry->next_read) {
851                                 /*
852                                  * This is a sequential fault.  Arithmetically
853                                  * increase the requested number of pages in
854                                  * the read-ahead window.  The requested
855                                  * number of pages is "# of sequential faults
856                                  * x (read ahead min + 1) + read ahead min"
857                                  */
858                                 nera = VM_FAULT_READ_AHEAD_MIN;
859                                 if (era > 0) {
860                                         nera += era + 1;
861                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
862                                                 nera = VM_FAULT_READ_AHEAD_MAX;
863                                 }
864                                 if (era == VM_FAULT_READ_AHEAD_MAX)
865                                         vm_fault_dontneed(&fs, vaddr, nera);
866                         } else {
867                                 /*
868                                  * This is a non-sequential fault.
869                                  */
870                                 nera = 0;
871                         }
872                         if (era != nera) {
873                                 /*
874                                  * A read lock on the map suffices to update
875                                  * the read ahead count safely.
876                                  */
877                                 fs.entry->read_ahead = nera;
878                         }
879
880                         /*
881                          * Prepare for unlocking the map.  Save the map
882                          * entry's start and end addresses, which are used to
883                          * optimize the size of the pager operation below.
884                          * Even if the map entry's addresses change after
885                          * unlocking the map, using the saved addresses is
886                          * safe.
887                          */
888                         e_start = fs.entry->start;
889                         e_end = fs.entry->end;
890                 }
891
892                 /*
893                  * Call the pager to retrieve the page if there is a chance
894                  * that the pager has it, and potentially retrieve additional
895                  * pages at the same time.
896                  */
897                 if (fs.object->type != OBJT_DEFAULT) {
898                         /*
899                          * Release the map lock before locking the vnode or
900                          * sleeping in the pager.  (If the current object has
901                          * a shadow, then an earlier iteration of this loop
902                          * may have already unlocked the map.)
903                          */
904                         unlock_map(&fs);
905
906                         if (fs.object->type == OBJT_VNODE &&
907                             (vp = fs.object->handle) != fs.vp) {
908                                 /*
909                                  * Perform an unlock in case the desired vnode
910                                  * changed while the map was unlocked during a
911                                  * retry.
912                                  */
913                                 unlock_vp(&fs);
914
915                                 locked = VOP_ISLOCKED(vp);
916                                 if (locked != LK_EXCLUSIVE)
917                                         locked = LK_SHARED;
918
919                                 /*
920                                  * We must not sleep acquiring the vnode lock
921                                  * while we have the page exclusive busied or
922                                  * the object's paging-in-progress count
923                                  * incremented.  Otherwise, we could deadlock.
924                                  */
925                                 error = vget(vp, locked | LK_CANRECURSE |
926                                     LK_NOWAIT, curthread);
927                                 if (error != 0) {
928                                         vhold(vp);
929                                         release_page(&fs);
930                                         unlock_and_deallocate(&fs);
931                                         error = vget(vp, locked | LK_RETRY |
932                                             LK_CANRECURSE, curthread);
933                                         vdrop(vp);
934                                         fs.vp = vp;
935                                         KASSERT(error == 0,
936                                             ("vm_fault: vget failed"));
937                                         goto RetryFault;
938                                 }
939                                 fs.vp = vp;
940                         }
941                         KASSERT(fs.vp == NULL || !fs.map->system_map,
942                             ("vm_fault: vnode-backed object mapped by system map"));
943
944                         /*
945                          * Page in the requested page and hint the pager,
946                          * that it may bring up surrounding pages.
947                          */
948                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
949                             P_KILLED(curproc)) {
950                                 behind = 0;
951                                 ahead = 0;
952                         } else {
953                                 /* Is this a sequential fault? */
954                                 if (nera > 0) {
955                                         behind = 0;
956                                         ahead = nera;
957                                 } else {
958                                         /*
959                                          * Request a cluster of pages that is
960                                          * aligned to a VM_FAULT_READ_DEFAULT
961                                          * page offset boundary within the
962                                          * object.  Alignment to a page offset
963                                          * boundary is more likely to coincide
964                                          * with the underlying file system
965                                          * block than alignment to a virtual
966                                          * address boundary.
967                                          */
968                                         cluster_offset = fs.pindex %
969                                             VM_FAULT_READ_DEFAULT;
970                                         behind = ulmin(cluster_offset,
971                                             atop(vaddr - e_start));
972                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
973                                             cluster_offset;
974                                 }
975                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
976                         }
977                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
978                             &behind, &ahead);
979                         if (rv == VM_PAGER_OK) {
980                                 faultcount = behind + 1 + ahead;
981                                 hardfault = true;
982                                 break; /* break to PAGE HAS BEEN FOUND */
983                         }
984                         if (rv == VM_PAGER_ERROR)
985                                 printf("vm_fault: pager read error, pid %d (%s)\n",
986                                     curproc->p_pid, curproc->p_comm);
987
988                         /*
989                          * If an I/O error occurred or the requested page was
990                          * outside the range of the pager, clean up and return
991                          * an error.
992                          */
993                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
994                                 vm_page_lock(fs.m);
995                                 if (fs.m->wire_count == 0)
996                                         vm_page_free(fs.m);
997                                 else
998                                         vm_page_xunbusy_maybelocked(fs.m);
999                                 vm_page_unlock(fs.m);
1000                                 fs.m = NULL;
1001                                 unlock_and_deallocate(&fs);
1002                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
1003                                     KERN_PROTECTION_FAILURE);
1004                         }
1005
1006                         /*
1007                          * The requested page does not exist at this object/
1008                          * offset.  Remove the invalid page from the object,
1009                          * waking up anyone waiting for it, and continue on to
1010                          * the next object.  However, if this is the top-level
1011                          * object, we must leave the busy page in place to
1012                          * prevent another process from rushing past us, and
1013                          * inserting the page in that object at the same time
1014                          * that we are.
1015                          */
1016                         if (fs.object != fs.first_object) {
1017                                 vm_page_lock(fs.m);
1018                                 if (fs.m->wire_count == 0)
1019                                         vm_page_free(fs.m);
1020                                 else
1021                                         vm_page_xunbusy_maybelocked(fs.m);
1022                                 vm_page_unlock(fs.m);
1023                                 fs.m = NULL;
1024                         }
1025                 }
1026
1027                 /*
1028                  * We get here if the object has default pager (or unwiring) 
1029                  * or the pager doesn't have the page.
1030                  */
1031                 if (fs.object == fs.first_object)
1032                         fs.first_m = fs.m;
1033
1034                 /*
1035                  * Move on to the next object.  Lock the next object before
1036                  * unlocking the current one.
1037                  */
1038                 next_object = fs.object->backing_object;
1039                 if (next_object == NULL) {
1040                         /*
1041                          * If there's no object left, fill the page in the top
1042                          * object with zeros.
1043                          */
1044                         if (fs.object != fs.first_object) {
1045                                 vm_object_pip_wakeup(fs.object);
1046                                 VM_OBJECT_WUNLOCK(fs.object);
1047
1048                                 fs.object = fs.first_object;
1049                                 fs.pindex = fs.first_pindex;
1050                                 fs.m = fs.first_m;
1051                                 VM_OBJECT_WLOCK(fs.object);
1052                         }
1053                         fs.first_m = NULL;
1054
1055                         /*
1056                          * Zero the page if necessary and mark it valid.
1057                          */
1058                         if ((fs.m->flags & PG_ZERO) == 0) {
1059                                 pmap_zero_page(fs.m);
1060                         } else {
1061                                 VM_CNT_INC(v_ozfod);
1062                         }
1063                         VM_CNT_INC(v_zfod);
1064                         fs.m->valid = VM_PAGE_BITS_ALL;
1065                         /* Don't try to prefault neighboring pages. */
1066                         faultcount = 1;
1067                         break;  /* break to PAGE HAS BEEN FOUND */
1068                 } else {
1069                         KASSERT(fs.object != next_object,
1070                             ("object loop %p", next_object));
1071                         VM_OBJECT_WLOCK(next_object);
1072                         vm_object_pip_add(next_object, 1);
1073                         if (fs.object != fs.first_object)
1074                                 vm_object_pip_wakeup(fs.object);
1075                         fs.pindex +=
1076                             OFF_TO_IDX(fs.object->backing_object_offset);
1077                         VM_OBJECT_WUNLOCK(fs.object);
1078                         fs.object = next_object;
1079                 }
1080         }
1081
1082         vm_page_assert_xbusied(fs.m);
1083
1084         /*
1085          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1086          * is held.]
1087          */
1088
1089         /*
1090          * If the page is being written, but isn't already owned by the
1091          * top-level object, we have to copy it into a new page owned by the
1092          * top-level object.
1093          */
1094         if (fs.object != fs.first_object) {
1095                 /*
1096                  * We only really need to copy if we want to write it.
1097                  */
1098                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1099                         /*
1100                          * This allows pages to be virtually copied from a 
1101                          * backing_object into the first_object, where the 
1102                          * backing object has no other refs to it, and cannot
1103                          * gain any more refs.  Instead of a bcopy, we just 
1104                          * move the page from the backing object to the 
1105                          * first object.  Note that we must mark the page 
1106                          * dirty in the first object so that it will go out 
1107                          * to swap when needed.
1108                          */
1109                         is_first_object_locked = false;
1110                         if (
1111                                 /*
1112                                  * Only one shadow object
1113                                  */
1114                                 (fs.object->shadow_count == 1) &&
1115                                 /*
1116                                  * No COW refs, except us
1117                                  */
1118                                 (fs.object->ref_count == 1) &&
1119                                 /*
1120                                  * No one else can look this object up
1121                                  */
1122                                 (fs.object->handle == NULL) &&
1123                                 /*
1124                                  * No other ways to look the object up
1125                                  */
1126                                 ((fs.object->type == OBJT_DEFAULT) ||
1127                                  (fs.object->type == OBJT_SWAP)) &&
1128                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1129                                 /*
1130                                  * We don't chase down the shadow chain
1131                                  */
1132                             fs.object == fs.first_object->backing_object) {
1133                                 vm_page_lock(fs.m);
1134                                 vm_page_dequeue(fs.m);
1135                                 vm_page_remove(fs.m);
1136                                 vm_page_unlock(fs.m);
1137                                 vm_page_lock(fs.first_m);
1138                                 vm_page_replace_checked(fs.m, fs.first_object,
1139                                     fs.first_pindex, fs.first_m);
1140                                 vm_page_free(fs.first_m);
1141                                 vm_page_unlock(fs.first_m);
1142                                 vm_page_dirty(fs.m);
1143 #if VM_NRESERVLEVEL > 0
1144                                 /*
1145                                  * Rename the reservation.
1146                                  */
1147                                 vm_reserv_rename(fs.m, fs.first_object,
1148                                     fs.object, OFF_TO_IDX(
1149                                     fs.first_object->backing_object_offset));
1150 #endif
1151                                 /*
1152                                  * Removing the page from the backing object
1153                                  * unbusied it.
1154                                  */
1155                                 vm_page_xbusy(fs.m);
1156                                 fs.first_m = fs.m;
1157                                 fs.m = NULL;
1158                                 VM_CNT_INC(v_cow_optim);
1159                         } else {
1160                                 /*
1161                                  * Oh, well, lets copy it.
1162                                  */
1163                                 pmap_copy_page(fs.m, fs.first_m);
1164                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1165                                 if (wired && (fault_flags &
1166                                     VM_FAULT_WIRE) == 0) {
1167                                         vm_page_lock(fs.first_m);
1168                                         vm_page_wire(fs.first_m);
1169                                         vm_page_unlock(fs.first_m);
1170                                         
1171                                         vm_page_lock(fs.m);
1172                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1173                                         vm_page_unlock(fs.m);
1174                                 }
1175                                 /*
1176                                  * We no longer need the old page or object.
1177                                  */
1178                                 release_page(&fs);
1179                         }
1180                         /*
1181                          * fs.object != fs.first_object due to above 
1182                          * conditional
1183                          */
1184                         vm_object_pip_wakeup(fs.object);
1185                         VM_OBJECT_WUNLOCK(fs.object);
1186
1187                         /*
1188                          * We only try to prefault read-only mappings to the
1189                          * neighboring pages when this copy-on-write fault is
1190                          * a hard fault.  In other cases, trying to prefault
1191                          * is typically wasted effort.
1192                          */
1193                         if (faultcount == 0)
1194                                 faultcount = 1;
1195
1196                         /*
1197                          * Only use the new page below...
1198                          */
1199                         fs.object = fs.first_object;
1200                         fs.pindex = fs.first_pindex;
1201                         fs.m = fs.first_m;
1202                         if (!is_first_object_locked)
1203                                 VM_OBJECT_WLOCK(fs.object);
1204                         VM_CNT_INC(v_cow_faults);
1205                         curthread->td_cow++;
1206                 } else {
1207                         prot &= ~VM_PROT_WRITE;
1208                 }
1209         }
1210
1211         /*
1212          * We must verify that the maps have not changed since our last
1213          * lookup.
1214          */
1215         if (!fs.lookup_still_valid) {
1216                 if (!vm_map_trylock_read(fs.map)) {
1217                         release_page(&fs);
1218                         unlock_and_deallocate(&fs);
1219                         goto RetryFault;
1220                 }
1221                 fs.lookup_still_valid = true;
1222                 if (fs.map->timestamp != fs.map_generation) {
1223                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1224                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1225
1226                         /*
1227                          * If we don't need the page any longer, put it on the inactive
1228                          * list (the easiest thing to do here).  If no one needs it,
1229                          * pageout will grab it eventually.
1230                          */
1231                         if (result != KERN_SUCCESS) {
1232                                 release_page(&fs);
1233                                 unlock_and_deallocate(&fs);
1234
1235                                 /*
1236                                  * If retry of map lookup would have blocked then
1237                                  * retry fault from start.
1238                                  */
1239                                 if (result == KERN_FAILURE)
1240                                         goto RetryFault;
1241                                 return (result);
1242                         }
1243                         if ((retry_object != fs.first_object) ||
1244                             (retry_pindex != fs.first_pindex)) {
1245                                 release_page(&fs);
1246                                 unlock_and_deallocate(&fs);
1247                                 goto RetryFault;
1248                         }
1249
1250                         /*
1251                          * Check whether the protection has changed or the object has
1252                          * been copied while we left the map unlocked. Changing from
1253                          * read to write permission is OK - we leave the page
1254                          * write-protected, and catch the write fault. Changing from
1255                          * write to read permission means that we can't mark the page
1256                          * write-enabled after all.
1257                          */
1258                         prot &= retry_prot;
1259                         fault_type &= retry_prot;
1260                         if (prot == 0) {
1261                                 release_page(&fs);
1262                                 unlock_and_deallocate(&fs);
1263                                 goto RetryFault;
1264                         }
1265
1266                         /* Reassert because wired may have changed. */
1267                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1268                             ("!wired && VM_FAULT_WIRE"));
1269                 }
1270         }
1271
1272         /*
1273          * If the page was filled by a pager, save the virtual address that
1274          * should be faulted on next under a sequential access pattern to the
1275          * map entry.  A read lock on the map suffices to update this address
1276          * safely.
1277          */
1278         if (hardfault)
1279                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1280
1281         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1282         vm_page_assert_xbusied(fs.m);
1283
1284         /*
1285          * Page must be completely valid or it is not fit to
1286          * map into user space.  vm_pager_get_pages() ensures this.
1287          */
1288         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1289             ("vm_fault: page %p partially invalid", fs.m));
1290         VM_OBJECT_WUNLOCK(fs.object);
1291
1292         /*
1293          * Put this page into the physical map.  We had to do the unlock above
1294          * because pmap_enter() may sleep.  We don't put the page
1295          * back on the active queue until later so that the pageout daemon
1296          * won't find it (yet).
1297          */
1298         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1299             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1300         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1301             wired == 0)
1302                 vm_fault_prefault(&fs, vaddr,
1303                     faultcount > 0 ? behind : PFBAK,
1304                     faultcount > 0 ? ahead : PFFOR, false);
1305         VM_OBJECT_WLOCK(fs.object);
1306         vm_page_lock(fs.m);
1307
1308         /*
1309          * If the page is not wired down, then put it where the pageout daemon
1310          * can find it.
1311          */
1312         if ((fault_flags & VM_FAULT_WIRE) != 0)
1313                 vm_page_wire(fs.m);
1314         else
1315                 vm_page_activate(fs.m);
1316         if (m_hold != NULL) {
1317                 *m_hold = fs.m;
1318                 vm_page_hold(fs.m);
1319         }
1320         vm_page_unlock(fs.m);
1321         vm_page_xunbusy(fs.m);
1322
1323         /*
1324          * Unlock everything, and return
1325          */
1326         unlock_and_deallocate(&fs);
1327         if (hardfault) {
1328                 VM_CNT_INC(v_io_faults);
1329                 curthread->td_ru.ru_majflt++;
1330 #ifdef RACCT
1331                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1332                         PROC_LOCK(curproc);
1333                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1334                                 racct_add_force(curproc, RACCT_WRITEBPS,
1335                                     PAGE_SIZE + behind * PAGE_SIZE);
1336                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1337                         } else {
1338                                 racct_add_force(curproc, RACCT_READBPS,
1339                                     PAGE_SIZE + ahead * PAGE_SIZE);
1340                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1341                         }
1342                         PROC_UNLOCK(curproc);
1343                 }
1344 #endif
1345         } else 
1346                 curthread->td_ru.ru_minflt++;
1347
1348         return (KERN_SUCCESS);
1349 }
1350
1351 /*
1352  * Speed up the reclamation of pages that precede the faulting pindex within
1353  * the first object of the shadow chain.  Essentially, perform the equivalent
1354  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1355  * the faulting pindex by the cluster size when the pages read by vm_fault()
1356  * cross a cluster-size boundary.  The cluster size is the greater of the
1357  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1358  *
1359  * When "fs->first_object" is a shadow object, the pages in the backing object
1360  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1361  * function must only be concerned with pages in the first object.
1362  */
1363 static void
1364 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1365 {
1366         vm_map_entry_t entry;
1367         vm_object_t first_object, object;
1368         vm_offset_t end, start;
1369         vm_page_t m, m_next;
1370         vm_pindex_t pend, pstart;
1371         vm_size_t size;
1372
1373         object = fs->object;
1374         VM_OBJECT_ASSERT_WLOCKED(object);
1375         first_object = fs->first_object;
1376         if (first_object != object) {
1377                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1378                         VM_OBJECT_WUNLOCK(object);
1379                         VM_OBJECT_WLOCK(first_object);
1380                         VM_OBJECT_WLOCK(object);
1381                 }
1382         }
1383         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1384         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1385                 size = VM_FAULT_DONTNEED_MIN;
1386                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1387                         size = pagesizes[1];
1388                 end = rounddown2(vaddr, size);
1389                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1390                     (entry = fs->entry)->start < end) {
1391                         if (end - entry->start < size)
1392                                 start = entry->start;
1393                         else
1394                                 start = end - size;
1395                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1396                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1397                             entry->start);
1398                         m_next = vm_page_find_least(first_object, pstart);
1399                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1400                             entry->start);
1401                         while ((m = m_next) != NULL && m->pindex < pend) {
1402                                 m_next = TAILQ_NEXT(m, listq);
1403                                 if (m->valid != VM_PAGE_BITS_ALL ||
1404                                     vm_page_busied(m))
1405                                         continue;
1406
1407                                 /*
1408                                  * Don't clear PGA_REFERENCED, since it would
1409                                  * likely represent a reference by a different
1410                                  * process.
1411                                  *
1412                                  * Typically, at this point, prefetched pages
1413                                  * are still in the inactive queue.  Only
1414                                  * pages that triggered page faults are in the
1415                                  * active queue.
1416                                  */
1417                                 vm_page_lock(m);
1418                                 if (!vm_page_inactive(m))
1419                                         vm_page_deactivate(m);
1420                                 vm_page_unlock(m);
1421                         }
1422                 }
1423         }
1424         if (first_object != object)
1425                 VM_OBJECT_WUNLOCK(first_object);
1426 }
1427
1428 /*
1429  * vm_fault_prefault provides a quick way of clustering
1430  * pagefaults into a processes address space.  It is a "cousin"
1431  * of vm_map_pmap_enter, except it runs at page fault time instead
1432  * of mmap time.
1433  */
1434 static void
1435 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1436     int backward, int forward, bool obj_locked)
1437 {
1438         pmap_t pmap;
1439         vm_map_entry_t entry;
1440         vm_object_t backing_object, lobject;
1441         vm_offset_t addr, starta;
1442         vm_pindex_t pindex;
1443         vm_page_t m;
1444         int i;
1445
1446         pmap = fs->map->pmap;
1447         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1448                 return;
1449
1450         entry = fs->entry;
1451
1452         if (addra < backward * PAGE_SIZE) {
1453                 starta = entry->start;
1454         } else {
1455                 starta = addra - backward * PAGE_SIZE;
1456                 if (starta < entry->start)
1457                         starta = entry->start;
1458         }
1459
1460         /*
1461          * Generate the sequence of virtual addresses that are candidates for
1462          * prefaulting in an outward spiral from the faulting virtual address,
1463          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1464          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1465          * If the candidate address doesn't have a backing physical page, then
1466          * the loop immediately terminates.
1467          */
1468         for (i = 0; i < 2 * imax(backward, forward); i++) {
1469                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1470                     PAGE_SIZE);
1471                 if (addr > addra + forward * PAGE_SIZE)
1472                         addr = 0;
1473
1474                 if (addr < starta || addr >= entry->end)
1475                         continue;
1476
1477                 if (!pmap_is_prefaultable(pmap, addr))
1478                         continue;
1479
1480                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1481                 lobject = entry->object.vm_object;
1482                 if (!obj_locked)
1483                         VM_OBJECT_RLOCK(lobject);
1484                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1485                     lobject->type == OBJT_DEFAULT &&
1486                     (backing_object = lobject->backing_object) != NULL) {
1487                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1488                             0, ("vm_fault_prefault: unaligned object offset"));
1489                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1490                         VM_OBJECT_RLOCK(backing_object);
1491                         if (!obj_locked || lobject != entry->object.vm_object)
1492                                 VM_OBJECT_RUNLOCK(lobject);
1493                         lobject = backing_object;
1494                 }
1495                 if (m == NULL) {
1496                         if (!obj_locked || lobject != entry->object.vm_object)
1497                                 VM_OBJECT_RUNLOCK(lobject);
1498                         break;
1499                 }
1500                 if (m->valid == VM_PAGE_BITS_ALL &&
1501                     (m->flags & PG_FICTITIOUS) == 0)
1502                         pmap_enter_quick(pmap, addr, m, entry->protection);
1503                 if (!obj_locked || lobject != entry->object.vm_object)
1504                         VM_OBJECT_RUNLOCK(lobject);
1505         }
1506 }
1507
1508 /*
1509  * Hold each of the physical pages that are mapped by the specified range of
1510  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1511  * and allow the specified types of access, "prot".  If all of the implied
1512  * pages are successfully held, then the number of held pages is returned
1513  * together with pointers to those pages in the array "ma".  However, if any
1514  * of the pages cannot be held, -1 is returned.
1515  */
1516 int
1517 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1518     vm_prot_t prot, vm_page_t *ma, int max_count)
1519 {
1520         vm_offset_t end, va;
1521         vm_page_t *mp;
1522         int count;
1523         boolean_t pmap_failed;
1524
1525         if (len == 0)
1526                 return (0);
1527         end = round_page(addr + len);
1528         addr = trunc_page(addr);
1529
1530         /*
1531          * Check for illegal addresses.
1532          */
1533         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1534                 return (-1);
1535
1536         if (atop(end - addr) > max_count)
1537                 panic("vm_fault_quick_hold_pages: count > max_count");
1538         count = atop(end - addr);
1539
1540         /*
1541          * Most likely, the physical pages are resident in the pmap, so it is
1542          * faster to try pmap_extract_and_hold() first.
1543          */
1544         pmap_failed = FALSE;
1545         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1546                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1547                 if (*mp == NULL)
1548                         pmap_failed = TRUE;
1549                 else if ((prot & VM_PROT_WRITE) != 0 &&
1550                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1551                         /*
1552                          * Explicitly dirty the physical page.  Otherwise, the
1553                          * caller's changes may go unnoticed because they are
1554                          * performed through an unmanaged mapping or by a DMA
1555                          * operation.
1556                          *
1557                          * The object lock is not held here.
1558                          * See vm_page_clear_dirty_mask().
1559                          */
1560                         vm_page_dirty(*mp);
1561                 }
1562         }
1563         if (pmap_failed) {
1564                 /*
1565                  * One or more pages could not be held by the pmap.  Either no
1566                  * page was mapped at the specified virtual address or that
1567                  * mapping had insufficient permissions.  Attempt to fault in
1568                  * and hold these pages.
1569                  *
1570                  * If vm_fault_disable_pagefaults() was called,
1571                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1572                  * acquire MD VM locks, which means we must not call
1573                  * vm_fault_hold().  Some (out of tree) callers mark
1574                  * too wide a code area with vm_fault_disable_pagefaults()
1575                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1576                  * the proper behaviour explicitly.
1577                  */
1578                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1579                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1580                         goto error;
1581                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1582                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1583                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1584                                 goto error;
1585         }
1586         return (count);
1587 error:  
1588         for (mp = ma; mp < ma + count; mp++)
1589                 if (*mp != NULL) {
1590                         vm_page_lock(*mp);
1591                         vm_page_unhold(*mp);
1592                         vm_page_unlock(*mp);
1593                 }
1594         return (-1);
1595 }
1596
1597 /*
1598  *      Routine:
1599  *              vm_fault_copy_entry
1600  *      Function:
1601  *              Create new shadow object backing dst_entry with private copy of
1602  *              all underlying pages. When src_entry is equal to dst_entry,
1603  *              function implements COW for wired-down map entry. Otherwise,
1604  *              it forks wired entry into dst_map.
1605  *
1606  *      In/out conditions:
1607  *              The source and destination maps must be locked for write.
1608  *              The source map entry must be wired down (or be a sharing map
1609  *              entry corresponding to a main map entry that is wired down).
1610  */
1611 void
1612 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1613     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1614     vm_ooffset_t *fork_charge)
1615 {
1616         vm_object_t backing_object, dst_object, object, src_object;
1617         vm_pindex_t dst_pindex, pindex, src_pindex;
1618         vm_prot_t access, prot;
1619         vm_offset_t vaddr;
1620         vm_page_t dst_m;
1621         vm_page_t src_m;
1622         boolean_t upgrade;
1623
1624 #ifdef  lint
1625         src_map++;
1626 #endif  /* lint */
1627
1628         upgrade = src_entry == dst_entry;
1629         access = prot = dst_entry->protection;
1630
1631         src_object = src_entry->object.vm_object;
1632         src_pindex = OFF_TO_IDX(src_entry->offset);
1633
1634         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1635                 dst_object = src_object;
1636                 vm_object_reference(dst_object);
1637         } else {
1638                 /*
1639                  * Create the top-level object for the destination entry. (Doesn't
1640                  * actually shadow anything - we copy the pages directly.)
1641                  */
1642                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1643                     atop(dst_entry->end - dst_entry->start));
1644 #if VM_NRESERVLEVEL > 0
1645                 dst_object->flags |= OBJ_COLORED;
1646                 dst_object->pg_color = atop(dst_entry->start);
1647 #endif
1648                 dst_object->domain = src_object->domain;
1649                 dst_object->charge = dst_entry->end - dst_entry->start;
1650         }
1651
1652         VM_OBJECT_WLOCK(dst_object);
1653         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1654             ("vm_fault_copy_entry: vm_object not NULL"));
1655         if (src_object != dst_object) {
1656                 dst_entry->object.vm_object = dst_object;
1657                 dst_entry->offset = 0;
1658         }
1659         if (fork_charge != NULL) {
1660                 KASSERT(dst_entry->cred == NULL,
1661                     ("vm_fault_copy_entry: leaked swp charge"));
1662                 dst_object->cred = curthread->td_ucred;
1663                 crhold(dst_object->cred);
1664                 *fork_charge += dst_object->charge;
1665         } else if ((dst_object->type == OBJT_DEFAULT ||
1666             dst_object->type == OBJT_SWAP) &&
1667             dst_object->cred == NULL) {
1668                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1669                     dst_entry));
1670                 dst_object->cred = dst_entry->cred;
1671                 dst_entry->cred = NULL;
1672         }
1673
1674         /*
1675          * If not an upgrade, then enter the mappings in the pmap as
1676          * read and/or execute accesses.  Otherwise, enter them as
1677          * write accesses.
1678          *
1679          * A writeable large page mapping is only created if all of
1680          * the constituent small page mappings are modified. Marking
1681          * PTEs as modified on inception allows promotion to happen
1682          * without taking potentially large number of soft faults.
1683          */
1684         if (!upgrade)
1685                 access &= ~VM_PROT_WRITE;
1686
1687         /*
1688          * Loop through all of the virtual pages within the entry's
1689          * range, copying each page from the source object to the
1690          * destination object.  Since the source is wired, those pages
1691          * must exist.  In contrast, the destination is pageable.
1692          * Since the destination object doesn't share any backing storage
1693          * with the source object, all of its pages must be dirtied,
1694          * regardless of whether they can be written.
1695          */
1696         for (vaddr = dst_entry->start, dst_pindex = 0;
1697             vaddr < dst_entry->end;
1698             vaddr += PAGE_SIZE, dst_pindex++) {
1699 again:
1700                 /*
1701                  * Find the page in the source object, and copy it in.
1702                  * Because the source is wired down, the page will be
1703                  * in memory.
1704                  */
1705                 if (src_object != dst_object)
1706                         VM_OBJECT_RLOCK(src_object);
1707                 object = src_object;
1708                 pindex = src_pindex + dst_pindex;
1709                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1710                     (backing_object = object->backing_object) != NULL) {
1711                         /*
1712                          * Unless the source mapping is read-only or
1713                          * it is presently being upgraded from
1714                          * read-only, the first object in the shadow
1715                          * chain should provide all of the pages.  In
1716                          * other words, this loop body should never be
1717                          * executed when the source mapping is already
1718                          * read/write.
1719                          */
1720                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1721                             upgrade,
1722                             ("vm_fault_copy_entry: main object missing page"));
1723
1724                         VM_OBJECT_RLOCK(backing_object);
1725                         pindex += OFF_TO_IDX(object->backing_object_offset);
1726                         if (object != dst_object)
1727                                 VM_OBJECT_RUNLOCK(object);
1728                         object = backing_object;
1729                 }
1730                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1731
1732                 if (object != dst_object) {
1733                         /*
1734                          * Allocate a page in the destination object.
1735                          */
1736                         dst_m = vm_page_alloc(dst_object, (src_object ==
1737                             dst_object ? src_pindex : 0) + dst_pindex,
1738                             VM_ALLOC_NORMAL);
1739                         if (dst_m == NULL) {
1740                                 VM_OBJECT_WUNLOCK(dst_object);
1741                                 VM_OBJECT_RUNLOCK(object);
1742                                 vm_wait(dst_object);
1743                                 VM_OBJECT_WLOCK(dst_object);
1744                                 goto again;
1745                         }
1746                         pmap_copy_page(src_m, dst_m);
1747                         VM_OBJECT_RUNLOCK(object);
1748                         dst_m->valid = VM_PAGE_BITS_ALL;
1749                         dst_m->dirty = VM_PAGE_BITS_ALL;
1750                 } else {
1751                         dst_m = src_m;
1752                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1753                                 goto again;
1754                         if (dst_m->pindex >= dst_object->size)
1755                                 /*
1756                                  * We are upgrading.  Index can occur
1757                                  * out of bounds if the object type is
1758                                  * vnode and the file was truncated.
1759                                  */
1760                                 break;
1761                         vm_page_xbusy(dst_m);
1762                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1763                             ("invalid dst page %p", dst_m));
1764                 }
1765                 VM_OBJECT_WUNLOCK(dst_object);
1766
1767                 /*
1768                  * Enter it in the pmap. If a wired, copy-on-write
1769                  * mapping is being replaced by a write-enabled
1770                  * mapping, then wire that new mapping.
1771                  */
1772                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1773                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1774
1775                 /*
1776                  * Mark it no longer busy, and put it on the active list.
1777                  */
1778                 VM_OBJECT_WLOCK(dst_object);
1779                 
1780                 if (upgrade) {
1781                         if (src_m != dst_m) {
1782                                 vm_page_lock(src_m);
1783                                 vm_page_unwire(src_m, PQ_INACTIVE);
1784                                 vm_page_unlock(src_m);
1785                                 vm_page_lock(dst_m);
1786                                 vm_page_wire(dst_m);
1787                                 vm_page_unlock(dst_m);
1788                         } else {
1789                                 KASSERT(dst_m->wire_count > 0,
1790                                     ("dst_m %p is not wired", dst_m));
1791                         }
1792                 } else {
1793                         vm_page_lock(dst_m);
1794                         vm_page_activate(dst_m);
1795                         vm_page_unlock(dst_m);
1796                 }
1797                 vm_page_xunbusy(dst_m);
1798         }
1799         VM_OBJECT_WUNLOCK(dst_object);
1800         if (upgrade) {
1801                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1802                 vm_object_deallocate(src_object);
1803         }
1804 }
1805
1806 /*
1807  * Block entry into the machine-independent layer's page fault handler by
1808  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1809  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1810  * spurious page faults. 
1811  */
1812 int
1813 vm_fault_disable_pagefaults(void)
1814 {
1815
1816         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1817 }
1818
1819 void
1820 vm_fault_enable_pagefaults(int save)
1821 {
1822
1823         curthread_pflags_restore(save);
1824 }