]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Support for userspace non-transparent superpages (largepages).
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         /* Fault parameters. */
124         vm_offset_t     vaddr;
125         vm_page_t       *m_hold;
126         vm_prot_t       fault_type;
127         vm_prot_t       prot;
128         int             fault_flags;
129         int             oom;
130         boolean_t       wired;
131
132         /* Page reference for cow. */
133         vm_page_t m_cow;
134
135         /* Current object. */
136         vm_object_t     object;
137         vm_pindex_t     pindex;
138         vm_page_t       m;
139
140         /* Top-level map object. */
141         vm_object_t     first_object;
142         vm_pindex_t     first_pindex;
143         vm_page_t       first_m;
144
145         /* Map state. */
146         vm_map_t        map;
147         vm_map_entry_t  entry;
148         int             map_generation;
149         bool            lookup_still_valid;
150
151         /* Vnode if locked. */
152         struct vnode    *vp;
153 };
154
155 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
156             int ahead);
157 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
158             int backward, int forward, bool obj_locked);
159
160 static int vm_pfault_oom_attempts = 3;
161 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
162     &vm_pfault_oom_attempts, 0,
163     "Number of page allocation attempts in page fault handler before it "
164     "triggers OOM handling");
165
166 static int vm_pfault_oom_wait = 10;
167 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
168     &vm_pfault_oom_wait, 0,
169     "Number of seconds to wait for free pages before retrying "
170     "the page fault handler");
171
172 static inline void
173 fault_page_release(vm_page_t *mp)
174 {
175         vm_page_t m;
176
177         m = *mp;
178         if (m != NULL) {
179                 /*
180                  * We are likely to loop around again and attempt to busy
181                  * this page.  Deactivating it leaves it available for
182                  * pageout while optimizing fault restarts.
183                  */
184                 vm_page_deactivate(m);
185                 vm_page_xunbusy(m);
186                 *mp = NULL;
187         }
188 }
189
190 static inline void
191 fault_page_free(vm_page_t *mp)
192 {
193         vm_page_t m;
194
195         m = *mp;
196         if (m != NULL) {
197                 VM_OBJECT_ASSERT_WLOCKED(m->object);
198                 if (!vm_page_wired(m))
199                         vm_page_free(m);
200                 else
201                         vm_page_xunbusy(m);
202                 *mp = NULL;
203         }
204 }
205
206 static inline void
207 unlock_map(struct faultstate *fs)
208 {
209
210         if (fs->lookup_still_valid) {
211                 vm_map_lookup_done(fs->map, fs->entry);
212                 fs->lookup_still_valid = false;
213         }
214 }
215
216 static void
217 unlock_vp(struct faultstate *fs)
218 {
219
220         if (fs->vp != NULL) {
221                 vput(fs->vp);
222                 fs->vp = NULL;
223         }
224 }
225
226 static void
227 fault_deallocate(struct faultstate *fs)
228 {
229
230         fault_page_release(&fs->m_cow);
231         fault_page_release(&fs->m);
232         vm_object_pip_wakeup(fs->object);
233         if (fs->object != fs->first_object) {
234                 VM_OBJECT_WLOCK(fs->first_object);
235                 fault_page_free(&fs->first_m);
236                 VM_OBJECT_WUNLOCK(fs->first_object);
237                 vm_object_pip_wakeup(fs->first_object);
238         }
239         vm_object_deallocate(fs->first_object);
240         unlock_map(fs);
241         unlock_vp(fs);
242 }
243
244 static void
245 unlock_and_deallocate(struct faultstate *fs)
246 {
247
248         VM_OBJECT_WUNLOCK(fs->object);
249         fault_deallocate(fs);
250 }
251
252 static void
253 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
254 {
255         bool need_dirty;
256
257         if (((fs->prot & VM_PROT_WRITE) == 0 &&
258             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
259             (m->oflags & VPO_UNMANAGED) != 0)
260                 return;
261
262         VM_PAGE_OBJECT_BUSY_ASSERT(m);
263
264         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
265             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
266             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
267
268         vm_object_set_writeable_dirty(m->object);
269
270         /*
271          * If the fault is a write, we know that this page is being
272          * written NOW so dirty it explicitly to save on
273          * pmap_is_modified() calls later.
274          *
275          * Also, since the page is now dirty, we can possibly tell
276          * the pager to release any swap backing the page.
277          */
278         if (need_dirty && vm_page_set_dirty(m) == 0) {
279                 /*
280                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
281                  * if the page is already dirty to prevent data written with
282                  * the expectation of being synced from not being synced.
283                  * Likewise if this entry does not request NOSYNC then make
284                  * sure the page isn't marked NOSYNC.  Applications sharing
285                  * data should use the same flags to avoid ping ponging.
286                  */
287                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
288                         vm_page_aflag_set(m, PGA_NOSYNC);
289                 else
290                         vm_page_aflag_clear(m, PGA_NOSYNC);
291         }
292
293 }
294
295 /*
296  * Unlocks fs.first_object and fs.map on success.
297  */
298 static int
299 vm_fault_soft_fast(struct faultstate *fs)
300 {
301         vm_page_t m, m_map;
302 #if VM_NRESERVLEVEL > 0
303         vm_page_t m_super;
304         int flags;
305 #endif
306         int psind, rv;
307         vm_offset_t vaddr;
308
309         MPASS(fs->vp == NULL);
310         vaddr = fs->vaddr;
311         vm_object_busy(fs->first_object);
312         m = vm_page_lookup(fs->first_object, fs->first_pindex);
313         /* A busy page can be mapped for read|execute access. */
314         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
315             vm_page_busied(m)) || !vm_page_all_valid(m)) {
316                 rv = KERN_FAILURE;
317                 goto out;
318         }
319         m_map = m;
320         psind = 0;
321 #if VM_NRESERVLEVEL > 0
322         if ((m->flags & PG_FICTITIOUS) == 0 &&
323             (m_super = vm_reserv_to_superpage(m)) != NULL &&
324             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
325             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
326             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
327             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
328             pmap_ps_enabled(fs->map->pmap)) {
329                 flags = PS_ALL_VALID;
330                 if ((fs->prot & VM_PROT_WRITE) != 0) {
331                         /*
332                          * Create a superpage mapping allowing write access
333                          * only if none of the constituent pages are busy and
334                          * all of them are already dirty (except possibly for
335                          * the page that was faulted on).
336                          */
337                         flags |= PS_NONE_BUSY;
338                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
339                                 flags |= PS_ALL_DIRTY;
340                 }
341                 if (vm_page_ps_test(m_super, flags, m)) {
342                         m_map = m_super;
343                         psind = m_super->psind;
344                         vaddr = rounddown2(vaddr, pagesizes[psind]);
345                         /* Preset the modified bit for dirty superpages. */
346                         if ((flags & PS_ALL_DIRTY) != 0)
347                                 fs->fault_type |= VM_PROT_WRITE;
348                 }
349         }
350 #endif
351         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
352             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
353         if (rv != KERN_SUCCESS)
354                 goto out;
355         if (fs->m_hold != NULL) {
356                 (*fs->m_hold) = m;
357                 vm_page_wire(m);
358         }
359         if (psind == 0 && !fs->wired)
360                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
361         VM_OBJECT_RUNLOCK(fs->first_object);
362         vm_fault_dirty(fs, m);
363         vm_map_lookup_done(fs->map, fs->entry);
364         curthread->td_ru.ru_minflt++;
365
366 out:
367         vm_object_unbusy(fs->first_object);
368         return (rv);
369 }
370
371 static void
372 vm_fault_restore_map_lock(struct faultstate *fs)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
376         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
377
378         if (!vm_map_trylock_read(fs->map)) {
379                 VM_OBJECT_WUNLOCK(fs->first_object);
380                 vm_map_lock_read(fs->map);
381                 VM_OBJECT_WLOCK(fs->first_object);
382         }
383         fs->lookup_still_valid = true;
384 }
385
386 static void
387 vm_fault_populate_check_page(vm_page_t m)
388 {
389
390         /*
391          * Check each page to ensure that the pager is obeying the
392          * interface: the page must be installed in the object, fully
393          * valid, and exclusively busied.
394          */
395         MPASS(m != NULL);
396         MPASS(vm_page_all_valid(m));
397         MPASS(vm_page_xbusied(m));
398 }
399
400 static void
401 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
402     vm_pindex_t last)
403 {
404         vm_page_t m;
405         vm_pindex_t pidx;
406
407         VM_OBJECT_ASSERT_WLOCKED(object);
408         MPASS(first <= last);
409         for (pidx = first, m = vm_page_lookup(object, pidx);
410             pidx <= last; pidx++, m = vm_page_next(m)) {
411                 vm_fault_populate_check_page(m);
412                 vm_page_deactivate(m);
413                 vm_page_xunbusy(m);
414         }
415 }
416
417 static int
418 vm_fault_populate(struct faultstate *fs)
419 {
420         vm_offset_t vaddr;
421         vm_page_t m;
422         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
423         int bdry_idx, i, npages, psind, rv;
424
425         MPASS(fs->object == fs->first_object);
426         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
427         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
428         MPASS(fs->first_object->backing_object == NULL);
429         MPASS(fs->lookup_still_valid);
430
431         pager_first = OFF_TO_IDX(fs->entry->offset);
432         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
433         unlock_map(fs);
434         unlock_vp(fs);
435
436         /*
437          * Call the pager (driver) populate() method.
438          *
439          * There is no guarantee that the method will be called again
440          * if the current fault is for read, and a future fault is
441          * for write.  Report the entry's maximum allowed protection
442          * to the driver.
443          */
444         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
445             fs->fault_type, fs->entry->max_protection, &pager_first,
446             &pager_last);
447
448         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
449         if (rv == VM_PAGER_BAD) {
450                 /*
451                  * VM_PAGER_BAD is the backdoor for a pager to request
452                  * normal fault handling.
453                  */
454                 vm_fault_restore_map_lock(fs);
455                 if (fs->map->timestamp != fs->map_generation)
456                         return (KERN_RESTART);
457                 return (KERN_NOT_RECEIVER);
458         }
459         if (rv != VM_PAGER_OK)
460                 return (KERN_FAILURE); /* AKA SIGSEGV */
461
462         /* Ensure that the driver is obeying the interface. */
463         MPASS(pager_first <= pager_last);
464         MPASS(fs->first_pindex <= pager_last);
465         MPASS(fs->first_pindex >= pager_first);
466         MPASS(pager_last < fs->first_object->size);
467
468         vm_fault_restore_map_lock(fs);
469         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
470             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
471         if (fs->map->timestamp != fs->map_generation) {
472                 if (bdry_idx == 0) {
473                         vm_fault_populate_cleanup(fs->first_object, pager_first,
474                             pager_last);
475                 } else {
476                         m = vm_page_lookup(fs->first_object, pager_first);
477                         if (m != fs->m)
478                                 vm_page_xunbusy(m);
479                 }
480                 return (KERN_RESTART);
481         }
482
483         /*
484          * The map is unchanged after our last unlock.  Process the fault.
485          *
486          * First, the special case of largepage mappings, where
487          * populate only busies the first page in superpage run.
488          */
489         if (bdry_idx != 0) {
490                 m = vm_page_lookup(fs->first_object, pager_first);
491                 vm_fault_populate_check_page(m);
492                 VM_OBJECT_WUNLOCK(fs->first_object);
493                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
494                     fs->entry->offset;
495                 /* assert alignment for entry */
496                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
497     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
498                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
499                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
500                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
501                     ("unaligned superpage m %p %#jx", m,
502                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
503                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
504                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
505                     PMAP_ENTER_LARGEPAGE, bdry_idx);
506                 VM_OBJECT_WLOCK(fs->first_object);
507                 vm_page_xunbusy(m);
508                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
509                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
510                                 vm_page_wire(m + i);
511                 }
512                 if (fs->m_hold != NULL) {
513                         *fs->m_hold = m + (fs->first_pindex - pager_first);
514                         vm_page_wire(*fs->m_hold);
515                 }
516                 goto out;
517         }
518
519         /*
520          * The range [pager_first, pager_last] that is given to the
521          * pager is only a hint.  The pager may populate any range
522          * within the object that includes the requested page index.
523          * In case the pager expanded the range, clip it to fit into
524          * the map entry.
525          */
526         map_first = OFF_TO_IDX(fs->entry->offset);
527         if (map_first > pager_first) {
528                 vm_fault_populate_cleanup(fs->first_object, pager_first,
529                     map_first - 1);
530                 pager_first = map_first;
531         }
532         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
533         if (map_last < pager_last) {
534                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
535                     pager_last);
536                 pager_last = map_last;
537         }
538         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
539             pidx <= pager_last;
540             pidx += npages, m = vm_page_next(&m[npages - 1])) {
541                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
542 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
543     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
544                 psind = m->psind;
545                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
546                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
547                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
548                         psind = 0;
549 #else
550                 psind = 0;
551 #endif          
552                 npages = atop(pagesizes[psind]);
553                 for (i = 0; i < npages; i++) {
554                         vm_fault_populate_check_page(&m[i]);
555                         vm_fault_dirty(fs, &m[i]);
556                 }
557                 VM_OBJECT_WUNLOCK(fs->first_object);
558                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
559                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
560 #if defined(__amd64__)
561                 if (psind > 0 && rv == KERN_FAILURE) {
562                         for (i = 0; i < npages; i++) {
563                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
564                                     &m[i], fs->prot, fs->fault_type |
565                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
566                                 MPASS(rv == KERN_SUCCESS);
567                         }
568                 }
569 #else
570                 MPASS(rv == KERN_SUCCESS);
571 #endif
572                 VM_OBJECT_WLOCK(fs->first_object);
573                 for (i = 0; i < npages; i++) {
574                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
575                                 vm_page_wire(&m[i]);
576                         else
577                                 vm_page_activate(&m[i]);
578                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
579                                 (*fs->m_hold) = &m[i];
580                                 vm_page_wire(&m[i]);
581                         }
582                         vm_page_xunbusy(&m[i]);
583                 }
584         }
585 out:
586         curthread->td_ru.ru_majflt++;
587         return (KERN_SUCCESS);
588 }
589
590 static int prot_fault_translation;
591 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
592     &prot_fault_translation, 0,
593     "Control signal to deliver on protection fault");
594
595 /* compat definition to keep common code for signal translation */
596 #define UCODE_PAGEFLT   12
597 #ifdef T_PAGEFLT
598 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
599 #endif
600
601 /*
602  *      vm_fault_trap:
603  *
604  *      Handle a page fault occurring at the given address,
605  *      requiring the given permissions, in the map specified.
606  *      If successful, the page is inserted into the
607  *      associated physical map.
608  *
609  *      NOTE: the given address should be truncated to the
610  *      proper page address.
611  *
612  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
613  *      a standard error specifying why the fault is fatal is returned.
614  *
615  *      The map in question must be referenced, and remains so.
616  *      Caller may hold no locks.
617  */
618 int
619 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
620     int fault_flags, int *signo, int *ucode)
621 {
622         int result;
623
624         MPASS(signo == NULL || ucode != NULL);
625 #ifdef KTRACE
626         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
627                 ktrfault(vaddr, fault_type);
628 #endif
629         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
630             NULL);
631         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
632             result == KERN_INVALID_ADDRESS ||
633             result == KERN_RESOURCE_SHORTAGE ||
634             result == KERN_PROTECTION_FAILURE ||
635             result == KERN_OUT_OF_BOUNDS,
636             ("Unexpected Mach error %d from vm_fault()", result));
637 #ifdef KTRACE
638         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
639                 ktrfaultend(result);
640 #endif
641         if (result != KERN_SUCCESS && signo != NULL) {
642                 switch (result) {
643                 case KERN_FAILURE:
644                 case KERN_INVALID_ADDRESS:
645                         *signo = SIGSEGV;
646                         *ucode = SEGV_MAPERR;
647                         break;
648                 case KERN_RESOURCE_SHORTAGE:
649                         *signo = SIGBUS;
650                         *ucode = BUS_OOMERR;
651                         break;
652                 case KERN_OUT_OF_BOUNDS:
653                         *signo = SIGBUS;
654                         *ucode = BUS_OBJERR;
655                         break;
656                 case KERN_PROTECTION_FAILURE:
657                         if (prot_fault_translation == 0) {
658                                 /*
659                                  * Autodetect.  This check also covers
660                                  * the images without the ABI-tag ELF
661                                  * note.
662                                  */
663                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
664                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
665                                         *signo = SIGSEGV;
666                                         *ucode = SEGV_ACCERR;
667                                 } else {
668                                         *signo = SIGBUS;
669                                         *ucode = UCODE_PAGEFLT;
670                                 }
671                         } else if (prot_fault_translation == 1) {
672                                 /* Always compat mode. */
673                                 *signo = SIGBUS;
674                                 *ucode = UCODE_PAGEFLT;
675                         } else {
676                                 /* Always SIGSEGV mode. */
677                                 *signo = SIGSEGV;
678                                 *ucode = SEGV_ACCERR;
679                         }
680                         break;
681                 default:
682                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
683                             result));
684                         break;
685                 }
686         }
687         return (result);
688 }
689
690 static int
691 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
692 {
693         struct vnode *vp;
694         int error, locked;
695
696         if (fs->object->type != OBJT_VNODE)
697                 return (KERN_SUCCESS);
698         vp = fs->object->handle;
699         if (vp == fs->vp) {
700                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
701                 return (KERN_SUCCESS);
702         }
703
704         /*
705          * Perform an unlock in case the desired vnode changed while
706          * the map was unlocked during a retry.
707          */
708         unlock_vp(fs);
709
710         locked = VOP_ISLOCKED(vp);
711         if (locked != LK_EXCLUSIVE)
712                 locked = LK_SHARED;
713
714         /*
715          * We must not sleep acquiring the vnode lock while we have
716          * the page exclusive busied or the object's
717          * paging-in-progress count incremented.  Otherwise, we could
718          * deadlock.
719          */
720         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
721         if (error == 0) {
722                 fs->vp = vp;
723                 return (KERN_SUCCESS);
724         }
725
726         vhold(vp);
727         if (objlocked)
728                 unlock_and_deallocate(fs);
729         else
730                 fault_deallocate(fs);
731         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
732         vdrop(vp);
733         fs->vp = vp;
734         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
735         return (KERN_RESOURCE_SHORTAGE);
736 }
737
738 /*
739  * Calculate the desired readahead.  Handle drop-behind.
740  *
741  * Returns the number of readahead blocks to pass to the pager.
742  */
743 static int
744 vm_fault_readahead(struct faultstate *fs)
745 {
746         int era, nera;
747         u_char behavior;
748
749         KASSERT(fs->lookup_still_valid, ("map unlocked"));
750         era = fs->entry->read_ahead;
751         behavior = vm_map_entry_behavior(fs->entry);
752         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
753                 nera = 0;
754         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
755                 nera = VM_FAULT_READ_AHEAD_MAX;
756                 if (fs->vaddr == fs->entry->next_read)
757                         vm_fault_dontneed(fs, fs->vaddr, nera);
758         } else if (fs->vaddr == fs->entry->next_read) {
759                 /*
760                  * This is a sequential fault.  Arithmetically
761                  * increase the requested number of pages in
762                  * the read-ahead window.  The requested
763                  * number of pages is "# of sequential faults
764                  * x (read ahead min + 1) + read ahead min"
765                  */
766                 nera = VM_FAULT_READ_AHEAD_MIN;
767                 if (era > 0) {
768                         nera += era + 1;
769                         if (nera > VM_FAULT_READ_AHEAD_MAX)
770                                 nera = VM_FAULT_READ_AHEAD_MAX;
771                 }
772                 if (era == VM_FAULT_READ_AHEAD_MAX)
773                         vm_fault_dontneed(fs, fs->vaddr, nera);
774         } else {
775                 /*
776                  * This is a non-sequential fault.
777                  */
778                 nera = 0;
779         }
780         if (era != nera) {
781                 /*
782                  * A read lock on the map suffices to update
783                  * the read ahead count safely.
784                  */
785                 fs->entry->read_ahead = nera;
786         }
787
788         return (nera);
789 }
790
791 static int
792 vm_fault_lookup(struct faultstate *fs)
793 {
794         int result;
795
796         KASSERT(!fs->lookup_still_valid,
797            ("vm_fault_lookup: Map already locked."));
798         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
799             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
800             &fs->first_pindex, &fs->prot, &fs->wired);
801         if (result != KERN_SUCCESS) {
802                 unlock_vp(fs);
803                 return (result);
804         }
805
806         fs->map_generation = fs->map->timestamp;
807
808         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
809                 panic("%s: fault on nofault entry, addr: %#lx",
810                     __func__, (u_long)fs->vaddr);
811         }
812
813         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
814             fs->entry->wiring_thread != curthread) {
815                 vm_map_unlock_read(fs->map);
816                 vm_map_lock(fs->map);
817                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
818                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
819                         unlock_vp(fs);
820                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
821                         vm_map_unlock_and_wait(fs->map, 0);
822                 } else
823                         vm_map_unlock(fs->map);
824                 return (KERN_RESOURCE_SHORTAGE);
825         }
826
827         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
828
829         if (fs->wired)
830                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
831         else
832                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
833                     ("!fs->wired && VM_FAULT_WIRE"));
834         fs->lookup_still_valid = true;
835
836         return (KERN_SUCCESS);
837 }
838
839 static int
840 vm_fault_relookup(struct faultstate *fs)
841 {
842         vm_object_t retry_object;
843         vm_pindex_t retry_pindex;
844         vm_prot_t retry_prot;
845         int result;
846
847         if (!vm_map_trylock_read(fs->map))
848                 return (KERN_RESTART);
849
850         fs->lookup_still_valid = true;
851         if (fs->map->timestamp == fs->map_generation)
852                 return (KERN_SUCCESS);
853
854         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
855             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
856             &fs->wired);
857         if (result != KERN_SUCCESS) {
858                 /*
859                  * If retry of map lookup would have blocked then
860                  * retry fault from start.
861                  */
862                 if (result == KERN_FAILURE)
863                         return (KERN_RESTART);
864                 return (result);
865         }
866         if (retry_object != fs->first_object ||
867             retry_pindex != fs->first_pindex)
868                 return (KERN_RESTART);
869
870         /*
871          * Check whether the protection has changed or the object has
872          * been copied while we left the map unlocked. Changing from
873          * read to write permission is OK - we leave the page
874          * write-protected, and catch the write fault. Changing from
875          * write to read permission means that we can't mark the page
876          * write-enabled after all.
877          */
878         fs->prot &= retry_prot;
879         fs->fault_type &= retry_prot;
880         if (fs->prot == 0)
881                 return (KERN_RESTART);
882
883         /* Reassert because wired may have changed. */
884         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
885             ("!wired && VM_FAULT_WIRE"));
886
887         return (KERN_SUCCESS);
888 }
889
890 static void
891 vm_fault_cow(struct faultstate *fs)
892 {
893         bool is_first_object_locked;
894
895         /*
896          * This allows pages to be virtually copied from a backing_object
897          * into the first_object, where the backing object has no other
898          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
899          * we just move the page from the backing object to the first
900          * object.  Note that we must mark the page dirty in the first
901          * object so that it will go out to swap when needed.
902          */
903         is_first_object_locked = false;
904         if (
905             /*
906              * Only one shadow object and no other refs.
907              */
908             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
909             /*
910              * No other ways to look the object up
911              */
912             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
913             /*
914              * We don't chase down the shadow chain and we can acquire locks.
915              */
916             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
917             fs->object == fs->first_object->backing_object &&
918             VM_OBJECT_TRYWLOCK(fs->object)) {
919                 /*
920                  * Remove but keep xbusy for replace.  fs->m is moved into
921                  * fs->first_object and left busy while fs->first_m is
922                  * conditionally freed.
923                  */
924                 vm_page_remove_xbusy(fs->m);
925                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
926                     fs->first_m);
927                 vm_page_dirty(fs->m);
928 #if VM_NRESERVLEVEL > 0
929                 /*
930                  * Rename the reservation.
931                  */
932                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
933                     OFF_TO_IDX(fs->first_object->backing_object_offset));
934 #endif
935                 VM_OBJECT_WUNLOCK(fs->object);
936                 VM_OBJECT_WUNLOCK(fs->first_object);
937                 fs->first_m = fs->m;
938                 fs->m = NULL;
939                 VM_CNT_INC(v_cow_optim);
940         } else {
941                 if (is_first_object_locked)
942                         VM_OBJECT_WUNLOCK(fs->first_object);
943                 /*
944                  * Oh, well, lets copy it.
945                  */
946                 pmap_copy_page(fs->m, fs->first_m);
947                 vm_page_valid(fs->first_m);
948                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
949                         vm_page_wire(fs->first_m);
950                         vm_page_unwire(fs->m, PQ_INACTIVE);
951                 }
952                 /*
953                  * Save the cow page to be released after
954                  * pmap_enter is complete.
955                  */
956                 fs->m_cow = fs->m;
957                 fs->m = NULL;
958         }
959         /*
960          * fs->object != fs->first_object due to above 
961          * conditional
962          */
963         vm_object_pip_wakeup(fs->object);
964
965         /*
966          * Only use the new page below...
967          */
968         fs->object = fs->first_object;
969         fs->pindex = fs->first_pindex;
970         fs->m = fs->first_m;
971         VM_CNT_INC(v_cow_faults);
972         curthread->td_cow++;
973 }
974
975 static bool
976 vm_fault_next(struct faultstate *fs)
977 {
978         vm_object_t next_object;
979
980         /*
981          * The requested page does not exist at this object/
982          * offset.  Remove the invalid page from the object,
983          * waking up anyone waiting for it, and continue on to
984          * the next object.  However, if this is the top-level
985          * object, we must leave the busy page in place to
986          * prevent another process from rushing past us, and
987          * inserting the page in that object at the same time
988          * that we are.
989          */
990         if (fs->object == fs->first_object) {
991                 fs->first_m = fs->m;
992                 fs->m = NULL;
993         } else
994                 fault_page_free(&fs->m);
995
996         /*
997          * Move on to the next object.  Lock the next object before
998          * unlocking the current one.
999          */
1000         VM_OBJECT_ASSERT_WLOCKED(fs->object);
1001         next_object = fs->object->backing_object;
1002         if (next_object == NULL)
1003                 return (false);
1004         MPASS(fs->first_m != NULL);
1005         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1006         VM_OBJECT_WLOCK(next_object);
1007         vm_object_pip_add(next_object, 1);
1008         if (fs->object != fs->first_object)
1009                 vm_object_pip_wakeup(fs->object);
1010         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1011         VM_OBJECT_WUNLOCK(fs->object);
1012         fs->object = next_object;
1013
1014         return (true);
1015 }
1016
1017 static void
1018 vm_fault_zerofill(struct faultstate *fs)
1019 {
1020
1021         /*
1022          * If there's no object left, fill the page in the top
1023          * object with zeros.
1024          */
1025         if (fs->object != fs->first_object) {
1026                 vm_object_pip_wakeup(fs->object);
1027                 fs->object = fs->first_object;
1028                 fs->pindex = fs->first_pindex;
1029         }
1030         MPASS(fs->first_m != NULL);
1031         MPASS(fs->m == NULL);
1032         fs->m = fs->first_m;
1033         fs->first_m = NULL;
1034
1035         /*
1036          * Zero the page if necessary and mark it valid.
1037          */
1038         if ((fs->m->flags & PG_ZERO) == 0) {
1039                 pmap_zero_page(fs->m);
1040         } else {
1041                 VM_CNT_INC(v_ozfod);
1042         }
1043         VM_CNT_INC(v_zfod);
1044         vm_page_valid(fs->m);
1045 }
1046
1047 /*
1048  * Allocate a page directly or via the object populate method.
1049  */
1050 static int
1051 vm_fault_allocate(struct faultstate *fs)
1052 {
1053         struct domainset *dset;
1054         int alloc_req;
1055         int rv;
1056
1057         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1058                 rv = vm_fault_lock_vnode(fs, true);
1059                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1060                 if (rv == KERN_RESOURCE_SHORTAGE)
1061                         return (rv);
1062         }
1063
1064         if (fs->pindex >= fs->object->size)
1065                 return (KERN_OUT_OF_BOUNDS);
1066
1067         if (fs->object == fs->first_object &&
1068             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1069             fs->first_object->shadow_count == 0) {
1070                 rv = vm_fault_populate(fs);
1071                 switch (rv) {
1072                 case KERN_SUCCESS:
1073                 case KERN_FAILURE:
1074                 case KERN_RESTART:
1075                         return (rv);
1076                 case KERN_NOT_RECEIVER:
1077                         /*
1078                          * Pager's populate() method
1079                          * returned VM_PAGER_BAD.
1080                          */
1081                         break;
1082                 default:
1083                         panic("inconsistent return codes");
1084                 }
1085         }
1086
1087         /*
1088          * Allocate a new page for this object/offset pair.
1089          *
1090          * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1091          * might be not observed there, and allocation can fail, causing
1092          * restart and new reading of the p_flag.
1093          */
1094         dset = fs->object->domain.dr_policy;
1095         if (dset == NULL)
1096                 dset = curthread->td_domain.dr_policy;
1097         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1098 #if VM_NRESERVLEVEL > 0
1099                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1100 #endif
1101                 alloc_req = P_KILLED(curproc) ?
1102                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1103                 if (fs->object->type != OBJT_VNODE &&
1104                     fs->object->backing_object == NULL)
1105                         alloc_req |= VM_ALLOC_ZERO;
1106                 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1107         }
1108         if (fs->m == NULL) {
1109                 unlock_and_deallocate(fs);
1110                 if (vm_pfault_oom_attempts < 0 ||
1111                     fs->oom < vm_pfault_oom_attempts) {
1112                         fs->oom++;
1113                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1114                 } else  {
1115                         if (bootverbose)
1116                                 printf(
1117                 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1118                                     curproc->p_pid, curproc->p_comm);
1119                         vm_pageout_oom(VM_OOM_MEM_PF);
1120                         fs->oom = 0;
1121                 }
1122                 return (KERN_RESOURCE_SHORTAGE);
1123         }
1124         fs->oom = 0;
1125
1126         return (KERN_NOT_RECEIVER);
1127 }
1128
1129 /*
1130  * Call the pager to retrieve the page if there is a chance
1131  * that the pager has it, and potentially retrieve additional
1132  * pages at the same time.
1133  */
1134 static int
1135 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1136 {
1137         vm_offset_t e_end, e_start;
1138         int ahead, behind, cluster_offset, rv;
1139         u_char behavior;
1140
1141         /*
1142          * Prepare for unlocking the map.  Save the map
1143          * entry's start and end addresses, which are used to
1144          * optimize the size of the pager operation below.
1145          * Even if the map entry's addresses change after
1146          * unlocking the map, using the saved addresses is
1147          * safe.
1148          */
1149         e_start = fs->entry->start;
1150         e_end = fs->entry->end;
1151         behavior = vm_map_entry_behavior(fs->entry);
1152
1153         /*
1154          * Release the map lock before locking the vnode or
1155          * sleeping in the pager.  (If the current object has
1156          * a shadow, then an earlier iteration of this loop
1157          * may have already unlocked the map.)
1158          */
1159         unlock_map(fs);
1160
1161         rv = vm_fault_lock_vnode(fs, false);
1162         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1163         if (rv == KERN_RESOURCE_SHORTAGE)
1164                 return (rv);
1165         KASSERT(fs->vp == NULL || !fs->map->system_map,
1166             ("vm_fault: vnode-backed object mapped by system map"));
1167
1168         /*
1169          * Page in the requested page and hint the pager,
1170          * that it may bring up surrounding pages.
1171          */
1172         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1173             P_KILLED(curproc)) {
1174                 behind = 0;
1175                 ahead = 0;
1176         } else {
1177                 /* Is this a sequential fault? */
1178                 if (nera > 0) {
1179                         behind = 0;
1180                         ahead = nera;
1181                 } else {
1182                         /*
1183                          * Request a cluster of pages that is
1184                          * aligned to a VM_FAULT_READ_DEFAULT
1185                          * page offset boundary within the
1186                          * object.  Alignment to a page offset
1187                          * boundary is more likely to coincide
1188                          * with the underlying file system
1189                          * block than alignment to a virtual
1190                          * address boundary.
1191                          */
1192                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1193                         behind = ulmin(cluster_offset,
1194                             atop(fs->vaddr - e_start));
1195                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1196                 }
1197                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1198         }
1199         *behindp = behind;
1200         *aheadp = ahead;
1201         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1202         if (rv == VM_PAGER_OK)
1203                 return (KERN_SUCCESS);
1204         if (rv == VM_PAGER_ERROR)
1205                 printf("vm_fault: pager read error, pid %d (%s)\n",
1206                     curproc->p_pid, curproc->p_comm);
1207         /*
1208          * If an I/O error occurred or the requested page was
1209          * outside the range of the pager, clean up and return
1210          * an error.
1211          */
1212         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1213                 return (KERN_OUT_OF_BOUNDS);
1214         return (KERN_NOT_RECEIVER);
1215 }
1216
1217 /*
1218  * Wait/Retry if the page is busy.  We have to do this if the page is
1219  * either exclusive or shared busy because the vm_pager may be using
1220  * read busy for pageouts (and even pageins if it is the vnode pager),
1221  * and we could end up trying to pagein and pageout the same page
1222  * simultaneously.
1223  *
1224  * We can theoretically allow the busy case on a read fault if the page
1225  * is marked valid, but since such pages are typically already pmap'd,
1226  * putting that special case in might be more effort then it is worth.
1227  * We cannot under any circumstances mess around with a shared busied
1228  * page except, perhaps, to pmap it.
1229  */
1230 static void
1231 vm_fault_busy_sleep(struct faultstate *fs)
1232 {
1233         /*
1234          * Reference the page before unlocking and
1235          * sleeping so that the page daemon is less
1236          * likely to reclaim it.
1237          */
1238         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1239         if (fs->object != fs->first_object) {
1240                 fault_page_release(&fs->first_m);
1241                 vm_object_pip_wakeup(fs->first_object);
1242         }
1243         vm_object_pip_wakeup(fs->object);
1244         unlock_map(fs);
1245         if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1246                 vm_page_busy_sleep(fs->m, "vmpfw", false);
1247         else
1248                 VM_OBJECT_WUNLOCK(fs->object);
1249         VM_CNT_INC(v_intrans);
1250         vm_object_deallocate(fs->first_object);
1251 }
1252
1253 int
1254 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1255     int fault_flags, vm_page_t *m_hold)
1256 {
1257         struct faultstate fs;
1258         int ahead, behind, faultcount;
1259         int nera, result, rv;
1260         bool dead, hardfault;
1261
1262         VM_CNT_INC(v_vm_faults);
1263
1264         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1265                 return (KERN_PROTECTION_FAILURE);
1266
1267         fs.vp = NULL;
1268         fs.vaddr = vaddr;
1269         fs.m_hold = m_hold;
1270         fs.fault_flags = fault_flags;
1271         fs.map = map;
1272         fs.lookup_still_valid = false;
1273         fs.oom = 0;
1274         faultcount = 0;
1275         nera = -1;
1276         hardfault = false;
1277
1278 RetryFault:
1279         fs.fault_type = fault_type;
1280
1281         /*
1282          * Find the backing store object and offset into it to begin the
1283          * search.
1284          */
1285         result = vm_fault_lookup(&fs);
1286         if (result != KERN_SUCCESS) {
1287                 if (result == KERN_RESOURCE_SHORTAGE)
1288                         goto RetryFault;
1289                 return (result);
1290         }
1291
1292         /*
1293          * Try to avoid lock contention on the top-level object through
1294          * special-case handling of some types of page faults, specifically,
1295          * those that are mapping an existing page from the top-level object.
1296          * Under this condition, a read lock on the object suffices, allowing
1297          * multiple page faults of a similar type to run in parallel.
1298          */
1299         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1300             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1301             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1302                 VM_OBJECT_RLOCK(fs.first_object);
1303                 rv = vm_fault_soft_fast(&fs);
1304                 if (rv == KERN_SUCCESS)
1305                         return (rv);
1306                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1307                         VM_OBJECT_RUNLOCK(fs.first_object);
1308                         VM_OBJECT_WLOCK(fs.first_object);
1309                 }
1310         } else {
1311                 VM_OBJECT_WLOCK(fs.first_object);
1312         }
1313
1314         /*
1315          * Make a reference to this object to prevent its disposal while we
1316          * are messing with it.  Once we have the reference, the map is free
1317          * to be diddled.  Since objects reference their shadows (and copies),
1318          * they will stay around as well.
1319          *
1320          * Bump the paging-in-progress count to prevent size changes (e.g. 
1321          * truncation operations) during I/O.
1322          */
1323         vm_object_reference_locked(fs.first_object);
1324         vm_object_pip_add(fs.first_object, 1);
1325
1326         fs.m_cow = fs.m = fs.first_m = NULL;
1327
1328         /*
1329          * Search for the page at object/offset.
1330          */
1331         fs.object = fs.first_object;
1332         fs.pindex = fs.first_pindex;
1333
1334         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1335                 rv = vm_fault_allocate(&fs);
1336                 switch (rv) {
1337                 case KERN_RESTART:
1338                         unlock_and_deallocate(&fs);
1339                         /* FALLTHROUGH */
1340                 case KERN_RESOURCE_SHORTAGE:
1341                         goto RetryFault;
1342                 case KERN_SUCCESS:
1343                 case KERN_FAILURE:
1344                 case KERN_OUT_OF_BOUNDS:
1345                         unlock_and_deallocate(&fs);
1346                         return (rv);
1347                 case KERN_NOT_RECEIVER:
1348                         break;
1349                 default:
1350                         panic("vm_fault: Unhandled rv %d", rv);
1351                 }
1352         }
1353
1354         while (TRUE) {
1355                 KASSERT(fs.m == NULL,
1356                     ("page still set %p at loop start", fs.m));
1357                 /*
1358                  * If the object is marked for imminent termination,
1359                  * we retry here, since the collapse pass has raced
1360                  * with us.  Otherwise, if we see terminally dead
1361                  * object, return fail.
1362                  */
1363                 if ((fs.object->flags & OBJ_DEAD) != 0) {
1364                         dead = fs.object->type == OBJT_DEAD;
1365                         unlock_and_deallocate(&fs);
1366                         if (dead)
1367                                 return (KERN_PROTECTION_FAILURE);
1368                         pause("vmf_de", 1);
1369                         goto RetryFault;
1370                 }
1371
1372                 /*
1373                  * See if page is resident
1374                  */
1375                 fs.m = vm_page_lookup(fs.object, fs.pindex);
1376                 if (fs.m != NULL) {
1377                         if (vm_page_tryxbusy(fs.m) == 0) {
1378                                 vm_fault_busy_sleep(&fs);
1379                                 goto RetryFault;
1380                         }
1381
1382                         /*
1383                          * The page is marked busy for other processes and the
1384                          * pagedaemon.  If it still is completely valid we
1385                          * are done.
1386                          */
1387                         if (vm_page_all_valid(fs.m)) {
1388                                 VM_OBJECT_WUNLOCK(fs.object);
1389                                 break; /* break to PAGE HAS BEEN FOUND. */
1390                         }
1391                 }
1392                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1393
1394                 /*
1395                  * Page is not resident.  If the pager might contain the page
1396                  * or this is the beginning of the search, allocate a new
1397                  * page.  (Default objects are zero-fill, so there is no real
1398                  * pager for them.)
1399                  */
1400                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1401                     fs.object == fs.first_object)) {
1402                         rv = vm_fault_allocate(&fs);
1403                         switch (rv) {
1404                         case KERN_RESTART:
1405                                 unlock_and_deallocate(&fs);
1406                                 /* FALLTHROUGH */
1407                         case KERN_RESOURCE_SHORTAGE:
1408                                 goto RetryFault;
1409                         case KERN_SUCCESS:
1410                         case KERN_FAILURE:
1411                         case KERN_OUT_OF_BOUNDS:
1412                                 unlock_and_deallocate(&fs);
1413                                 return (rv);
1414                         case KERN_NOT_RECEIVER:
1415                                 break;
1416                         default:
1417                                 panic("vm_fault: Unhandled rv %d", rv);
1418                         }
1419                 }
1420
1421                 /*
1422                  * Default objects have no pager so no exclusive busy exists
1423                  * to protect this page in the chain.  Skip to the next
1424                  * object without dropping the lock to preserve atomicity of
1425                  * shadow faults.
1426                  */
1427                 if (fs.object->type != OBJT_DEFAULT) {
1428                         /*
1429                          * At this point, we have either allocated a new page
1430                          * or found an existing page that is only partially
1431                          * valid.
1432                          *
1433                          * We hold a reference on the current object and the
1434                          * page is exclusive busied.  The exclusive busy
1435                          * prevents simultaneous faults and collapses while
1436                          * the object lock is dropped.
1437                          */
1438                         VM_OBJECT_WUNLOCK(fs.object);
1439
1440                         /*
1441                          * If the pager for the current object might have
1442                          * the page, then determine the number of additional
1443                          * pages to read and potentially reprioritize
1444                          * previously read pages for earlier reclamation.
1445                          * These operations should only be performed once per
1446                          * page fault.  Even if the current pager doesn't
1447                          * have the page, the number of additional pages to
1448                          * read will apply to subsequent objects in the
1449                          * shadow chain.
1450                          */
1451                         if (nera == -1 && !P_KILLED(curproc))
1452                                 nera = vm_fault_readahead(&fs);
1453
1454                         rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1455                         if (rv == KERN_SUCCESS) {
1456                                 faultcount = behind + 1 + ahead;
1457                                 hardfault = true;
1458                                 break; /* break to PAGE HAS BEEN FOUND. */
1459                         }
1460                         if (rv == KERN_RESOURCE_SHORTAGE)
1461                                 goto RetryFault;
1462                         VM_OBJECT_WLOCK(fs.object);
1463                         if (rv == KERN_OUT_OF_BOUNDS) {
1464                                 fault_page_free(&fs.m);
1465                                 unlock_and_deallocate(&fs);
1466                                 return (rv);
1467                         }
1468                 }
1469
1470                 /*
1471                  * The page was not found in the current object.  Try to
1472                  * traverse into a backing object or zero fill if none is
1473                  * found.
1474                  */
1475                 if (vm_fault_next(&fs))
1476                         continue;
1477                 VM_OBJECT_WUNLOCK(fs.object);
1478                 vm_fault_zerofill(&fs);
1479                 /* Don't try to prefault neighboring pages. */
1480                 faultcount = 1;
1481                 break;  /* break to PAGE HAS BEEN FOUND. */
1482         }
1483
1484         /*
1485          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1486          * busied.  The object lock must no longer be held.
1487          */
1488         vm_page_assert_xbusied(fs.m);
1489         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1490
1491         /*
1492          * If the page is being written, but isn't already owned by the
1493          * top-level object, we have to copy it into a new page owned by the
1494          * top-level object.
1495          */
1496         if (fs.object != fs.first_object) {
1497                 /*
1498                  * We only really need to copy if we want to write it.
1499                  */
1500                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1501                         vm_fault_cow(&fs);
1502                         /*
1503                          * We only try to prefault read-only mappings to the
1504                          * neighboring pages when this copy-on-write fault is
1505                          * a hard fault.  In other cases, trying to prefault
1506                          * is typically wasted effort.
1507                          */
1508                         if (faultcount == 0)
1509                                 faultcount = 1;
1510
1511                 } else {
1512                         fs.prot &= ~VM_PROT_WRITE;
1513                 }
1514         }
1515
1516         /*
1517          * We must verify that the maps have not changed since our last
1518          * lookup.
1519          */
1520         if (!fs.lookup_still_valid) {
1521                 result = vm_fault_relookup(&fs);
1522                 if (result != KERN_SUCCESS) {
1523                         fault_deallocate(&fs);
1524                         if (result == KERN_RESTART)
1525                                 goto RetryFault;
1526                         return (result);
1527                 }
1528         }
1529         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1530
1531         /*
1532          * If the page was filled by a pager, save the virtual address that
1533          * should be faulted on next under a sequential access pattern to the
1534          * map entry.  A read lock on the map suffices to update this address
1535          * safely.
1536          */
1537         if (hardfault)
1538                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1539
1540         /*
1541          * Page must be completely valid or it is not fit to
1542          * map into user space.  vm_pager_get_pages() ensures this.
1543          */
1544         vm_page_assert_xbusied(fs.m);
1545         KASSERT(vm_page_all_valid(fs.m),
1546             ("vm_fault: page %p partially invalid", fs.m));
1547
1548         vm_fault_dirty(&fs, fs.m);
1549
1550         /*
1551          * Put this page into the physical map.  We had to do the unlock above
1552          * because pmap_enter() may sleep.  We don't put the page
1553          * back on the active queue until later so that the pageout daemon
1554          * won't find it (yet).
1555          */
1556         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1557             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1558         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1559             fs.wired == 0)
1560                 vm_fault_prefault(&fs, vaddr,
1561                     faultcount > 0 ? behind : PFBAK,
1562                     faultcount > 0 ? ahead : PFFOR, false);
1563
1564         /*
1565          * If the page is not wired down, then put it where the pageout daemon
1566          * can find it.
1567          */
1568         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1569                 vm_page_wire(fs.m);
1570         else
1571                 vm_page_activate(fs.m);
1572         if (fs.m_hold != NULL) {
1573                 (*fs.m_hold) = fs.m;
1574                 vm_page_wire(fs.m);
1575         }
1576         vm_page_xunbusy(fs.m);
1577         fs.m = NULL;
1578
1579         /*
1580          * Unlock everything, and return
1581          */
1582         fault_deallocate(&fs);
1583         if (hardfault) {
1584                 VM_CNT_INC(v_io_faults);
1585                 curthread->td_ru.ru_majflt++;
1586 #ifdef RACCT
1587                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1588                         PROC_LOCK(curproc);
1589                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1590                                 racct_add_force(curproc, RACCT_WRITEBPS,
1591                                     PAGE_SIZE + behind * PAGE_SIZE);
1592                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1593                         } else {
1594                                 racct_add_force(curproc, RACCT_READBPS,
1595                                     PAGE_SIZE + ahead * PAGE_SIZE);
1596                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1597                         }
1598                         PROC_UNLOCK(curproc);
1599                 }
1600 #endif
1601         } else 
1602                 curthread->td_ru.ru_minflt++;
1603
1604         return (KERN_SUCCESS);
1605 }
1606
1607 /*
1608  * Speed up the reclamation of pages that precede the faulting pindex within
1609  * the first object of the shadow chain.  Essentially, perform the equivalent
1610  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1611  * the faulting pindex by the cluster size when the pages read by vm_fault()
1612  * cross a cluster-size boundary.  The cluster size is the greater of the
1613  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1614  *
1615  * When "fs->first_object" is a shadow object, the pages in the backing object
1616  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1617  * function must only be concerned with pages in the first object.
1618  */
1619 static void
1620 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1621 {
1622         vm_map_entry_t entry;
1623         vm_object_t first_object, object;
1624         vm_offset_t end, start;
1625         vm_page_t m, m_next;
1626         vm_pindex_t pend, pstart;
1627         vm_size_t size;
1628
1629         object = fs->object;
1630         VM_OBJECT_ASSERT_UNLOCKED(object);
1631         first_object = fs->first_object;
1632         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1633         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1634                 VM_OBJECT_RLOCK(first_object);
1635                 size = VM_FAULT_DONTNEED_MIN;
1636                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1637                         size = pagesizes[1];
1638                 end = rounddown2(vaddr, size);
1639                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1640                     (entry = fs->entry)->start < end) {
1641                         if (end - entry->start < size)
1642                                 start = entry->start;
1643                         else
1644                                 start = end - size;
1645                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1646                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1647                             entry->start);
1648                         m_next = vm_page_find_least(first_object, pstart);
1649                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1650                             entry->start);
1651                         while ((m = m_next) != NULL && m->pindex < pend) {
1652                                 m_next = TAILQ_NEXT(m, listq);
1653                                 if (!vm_page_all_valid(m) ||
1654                                     vm_page_busied(m))
1655                                         continue;
1656
1657                                 /*
1658                                  * Don't clear PGA_REFERENCED, since it would
1659                                  * likely represent a reference by a different
1660                                  * process.
1661                                  *
1662                                  * Typically, at this point, prefetched pages
1663                                  * are still in the inactive queue.  Only
1664                                  * pages that triggered page faults are in the
1665                                  * active queue.  The test for whether the page
1666                                  * is in the inactive queue is racy; in the
1667                                  * worst case we will requeue the page
1668                                  * unnecessarily.
1669                                  */
1670                                 if (!vm_page_inactive(m))
1671                                         vm_page_deactivate(m);
1672                         }
1673                 }
1674                 VM_OBJECT_RUNLOCK(first_object);
1675         }
1676 }
1677
1678 /*
1679  * vm_fault_prefault provides a quick way of clustering
1680  * pagefaults into a processes address space.  It is a "cousin"
1681  * of vm_map_pmap_enter, except it runs at page fault time instead
1682  * of mmap time.
1683  */
1684 static void
1685 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1686     int backward, int forward, bool obj_locked)
1687 {
1688         pmap_t pmap;
1689         vm_map_entry_t entry;
1690         vm_object_t backing_object, lobject;
1691         vm_offset_t addr, starta;
1692         vm_pindex_t pindex;
1693         vm_page_t m;
1694         int i;
1695
1696         pmap = fs->map->pmap;
1697         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1698                 return;
1699
1700         entry = fs->entry;
1701
1702         if (addra < backward * PAGE_SIZE) {
1703                 starta = entry->start;
1704         } else {
1705                 starta = addra - backward * PAGE_SIZE;
1706                 if (starta < entry->start)
1707                         starta = entry->start;
1708         }
1709
1710         /*
1711          * Generate the sequence of virtual addresses that are candidates for
1712          * prefaulting in an outward spiral from the faulting virtual address,
1713          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1714          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1715          * If the candidate address doesn't have a backing physical page, then
1716          * the loop immediately terminates.
1717          */
1718         for (i = 0; i < 2 * imax(backward, forward); i++) {
1719                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1720                     PAGE_SIZE);
1721                 if (addr > addra + forward * PAGE_SIZE)
1722                         addr = 0;
1723
1724                 if (addr < starta || addr >= entry->end)
1725                         continue;
1726
1727                 if (!pmap_is_prefaultable(pmap, addr))
1728                         continue;
1729
1730                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1731                 lobject = entry->object.vm_object;
1732                 if (!obj_locked)
1733                         VM_OBJECT_RLOCK(lobject);
1734                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1735                     lobject->type == OBJT_DEFAULT &&
1736                     (backing_object = lobject->backing_object) != NULL) {
1737                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1738                             0, ("vm_fault_prefault: unaligned object offset"));
1739                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1740                         VM_OBJECT_RLOCK(backing_object);
1741                         if (!obj_locked || lobject != entry->object.vm_object)
1742                                 VM_OBJECT_RUNLOCK(lobject);
1743                         lobject = backing_object;
1744                 }
1745                 if (m == NULL) {
1746                         if (!obj_locked || lobject != entry->object.vm_object)
1747                                 VM_OBJECT_RUNLOCK(lobject);
1748                         break;
1749                 }
1750                 if (vm_page_all_valid(m) &&
1751                     (m->flags & PG_FICTITIOUS) == 0)
1752                         pmap_enter_quick(pmap, addr, m, entry->protection);
1753                 if (!obj_locked || lobject != entry->object.vm_object)
1754                         VM_OBJECT_RUNLOCK(lobject);
1755         }
1756 }
1757
1758 /*
1759  * Hold each of the physical pages that are mapped by the specified range of
1760  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1761  * and allow the specified types of access, "prot".  If all of the implied
1762  * pages are successfully held, then the number of held pages is returned
1763  * together with pointers to those pages in the array "ma".  However, if any
1764  * of the pages cannot be held, -1 is returned.
1765  */
1766 int
1767 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1768     vm_prot_t prot, vm_page_t *ma, int max_count)
1769 {
1770         vm_offset_t end, va;
1771         vm_page_t *mp;
1772         int count;
1773         boolean_t pmap_failed;
1774
1775         if (len == 0)
1776                 return (0);
1777         end = round_page(addr + len);
1778         addr = trunc_page(addr);
1779
1780         if (!vm_map_range_valid(map, addr, end))
1781                 return (-1);
1782
1783         if (atop(end - addr) > max_count)
1784                 panic("vm_fault_quick_hold_pages: count > max_count");
1785         count = atop(end - addr);
1786
1787         /*
1788          * Most likely, the physical pages are resident in the pmap, so it is
1789          * faster to try pmap_extract_and_hold() first.
1790          */
1791         pmap_failed = FALSE;
1792         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1793                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1794                 if (*mp == NULL)
1795                         pmap_failed = TRUE;
1796                 else if ((prot & VM_PROT_WRITE) != 0 &&
1797                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1798                         /*
1799                          * Explicitly dirty the physical page.  Otherwise, the
1800                          * caller's changes may go unnoticed because they are
1801                          * performed through an unmanaged mapping or by a DMA
1802                          * operation.
1803                          *
1804                          * The object lock is not held here.
1805                          * See vm_page_clear_dirty_mask().
1806                          */
1807                         vm_page_dirty(*mp);
1808                 }
1809         }
1810         if (pmap_failed) {
1811                 /*
1812                  * One or more pages could not be held by the pmap.  Either no
1813                  * page was mapped at the specified virtual address or that
1814                  * mapping had insufficient permissions.  Attempt to fault in
1815                  * and hold these pages.
1816                  *
1817                  * If vm_fault_disable_pagefaults() was called,
1818                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1819                  * acquire MD VM locks, which means we must not call
1820                  * vm_fault().  Some (out of tree) callers mark
1821                  * too wide a code area with vm_fault_disable_pagefaults()
1822                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1823                  * the proper behaviour explicitly.
1824                  */
1825                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1826                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1827                         goto error;
1828                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1829                         if (*mp == NULL && vm_fault(map, va, prot,
1830                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1831                                 goto error;
1832         }
1833         return (count);
1834 error:  
1835         for (mp = ma; mp < ma + count; mp++)
1836                 if (*mp != NULL)
1837                         vm_page_unwire(*mp, PQ_INACTIVE);
1838         return (-1);
1839 }
1840
1841 /*
1842  *      Routine:
1843  *              vm_fault_copy_entry
1844  *      Function:
1845  *              Create new shadow object backing dst_entry with private copy of
1846  *              all underlying pages. When src_entry is equal to dst_entry,
1847  *              function implements COW for wired-down map entry. Otherwise,
1848  *              it forks wired entry into dst_map.
1849  *
1850  *      In/out conditions:
1851  *              The source and destination maps must be locked for write.
1852  *              The source map entry must be wired down (or be a sharing map
1853  *              entry corresponding to a main map entry that is wired down).
1854  */
1855 void
1856 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1857     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1858     vm_ooffset_t *fork_charge)
1859 {
1860         vm_object_t backing_object, dst_object, object, src_object;
1861         vm_pindex_t dst_pindex, pindex, src_pindex;
1862         vm_prot_t access, prot;
1863         vm_offset_t vaddr;
1864         vm_page_t dst_m;
1865         vm_page_t src_m;
1866         boolean_t upgrade;
1867
1868 #ifdef  lint
1869         src_map++;
1870 #endif  /* lint */
1871
1872         upgrade = src_entry == dst_entry;
1873         access = prot = dst_entry->protection;
1874
1875         src_object = src_entry->object.vm_object;
1876         src_pindex = OFF_TO_IDX(src_entry->offset);
1877
1878         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1879                 dst_object = src_object;
1880                 vm_object_reference(dst_object);
1881         } else {
1882                 /*
1883                  * Create the top-level object for the destination entry.
1884                  * Doesn't actually shadow anything - we copy the pages
1885                  * directly.
1886                  */
1887                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1888                     dst_entry->start), NULL, NULL, 0);
1889 #if VM_NRESERVLEVEL > 0
1890                 dst_object->flags |= OBJ_COLORED;
1891                 dst_object->pg_color = atop(dst_entry->start);
1892 #endif
1893                 dst_object->domain = src_object->domain;
1894                 dst_object->charge = dst_entry->end - dst_entry->start;
1895         }
1896
1897         VM_OBJECT_WLOCK(dst_object);
1898         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1899             ("vm_fault_copy_entry: vm_object not NULL"));
1900         if (src_object != dst_object) {
1901                 dst_entry->object.vm_object = dst_object;
1902                 dst_entry->offset = 0;
1903                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1904         }
1905         if (fork_charge != NULL) {
1906                 KASSERT(dst_entry->cred == NULL,
1907                     ("vm_fault_copy_entry: leaked swp charge"));
1908                 dst_object->cred = curthread->td_ucred;
1909                 crhold(dst_object->cred);
1910                 *fork_charge += dst_object->charge;
1911         } else if ((dst_object->type == OBJT_DEFAULT ||
1912             dst_object->type == OBJT_SWAP) &&
1913             dst_object->cred == NULL) {
1914                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1915                     dst_entry));
1916                 dst_object->cred = dst_entry->cred;
1917                 dst_entry->cred = NULL;
1918         }
1919
1920         /*
1921          * If not an upgrade, then enter the mappings in the pmap as
1922          * read and/or execute accesses.  Otherwise, enter them as
1923          * write accesses.
1924          *
1925          * A writeable large page mapping is only created if all of
1926          * the constituent small page mappings are modified. Marking
1927          * PTEs as modified on inception allows promotion to happen
1928          * without taking potentially large number of soft faults.
1929          */
1930         if (!upgrade)
1931                 access &= ~VM_PROT_WRITE;
1932
1933         /*
1934          * Loop through all of the virtual pages within the entry's
1935          * range, copying each page from the source object to the
1936          * destination object.  Since the source is wired, those pages
1937          * must exist.  In contrast, the destination is pageable.
1938          * Since the destination object doesn't share any backing storage
1939          * with the source object, all of its pages must be dirtied,
1940          * regardless of whether they can be written.
1941          */
1942         for (vaddr = dst_entry->start, dst_pindex = 0;
1943             vaddr < dst_entry->end;
1944             vaddr += PAGE_SIZE, dst_pindex++) {
1945 again:
1946                 /*
1947                  * Find the page in the source object, and copy it in.
1948                  * Because the source is wired down, the page will be
1949                  * in memory.
1950                  */
1951                 if (src_object != dst_object)
1952                         VM_OBJECT_RLOCK(src_object);
1953                 object = src_object;
1954                 pindex = src_pindex + dst_pindex;
1955                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1956                     (backing_object = object->backing_object) != NULL) {
1957                         /*
1958                          * Unless the source mapping is read-only or
1959                          * it is presently being upgraded from
1960                          * read-only, the first object in the shadow
1961                          * chain should provide all of the pages.  In
1962                          * other words, this loop body should never be
1963                          * executed when the source mapping is already
1964                          * read/write.
1965                          */
1966                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1967                             upgrade,
1968                             ("vm_fault_copy_entry: main object missing page"));
1969
1970                         VM_OBJECT_RLOCK(backing_object);
1971                         pindex += OFF_TO_IDX(object->backing_object_offset);
1972                         if (object != dst_object)
1973                                 VM_OBJECT_RUNLOCK(object);
1974                         object = backing_object;
1975                 }
1976                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1977
1978                 if (object != dst_object) {
1979                         /*
1980                          * Allocate a page in the destination object.
1981                          */
1982                         dst_m = vm_page_alloc(dst_object, (src_object ==
1983                             dst_object ? src_pindex : 0) + dst_pindex,
1984                             VM_ALLOC_NORMAL);
1985                         if (dst_m == NULL) {
1986                                 VM_OBJECT_WUNLOCK(dst_object);
1987                                 VM_OBJECT_RUNLOCK(object);
1988                                 vm_wait(dst_object);
1989                                 VM_OBJECT_WLOCK(dst_object);
1990                                 goto again;
1991                         }
1992                         pmap_copy_page(src_m, dst_m);
1993                         VM_OBJECT_RUNLOCK(object);
1994                         dst_m->dirty = dst_m->valid = src_m->valid;
1995                 } else {
1996                         dst_m = src_m;
1997                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
1998                                 goto again;
1999                         if (dst_m->pindex >= dst_object->size) {
2000                                 /*
2001                                  * We are upgrading.  Index can occur
2002                                  * out of bounds if the object type is
2003                                  * vnode and the file was truncated.
2004                                  */
2005                                 vm_page_xunbusy(dst_m);
2006                                 break;
2007                         }
2008                 }
2009                 VM_OBJECT_WUNLOCK(dst_object);
2010
2011                 /*
2012                  * Enter it in the pmap. If a wired, copy-on-write
2013                  * mapping is being replaced by a write-enabled
2014                  * mapping, then wire that new mapping.
2015                  *
2016                  * The page can be invalid if the user called
2017                  * msync(MS_INVALIDATE) or truncated the backing vnode
2018                  * or shared memory object.  In this case, do not
2019                  * insert it into pmap, but still do the copy so that
2020                  * all copies of the wired map entry have similar
2021                  * backing pages.
2022                  */
2023                 if (vm_page_all_valid(dst_m)) {
2024                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2025                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2026                 }
2027
2028                 /*
2029                  * Mark it no longer busy, and put it on the active list.
2030                  */
2031                 VM_OBJECT_WLOCK(dst_object);
2032                 
2033                 if (upgrade) {
2034                         if (src_m != dst_m) {
2035                                 vm_page_unwire(src_m, PQ_INACTIVE);
2036                                 vm_page_wire(dst_m);
2037                         } else {
2038                                 KASSERT(vm_page_wired(dst_m),
2039                                     ("dst_m %p is not wired", dst_m));
2040                         }
2041                 } else {
2042                         vm_page_activate(dst_m);
2043                 }
2044                 vm_page_xunbusy(dst_m);
2045         }
2046         VM_OBJECT_WUNLOCK(dst_object);
2047         if (upgrade) {
2048                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2049                 vm_object_deallocate(src_object);
2050         }
2051 }
2052
2053 /*
2054  * Block entry into the machine-independent layer's page fault handler by
2055  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2056  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2057  * spurious page faults. 
2058  */
2059 int
2060 vm_fault_disable_pagefaults(void)
2061 {
2062
2063         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2064 }
2065
2066 void
2067 vm_fault_enable_pagefaults(int save)
2068 {
2069
2070         curthread_pflags_restore(save);
2071 }