]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
MFC r344353:
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/resourcevar.h>
90 #include <sys/rwlock.h>
91 #include <sys/sysctl.h>
92 #include <sys/vmmeter.h>
93 #include <sys/vnode.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109
110 #define PFBAK 4
111 #define PFFOR 4
112
113 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
114 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
115
116 #define VM_FAULT_DONTNEED_MIN   1048576
117
118 struct faultstate {
119         vm_page_t m;
120         vm_object_t object;
121         vm_pindex_t pindex;
122         vm_page_t first_m;
123         vm_object_t     first_object;
124         vm_pindex_t first_pindex;
125         vm_map_t map;
126         vm_map_entry_t entry;
127         int map_generation;
128         bool lookup_still_valid;
129         struct vnode *vp;
130 };
131
132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
133             int ahead);
134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
135             int backward, int forward, bool obj_locked);
136
137 static inline void
138 release_page(struct faultstate *fs)
139 {
140
141         vm_page_xunbusy(fs->m);
142         vm_page_lock(fs->m);
143         vm_page_deactivate(fs->m);
144         vm_page_unlock(fs->m);
145         fs->m = NULL;
146 }
147
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151
152         if (fs->lookup_still_valid) {
153                 vm_map_lookup_done(fs->map, fs->entry);
154                 fs->lookup_still_valid = false;
155         }
156 }
157
158 static void
159 unlock_vp(struct faultstate *fs)
160 {
161
162         if (fs->vp != NULL) {
163                 vput(fs->vp);
164                 fs->vp = NULL;
165         }
166 }
167
168 static void
169 unlock_and_deallocate(struct faultstate *fs)
170 {
171
172         vm_object_pip_wakeup(fs->object);
173         VM_OBJECT_WUNLOCK(fs->object);
174         if (fs->object != fs->first_object) {
175                 VM_OBJECT_WLOCK(fs->first_object);
176                 vm_page_lock(fs->first_m);
177                 vm_page_free(fs->first_m);
178                 vm_page_unlock(fs->first_m);
179                 vm_object_pip_wakeup(fs->first_object);
180                 VM_OBJECT_WUNLOCK(fs->first_object);
181                 fs->first_m = NULL;
182         }
183         vm_object_deallocate(fs->first_object);
184         unlock_map(fs);
185         unlock_vp(fs);
186 }
187
188 static void
189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
190     vm_prot_t fault_type, int fault_flags, bool set_wd)
191 {
192         bool need_dirty;
193
194         if (((prot & VM_PROT_WRITE) == 0 &&
195             (fault_flags & VM_FAULT_DIRTY) == 0) ||
196             (m->oflags & VPO_UNMANAGED) != 0)
197                 return;
198
199         VM_OBJECT_ASSERT_LOCKED(m->object);
200
201         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
202             (fault_flags & VM_FAULT_WIRE) == 0) ||
203             (fault_flags & VM_FAULT_DIRTY) != 0;
204
205         if (set_wd)
206                 vm_object_set_writeable_dirty(m->object);
207         else
208                 /*
209                  * If two callers of vm_fault_dirty() with set_wd ==
210                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
211                  * flag set, other with flag clear, race, it is
212                  * possible for the no-NOSYNC thread to see m->dirty
213                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
214                  * around manipulation of VPO_NOSYNC and
215                  * vm_page_dirty() call, to avoid the race and keep
216                  * m->oflags consistent.
217                  */
218                 vm_page_lock(m);
219
220         /*
221          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
222          * if the page is already dirty to prevent data written with
223          * the expectation of being synced from not being synced.
224          * Likewise if this entry does not request NOSYNC then make
225          * sure the page isn't marked NOSYNC.  Applications sharing
226          * data should use the same flags to avoid ping ponging.
227          */
228         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
229                 if (m->dirty == 0) {
230                         m->oflags |= VPO_NOSYNC;
231                 }
232         } else {
233                 m->oflags &= ~VPO_NOSYNC;
234         }
235
236         /*
237          * If the fault is a write, we know that this page is being
238          * written NOW so dirty it explicitly to save on
239          * pmap_is_modified() calls later.
240          *
241          * Also, since the page is now dirty, we can possibly tell
242          * the pager to release any swap backing the page.  Calling
243          * the pager requires a write lock on the object.
244          */
245         if (need_dirty)
246                 vm_page_dirty(m);
247         if (!set_wd)
248                 vm_page_unlock(m);
249         else if (need_dirty)
250                 vm_pager_page_unswapped(m);
251 }
252
253 static void
254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
255 {
256
257         if (m_hold != NULL) {
258                 *m_hold = m;
259                 vm_page_lock(m);
260                 vm_page_hold(m);
261                 vm_page_unlock(m);
262         }
263 }
264
265 /*
266  * Unlocks fs.first_object and fs.map on success.
267  */
268 static int
269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
270     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
271 {
272         vm_page_t m, m_map;
273 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
274     __ARM_ARCH >= 6) || defined(__i386__)) && VM_NRESERVLEVEL > 0
275         vm_page_t m_super;
276         int flags;
277 #endif
278         int psind, rv;
279
280         MPASS(fs->vp == NULL);
281         m = vm_page_lookup(fs->first_object, fs->first_pindex);
282         /* A busy page can be mapped for read|execute access. */
283         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
284             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
285                 return (KERN_FAILURE);
286         m_map = m;
287         psind = 0;
288 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
289     __ARM_ARCH >= 6) || defined(__i386__)) && VM_NRESERVLEVEL > 0
290         if ((m->flags & PG_FICTITIOUS) == 0 &&
291             (m_super = vm_reserv_to_superpage(m)) != NULL &&
292             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
293             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
294             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
295             (pagesizes[m_super->psind] - 1)) &&
296             pmap_ps_enabled(fs->map->pmap)) {
297                 flags = PS_ALL_VALID;
298                 if ((prot & VM_PROT_WRITE) != 0) {
299                         /*
300                          * Create a superpage mapping allowing write access
301                          * only if none of the constituent pages are busy and
302                          * all of them are already dirty (except possibly for
303                          * the page that was faulted on).
304                          */
305                         flags |= PS_NONE_BUSY;
306                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
307                                 flags |= PS_ALL_DIRTY;
308                 }
309                 if (vm_page_ps_test(m_super, flags, m)) {
310                         m_map = m_super;
311                         psind = m_super->psind;
312                         vaddr = rounddown2(vaddr, pagesizes[psind]);
313                         /* Preset the modified bit for dirty superpages. */
314                         if ((flags & PS_ALL_DIRTY) != 0)
315                                 fault_type |= VM_PROT_WRITE;
316                 }
317         }
318 #endif
319         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
320             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
321         if (rv != KERN_SUCCESS)
322                 return (rv);
323         vm_fault_fill_hold(m_hold, m);
324         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
325         if (psind == 0 && !wired)
326                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
327         VM_OBJECT_RUNLOCK(fs->first_object);
328         vm_map_lookup_done(fs->map, fs->entry);
329         curthread->td_ru.ru_minflt++;
330         return (KERN_SUCCESS);
331 }
332
333 static void
334 vm_fault_restore_map_lock(struct faultstate *fs)
335 {
336
337         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
338         MPASS(fs->first_object->paging_in_progress > 0);
339
340         if (!vm_map_trylock_read(fs->map)) {
341                 VM_OBJECT_WUNLOCK(fs->first_object);
342                 vm_map_lock_read(fs->map);
343                 VM_OBJECT_WLOCK(fs->first_object);
344         }
345         fs->lookup_still_valid = true;
346 }
347
348 static void
349 vm_fault_populate_check_page(vm_page_t m)
350 {
351
352         /*
353          * Check each page to ensure that the pager is obeying the
354          * interface: the page must be installed in the object, fully
355          * valid, and exclusively busied.
356          */
357         MPASS(m != NULL);
358         MPASS(m->valid == VM_PAGE_BITS_ALL);
359         MPASS(vm_page_xbusied(m));
360 }
361
362 static void
363 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
364     vm_pindex_t last)
365 {
366         vm_page_t m;
367         vm_pindex_t pidx;
368
369         VM_OBJECT_ASSERT_WLOCKED(object);
370         MPASS(first <= last);
371         for (pidx = first, m = vm_page_lookup(object, pidx);
372             pidx <= last; pidx++, m = vm_page_next(m)) {
373                 vm_fault_populate_check_page(m);
374                 vm_page_lock(m);
375                 vm_page_deactivate(m);
376                 vm_page_unlock(m);
377                 vm_page_xunbusy(m);
378         }
379 }
380
381 static int
382 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
383     int fault_flags, boolean_t wired, vm_page_t *m_hold)
384 {
385         struct mtx *m_mtx;
386         vm_offset_t vaddr;
387         vm_page_t m;
388         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
389         int i, npages, psind, rv;
390
391         MPASS(fs->object == fs->first_object);
392         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
393         MPASS(fs->first_object->paging_in_progress > 0);
394         MPASS(fs->first_object->backing_object == NULL);
395         MPASS(fs->lookup_still_valid);
396
397         pager_first = OFF_TO_IDX(fs->entry->offset);
398         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
399         unlock_map(fs);
400         unlock_vp(fs);
401
402         /*
403          * Call the pager (driver) populate() method.
404          *
405          * There is no guarantee that the method will be called again
406          * if the current fault is for read, and a future fault is
407          * for write.  Report the entry's maximum allowed protection
408          * to the driver.
409          */
410         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
411             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
412
413         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
414         if (rv == VM_PAGER_BAD) {
415                 /*
416                  * VM_PAGER_BAD is the backdoor for a pager to request
417                  * normal fault handling.
418                  */
419                 vm_fault_restore_map_lock(fs);
420                 if (fs->map->timestamp != fs->map_generation)
421                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
422                 return (KERN_NOT_RECEIVER);
423         }
424         if (rv != VM_PAGER_OK)
425                 return (KERN_FAILURE); /* AKA SIGSEGV */
426
427         /* Ensure that the driver is obeying the interface. */
428         MPASS(pager_first <= pager_last);
429         MPASS(fs->first_pindex <= pager_last);
430         MPASS(fs->first_pindex >= pager_first);
431         MPASS(pager_last < fs->first_object->size);
432
433         vm_fault_restore_map_lock(fs);
434         if (fs->map->timestamp != fs->map_generation) {
435                 vm_fault_populate_cleanup(fs->first_object, pager_first,
436                     pager_last);
437                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
438         }
439
440         /*
441          * The map is unchanged after our last unlock.  Process the fault.
442          *
443          * The range [pager_first, pager_last] that is given to the
444          * pager is only a hint.  The pager may populate any range
445          * within the object that includes the requested page index.
446          * In case the pager expanded the range, clip it to fit into
447          * the map entry.
448          */
449         map_first = OFF_TO_IDX(fs->entry->offset);
450         if (map_first > pager_first) {
451                 vm_fault_populate_cleanup(fs->first_object, pager_first,
452                     map_first - 1);
453                 pager_first = map_first;
454         }
455         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
456         if (map_last < pager_last) {
457                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
458                     pager_last);
459                 pager_last = map_last;
460         }
461         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
462             pidx <= pager_last;
463             pidx += npages, m = vm_page_next(&m[npages - 1])) {
464                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
465 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
466     __ARM_ARCH >= 6) || defined(__i386__)
467                 psind = m->psind;
468                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
469                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
470                     !pmap_ps_enabled(fs->map->pmap)))
471                         psind = 0;
472 #else
473                 psind = 0;
474 #endif          
475                 npages = atop(pagesizes[psind]);
476                 for (i = 0; i < npages; i++) {
477                         vm_fault_populate_check_page(&m[i]);
478                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
479                             fault_flags, true);
480                 }
481                 VM_OBJECT_WUNLOCK(fs->first_object);
482                 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
483                     (wired ? PMAP_ENTER_WIRED : 0), psind);
484 #if defined(__amd64__)
485                 if (psind > 0 && rv == KERN_FAILURE) {
486                         for (i = 0; i < npages; i++) {
487                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
488                                     &m[i], prot, fault_type |
489                                     (wired ? PMAP_ENTER_WIRED : 0), 0);
490                                 MPASS(rv == KERN_SUCCESS);
491                         }
492                 }
493 #else
494                 MPASS(rv == KERN_SUCCESS);
495 #endif
496                 VM_OBJECT_WLOCK(fs->first_object);
497                 m_mtx = NULL;
498                 for (i = 0; i < npages; i++) {
499                         vm_page_change_lock(&m[i], &m_mtx);
500                         if ((fault_flags & VM_FAULT_WIRE) != 0)
501                                 vm_page_wire(&m[i]);
502                         else
503                                 vm_page_activate(&m[i]);
504                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
505                                 *m_hold = &m[i];
506                                 vm_page_hold(&m[i]);
507                         }
508                         vm_page_xunbusy_maybelocked(&m[i]);
509                 }
510                 if (m_mtx != NULL)
511                         mtx_unlock(m_mtx);
512         }
513         curthread->td_ru.ru_majflt++;
514         return (KERN_SUCCESS);
515 }
516
517 /*
518  *      vm_fault:
519  *
520  *      Handle a page fault occurring at the given address,
521  *      requiring the given permissions, in the map specified.
522  *      If successful, the page is inserted into the
523  *      associated physical map.
524  *
525  *      NOTE: the given address should be truncated to the
526  *      proper page address.
527  *
528  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
529  *      a standard error specifying why the fault is fatal is returned.
530  *
531  *      The map in question must be referenced, and remains so.
532  *      Caller may hold no locks.
533  */
534 int
535 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
536     int fault_flags)
537 {
538         struct thread *td;
539         int result;
540
541         td = curthread;
542         if ((td->td_pflags & TDP_NOFAULTING) != 0)
543                 return (KERN_PROTECTION_FAILURE);
544 #ifdef KTRACE
545         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
546                 ktrfault(vaddr, fault_type);
547 #endif
548         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
549             NULL);
550 #ifdef KTRACE
551         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
552                 ktrfaultend(result);
553 #endif
554         return (result);
555 }
556
557 int
558 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
559     int fault_flags, vm_page_t *m_hold)
560 {
561         struct faultstate fs;
562         struct vnode *vp;
563         struct domainset *dset;
564         vm_object_t next_object, retry_object;
565         vm_offset_t e_end, e_start;
566         vm_pindex_t retry_pindex;
567         vm_prot_t prot, retry_prot;
568         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
569         int locked, nera, result, rv;
570         u_char behavior;
571         boolean_t wired;        /* Passed by reference. */
572         bool dead, hardfault, is_first_object_locked;
573
574         VM_CNT_INC(v_vm_faults);
575         fs.vp = NULL;
576         faultcount = 0;
577         nera = -1;
578         hardfault = false;
579
580 RetryFault:;
581
582         /*
583          * Find the backing store object and offset into it to begin the
584          * search.
585          */
586         fs.map = map;
587         result = vm_map_lookup(&fs.map, vaddr, fault_type |
588             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
589             &fs.first_pindex, &prot, &wired);
590         if (result != KERN_SUCCESS) {
591                 unlock_vp(&fs);
592                 return (result);
593         }
594
595         fs.map_generation = fs.map->timestamp;
596
597         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
598                 panic("%s: fault on nofault entry, addr: %#lx",
599                     __func__, (u_long)vaddr);
600         }
601
602         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
603             fs.entry->wiring_thread != curthread) {
604                 vm_map_unlock_read(fs.map);
605                 vm_map_lock(fs.map);
606                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
607                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
608                         unlock_vp(&fs);
609                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
610                         vm_map_unlock_and_wait(fs.map, 0);
611                 } else
612                         vm_map_unlock(fs.map);
613                 goto RetryFault;
614         }
615
616         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
617
618         if (wired)
619                 fault_type = prot | (fault_type & VM_PROT_COPY);
620         else
621                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
622                     ("!wired && VM_FAULT_WIRE"));
623
624         /*
625          * Try to avoid lock contention on the top-level object through
626          * special-case handling of some types of page faults, specifically,
627          * those that are both (1) mapping an existing page from the top-
628          * level object and (2) not having to mark that object as containing
629          * dirty pages.  Under these conditions, a read lock on the top-level
630          * object suffices, allowing multiple page faults of a similar type to
631          * run in parallel on the same top-level object.
632          */
633         if (fs.vp == NULL /* avoid locked vnode leak */ &&
634             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
635             /* avoid calling vm_object_set_writeable_dirty() */
636             ((prot & VM_PROT_WRITE) == 0 ||
637             (fs.first_object->type != OBJT_VNODE &&
638             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
639             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
640                 VM_OBJECT_RLOCK(fs.first_object);
641                 if ((prot & VM_PROT_WRITE) == 0 ||
642                     (fs.first_object->type != OBJT_VNODE &&
643                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
644                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
645                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
646                             fault_flags, wired, m_hold);
647                         if (rv == KERN_SUCCESS)
648                                 return (rv);
649                 }
650                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
651                         VM_OBJECT_RUNLOCK(fs.first_object);
652                         VM_OBJECT_WLOCK(fs.first_object);
653                 }
654         } else {
655                 VM_OBJECT_WLOCK(fs.first_object);
656         }
657
658         /*
659          * Make a reference to this object to prevent its disposal while we
660          * are messing with it.  Once we have the reference, the map is free
661          * to be diddled.  Since objects reference their shadows (and copies),
662          * they will stay around as well.
663          *
664          * Bump the paging-in-progress count to prevent size changes (e.g. 
665          * truncation operations) during I/O.
666          */
667         vm_object_reference_locked(fs.first_object);
668         vm_object_pip_add(fs.first_object, 1);
669
670         fs.lookup_still_valid = true;
671
672         fs.first_m = NULL;
673
674         /*
675          * Search for the page at object/offset.
676          */
677         fs.object = fs.first_object;
678         fs.pindex = fs.first_pindex;
679         while (TRUE) {
680                 /*
681                  * If the object is marked for imminent termination,
682                  * we retry here, since the collapse pass has raced
683                  * with us.  Otherwise, if we see terminally dead
684                  * object, return fail.
685                  */
686                 if ((fs.object->flags & OBJ_DEAD) != 0) {
687                         dead = fs.object->type == OBJT_DEAD;
688                         unlock_and_deallocate(&fs);
689                         if (dead)
690                                 return (KERN_PROTECTION_FAILURE);
691                         pause("vmf_de", 1);
692                         goto RetryFault;
693                 }
694
695                 /*
696                  * See if page is resident
697                  */
698                 fs.m = vm_page_lookup(fs.object, fs.pindex);
699                 if (fs.m != NULL) {
700                         /*
701                          * Wait/Retry if the page is busy.  We have to do this
702                          * if the page is either exclusive or shared busy
703                          * because the vm_pager may be using read busy for
704                          * pageouts (and even pageins if it is the vnode
705                          * pager), and we could end up trying to pagein and
706                          * pageout the same page simultaneously.
707                          *
708                          * We can theoretically allow the busy case on a read
709                          * fault if the page is marked valid, but since such
710                          * pages are typically already pmap'd, putting that
711                          * special case in might be more effort then it is 
712                          * worth.  We cannot under any circumstances mess
713                          * around with a shared busied page except, perhaps,
714                          * to pmap it.
715                          */
716                         if (vm_page_busied(fs.m)) {
717                                 /*
718                                  * Reference the page before unlocking and
719                                  * sleeping so that the page daemon is less
720                                  * likely to reclaim it.
721                                  */
722                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
723                                 if (fs.object != fs.first_object) {
724                                         if (!VM_OBJECT_TRYWLOCK(
725                                             fs.first_object)) {
726                                                 VM_OBJECT_WUNLOCK(fs.object);
727                                                 VM_OBJECT_WLOCK(fs.first_object);
728                                                 VM_OBJECT_WLOCK(fs.object);
729                                         }
730                                         vm_page_lock(fs.first_m);
731                                         vm_page_free(fs.first_m);
732                                         vm_page_unlock(fs.first_m);
733                                         vm_object_pip_wakeup(fs.first_object);
734                                         VM_OBJECT_WUNLOCK(fs.first_object);
735                                         fs.first_m = NULL;
736                                 }
737                                 unlock_map(&fs);
738                                 if (fs.m == vm_page_lookup(fs.object,
739                                     fs.pindex)) {
740                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
741                                 }
742                                 vm_object_pip_wakeup(fs.object);
743                                 VM_OBJECT_WUNLOCK(fs.object);
744                                 VM_CNT_INC(v_intrans);
745                                 vm_object_deallocate(fs.first_object);
746                                 goto RetryFault;
747                         }
748
749                         /*
750                          * Mark page busy for other processes, and the 
751                          * pagedaemon.  If it still isn't completely valid
752                          * (readable), jump to readrest, else break-out ( we
753                          * found the page ).
754                          */
755                         vm_page_xbusy(fs.m);
756                         if (fs.m->valid != VM_PAGE_BITS_ALL)
757                                 goto readrest;
758                         break; /* break to PAGE HAS BEEN FOUND */
759                 }
760                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
761
762                 /*
763                  * Page is not resident.  If the pager might contain the page
764                  * or this is the beginning of the search, allocate a new
765                  * page.  (Default objects are zero-fill, so there is no real
766                  * pager for them.)
767                  */
768                 if (fs.object->type != OBJT_DEFAULT ||
769                     fs.object == fs.first_object) {
770                         if (fs.pindex >= fs.object->size) {
771                                 unlock_and_deallocate(&fs);
772                                 return (KERN_PROTECTION_FAILURE);
773                         }
774
775                         if (fs.object == fs.first_object &&
776                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
777                             fs.first_object->shadow_count == 0) {
778                                 rv = vm_fault_populate(&fs, prot, fault_type,
779                                     fault_flags, wired, m_hold);
780                                 switch (rv) {
781                                 case KERN_SUCCESS:
782                                 case KERN_FAILURE:
783                                         unlock_and_deallocate(&fs);
784                                         return (rv);
785                                 case KERN_RESOURCE_SHORTAGE:
786                                         unlock_and_deallocate(&fs);
787                                         goto RetryFault;
788                                 case KERN_NOT_RECEIVER:
789                                         /*
790                                          * Pager's populate() method
791                                          * returned VM_PAGER_BAD.
792                                          */
793                                         break;
794                                 default:
795                                         panic("inconsistent return codes");
796                                 }
797                         }
798
799                         /*
800                          * Allocate a new page for this object/offset pair.
801                          *
802                          * Unlocked read of the p_flag is harmless. At
803                          * worst, the P_KILLED might be not observed
804                          * there, and allocation can fail, causing
805                          * restart and new reading of the p_flag.
806                          */
807                         dset = fs.object->domain.dr_policy;
808                         if (dset == NULL)
809                                 dset = curthread->td_domain.dr_policy;
810                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
811                             P_KILLED(curproc)) {
812 #if VM_NRESERVLEVEL > 0
813                                 vm_object_color(fs.object, atop(vaddr) -
814                                     fs.pindex);
815 #endif
816                                 alloc_req = P_KILLED(curproc) ?
817                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
818                                 if (fs.object->type != OBJT_VNODE &&
819                                     fs.object->backing_object == NULL)
820                                         alloc_req |= VM_ALLOC_ZERO;
821                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
822                                     alloc_req);
823                         }
824                         if (fs.m == NULL) {
825                                 unlock_and_deallocate(&fs);
826                                 vm_waitpfault(dset);
827                                 goto RetryFault;
828                         }
829                 }
830
831 readrest:
832                 /*
833                  * At this point, we have either allocated a new page or found
834                  * an existing page that is only partially valid.
835                  *
836                  * We hold a reference on the current object and the page is
837                  * exclusive busied.
838                  */
839
840                 /*
841                  * If the pager for the current object might have the page,
842                  * then determine the number of additional pages to read and
843                  * potentially reprioritize previously read pages for earlier
844                  * reclamation.  These operations should only be performed
845                  * once per page fault.  Even if the current pager doesn't
846                  * have the page, the number of additional pages to read will
847                  * apply to subsequent objects in the shadow chain.
848                  */
849                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
850                     !P_KILLED(curproc)) {
851                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
852                         era = fs.entry->read_ahead;
853                         behavior = vm_map_entry_behavior(fs.entry);
854                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
855                                 nera = 0;
856                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
857                                 nera = VM_FAULT_READ_AHEAD_MAX;
858                                 if (vaddr == fs.entry->next_read)
859                                         vm_fault_dontneed(&fs, vaddr, nera);
860                         } else if (vaddr == fs.entry->next_read) {
861                                 /*
862                                  * This is a sequential fault.  Arithmetically
863                                  * increase the requested number of pages in
864                                  * the read-ahead window.  The requested
865                                  * number of pages is "# of sequential faults
866                                  * x (read ahead min + 1) + read ahead min"
867                                  */
868                                 nera = VM_FAULT_READ_AHEAD_MIN;
869                                 if (era > 0) {
870                                         nera += era + 1;
871                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
872                                                 nera = VM_FAULT_READ_AHEAD_MAX;
873                                 }
874                                 if (era == VM_FAULT_READ_AHEAD_MAX)
875                                         vm_fault_dontneed(&fs, vaddr, nera);
876                         } else {
877                                 /*
878                                  * This is a non-sequential fault.
879                                  */
880                                 nera = 0;
881                         }
882                         if (era != nera) {
883                                 /*
884                                  * A read lock on the map suffices to update
885                                  * the read ahead count safely.
886                                  */
887                                 fs.entry->read_ahead = nera;
888                         }
889
890                         /*
891                          * Prepare for unlocking the map.  Save the map
892                          * entry's start and end addresses, which are used to
893                          * optimize the size of the pager operation below.
894                          * Even if the map entry's addresses change after
895                          * unlocking the map, using the saved addresses is
896                          * safe.
897                          */
898                         e_start = fs.entry->start;
899                         e_end = fs.entry->end;
900                 }
901
902                 /*
903                  * Call the pager to retrieve the page if there is a chance
904                  * that the pager has it, and potentially retrieve additional
905                  * pages at the same time.
906                  */
907                 if (fs.object->type != OBJT_DEFAULT) {
908                         /*
909                          * Release the map lock before locking the vnode or
910                          * sleeping in the pager.  (If the current object has
911                          * a shadow, then an earlier iteration of this loop
912                          * may have already unlocked the map.)
913                          */
914                         unlock_map(&fs);
915
916                         if (fs.object->type == OBJT_VNODE &&
917                             (vp = fs.object->handle) != fs.vp) {
918                                 /*
919                                  * Perform an unlock in case the desired vnode
920                                  * changed while the map was unlocked during a
921                                  * retry.
922                                  */
923                                 unlock_vp(&fs);
924
925                                 locked = VOP_ISLOCKED(vp);
926                                 if (locked != LK_EXCLUSIVE)
927                                         locked = LK_SHARED;
928
929                                 /*
930                                  * We must not sleep acquiring the vnode lock
931                                  * while we have the page exclusive busied or
932                                  * the object's paging-in-progress count
933                                  * incremented.  Otherwise, we could deadlock.
934                                  */
935                                 error = vget(vp, locked | LK_CANRECURSE |
936                                     LK_NOWAIT, curthread);
937                                 if (error != 0) {
938                                         vhold(vp);
939                                         release_page(&fs);
940                                         unlock_and_deallocate(&fs);
941                                         error = vget(vp, locked | LK_RETRY |
942                                             LK_CANRECURSE, curthread);
943                                         vdrop(vp);
944                                         fs.vp = vp;
945                                         KASSERT(error == 0,
946                                             ("vm_fault: vget failed"));
947                                         goto RetryFault;
948                                 }
949                                 fs.vp = vp;
950                         }
951                         KASSERT(fs.vp == NULL || !fs.map->system_map,
952                             ("vm_fault: vnode-backed object mapped by system map"));
953
954                         /*
955                          * Page in the requested page and hint the pager,
956                          * that it may bring up surrounding pages.
957                          */
958                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
959                             P_KILLED(curproc)) {
960                                 behind = 0;
961                                 ahead = 0;
962                         } else {
963                                 /* Is this a sequential fault? */
964                                 if (nera > 0) {
965                                         behind = 0;
966                                         ahead = nera;
967                                 } else {
968                                         /*
969                                          * Request a cluster of pages that is
970                                          * aligned to a VM_FAULT_READ_DEFAULT
971                                          * page offset boundary within the
972                                          * object.  Alignment to a page offset
973                                          * boundary is more likely to coincide
974                                          * with the underlying file system
975                                          * block than alignment to a virtual
976                                          * address boundary.
977                                          */
978                                         cluster_offset = fs.pindex %
979                                             VM_FAULT_READ_DEFAULT;
980                                         behind = ulmin(cluster_offset,
981                                             atop(vaddr - e_start));
982                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
983                                             cluster_offset;
984                                 }
985                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
986                         }
987                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
988                             &behind, &ahead);
989                         if (rv == VM_PAGER_OK) {
990                                 faultcount = behind + 1 + ahead;
991                                 hardfault = true;
992                                 break; /* break to PAGE HAS BEEN FOUND */
993                         }
994                         if (rv == VM_PAGER_ERROR)
995                                 printf("vm_fault: pager read error, pid %d (%s)\n",
996                                     curproc->p_pid, curproc->p_comm);
997
998                         /*
999                          * If an I/O error occurred or the requested page was
1000                          * outside the range of the pager, clean up and return
1001                          * an error.
1002                          */
1003                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1004                                 vm_page_lock(fs.m);
1005                                 if (fs.m->wire_count == 0)
1006                                         vm_page_free(fs.m);
1007                                 else
1008                                         vm_page_xunbusy_maybelocked(fs.m);
1009                                 vm_page_unlock(fs.m);
1010                                 fs.m = NULL;
1011                                 unlock_and_deallocate(&fs);
1012                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
1013                                     KERN_PROTECTION_FAILURE);
1014                         }
1015
1016                         /*
1017                          * The requested page does not exist at this object/
1018                          * offset.  Remove the invalid page from the object,
1019                          * waking up anyone waiting for it, and continue on to
1020                          * the next object.  However, if this is the top-level
1021                          * object, we must leave the busy page in place to
1022                          * prevent another process from rushing past us, and
1023                          * inserting the page in that object at the same time
1024                          * that we are.
1025                          */
1026                         if (fs.object != fs.first_object) {
1027                                 vm_page_lock(fs.m);
1028                                 if (fs.m->wire_count == 0)
1029                                         vm_page_free(fs.m);
1030                                 else
1031                                         vm_page_xunbusy_maybelocked(fs.m);
1032                                 vm_page_unlock(fs.m);
1033                                 fs.m = NULL;
1034                         }
1035                 }
1036
1037                 /*
1038                  * We get here if the object has default pager (or unwiring) 
1039                  * or the pager doesn't have the page.
1040                  */
1041                 if (fs.object == fs.first_object)
1042                         fs.first_m = fs.m;
1043
1044                 /*
1045                  * Move on to the next object.  Lock the next object before
1046                  * unlocking the current one.
1047                  */
1048                 next_object = fs.object->backing_object;
1049                 if (next_object == NULL) {
1050                         /*
1051                          * If there's no object left, fill the page in the top
1052                          * object with zeros.
1053                          */
1054                         if (fs.object != fs.first_object) {
1055                                 vm_object_pip_wakeup(fs.object);
1056                                 VM_OBJECT_WUNLOCK(fs.object);
1057
1058                                 fs.object = fs.first_object;
1059                                 fs.pindex = fs.first_pindex;
1060                                 fs.m = fs.first_m;
1061                                 VM_OBJECT_WLOCK(fs.object);
1062                         }
1063                         fs.first_m = NULL;
1064
1065                         /*
1066                          * Zero the page if necessary and mark it valid.
1067                          */
1068                         if ((fs.m->flags & PG_ZERO) == 0) {
1069                                 pmap_zero_page(fs.m);
1070                         } else {
1071                                 VM_CNT_INC(v_ozfod);
1072                         }
1073                         VM_CNT_INC(v_zfod);
1074                         fs.m->valid = VM_PAGE_BITS_ALL;
1075                         /* Don't try to prefault neighboring pages. */
1076                         faultcount = 1;
1077                         break;  /* break to PAGE HAS BEEN FOUND */
1078                 } else {
1079                         KASSERT(fs.object != next_object,
1080                             ("object loop %p", next_object));
1081                         VM_OBJECT_WLOCK(next_object);
1082                         vm_object_pip_add(next_object, 1);
1083                         if (fs.object != fs.first_object)
1084                                 vm_object_pip_wakeup(fs.object);
1085                         fs.pindex +=
1086                             OFF_TO_IDX(fs.object->backing_object_offset);
1087                         VM_OBJECT_WUNLOCK(fs.object);
1088                         fs.object = next_object;
1089                 }
1090         }
1091
1092         vm_page_assert_xbusied(fs.m);
1093
1094         /*
1095          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1096          * is held.]
1097          */
1098
1099         /*
1100          * If the page is being written, but isn't already owned by the
1101          * top-level object, we have to copy it into a new page owned by the
1102          * top-level object.
1103          */
1104         if (fs.object != fs.first_object) {
1105                 /*
1106                  * We only really need to copy if we want to write it.
1107                  */
1108                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1109                         /*
1110                          * This allows pages to be virtually copied from a 
1111                          * backing_object into the first_object, where the 
1112                          * backing object has no other refs to it, and cannot
1113                          * gain any more refs.  Instead of a bcopy, we just 
1114                          * move the page from the backing object to the 
1115                          * first object.  Note that we must mark the page 
1116                          * dirty in the first object so that it will go out 
1117                          * to swap when needed.
1118                          */
1119                         is_first_object_locked = false;
1120                         if (
1121                                 /*
1122                                  * Only one shadow object
1123                                  */
1124                                 (fs.object->shadow_count == 1) &&
1125                                 /*
1126                                  * No COW refs, except us
1127                                  */
1128                                 (fs.object->ref_count == 1) &&
1129                                 /*
1130                                  * No one else can look this object up
1131                                  */
1132                                 (fs.object->handle == NULL) &&
1133                                 /*
1134                                  * No other ways to look the object up
1135                                  */
1136                                 ((fs.object->type == OBJT_DEFAULT) ||
1137                                  (fs.object->type == OBJT_SWAP)) &&
1138                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1139                                 /*
1140                                  * We don't chase down the shadow chain
1141                                  */
1142                             fs.object == fs.first_object->backing_object) {
1143                                 vm_page_lock(fs.m);
1144                                 vm_page_dequeue(fs.m);
1145                                 vm_page_remove(fs.m);
1146                                 vm_page_unlock(fs.m);
1147                                 vm_page_lock(fs.first_m);
1148                                 vm_page_replace_checked(fs.m, fs.first_object,
1149                                     fs.first_pindex, fs.first_m);
1150                                 vm_page_free(fs.first_m);
1151                                 vm_page_unlock(fs.first_m);
1152                                 vm_page_dirty(fs.m);
1153 #if VM_NRESERVLEVEL > 0
1154                                 /*
1155                                  * Rename the reservation.
1156                                  */
1157                                 vm_reserv_rename(fs.m, fs.first_object,
1158                                     fs.object, OFF_TO_IDX(
1159                                     fs.first_object->backing_object_offset));
1160 #endif
1161                                 /*
1162                                  * Removing the page from the backing object
1163                                  * unbusied it.
1164                                  */
1165                                 vm_page_xbusy(fs.m);
1166                                 fs.first_m = fs.m;
1167                                 fs.m = NULL;
1168                                 VM_CNT_INC(v_cow_optim);
1169                         } else {
1170                                 /*
1171                                  * Oh, well, lets copy it.
1172                                  */
1173                                 pmap_copy_page(fs.m, fs.first_m);
1174                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1175                                 if (wired && (fault_flags &
1176                                     VM_FAULT_WIRE) == 0) {
1177                                         vm_page_lock(fs.first_m);
1178                                         vm_page_wire(fs.first_m);
1179                                         vm_page_unlock(fs.first_m);
1180                                         
1181                                         vm_page_lock(fs.m);
1182                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1183                                         vm_page_unlock(fs.m);
1184                                 }
1185                                 /*
1186                                  * We no longer need the old page or object.
1187                                  */
1188                                 release_page(&fs);
1189                         }
1190                         /*
1191                          * fs.object != fs.first_object due to above 
1192                          * conditional
1193                          */
1194                         vm_object_pip_wakeup(fs.object);
1195                         VM_OBJECT_WUNLOCK(fs.object);
1196                         /*
1197                          * Only use the new page below...
1198                          */
1199                         fs.object = fs.first_object;
1200                         fs.pindex = fs.first_pindex;
1201                         fs.m = fs.first_m;
1202                         if (!is_first_object_locked)
1203                                 VM_OBJECT_WLOCK(fs.object);
1204                         VM_CNT_INC(v_cow_faults);
1205                         curthread->td_cow++;
1206                 } else {
1207                         prot &= ~VM_PROT_WRITE;
1208                 }
1209         }
1210
1211         /*
1212          * We must verify that the maps have not changed since our last
1213          * lookup.
1214          */
1215         if (!fs.lookup_still_valid) {
1216                 if (!vm_map_trylock_read(fs.map)) {
1217                         release_page(&fs);
1218                         unlock_and_deallocate(&fs);
1219                         goto RetryFault;
1220                 }
1221                 fs.lookup_still_valid = true;
1222                 if (fs.map->timestamp != fs.map_generation) {
1223                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1224                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1225
1226                         /*
1227                          * If we don't need the page any longer, put it on the inactive
1228                          * list (the easiest thing to do here).  If no one needs it,
1229                          * pageout will grab it eventually.
1230                          */
1231                         if (result != KERN_SUCCESS) {
1232                                 release_page(&fs);
1233                                 unlock_and_deallocate(&fs);
1234
1235                                 /*
1236                                  * If retry of map lookup would have blocked then
1237                                  * retry fault from start.
1238                                  */
1239                                 if (result == KERN_FAILURE)
1240                                         goto RetryFault;
1241                                 return (result);
1242                         }
1243                         if ((retry_object != fs.first_object) ||
1244                             (retry_pindex != fs.first_pindex)) {
1245                                 release_page(&fs);
1246                                 unlock_and_deallocate(&fs);
1247                                 goto RetryFault;
1248                         }
1249
1250                         /*
1251                          * Check whether the protection has changed or the object has
1252                          * been copied while we left the map unlocked. Changing from
1253                          * read to write permission is OK - we leave the page
1254                          * write-protected, and catch the write fault. Changing from
1255                          * write to read permission means that we can't mark the page
1256                          * write-enabled after all.
1257                          */
1258                         prot &= retry_prot;
1259                         fault_type &= retry_prot;
1260                         if (prot == 0) {
1261                                 release_page(&fs);
1262                                 unlock_and_deallocate(&fs);
1263                                 goto RetryFault;
1264                         }
1265
1266                         /* Reassert because wired may have changed. */
1267                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1268                             ("!wired && VM_FAULT_WIRE"));
1269                 }
1270         }
1271
1272         /*
1273          * If the page was filled by a pager, save the virtual address that
1274          * should be faulted on next under a sequential access pattern to the
1275          * map entry.  A read lock on the map suffices to update this address
1276          * safely.
1277          */
1278         if (hardfault)
1279                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1280
1281         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1282         vm_page_assert_xbusied(fs.m);
1283
1284         /*
1285          * Page must be completely valid or it is not fit to
1286          * map into user space.  vm_pager_get_pages() ensures this.
1287          */
1288         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1289             ("vm_fault: page %p partially invalid", fs.m));
1290         VM_OBJECT_WUNLOCK(fs.object);
1291
1292         /*
1293          * Put this page into the physical map.  We had to do the unlock above
1294          * because pmap_enter() may sleep.  We don't put the page
1295          * back on the active queue until later so that the pageout daemon
1296          * won't find it (yet).
1297          */
1298         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1299             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1300         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1301             wired == 0)
1302                 vm_fault_prefault(&fs, vaddr,
1303                     faultcount > 0 ? behind : PFBAK,
1304                     faultcount > 0 ? ahead : PFFOR, false);
1305         VM_OBJECT_WLOCK(fs.object);
1306         vm_page_lock(fs.m);
1307
1308         /*
1309          * If the page is not wired down, then put it where the pageout daemon
1310          * can find it.
1311          */
1312         if ((fault_flags & VM_FAULT_WIRE) != 0)
1313                 vm_page_wire(fs.m);
1314         else
1315                 vm_page_activate(fs.m);
1316         if (m_hold != NULL) {
1317                 *m_hold = fs.m;
1318                 vm_page_hold(fs.m);
1319         }
1320         vm_page_unlock(fs.m);
1321         vm_page_xunbusy(fs.m);
1322
1323         /*
1324          * Unlock everything, and return
1325          */
1326         unlock_and_deallocate(&fs);
1327         if (hardfault) {
1328                 VM_CNT_INC(v_io_faults);
1329                 curthread->td_ru.ru_majflt++;
1330 #ifdef RACCT
1331                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1332                         PROC_LOCK(curproc);
1333                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1334                                 racct_add_force(curproc, RACCT_WRITEBPS,
1335                                     PAGE_SIZE + behind * PAGE_SIZE);
1336                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1337                         } else {
1338                                 racct_add_force(curproc, RACCT_READBPS,
1339                                     PAGE_SIZE + ahead * PAGE_SIZE);
1340                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1341                         }
1342                         PROC_UNLOCK(curproc);
1343                 }
1344 #endif
1345         } else 
1346                 curthread->td_ru.ru_minflt++;
1347
1348         return (KERN_SUCCESS);
1349 }
1350
1351 /*
1352  * Speed up the reclamation of pages that precede the faulting pindex within
1353  * the first object of the shadow chain.  Essentially, perform the equivalent
1354  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1355  * the faulting pindex by the cluster size when the pages read by vm_fault()
1356  * cross a cluster-size boundary.  The cluster size is the greater of the
1357  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1358  *
1359  * When "fs->first_object" is a shadow object, the pages in the backing object
1360  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1361  * function must only be concerned with pages in the first object.
1362  */
1363 static void
1364 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1365 {
1366         vm_map_entry_t entry;
1367         vm_object_t first_object, object;
1368         vm_offset_t end, start;
1369         vm_page_t m, m_next;
1370         vm_pindex_t pend, pstart;
1371         vm_size_t size;
1372
1373         object = fs->object;
1374         VM_OBJECT_ASSERT_WLOCKED(object);
1375         first_object = fs->first_object;
1376         if (first_object != object) {
1377                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1378                         VM_OBJECT_WUNLOCK(object);
1379                         VM_OBJECT_WLOCK(first_object);
1380                         VM_OBJECT_WLOCK(object);
1381                 }
1382         }
1383         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1384         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1385                 size = VM_FAULT_DONTNEED_MIN;
1386                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1387                         size = pagesizes[1];
1388                 end = rounddown2(vaddr, size);
1389                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1390                     (entry = fs->entry)->start < end) {
1391                         if (end - entry->start < size)
1392                                 start = entry->start;
1393                         else
1394                                 start = end - size;
1395                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1396                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1397                             entry->start);
1398                         m_next = vm_page_find_least(first_object, pstart);
1399                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1400                             entry->start);
1401                         while ((m = m_next) != NULL && m->pindex < pend) {
1402                                 m_next = TAILQ_NEXT(m, listq);
1403                                 if (m->valid != VM_PAGE_BITS_ALL ||
1404                                     vm_page_busied(m))
1405                                         continue;
1406
1407                                 /*
1408                                  * Don't clear PGA_REFERENCED, since it would
1409                                  * likely represent a reference by a different
1410                                  * process.
1411                                  *
1412                                  * Typically, at this point, prefetched pages
1413                                  * are still in the inactive queue.  Only
1414                                  * pages that triggered page faults are in the
1415                                  * active queue.
1416                                  */
1417                                 vm_page_lock(m);
1418                                 if (!vm_page_inactive(m))
1419                                         vm_page_deactivate(m);
1420                                 vm_page_unlock(m);
1421                         }
1422                 }
1423         }
1424         if (first_object != object)
1425                 VM_OBJECT_WUNLOCK(first_object);
1426 }
1427
1428 /*
1429  * vm_fault_prefault provides a quick way of clustering
1430  * pagefaults into a processes address space.  It is a "cousin"
1431  * of vm_map_pmap_enter, except it runs at page fault time instead
1432  * of mmap time.
1433  */
1434 static void
1435 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1436     int backward, int forward, bool obj_locked)
1437 {
1438         pmap_t pmap;
1439         vm_map_entry_t entry;
1440         vm_object_t backing_object, lobject;
1441         vm_offset_t addr, starta;
1442         vm_pindex_t pindex;
1443         vm_page_t m;
1444         int i;
1445
1446         pmap = fs->map->pmap;
1447         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1448                 return;
1449
1450         entry = fs->entry;
1451
1452         if (addra < backward * PAGE_SIZE) {
1453                 starta = entry->start;
1454         } else {
1455                 starta = addra - backward * PAGE_SIZE;
1456                 if (starta < entry->start)
1457                         starta = entry->start;
1458         }
1459
1460         /*
1461          * Generate the sequence of virtual addresses that are candidates for
1462          * prefaulting in an outward spiral from the faulting virtual address,
1463          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1464          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1465          * If the candidate address doesn't have a backing physical page, then
1466          * the loop immediately terminates.
1467          */
1468         for (i = 0; i < 2 * imax(backward, forward); i++) {
1469                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1470                     PAGE_SIZE);
1471                 if (addr > addra + forward * PAGE_SIZE)
1472                         addr = 0;
1473
1474                 if (addr < starta || addr >= entry->end)
1475                         continue;
1476
1477                 if (!pmap_is_prefaultable(pmap, addr))
1478                         continue;
1479
1480                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1481                 lobject = entry->object.vm_object;
1482                 if (!obj_locked)
1483                         VM_OBJECT_RLOCK(lobject);
1484                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1485                     lobject->type == OBJT_DEFAULT &&
1486                     (backing_object = lobject->backing_object) != NULL) {
1487                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1488                             0, ("vm_fault_prefault: unaligned object offset"));
1489                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1490                         VM_OBJECT_RLOCK(backing_object);
1491                         if (!obj_locked || lobject != entry->object.vm_object)
1492                                 VM_OBJECT_RUNLOCK(lobject);
1493                         lobject = backing_object;
1494                 }
1495                 if (m == NULL) {
1496                         if (!obj_locked || lobject != entry->object.vm_object)
1497                                 VM_OBJECT_RUNLOCK(lobject);
1498                         break;
1499                 }
1500                 if (m->valid == VM_PAGE_BITS_ALL &&
1501                     (m->flags & PG_FICTITIOUS) == 0)
1502                         pmap_enter_quick(pmap, addr, m, entry->protection);
1503                 if (!obj_locked || lobject != entry->object.vm_object)
1504                         VM_OBJECT_RUNLOCK(lobject);
1505         }
1506 }
1507
1508 /*
1509  * Hold each of the physical pages that are mapped by the specified range of
1510  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1511  * and allow the specified types of access, "prot".  If all of the implied
1512  * pages are successfully held, then the number of held pages is returned
1513  * together with pointers to those pages in the array "ma".  However, if any
1514  * of the pages cannot be held, -1 is returned.
1515  */
1516 int
1517 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1518     vm_prot_t prot, vm_page_t *ma, int max_count)
1519 {
1520         vm_offset_t end, va;
1521         vm_page_t *mp;
1522         int count;
1523         boolean_t pmap_failed;
1524
1525         if (len == 0)
1526                 return (0);
1527         end = round_page(addr + len);
1528         addr = trunc_page(addr);
1529
1530         /*
1531          * Check for illegal addresses.
1532          */
1533         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1534                 return (-1);
1535
1536         if (atop(end - addr) > max_count)
1537                 panic("vm_fault_quick_hold_pages: count > max_count");
1538         count = atop(end - addr);
1539
1540         /*
1541          * Most likely, the physical pages are resident in the pmap, so it is
1542          * faster to try pmap_extract_and_hold() first.
1543          */
1544         pmap_failed = FALSE;
1545         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1546                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1547                 if (*mp == NULL)
1548                         pmap_failed = TRUE;
1549                 else if ((prot & VM_PROT_WRITE) != 0 &&
1550                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1551                         /*
1552                          * Explicitly dirty the physical page.  Otherwise, the
1553                          * caller's changes may go unnoticed because they are
1554                          * performed through an unmanaged mapping or by a DMA
1555                          * operation.
1556                          *
1557                          * The object lock is not held here.
1558                          * See vm_page_clear_dirty_mask().
1559                          */
1560                         vm_page_dirty(*mp);
1561                 }
1562         }
1563         if (pmap_failed) {
1564                 /*
1565                  * One or more pages could not be held by the pmap.  Either no
1566                  * page was mapped at the specified virtual address or that
1567                  * mapping had insufficient permissions.  Attempt to fault in
1568                  * and hold these pages.
1569                  *
1570                  * If vm_fault_disable_pagefaults() was called,
1571                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1572                  * acquire MD VM locks, which means we must not call
1573                  * vm_fault_hold().  Some (out of tree) callers mark
1574                  * too wide a code area with vm_fault_disable_pagefaults()
1575                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1576                  * the proper behaviour explicitly.
1577                  */
1578                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1579                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1580                         goto error;
1581                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1582                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1583                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1584                                 goto error;
1585         }
1586         return (count);
1587 error:  
1588         for (mp = ma; mp < ma + count; mp++)
1589                 if (*mp != NULL) {
1590                         vm_page_lock(*mp);
1591                         vm_page_unhold(*mp);
1592                         vm_page_unlock(*mp);
1593                 }
1594         return (-1);
1595 }
1596
1597 /*
1598  *      Routine:
1599  *              vm_fault_copy_entry
1600  *      Function:
1601  *              Create new shadow object backing dst_entry with private copy of
1602  *              all underlying pages. When src_entry is equal to dst_entry,
1603  *              function implements COW for wired-down map entry. Otherwise,
1604  *              it forks wired entry into dst_map.
1605  *
1606  *      In/out conditions:
1607  *              The source and destination maps must be locked for write.
1608  *              The source map entry must be wired down (or be a sharing map
1609  *              entry corresponding to a main map entry that is wired down).
1610  */
1611 void
1612 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1613     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1614     vm_ooffset_t *fork_charge)
1615 {
1616         vm_object_t backing_object, dst_object, object, src_object;
1617         vm_pindex_t dst_pindex, pindex, src_pindex;
1618         vm_prot_t access, prot;
1619         vm_offset_t vaddr;
1620         vm_page_t dst_m;
1621         vm_page_t src_m;
1622         boolean_t upgrade;
1623
1624 #ifdef  lint
1625         src_map++;
1626 #endif  /* lint */
1627
1628         upgrade = src_entry == dst_entry;
1629         access = prot = dst_entry->protection;
1630
1631         src_object = src_entry->object.vm_object;
1632         src_pindex = OFF_TO_IDX(src_entry->offset);
1633
1634         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1635                 dst_object = src_object;
1636                 vm_object_reference(dst_object);
1637         } else {
1638                 /*
1639                  * Create the top-level object for the destination entry. (Doesn't
1640                  * actually shadow anything - we copy the pages directly.)
1641                  */
1642                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1643                     atop(dst_entry->end - dst_entry->start));
1644 #if VM_NRESERVLEVEL > 0
1645                 dst_object->flags |= OBJ_COLORED;
1646                 dst_object->pg_color = atop(dst_entry->start);
1647 #endif
1648                 dst_object->domain = src_object->domain;
1649                 dst_object->charge = dst_entry->end - dst_entry->start;
1650         }
1651
1652         VM_OBJECT_WLOCK(dst_object);
1653         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1654             ("vm_fault_copy_entry: vm_object not NULL"));
1655         if (src_object != dst_object) {
1656                 dst_entry->object.vm_object = dst_object;
1657                 dst_entry->offset = 0;
1658         }
1659         if (fork_charge != NULL) {
1660                 KASSERT(dst_entry->cred == NULL,
1661                     ("vm_fault_copy_entry: leaked swp charge"));
1662                 dst_object->cred = curthread->td_ucred;
1663                 crhold(dst_object->cred);
1664                 *fork_charge += dst_object->charge;
1665         } else if ((dst_object->type == OBJT_DEFAULT ||
1666             dst_object->type == OBJT_SWAP) &&
1667             dst_object->cred == NULL) {
1668                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1669                     dst_entry));
1670                 dst_object->cred = dst_entry->cred;
1671                 dst_entry->cred = NULL;
1672         }
1673
1674         /*
1675          * If not an upgrade, then enter the mappings in the pmap as
1676          * read and/or execute accesses.  Otherwise, enter them as
1677          * write accesses.
1678          *
1679          * A writeable large page mapping is only created if all of
1680          * the constituent small page mappings are modified. Marking
1681          * PTEs as modified on inception allows promotion to happen
1682          * without taking potentially large number of soft faults.
1683          */
1684         if (!upgrade)
1685                 access &= ~VM_PROT_WRITE;
1686
1687         /*
1688          * Loop through all of the virtual pages within the entry's
1689          * range, copying each page from the source object to the
1690          * destination object.  Since the source is wired, those pages
1691          * must exist.  In contrast, the destination is pageable.
1692          * Since the destination object doesn't share any backing storage
1693          * with the source object, all of its pages must be dirtied,
1694          * regardless of whether they can be written.
1695          */
1696         for (vaddr = dst_entry->start, dst_pindex = 0;
1697             vaddr < dst_entry->end;
1698             vaddr += PAGE_SIZE, dst_pindex++) {
1699 again:
1700                 /*
1701                  * Find the page in the source object, and copy it in.
1702                  * Because the source is wired down, the page will be
1703                  * in memory.
1704                  */
1705                 if (src_object != dst_object)
1706                         VM_OBJECT_RLOCK(src_object);
1707                 object = src_object;
1708                 pindex = src_pindex + dst_pindex;
1709                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1710                     (backing_object = object->backing_object) != NULL) {
1711                         /*
1712                          * Unless the source mapping is read-only or
1713                          * it is presently being upgraded from
1714                          * read-only, the first object in the shadow
1715                          * chain should provide all of the pages.  In
1716                          * other words, this loop body should never be
1717                          * executed when the source mapping is already
1718                          * read/write.
1719                          */
1720                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1721                             upgrade,
1722                             ("vm_fault_copy_entry: main object missing page"));
1723
1724                         VM_OBJECT_RLOCK(backing_object);
1725                         pindex += OFF_TO_IDX(object->backing_object_offset);
1726                         if (object != dst_object)
1727                                 VM_OBJECT_RUNLOCK(object);
1728                         object = backing_object;
1729                 }
1730                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1731
1732                 if (object != dst_object) {
1733                         /*
1734                          * Allocate a page in the destination object.
1735                          */
1736                         dst_m = vm_page_alloc(dst_object, (src_object ==
1737                             dst_object ? src_pindex : 0) + dst_pindex,
1738                             VM_ALLOC_NORMAL);
1739                         if (dst_m == NULL) {
1740                                 VM_OBJECT_WUNLOCK(dst_object);
1741                                 VM_OBJECT_RUNLOCK(object);
1742                                 vm_wait(dst_object);
1743                                 VM_OBJECT_WLOCK(dst_object);
1744                                 goto again;
1745                         }
1746                         pmap_copy_page(src_m, dst_m);
1747                         VM_OBJECT_RUNLOCK(object);
1748                         dst_m->valid = VM_PAGE_BITS_ALL;
1749                         dst_m->dirty = VM_PAGE_BITS_ALL;
1750                 } else {
1751                         dst_m = src_m;
1752                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1753                                 goto again;
1754                         if (dst_m->pindex >= dst_object->size)
1755                                 /*
1756                                  * We are upgrading.  Index can occur
1757                                  * out of bounds if the object type is
1758                                  * vnode and the file was truncated.
1759                                  */
1760                                 break;
1761                         vm_page_xbusy(dst_m);
1762                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1763                             ("invalid dst page %p", dst_m));
1764                 }
1765                 VM_OBJECT_WUNLOCK(dst_object);
1766
1767                 /*
1768                  * Enter it in the pmap. If a wired, copy-on-write
1769                  * mapping is being replaced by a write-enabled
1770                  * mapping, then wire that new mapping.
1771                  */
1772                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1773                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1774
1775                 /*
1776                  * Mark it no longer busy, and put it on the active list.
1777                  */
1778                 VM_OBJECT_WLOCK(dst_object);
1779                 
1780                 if (upgrade) {
1781                         if (src_m != dst_m) {
1782                                 vm_page_lock(src_m);
1783                                 vm_page_unwire(src_m, PQ_INACTIVE);
1784                                 vm_page_unlock(src_m);
1785                                 vm_page_lock(dst_m);
1786                                 vm_page_wire(dst_m);
1787                                 vm_page_unlock(dst_m);
1788                         } else {
1789                                 KASSERT(dst_m->wire_count > 0,
1790                                     ("dst_m %p is not wired", dst_m));
1791                         }
1792                 } else {
1793                         vm_page_lock(dst_m);
1794                         vm_page_activate(dst_m);
1795                         vm_page_unlock(dst_m);
1796                 }
1797                 vm_page_xunbusy(dst_m);
1798         }
1799         VM_OBJECT_WUNLOCK(dst_object);
1800         if (upgrade) {
1801                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1802                 vm_object_deallocate(src_object);
1803         }
1804 }
1805
1806 /*
1807  * Block entry into the machine-independent layer's page fault handler by
1808  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1809  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1810  * spurious page faults. 
1811  */
1812 int
1813 vm_fault_disable_pagefaults(void)
1814 {
1815
1816         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1817 }
1818
1819 void
1820 vm_fault_enable_pagefaults(int save)
1821 {
1822
1823         curthread_pflags_restore(save);
1824 }