]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
nvme: start qpair in state RECOVERY_WAITING
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118
119 #define VM_FAULT_DONTNEED_MIN   1048576
120
121 struct faultstate {
122         /* Fault parameters. */
123         vm_offset_t     vaddr;
124         vm_page_t       *m_hold;
125         vm_prot_t       fault_type;
126         vm_prot_t       prot;
127         int             fault_flags;
128         int             oom;
129         boolean_t       wired;
130
131         /* Page reference for cow. */
132         vm_page_t m_cow;
133
134         /* Current object. */
135         vm_object_t     object;
136         vm_pindex_t     pindex;
137         vm_page_t       m;
138
139         /* Top-level map object. */
140         vm_object_t     first_object;
141         vm_pindex_t     first_pindex;
142         vm_page_t       first_m;
143
144         /* Map state. */
145         vm_map_t        map;
146         vm_map_entry_t  entry;
147         int             map_generation;
148         bool            lookup_still_valid;
149
150         /* Vnode if locked. */
151         struct vnode    *vp;
152 };
153
154 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
155             int ahead);
156 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
157             int backward, int forward, bool obj_locked);
158
159 static int vm_pfault_oom_attempts = 3;
160 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
161     &vm_pfault_oom_attempts, 0,
162     "Number of page allocation attempts in page fault handler before it "
163     "triggers OOM handling");
164
165 static int vm_pfault_oom_wait = 10;
166 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
167     &vm_pfault_oom_wait, 0,
168     "Number of seconds to wait for free pages before retrying "
169     "the page fault handler");
170
171 static inline void
172 fault_page_release(vm_page_t *mp)
173 {
174         vm_page_t m;
175
176         m = *mp;
177         if (m != NULL) {
178                 /*
179                  * We are likely to loop around again and attempt to busy
180                  * this page.  Deactivating it leaves it available for
181                  * pageout while optimizing fault restarts.
182                  */
183                 vm_page_deactivate(m);
184                 vm_page_xunbusy(m);
185                 *mp = NULL;
186         }
187 }
188
189 static inline void
190 fault_page_free(vm_page_t *mp)
191 {
192         vm_page_t m;
193
194         m = *mp;
195         if (m != NULL) {
196                 VM_OBJECT_ASSERT_WLOCKED(m->object);
197                 if (!vm_page_wired(m))
198                         vm_page_free(m);
199                 else
200                         vm_page_xunbusy(m);
201                 *mp = NULL;
202         }
203 }
204
205 static inline void
206 unlock_map(struct faultstate *fs)
207 {
208
209         if (fs->lookup_still_valid) {
210                 vm_map_lookup_done(fs->map, fs->entry);
211                 fs->lookup_still_valid = false;
212         }
213 }
214
215 static void
216 unlock_vp(struct faultstate *fs)
217 {
218
219         if (fs->vp != NULL) {
220                 vput(fs->vp);
221                 fs->vp = NULL;
222         }
223 }
224
225 static void
226 fault_deallocate(struct faultstate *fs)
227 {
228
229         fault_page_release(&fs->m_cow);
230         fault_page_release(&fs->m);
231         vm_object_pip_wakeup(fs->object);
232         if (fs->object != fs->first_object) {
233                 VM_OBJECT_WLOCK(fs->first_object);
234                 fault_page_free(&fs->first_m);
235                 VM_OBJECT_WUNLOCK(fs->first_object);
236                 vm_object_pip_wakeup(fs->first_object);
237         }
238         vm_object_deallocate(fs->first_object);
239         unlock_map(fs);
240         unlock_vp(fs);
241 }
242
243 static void
244 unlock_and_deallocate(struct faultstate *fs)
245 {
246
247         VM_OBJECT_WUNLOCK(fs->object);
248         fault_deallocate(fs);
249 }
250
251 static void
252 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
253 {
254         bool need_dirty;
255
256         if (((fs->prot & VM_PROT_WRITE) == 0 &&
257             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
258             (m->oflags & VPO_UNMANAGED) != 0)
259                 return;
260
261         VM_PAGE_OBJECT_BUSY_ASSERT(m);
262
263         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
264             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
265             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
266
267         vm_object_set_writeable_dirty(m->object);
268
269         /*
270          * If the fault is a write, we know that this page is being
271          * written NOW so dirty it explicitly to save on
272          * pmap_is_modified() calls later.
273          *
274          * Also, since the page is now dirty, we can possibly tell
275          * the pager to release any swap backing the page.
276          */
277         if (need_dirty && vm_page_set_dirty(m) == 0) {
278                 /*
279                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
280                  * if the page is already dirty to prevent data written with
281                  * the expectation of being synced from not being synced.
282                  * Likewise if this entry does not request NOSYNC then make
283                  * sure the page isn't marked NOSYNC.  Applications sharing
284                  * data should use the same flags to avoid ping ponging.
285                  */
286                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
287                         vm_page_aflag_set(m, PGA_NOSYNC);
288                 else
289                         vm_page_aflag_clear(m, PGA_NOSYNC);
290         }
291
292 }
293
294 /*
295  * Unlocks fs.first_object and fs.map on success.
296  */
297 static int
298 vm_fault_soft_fast(struct faultstate *fs)
299 {
300         vm_page_t m, m_map;
301 #if VM_NRESERVLEVEL > 0
302         vm_page_t m_super;
303         int flags;
304 #endif
305         int psind, rv;
306         vm_offset_t vaddr;
307
308         MPASS(fs->vp == NULL);
309         vaddr = fs->vaddr;
310         vm_object_busy(fs->first_object);
311         m = vm_page_lookup(fs->first_object, fs->first_pindex);
312         /* A busy page can be mapped for read|execute access. */
313         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
314             vm_page_busied(m)) || !vm_page_all_valid(m)) {
315                 rv = KERN_FAILURE;
316                 goto out;
317         }
318         m_map = m;
319         psind = 0;
320 #if VM_NRESERVLEVEL > 0
321         if ((m->flags & PG_FICTITIOUS) == 0 &&
322             (m_super = vm_reserv_to_superpage(m)) != NULL &&
323             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
324             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
325             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
326             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
327             pmap_ps_enabled(fs->map->pmap)) {
328                 flags = PS_ALL_VALID;
329                 if ((fs->prot & VM_PROT_WRITE) != 0) {
330                         /*
331                          * Create a superpage mapping allowing write access
332                          * only if none of the constituent pages are busy and
333                          * all of them are already dirty (except possibly for
334                          * the page that was faulted on).
335                          */
336                         flags |= PS_NONE_BUSY;
337                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
338                                 flags |= PS_ALL_DIRTY;
339                 }
340                 if (vm_page_ps_test(m_super, flags, m)) {
341                         m_map = m_super;
342                         psind = m_super->psind;
343                         vaddr = rounddown2(vaddr, pagesizes[psind]);
344                         /* Preset the modified bit for dirty superpages. */
345                         if ((flags & PS_ALL_DIRTY) != 0)
346                                 fs->fault_type |= VM_PROT_WRITE;
347                 }
348         }
349 #endif
350         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
351             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
352         if (rv != KERN_SUCCESS)
353                 goto out;
354         if (fs->m_hold != NULL) {
355                 (*fs->m_hold) = m;
356                 vm_page_wire(m);
357         }
358         if (psind == 0 && !fs->wired)
359                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
360         VM_OBJECT_RUNLOCK(fs->first_object);
361         vm_fault_dirty(fs, m);
362         vm_map_lookup_done(fs->map, fs->entry);
363         curthread->td_ru.ru_minflt++;
364
365 out:
366         vm_object_unbusy(fs->first_object);
367         return (rv);
368 }
369
370 static void
371 vm_fault_restore_map_lock(struct faultstate *fs)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
375         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
376
377         if (!vm_map_trylock_read(fs->map)) {
378                 VM_OBJECT_WUNLOCK(fs->first_object);
379                 vm_map_lock_read(fs->map);
380                 VM_OBJECT_WLOCK(fs->first_object);
381         }
382         fs->lookup_still_valid = true;
383 }
384
385 static void
386 vm_fault_populate_check_page(vm_page_t m)
387 {
388
389         /*
390          * Check each page to ensure that the pager is obeying the
391          * interface: the page must be installed in the object, fully
392          * valid, and exclusively busied.
393          */
394         MPASS(m != NULL);
395         MPASS(vm_page_all_valid(m));
396         MPASS(vm_page_xbusied(m));
397 }
398
399 static void
400 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
401     vm_pindex_t last)
402 {
403         vm_page_t m;
404         vm_pindex_t pidx;
405
406         VM_OBJECT_ASSERT_WLOCKED(object);
407         MPASS(first <= last);
408         for (pidx = first, m = vm_page_lookup(object, pidx);
409             pidx <= last; pidx++, m = vm_page_next(m)) {
410                 vm_fault_populate_check_page(m);
411                 vm_page_deactivate(m);
412                 vm_page_xunbusy(m);
413         }
414 }
415
416 static int
417 vm_fault_populate(struct faultstate *fs)
418 {
419         vm_offset_t vaddr;
420         vm_page_t m;
421         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
422         int bdry_idx, i, npages, psind, rv;
423
424         MPASS(fs->object == fs->first_object);
425         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
426         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
427         MPASS(fs->first_object->backing_object == NULL);
428         MPASS(fs->lookup_still_valid);
429
430         pager_first = OFF_TO_IDX(fs->entry->offset);
431         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
432         unlock_map(fs);
433         unlock_vp(fs);
434
435         /*
436          * Call the pager (driver) populate() method.
437          *
438          * There is no guarantee that the method will be called again
439          * if the current fault is for read, and a future fault is
440          * for write.  Report the entry's maximum allowed protection
441          * to the driver.
442          */
443         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
444             fs->fault_type, fs->entry->max_protection, &pager_first,
445             &pager_last);
446
447         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
448         if (rv == VM_PAGER_BAD) {
449                 /*
450                  * VM_PAGER_BAD is the backdoor for a pager to request
451                  * normal fault handling.
452                  */
453                 vm_fault_restore_map_lock(fs);
454                 if (fs->map->timestamp != fs->map_generation)
455                         return (KERN_RESTART);
456                 return (KERN_NOT_RECEIVER);
457         }
458         if (rv != VM_PAGER_OK)
459                 return (KERN_FAILURE); /* AKA SIGSEGV */
460
461         /* Ensure that the driver is obeying the interface. */
462         MPASS(pager_first <= pager_last);
463         MPASS(fs->first_pindex <= pager_last);
464         MPASS(fs->first_pindex >= pager_first);
465         MPASS(pager_last < fs->first_object->size);
466
467         vm_fault_restore_map_lock(fs);
468         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
469             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
470         if (fs->map->timestamp != fs->map_generation) {
471                 if (bdry_idx == 0) {
472                         vm_fault_populate_cleanup(fs->first_object, pager_first,
473                             pager_last);
474                 } else {
475                         m = vm_page_lookup(fs->first_object, pager_first);
476                         if (m != fs->m)
477                                 vm_page_xunbusy(m);
478                 }
479                 return (KERN_RESTART);
480         }
481
482         /*
483          * The map is unchanged after our last unlock.  Process the fault.
484          *
485          * First, the special case of largepage mappings, where
486          * populate only busies the first page in superpage run.
487          */
488         if (bdry_idx != 0) {
489                 KASSERT(PMAP_HAS_LARGEPAGES,
490                     ("missing pmap support for large pages"));
491                 m = vm_page_lookup(fs->first_object, pager_first);
492                 vm_fault_populate_check_page(m);
493                 VM_OBJECT_WUNLOCK(fs->first_object);
494                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
495                     fs->entry->offset;
496                 /* assert alignment for entry */
497                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
498     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
499                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
500                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
501                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
502                     ("unaligned superpage m %p %#jx", m,
503                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
504                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
505                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
506                     PMAP_ENTER_LARGEPAGE, bdry_idx);
507                 VM_OBJECT_WLOCK(fs->first_object);
508                 vm_page_xunbusy(m);
509                 if (rv != KERN_SUCCESS)
510                         goto out;
511                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
512                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
513                                 vm_page_wire(m + i);
514                 }
515                 if (fs->m_hold != NULL) {
516                         *fs->m_hold = m + (fs->first_pindex - pager_first);
517                         vm_page_wire(*fs->m_hold);
518                 }
519                 goto out;
520         }
521
522         /*
523          * The range [pager_first, pager_last] that is given to the
524          * pager is only a hint.  The pager may populate any range
525          * within the object that includes the requested page index.
526          * In case the pager expanded the range, clip it to fit into
527          * the map entry.
528          */
529         map_first = OFF_TO_IDX(fs->entry->offset);
530         if (map_first > pager_first) {
531                 vm_fault_populate_cleanup(fs->first_object, pager_first,
532                     map_first - 1);
533                 pager_first = map_first;
534         }
535         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
536         if (map_last < pager_last) {
537                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
538                     pager_last);
539                 pager_last = map_last;
540         }
541         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
542             pidx <= pager_last;
543             pidx += npages, m = vm_page_next(&m[npages - 1])) {
544                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
545
546                 psind = m->psind;
547                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
548                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
549                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
550                         psind = 0;
551
552                 npages = atop(pagesizes[psind]);
553                 for (i = 0; i < npages; i++) {
554                         vm_fault_populate_check_page(&m[i]);
555                         vm_fault_dirty(fs, &m[i]);
556                 }
557                 VM_OBJECT_WUNLOCK(fs->first_object);
558                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
559                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
560
561                 /*
562                  * pmap_enter() may fail for a superpage mapping if additional
563                  * protection policies prevent the full mapping.
564                  * For example, this will happen on amd64 if the entire
565                  * address range does not share the same userspace protection
566                  * key.  Revert to single-page mappings if this happens.
567                  */
568                 MPASS(rv == KERN_SUCCESS ||
569                     (psind > 0 && rv == KERN_PROTECTION_FAILURE));
570                 if (__predict_false(psind > 0 &&
571                     rv == KERN_PROTECTION_FAILURE)) {
572                         for (i = 0; i < npages; i++) {
573                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
574                                     &m[i], fs->prot, fs->fault_type |
575                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
576                                 MPASS(rv == KERN_SUCCESS);
577                         }
578                 }
579
580                 VM_OBJECT_WLOCK(fs->first_object);
581                 for (i = 0; i < npages; i++) {
582                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
583                                 vm_page_wire(&m[i]);
584                         else
585                                 vm_page_activate(&m[i]);
586                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
587                                 (*fs->m_hold) = &m[i];
588                                 vm_page_wire(&m[i]);
589                         }
590                         vm_page_xunbusy(&m[i]);
591                 }
592         }
593 out:
594         curthread->td_ru.ru_majflt++;
595         return (rv);
596 }
597
598 static int prot_fault_translation;
599 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
600     &prot_fault_translation, 0,
601     "Control signal to deliver on protection fault");
602
603 /* compat definition to keep common code for signal translation */
604 #define UCODE_PAGEFLT   12
605 #ifdef T_PAGEFLT
606 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
607 #endif
608
609 /*
610  *      vm_fault_trap:
611  *
612  *      Handle a page fault occurring at the given address,
613  *      requiring the given permissions, in the map specified.
614  *      If successful, the page is inserted into the
615  *      associated physical map.
616  *
617  *      NOTE: the given address should be truncated to the
618  *      proper page address.
619  *
620  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
621  *      a standard error specifying why the fault is fatal is returned.
622  *
623  *      The map in question must be referenced, and remains so.
624  *      Caller may hold no locks.
625  */
626 int
627 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
628     int fault_flags, int *signo, int *ucode)
629 {
630         int result;
631
632         MPASS(signo == NULL || ucode != NULL);
633 #ifdef KTRACE
634         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
635                 ktrfault(vaddr, fault_type);
636 #endif
637         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
638             NULL);
639         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
640             result == KERN_INVALID_ADDRESS ||
641             result == KERN_RESOURCE_SHORTAGE ||
642             result == KERN_PROTECTION_FAILURE ||
643             result == KERN_OUT_OF_BOUNDS,
644             ("Unexpected Mach error %d from vm_fault()", result));
645 #ifdef KTRACE
646         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
647                 ktrfaultend(result);
648 #endif
649         if (result != KERN_SUCCESS && signo != NULL) {
650                 switch (result) {
651                 case KERN_FAILURE:
652                 case KERN_INVALID_ADDRESS:
653                         *signo = SIGSEGV;
654                         *ucode = SEGV_MAPERR;
655                         break;
656                 case KERN_RESOURCE_SHORTAGE:
657                         *signo = SIGBUS;
658                         *ucode = BUS_OOMERR;
659                         break;
660                 case KERN_OUT_OF_BOUNDS:
661                         *signo = SIGBUS;
662                         *ucode = BUS_OBJERR;
663                         break;
664                 case KERN_PROTECTION_FAILURE:
665                         if (prot_fault_translation == 0) {
666                                 /*
667                                  * Autodetect.  This check also covers
668                                  * the images without the ABI-tag ELF
669                                  * note.
670                                  */
671                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
672                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
673                                         *signo = SIGSEGV;
674                                         *ucode = SEGV_ACCERR;
675                                 } else {
676                                         *signo = SIGBUS;
677                                         *ucode = UCODE_PAGEFLT;
678                                 }
679                         } else if (prot_fault_translation == 1) {
680                                 /* Always compat mode. */
681                                 *signo = SIGBUS;
682                                 *ucode = UCODE_PAGEFLT;
683                         } else {
684                                 /* Always SIGSEGV mode. */
685                                 *signo = SIGSEGV;
686                                 *ucode = SEGV_ACCERR;
687                         }
688                         break;
689                 default:
690                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
691                             result));
692                         break;
693                 }
694         }
695         return (result);
696 }
697
698 static int
699 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
700 {
701         struct vnode *vp;
702         int error, locked;
703
704         if (fs->object->type != OBJT_VNODE)
705                 return (KERN_SUCCESS);
706         vp = fs->object->handle;
707         if (vp == fs->vp) {
708                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
709                 return (KERN_SUCCESS);
710         }
711
712         /*
713          * Perform an unlock in case the desired vnode changed while
714          * the map was unlocked during a retry.
715          */
716         unlock_vp(fs);
717
718         locked = VOP_ISLOCKED(vp);
719         if (locked != LK_EXCLUSIVE)
720                 locked = LK_SHARED;
721
722         /*
723          * We must not sleep acquiring the vnode lock while we have
724          * the page exclusive busied or the object's
725          * paging-in-progress count incremented.  Otherwise, we could
726          * deadlock.
727          */
728         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
729         if (error == 0) {
730                 fs->vp = vp;
731                 return (KERN_SUCCESS);
732         }
733
734         vhold(vp);
735         if (objlocked)
736                 unlock_and_deallocate(fs);
737         else
738                 fault_deallocate(fs);
739         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
740         vdrop(vp);
741         fs->vp = vp;
742         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
743         return (KERN_RESOURCE_SHORTAGE);
744 }
745
746 /*
747  * Calculate the desired readahead.  Handle drop-behind.
748  *
749  * Returns the number of readahead blocks to pass to the pager.
750  */
751 static int
752 vm_fault_readahead(struct faultstate *fs)
753 {
754         int era, nera;
755         u_char behavior;
756
757         KASSERT(fs->lookup_still_valid, ("map unlocked"));
758         era = fs->entry->read_ahead;
759         behavior = vm_map_entry_behavior(fs->entry);
760         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
761                 nera = 0;
762         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
763                 nera = VM_FAULT_READ_AHEAD_MAX;
764                 if (fs->vaddr == fs->entry->next_read)
765                         vm_fault_dontneed(fs, fs->vaddr, nera);
766         } else if (fs->vaddr == fs->entry->next_read) {
767                 /*
768                  * This is a sequential fault.  Arithmetically
769                  * increase the requested number of pages in
770                  * the read-ahead window.  The requested
771                  * number of pages is "# of sequential faults
772                  * x (read ahead min + 1) + read ahead min"
773                  */
774                 nera = VM_FAULT_READ_AHEAD_MIN;
775                 if (era > 0) {
776                         nera += era + 1;
777                         if (nera > VM_FAULT_READ_AHEAD_MAX)
778                                 nera = VM_FAULT_READ_AHEAD_MAX;
779                 }
780                 if (era == VM_FAULT_READ_AHEAD_MAX)
781                         vm_fault_dontneed(fs, fs->vaddr, nera);
782         } else {
783                 /*
784                  * This is a non-sequential fault.
785                  */
786                 nera = 0;
787         }
788         if (era != nera) {
789                 /*
790                  * A read lock on the map suffices to update
791                  * the read ahead count safely.
792                  */
793                 fs->entry->read_ahead = nera;
794         }
795
796         return (nera);
797 }
798
799 static int
800 vm_fault_lookup(struct faultstate *fs)
801 {
802         int result;
803
804         KASSERT(!fs->lookup_still_valid,
805            ("vm_fault_lookup: Map already locked."));
806         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
807             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
808             &fs->first_pindex, &fs->prot, &fs->wired);
809         if (result != KERN_SUCCESS) {
810                 unlock_vp(fs);
811                 return (result);
812         }
813
814         fs->map_generation = fs->map->timestamp;
815
816         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
817                 panic("%s: fault on nofault entry, addr: %#lx",
818                     __func__, (u_long)fs->vaddr);
819         }
820
821         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
822             fs->entry->wiring_thread != curthread) {
823                 vm_map_unlock_read(fs->map);
824                 vm_map_lock(fs->map);
825                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
826                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
827                         unlock_vp(fs);
828                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
829                         vm_map_unlock_and_wait(fs->map, 0);
830                 } else
831                         vm_map_unlock(fs->map);
832                 return (KERN_RESOURCE_SHORTAGE);
833         }
834
835         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
836
837         if (fs->wired)
838                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
839         else
840                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
841                     ("!fs->wired && VM_FAULT_WIRE"));
842         fs->lookup_still_valid = true;
843
844         return (KERN_SUCCESS);
845 }
846
847 static int
848 vm_fault_relookup(struct faultstate *fs)
849 {
850         vm_object_t retry_object;
851         vm_pindex_t retry_pindex;
852         vm_prot_t retry_prot;
853         int result;
854
855         if (!vm_map_trylock_read(fs->map))
856                 return (KERN_RESTART);
857
858         fs->lookup_still_valid = true;
859         if (fs->map->timestamp == fs->map_generation)
860                 return (KERN_SUCCESS);
861
862         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
863             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
864             &fs->wired);
865         if (result != KERN_SUCCESS) {
866                 /*
867                  * If retry of map lookup would have blocked then
868                  * retry fault from start.
869                  */
870                 if (result == KERN_FAILURE)
871                         return (KERN_RESTART);
872                 return (result);
873         }
874         if (retry_object != fs->first_object ||
875             retry_pindex != fs->first_pindex)
876                 return (KERN_RESTART);
877
878         /*
879          * Check whether the protection has changed or the object has
880          * been copied while we left the map unlocked. Changing from
881          * read to write permission is OK - we leave the page
882          * write-protected, and catch the write fault. Changing from
883          * write to read permission means that we can't mark the page
884          * write-enabled after all.
885          */
886         fs->prot &= retry_prot;
887         fs->fault_type &= retry_prot;
888         if (fs->prot == 0)
889                 return (KERN_RESTART);
890
891         /* Reassert because wired may have changed. */
892         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
893             ("!wired && VM_FAULT_WIRE"));
894
895         return (KERN_SUCCESS);
896 }
897
898 static void
899 vm_fault_cow(struct faultstate *fs)
900 {
901         bool is_first_object_locked;
902
903         KASSERT(fs->object != fs->first_object,
904             ("source and target COW objects are identical"));
905
906         /*
907          * This allows pages to be virtually copied from a backing_object
908          * into the first_object, where the backing object has no other
909          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
910          * we just move the page from the backing object to the first
911          * object.  Note that we must mark the page dirty in the first
912          * object so that it will go out to swap when needed.
913          */
914         is_first_object_locked = false;
915         if (
916             /*
917              * Only one shadow object and no other refs.
918              */
919             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
920             /*
921              * No other ways to look the object up
922              */
923             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
924             /*
925              * We don't chase down the shadow chain and we can acquire locks.
926              */
927             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
928             fs->object == fs->first_object->backing_object &&
929             VM_OBJECT_TRYWLOCK(fs->object)) {
930                 /*
931                  * Remove but keep xbusy for replace.  fs->m is moved into
932                  * fs->first_object and left busy while fs->first_m is
933                  * conditionally freed.
934                  */
935                 vm_page_remove_xbusy(fs->m);
936                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
937                     fs->first_m);
938                 vm_page_dirty(fs->m);
939 #if VM_NRESERVLEVEL > 0
940                 /*
941                  * Rename the reservation.
942                  */
943                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
944                     OFF_TO_IDX(fs->first_object->backing_object_offset));
945 #endif
946                 VM_OBJECT_WUNLOCK(fs->object);
947                 VM_OBJECT_WUNLOCK(fs->first_object);
948                 fs->first_m = fs->m;
949                 fs->m = NULL;
950                 VM_CNT_INC(v_cow_optim);
951         } else {
952                 if (is_first_object_locked)
953                         VM_OBJECT_WUNLOCK(fs->first_object);
954                 /*
955                  * Oh, well, lets copy it.
956                  */
957                 pmap_copy_page(fs->m, fs->first_m);
958                 vm_page_valid(fs->first_m);
959                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
960                         vm_page_wire(fs->first_m);
961                         vm_page_unwire(fs->m, PQ_INACTIVE);
962                 }
963                 /*
964                  * Save the cow page to be released after
965                  * pmap_enter is complete.
966                  */
967                 fs->m_cow = fs->m;
968                 fs->m = NULL;
969
970                 /*
971                  * Typically, the shadow object is either private to this
972                  * address space (OBJ_ONEMAPPING) or its pages are read only.
973                  * In the highly unusual case where the pages of a shadow object
974                  * are read/write shared between this and other address spaces,
975                  * we need to ensure that any pmap-level mappings to the
976                  * original, copy-on-write page from the backing object are
977                  * removed from those other address spaces.
978                  *
979                  * The flag check is racy, but this is tolerable: if
980                  * OBJ_ONEMAPPING is cleared after the check, the busy state
981                  * ensures that new mappings of m_cow can't be created.
982                  * pmap_enter() will replace an existing mapping in the current
983                  * address space.  If OBJ_ONEMAPPING is set after the check,
984                  * removing mappings will at worse trigger some unnecessary page
985                  * faults.
986                  */
987                 vm_page_assert_xbusied(fs->m_cow);
988                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
989                         pmap_remove_all(fs->m_cow);
990         }
991
992         vm_object_pip_wakeup(fs->object);
993
994         /*
995          * Only use the new page below...
996          */
997         fs->object = fs->first_object;
998         fs->pindex = fs->first_pindex;
999         fs->m = fs->first_m;
1000         VM_CNT_INC(v_cow_faults);
1001         curthread->td_cow++;
1002 }
1003
1004 static bool
1005 vm_fault_next(struct faultstate *fs)
1006 {
1007         vm_object_t next_object;
1008
1009         /*
1010          * The requested page does not exist at this object/
1011          * offset.  Remove the invalid page from the object,
1012          * waking up anyone waiting for it, and continue on to
1013          * the next object.  However, if this is the top-level
1014          * object, we must leave the busy page in place to
1015          * prevent another process from rushing past us, and
1016          * inserting the page in that object at the same time
1017          * that we are.
1018          */
1019         if (fs->object == fs->first_object) {
1020                 fs->first_m = fs->m;
1021                 fs->m = NULL;
1022         } else
1023                 fault_page_free(&fs->m);
1024
1025         /*
1026          * Move on to the next object.  Lock the next object before
1027          * unlocking the current one.
1028          */
1029         VM_OBJECT_ASSERT_WLOCKED(fs->object);
1030         next_object = fs->object->backing_object;
1031         if (next_object == NULL)
1032                 return (false);
1033         MPASS(fs->first_m != NULL);
1034         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1035         VM_OBJECT_WLOCK(next_object);
1036         vm_object_pip_add(next_object, 1);
1037         if (fs->object != fs->first_object)
1038                 vm_object_pip_wakeup(fs->object);
1039         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1040         VM_OBJECT_WUNLOCK(fs->object);
1041         fs->object = next_object;
1042
1043         return (true);
1044 }
1045
1046 static void
1047 vm_fault_zerofill(struct faultstate *fs)
1048 {
1049
1050         /*
1051          * If there's no object left, fill the page in the top
1052          * object with zeros.
1053          */
1054         if (fs->object != fs->first_object) {
1055                 vm_object_pip_wakeup(fs->object);
1056                 fs->object = fs->first_object;
1057                 fs->pindex = fs->first_pindex;
1058         }
1059         MPASS(fs->first_m != NULL);
1060         MPASS(fs->m == NULL);
1061         fs->m = fs->first_m;
1062         fs->first_m = NULL;
1063
1064         /*
1065          * Zero the page if necessary and mark it valid.
1066          */
1067         if ((fs->m->flags & PG_ZERO) == 0) {
1068                 pmap_zero_page(fs->m);
1069         } else {
1070                 VM_CNT_INC(v_ozfod);
1071         }
1072         VM_CNT_INC(v_zfod);
1073         vm_page_valid(fs->m);
1074 }
1075
1076 /*
1077  * Allocate a page directly or via the object populate method.
1078  */
1079 static int
1080 vm_fault_allocate(struct faultstate *fs)
1081 {
1082         struct domainset *dset;
1083         int alloc_req;
1084         int rv;
1085
1086         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1087                 rv = vm_fault_lock_vnode(fs, true);
1088                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1089                 if (rv == KERN_RESOURCE_SHORTAGE)
1090                         return (rv);
1091         }
1092
1093         if (fs->pindex >= fs->object->size)
1094                 return (KERN_OUT_OF_BOUNDS);
1095
1096         if (fs->object == fs->first_object &&
1097             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1098             fs->first_object->shadow_count == 0) {
1099                 rv = vm_fault_populate(fs);
1100                 switch (rv) {
1101                 case KERN_SUCCESS:
1102                 case KERN_FAILURE:
1103                 case KERN_PROTECTION_FAILURE:
1104                 case KERN_RESTART:
1105                         return (rv);
1106                 case KERN_NOT_RECEIVER:
1107                         /*
1108                          * Pager's populate() method
1109                          * returned VM_PAGER_BAD.
1110                          */
1111                         break;
1112                 default:
1113                         panic("inconsistent return codes");
1114                 }
1115         }
1116
1117         /*
1118          * Allocate a new page for this object/offset pair.
1119          *
1120          * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1121          * might be not observed there, and allocation can fail, causing
1122          * restart and new reading of the p_flag.
1123          */
1124         dset = fs->object->domain.dr_policy;
1125         if (dset == NULL)
1126                 dset = curthread->td_domain.dr_policy;
1127         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1128 #if VM_NRESERVLEVEL > 0
1129                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1130 #endif
1131                 alloc_req = P_KILLED(curproc) ?
1132                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1133                 if (fs->object->type != OBJT_VNODE &&
1134                     fs->object->backing_object == NULL)
1135                         alloc_req |= VM_ALLOC_ZERO;
1136                 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1137         }
1138         if (fs->m == NULL) {
1139                 unlock_and_deallocate(fs);
1140                 if (vm_pfault_oom_attempts < 0 ||
1141                     fs->oom < vm_pfault_oom_attempts) {
1142                         fs->oom++;
1143                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1144                 } else  {
1145                         if (bootverbose)
1146                                 printf(
1147                 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1148                                     curproc->p_pid, curproc->p_comm);
1149                         vm_pageout_oom(VM_OOM_MEM_PF);
1150                         fs->oom = 0;
1151                 }
1152                 return (KERN_RESOURCE_SHORTAGE);
1153         }
1154         fs->oom = 0;
1155
1156         return (KERN_NOT_RECEIVER);
1157 }
1158
1159 /*
1160  * Call the pager to retrieve the page if there is a chance
1161  * that the pager has it, and potentially retrieve additional
1162  * pages at the same time.
1163  */
1164 static int
1165 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1166 {
1167         vm_offset_t e_end, e_start;
1168         int ahead, behind, cluster_offset, rv;
1169         u_char behavior;
1170
1171         /*
1172          * Prepare for unlocking the map.  Save the map
1173          * entry's start and end addresses, which are used to
1174          * optimize the size of the pager operation below.
1175          * Even if the map entry's addresses change after
1176          * unlocking the map, using the saved addresses is
1177          * safe.
1178          */
1179         e_start = fs->entry->start;
1180         e_end = fs->entry->end;
1181         behavior = vm_map_entry_behavior(fs->entry);
1182
1183         /*
1184          * Release the map lock before locking the vnode or
1185          * sleeping in the pager.  (If the current object has
1186          * a shadow, then an earlier iteration of this loop
1187          * may have already unlocked the map.)
1188          */
1189         unlock_map(fs);
1190
1191         rv = vm_fault_lock_vnode(fs, false);
1192         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1193         if (rv == KERN_RESOURCE_SHORTAGE)
1194                 return (rv);
1195         KASSERT(fs->vp == NULL || !fs->map->system_map,
1196             ("vm_fault: vnode-backed object mapped by system map"));
1197
1198         /*
1199          * Page in the requested page and hint the pager,
1200          * that it may bring up surrounding pages.
1201          */
1202         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1203             P_KILLED(curproc)) {
1204                 behind = 0;
1205                 ahead = 0;
1206         } else {
1207                 /* Is this a sequential fault? */
1208                 if (nera > 0) {
1209                         behind = 0;
1210                         ahead = nera;
1211                 } else {
1212                         /*
1213                          * Request a cluster of pages that is
1214                          * aligned to a VM_FAULT_READ_DEFAULT
1215                          * page offset boundary within the
1216                          * object.  Alignment to a page offset
1217                          * boundary is more likely to coincide
1218                          * with the underlying file system
1219                          * block than alignment to a virtual
1220                          * address boundary.
1221                          */
1222                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1223                         behind = ulmin(cluster_offset,
1224                             atop(fs->vaddr - e_start));
1225                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1226                 }
1227                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1228         }
1229         *behindp = behind;
1230         *aheadp = ahead;
1231         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1232         if (rv == VM_PAGER_OK)
1233                 return (KERN_SUCCESS);
1234         if (rv == VM_PAGER_ERROR)
1235                 printf("vm_fault: pager read error, pid %d (%s)\n",
1236                     curproc->p_pid, curproc->p_comm);
1237         /*
1238          * If an I/O error occurred or the requested page was
1239          * outside the range of the pager, clean up and return
1240          * an error.
1241          */
1242         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1243                 return (KERN_OUT_OF_BOUNDS);
1244         return (KERN_NOT_RECEIVER);
1245 }
1246
1247 /*
1248  * Wait/Retry if the page is busy.  We have to do this if the page is
1249  * either exclusive or shared busy because the vm_pager may be using
1250  * read busy for pageouts (and even pageins if it is the vnode pager),
1251  * and we could end up trying to pagein and pageout the same page
1252  * simultaneously.
1253  *
1254  * We can theoretically allow the busy case on a read fault if the page
1255  * is marked valid, but since such pages are typically already pmap'd,
1256  * putting that special case in might be more effort then it is worth.
1257  * We cannot under any circumstances mess around with a shared busied
1258  * page except, perhaps, to pmap it.
1259  */
1260 static void
1261 vm_fault_busy_sleep(struct faultstate *fs)
1262 {
1263         /*
1264          * Reference the page before unlocking and
1265          * sleeping so that the page daemon is less
1266          * likely to reclaim it.
1267          */
1268         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1269         if (fs->object != fs->first_object) {
1270                 fault_page_release(&fs->first_m);
1271                 vm_object_pip_wakeup(fs->first_object);
1272         }
1273         vm_object_pip_wakeup(fs->object);
1274         unlock_map(fs);
1275         if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1276                 vm_page_busy_sleep(fs->m, "vmpfw", false);
1277         else
1278                 VM_OBJECT_WUNLOCK(fs->object);
1279         VM_CNT_INC(v_intrans);
1280         vm_object_deallocate(fs->first_object);
1281 }
1282
1283 int
1284 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1285     int fault_flags, vm_page_t *m_hold)
1286 {
1287         struct faultstate fs;
1288         int ahead, behind, faultcount;
1289         int nera, result, rv;
1290         bool dead, hardfault;
1291
1292         VM_CNT_INC(v_vm_faults);
1293
1294         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1295                 return (KERN_PROTECTION_FAILURE);
1296
1297         fs.vp = NULL;
1298         fs.vaddr = vaddr;
1299         fs.m_hold = m_hold;
1300         fs.fault_flags = fault_flags;
1301         fs.map = map;
1302         fs.lookup_still_valid = false;
1303         fs.oom = 0;
1304         faultcount = 0;
1305         nera = -1;
1306         hardfault = false;
1307
1308 RetryFault:
1309         fs.fault_type = fault_type;
1310
1311         /*
1312          * Find the backing store object and offset into it to begin the
1313          * search.
1314          */
1315         result = vm_fault_lookup(&fs);
1316         if (result != KERN_SUCCESS) {
1317                 if (result == KERN_RESOURCE_SHORTAGE)
1318                         goto RetryFault;
1319                 return (result);
1320         }
1321
1322         /*
1323          * Try to avoid lock contention on the top-level object through
1324          * special-case handling of some types of page faults, specifically,
1325          * those that are mapping an existing page from the top-level object.
1326          * Under this condition, a read lock on the object suffices, allowing
1327          * multiple page faults of a similar type to run in parallel.
1328          */
1329         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1330             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1331             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1332                 VM_OBJECT_RLOCK(fs.first_object);
1333                 rv = vm_fault_soft_fast(&fs);
1334                 if (rv == KERN_SUCCESS)
1335                         return (rv);
1336                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1337                         VM_OBJECT_RUNLOCK(fs.first_object);
1338                         VM_OBJECT_WLOCK(fs.first_object);
1339                 }
1340         } else {
1341                 VM_OBJECT_WLOCK(fs.first_object);
1342         }
1343
1344         /*
1345          * Make a reference to this object to prevent its disposal while we
1346          * are messing with it.  Once we have the reference, the map is free
1347          * to be diddled.  Since objects reference their shadows (and copies),
1348          * they will stay around as well.
1349          *
1350          * Bump the paging-in-progress count to prevent size changes (e.g. 
1351          * truncation operations) during I/O.
1352          */
1353         vm_object_reference_locked(fs.first_object);
1354         vm_object_pip_add(fs.first_object, 1);
1355
1356         fs.m_cow = fs.m = fs.first_m = NULL;
1357
1358         /*
1359          * Search for the page at object/offset.
1360          */
1361         fs.object = fs.first_object;
1362         fs.pindex = fs.first_pindex;
1363
1364         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1365                 rv = vm_fault_allocate(&fs);
1366                 switch (rv) {
1367                 case KERN_RESTART:
1368                         unlock_and_deallocate(&fs);
1369                         /* FALLTHROUGH */
1370                 case KERN_RESOURCE_SHORTAGE:
1371                         goto RetryFault;
1372                 case KERN_SUCCESS:
1373                 case KERN_FAILURE:
1374                 case KERN_PROTECTION_FAILURE:
1375                 case KERN_OUT_OF_BOUNDS:
1376                         unlock_and_deallocate(&fs);
1377                         return (rv);
1378                 case KERN_NOT_RECEIVER:
1379                         break;
1380                 default:
1381                         panic("vm_fault: Unhandled rv %d", rv);
1382                 }
1383         }
1384
1385         while (TRUE) {
1386                 KASSERT(fs.m == NULL,
1387                     ("page still set %p at loop start", fs.m));
1388                 /*
1389                  * If the object is marked for imminent termination,
1390                  * we retry here, since the collapse pass has raced
1391                  * with us.  Otherwise, if we see terminally dead
1392                  * object, return fail.
1393                  */
1394                 if ((fs.object->flags & OBJ_DEAD) != 0) {
1395                         dead = fs.object->type == OBJT_DEAD;
1396                         unlock_and_deallocate(&fs);
1397                         if (dead)
1398                                 return (KERN_PROTECTION_FAILURE);
1399                         pause("vmf_de", 1);
1400                         goto RetryFault;
1401                 }
1402
1403                 /*
1404                  * See if page is resident
1405                  */
1406                 fs.m = vm_page_lookup(fs.object, fs.pindex);
1407                 if (fs.m != NULL) {
1408                         if (vm_page_tryxbusy(fs.m) == 0) {
1409                                 vm_fault_busy_sleep(&fs);
1410                                 goto RetryFault;
1411                         }
1412
1413                         /*
1414                          * The page is marked busy for other processes and the
1415                          * pagedaemon.  If it still is completely valid we
1416                          * are done.
1417                          */
1418                         if (vm_page_all_valid(fs.m)) {
1419                                 VM_OBJECT_WUNLOCK(fs.object);
1420                                 break; /* break to PAGE HAS BEEN FOUND. */
1421                         }
1422                 }
1423                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1424
1425                 /*
1426                  * Page is not resident.  If the pager might contain the page
1427                  * or this is the beginning of the search, allocate a new
1428                  * page.  (Default objects are zero-fill, so there is no real
1429                  * pager for them.)
1430                  */
1431                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1432                     fs.object == fs.first_object)) {
1433                         rv = vm_fault_allocate(&fs);
1434                         switch (rv) {
1435                         case KERN_RESTART:
1436                                 unlock_and_deallocate(&fs);
1437                                 /* FALLTHROUGH */
1438                         case KERN_RESOURCE_SHORTAGE:
1439                                 goto RetryFault;
1440                         case KERN_SUCCESS:
1441                         case KERN_FAILURE:
1442                         case KERN_PROTECTION_FAILURE:
1443                         case KERN_OUT_OF_BOUNDS:
1444                                 unlock_and_deallocate(&fs);
1445                                 return (rv);
1446                         case KERN_NOT_RECEIVER:
1447                                 break;
1448                         default:
1449                                 panic("vm_fault: Unhandled rv %d", rv);
1450                         }
1451                 }
1452
1453                 /*
1454                  * Default objects have no pager so no exclusive busy exists
1455                  * to protect this page in the chain.  Skip to the next
1456                  * object without dropping the lock to preserve atomicity of
1457                  * shadow faults.
1458                  */
1459                 if (fs.object->type != OBJT_DEFAULT) {
1460                         /*
1461                          * At this point, we have either allocated a new page
1462                          * or found an existing page that is only partially
1463                          * valid.
1464                          *
1465                          * We hold a reference on the current object and the
1466                          * page is exclusive busied.  The exclusive busy
1467                          * prevents simultaneous faults and collapses while
1468                          * the object lock is dropped.
1469                          */
1470                         VM_OBJECT_WUNLOCK(fs.object);
1471
1472                         /*
1473                          * If the pager for the current object might have
1474                          * the page, then determine the number of additional
1475                          * pages to read and potentially reprioritize
1476                          * previously read pages for earlier reclamation.
1477                          * These operations should only be performed once per
1478                          * page fault.  Even if the current pager doesn't
1479                          * have the page, the number of additional pages to
1480                          * read will apply to subsequent objects in the
1481                          * shadow chain.
1482                          */
1483                         if (nera == -1 && !P_KILLED(curproc))
1484                                 nera = vm_fault_readahead(&fs);
1485
1486                         rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1487                         if (rv == KERN_SUCCESS) {
1488                                 faultcount = behind + 1 + ahead;
1489                                 hardfault = true;
1490                                 break; /* break to PAGE HAS BEEN FOUND. */
1491                         }
1492                         if (rv == KERN_RESOURCE_SHORTAGE)
1493                                 goto RetryFault;
1494                         VM_OBJECT_WLOCK(fs.object);
1495                         if (rv == KERN_OUT_OF_BOUNDS) {
1496                                 fault_page_free(&fs.m);
1497                                 unlock_and_deallocate(&fs);
1498                                 return (rv);
1499                         }
1500                 }
1501
1502                 /*
1503                  * The page was not found in the current object.  Try to
1504                  * traverse into a backing object or zero fill if none is
1505                  * found.
1506                  */
1507                 if (vm_fault_next(&fs))
1508                         continue;
1509                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1510                         if (fs.first_object == fs.object)
1511                                 fault_page_free(&fs.first_m);
1512                         unlock_and_deallocate(&fs);
1513                         return (KERN_OUT_OF_BOUNDS);
1514                 }
1515                 VM_OBJECT_WUNLOCK(fs.object);
1516                 vm_fault_zerofill(&fs);
1517                 /* Don't try to prefault neighboring pages. */
1518                 faultcount = 1;
1519                 break;  /* break to PAGE HAS BEEN FOUND. */
1520         }
1521
1522         /*
1523          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1524          * busied.  The object lock must no longer be held.
1525          */
1526         vm_page_assert_xbusied(fs.m);
1527         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1528
1529         /*
1530          * If the page is being written, but isn't already owned by the
1531          * top-level object, we have to copy it into a new page owned by the
1532          * top-level object.
1533          */
1534         if (fs.object != fs.first_object) {
1535                 /*
1536                  * We only really need to copy if we want to write it.
1537                  */
1538                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1539                         vm_fault_cow(&fs);
1540                         /*
1541                          * We only try to prefault read-only mappings to the
1542                          * neighboring pages when this copy-on-write fault is
1543                          * a hard fault.  In other cases, trying to prefault
1544                          * is typically wasted effort.
1545                          */
1546                         if (faultcount == 0)
1547                                 faultcount = 1;
1548
1549                 } else {
1550                         fs.prot &= ~VM_PROT_WRITE;
1551                 }
1552         }
1553
1554         /*
1555          * We must verify that the maps have not changed since our last
1556          * lookup.
1557          */
1558         if (!fs.lookup_still_valid) {
1559                 result = vm_fault_relookup(&fs);
1560                 if (result != KERN_SUCCESS) {
1561                         fault_deallocate(&fs);
1562                         if (result == KERN_RESTART)
1563                                 goto RetryFault;
1564                         return (result);
1565                 }
1566         }
1567         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1568
1569         /*
1570          * If the page was filled by a pager, save the virtual address that
1571          * should be faulted on next under a sequential access pattern to the
1572          * map entry.  A read lock on the map suffices to update this address
1573          * safely.
1574          */
1575         if (hardfault)
1576                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1577
1578         /*
1579          * Page must be completely valid or it is not fit to
1580          * map into user space.  vm_pager_get_pages() ensures this.
1581          */
1582         vm_page_assert_xbusied(fs.m);
1583         KASSERT(vm_page_all_valid(fs.m),
1584             ("vm_fault: page %p partially invalid", fs.m));
1585
1586         vm_fault_dirty(&fs, fs.m);
1587
1588         /*
1589          * Put this page into the physical map.  We had to do the unlock above
1590          * because pmap_enter() may sleep.  We don't put the page
1591          * back on the active queue until later so that the pageout daemon
1592          * won't find it (yet).
1593          */
1594         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1595             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1596         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1597             fs.wired == 0)
1598                 vm_fault_prefault(&fs, vaddr,
1599                     faultcount > 0 ? behind : PFBAK,
1600                     faultcount > 0 ? ahead : PFFOR, false);
1601
1602         /*
1603          * If the page is not wired down, then put it where the pageout daemon
1604          * can find it.
1605          */
1606         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1607                 vm_page_wire(fs.m);
1608         else
1609                 vm_page_activate(fs.m);
1610         if (fs.m_hold != NULL) {
1611                 (*fs.m_hold) = fs.m;
1612                 vm_page_wire(fs.m);
1613         }
1614         vm_page_xunbusy(fs.m);
1615         fs.m = NULL;
1616
1617         /*
1618          * Unlock everything, and return
1619          */
1620         fault_deallocate(&fs);
1621         if (hardfault) {
1622                 VM_CNT_INC(v_io_faults);
1623                 curthread->td_ru.ru_majflt++;
1624 #ifdef RACCT
1625                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1626                         PROC_LOCK(curproc);
1627                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1628                                 racct_add_force(curproc, RACCT_WRITEBPS,
1629                                     PAGE_SIZE + behind * PAGE_SIZE);
1630                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1631                         } else {
1632                                 racct_add_force(curproc, RACCT_READBPS,
1633                                     PAGE_SIZE + ahead * PAGE_SIZE);
1634                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1635                         }
1636                         PROC_UNLOCK(curproc);
1637                 }
1638 #endif
1639         } else 
1640                 curthread->td_ru.ru_minflt++;
1641
1642         return (KERN_SUCCESS);
1643 }
1644
1645 /*
1646  * Speed up the reclamation of pages that precede the faulting pindex within
1647  * the first object of the shadow chain.  Essentially, perform the equivalent
1648  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1649  * the faulting pindex by the cluster size when the pages read by vm_fault()
1650  * cross a cluster-size boundary.  The cluster size is the greater of the
1651  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1652  *
1653  * When "fs->first_object" is a shadow object, the pages in the backing object
1654  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1655  * function must only be concerned with pages in the first object.
1656  */
1657 static void
1658 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1659 {
1660         vm_map_entry_t entry;
1661         vm_object_t first_object, object;
1662         vm_offset_t end, start;
1663         vm_page_t m, m_next;
1664         vm_pindex_t pend, pstart;
1665         vm_size_t size;
1666
1667         object = fs->object;
1668         VM_OBJECT_ASSERT_UNLOCKED(object);
1669         first_object = fs->first_object;
1670         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1671         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1672                 VM_OBJECT_RLOCK(first_object);
1673                 size = VM_FAULT_DONTNEED_MIN;
1674                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1675                         size = pagesizes[1];
1676                 end = rounddown2(vaddr, size);
1677                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1678                     (entry = fs->entry)->start < end) {
1679                         if (end - entry->start < size)
1680                                 start = entry->start;
1681                         else
1682                                 start = end - size;
1683                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1684                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1685                             entry->start);
1686                         m_next = vm_page_find_least(first_object, pstart);
1687                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1688                             entry->start);
1689                         while ((m = m_next) != NULL && m->pindex < pend) {
1690                                 m_next = TAILQ_NEXT(m, listq);
1691                                 if (!vm_page_all_valid(m) ||
1692                                     vm_page_busied(m))
1693                                         continue;
1694
1695                                 /*
1696                                  * Don't clear PGA_REFERENCED, since it would
1697                                  * likely represent a reference by a different
1698                                  * process.
1699                                  *
1700                                  * Typically, at this point, prefetched pages
1701                                  * are still in the inactive queue.  Only
1702                                  * pages that triggered page faults are in the
1703                                  * active queue.  The test for whether the page
1704                                  * is in the inactive queue is racy; in the
1705                                  * worst case we will requeue the page
1706                                  * unnecessarily.
1707                                  */
1708                                 if (!vm_page_inactive(m))
1709                                         vm_page_deactivate(m);
1710                         }
1711                 }
1712                 VM_OBJECT_RUNLOCK(first_object);
1713         }
1714 }
1715
1716 /*
1717  * vm_fault_prefault provides a quick way of clustering
1718  * pagefaults into a processes address space.  It is a "cousin"
1719  * of vm_map_pmap_enter, except it runs at page fault time instead
1720  * of mmap time.
1721  */
1722 static void
1723 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1724     int backward, int forward, bool obj_locked)
1725 {
1726         pmap_t pmap;
1727         vm_map_entry_t entry;
1728         vm_object_t backing_object, lobject;
1729         vm_offset_t addr, starta;
1730         vm_pindex_t pindex;
1731         vm_page_t m;
1732         int i;
1733
1734         pmap = fs->map->pmap;
1735         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1736                 return;
1737
1738         entry = fs->entry;
1739
1740         if (addra < backward * PAGE_SIZE) {
1741                 starta = entry->start;
1742         } else {
1743                 starta = addra - backward * PAGE_SIZE;
1744                 if (starta < entry->start)
1745                         starta = entry->start;
1746         }
1747
1748         /*
1749          * Generate the sequence of virtual addresses that are candidates for
1750          * prefaulting in an outward spiral from the faulting virtual address,
1751          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1752          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1753          * If the candidate address doesn't have a backing physical page, then
1754          * the loop immediately terminates.
1755          */
1756         for (i = 0; i < 2 * imax(backward, forward); i++) {
1757                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1758                     PAGE_SIZE);
1759                 if (addr > addra + forward * PAGE_SIZE)
1760                         addr = 0;
1761
1762                 if (addr < starta || addr >= entry->end)
1763                         continue;
1764
1765                 if (!pmap_is_prefaultable(pmap, addr))
1766                         continue;
1767
1768                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1769                 lobject = entry->object.vm_object;
1770                 if (!obj_locked)
1771                         VM_OBJECT_RLOCK(lobject);
1772                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1773                     lobject->type == OBJT_DEFAULT &&
1774                     (backing_object = lobject->backing_object) != NULL) {
1775                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1776                             0, ("vm_fault_prefault: unaligned object offset"));
1777                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1778                         VM_OBJECT_RLOCK(backing_object);
1779                         if (!obj_locked || lobject != entry->object.vm_object)
1780                                 VM_OBJECT_RUNLOCK(lobject);
1781                         lobject = backing_object;
1782                 }
1783                 if (m == NULL) {
1784                         if (!obj_locked || lobject != entry->object.vm_object)
1785                                 VM_OBJECT_RUNLOCK(lobject);
1786                         break;
1787                 }
1788                 if (vm_page_all_valid(m) &&
1789                     (m->flags & PG_FICTITIOUS) == 0)
1790                         pmap_enter_quick(pmap, addr, m, entry->protection);
1791                 if (!obj_locked || lobject != entry->object.vm_object)
1792                         VM_OBJECT_RUNLOCK(lobject);
1793         }
1794 }
1795
1796 /*
1797  * Hold each of the physical pages that are mapped by the specified range of
1798  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1799  * and allow the specified types of access, "prot".  If all of the implied
1800  * pages are successfully held, then the number of held pages is returned
1801  * together with pointers to those pages in the array "ma".  However, if any
1802  * of the pages cannot be held, -1 is returned.
1803  */
1804 int
1805 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1806     vm_prot_t prot, vm_page_t *ma, int max_count)
1807 {
1808         vm_offset_t end, va;
1809         vm_page_t *mp;
1810         int count;
1811         boolean_t pmap_failed;
1812
1813         if (len == 0)
1814                 return (0);
1815         end = round_page(addr + len);
1816         addr = trunc_page(addr);
1817
1818         if (!vm_map_range_valid(map, addr, end))
1819                 return (-1);
1820
1821         if (atop(end - addr) > max_count)
1822                 panic("vm_fault_quick_hold_pages: count > max_count");
1823         count = atop(end - addr);
1824
1825         /*
1826          * Most likely, the physical pages are resident in the pmap, so it is
1827          * faster to try pmap_extract_and_hold() first.
1828          */
1829         pmap_failed = FALSE;
1830         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1831                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1832                 if (*mp == NULL)
1833                         pmap_failed = TRUE;
1834                 else if ((prot & VM_PROT_WRITE) != 0 &&
1835                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1836                         /*
1837                          * Explicitly dirty the physical page.  Otherwise, the
1838                          * caller's changes may go unnoticed because they are
1839                          * performed through an unmanaged mapping or by a DMA
1840                          * operation.
1841                          *
1842                          * The object lock is not held here.
1843                          * See vm_page_clear_dirty_mask().
1844                          */
1845                         vm_page_dirty(*mp);
1846                 }
1847         }
1848         if (pmap_failed) {
1849                 /*
1850                  * One or more pages could not be held by the pmap.  Either no
1851                  * page was mapped at the specified virtual address or that
1852                  * mapping had insufficient permissions.  Attempt to fault in
1853                  * and hold these pages.
1854                  *
1855                  * If vm_fault_disable_pagefaults() was called,
1856                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1857                  * acquire MD VM locks, which means we must not call
1858                  * vm_fault().  Some (out of tree) callers mark
1859                  * too wide a code area with vm_fault_disable_pagefaults()
1860                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1861                  * the proper behaviour explicitly.
1862                  */
1863                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1864                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1865                         goto error;
1866                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1867                         if (*mp == NULL && vm_fault(map, va, prot,
1868                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1869                                 goto error;
1870         }
1871         return (count);
1872 error:  
1873         for (mp = ma; mp < ma + count; mp++)
1874                 if (*mp != NULL)
1875                         vm_page_unwire(*mp, PQ_INACTIVE);
1876         return (-1);
1877 }
1878
1879 /*
1880  *      Routine:
1881  *              vm_fault_copy_entry
1882  *      Function:
1883  *              Create new shadow object backing dst_entry with private copy of
1884  *              all underlying pages. When src_entry is equal to dst_entry,
1885  *              function implements COW for wired-down map entry. Otherwise,
1886  *              it forks wired entry into dst_map.
1887  *
1888  *      In/out conditions:
1889  *              The source and destination maps must be locked for write.
1890  *              The source map entry must be wired down (or be a sharing map
1891  *              entry corresponding to a main map entry that is wired down).
1892  */
1893 void
1894 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1895     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1896     vm_ooffset_t *fork_charge)
1897 {
1898         vm_object_t backing_object, dst_object, object, src_object;
1899         vm_pindex_t dst_pindex, pindex, src_pindex;
1900         vm_prot_t access, prot;
1901         vm_offset_t vaddr;
1902         vm_page_t dst_m;
1903         vm_page_t src_m;
1904         boolean_t upgrade;
1905
1906 #ifdef  lint
1907         src_map++;
1908 #endif  /* lint */
1909
1910         upgrade = src_entry == dst_entry;
1911         access = prot = dst_entry->protection;
1912
1913         src_object = src_entry->object.vm_object;
1914         src_pindex = OFF_TO_IDX(src_entry->offset);
1915
1916         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1917                 dst_object = src_object;
1918                 vm_object_reference(dst_object);
1919         } else {
1920                 /*
1921                  * Create the top-level object for the destination entry.
1922                  * Doesn't actually shadow anything - we copy the pages
1923                  * directly.
1924                  */
1925                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1926                     dst_entry->start), NULL, NULL, 0);
1927 #if VM_NRESERVLEVEL > 0
1928                 dst_object->flags |= OBJ_COLORED;
1929                 dst_object->pg_color = atop(dst_entry->start);
1930 #endif
1931                 dst_object->domain = src_object->domain;
1932                 dst_object->charge = dst_entry->end - dst_entry->start;
1933         }
1934
1935         VM_OBJECT_WLOCK(dst_object);
1936         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1937             ("vm_fault_copy_entry: vm_object not NULL"));
1938         if (src_object != dst_object) {
1939                 dst_entry->object.vm_object = dst_object;
1940                 dst_entry->offset = 0;
1941                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1942         }
1943         if (fork_charge != NULL) {
1944                 KASSERT(dst_entry->cred == NULL,
1945                     ("vm_fault_copy_entry: leaked swp charge"));
1946                 dst_object->cred = curthread->td_ucred;
1947                 crhold(dst_object->cred);
1948                 *fork_charge += dst_object->charge;
1949         } else if ((dst_object->type == OBJT_DEFAULT ||
1950             (dst_object->flags & OBJ_SWAP) != 0) &&
1951             dst_object->cred == NULL) {
1952                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1953                     dst_entry));
1954                 dst_object->cred = dst_entry->cred;
1955                 dst_entry->cred = NULL;
1956         }
1957
1958         /*
1959          * If not an upgrade, then enter the mappings in the pmap as
1960          * read and/or execute accesses.  Otherwise, enter them as
1961          * write accesses.
1962          *
1963          * A writeable large page mapping is only created if all of
1964          * the constituent small page mappings are modified. Marking
1965          * PTEs as modified on inception allows promotion to happen
1966          * without taking potentially large number of soft faults.
1967          */
1968         if (!upgrade)
1969                 access &= ~VM_PROT_WRITE;
1970
1971         /*
1972          * Loop through all of the virtual pages within the entry's
1973          * range, copying each page from the source object to the
1974          * destination object.  Since the source is wired, those pages
1975          * must exist.  In contrast, the destination is pageable.
1976          * Since the destination object doesn't share any backing storage
1977          * with the source object, all of its pages must be dirtied,
1978          * regardless of whether they can be written.
1979          */
1980         for (vaddr = dst_entry->start, dst_pindex = 0;
1981             vaddr < dst_entry->end;
1982             vaddr += PAGE_SIZE, dst_pindex++) {
1983 again:
1984                 /*
1985                  * Find the page in the source object, and copy it in.
1986                  * Because the source is wired down, the page will be
1987                  * in memory.
1988                  */
1989                 if (src_object != dst_object)
1990                         VM_OBJECT_RLOCK(src_object);
1991                 object = src_object;
1992                 pindex = src_pindex + dst_pindex;
1993                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1994                     (backing_object = object->backing_object) != NULL) {
1995                         /*
1996                          * Unless the source mapping is read-only or
1997                          * it is presently being upgraded from
1998                          * read-only, the first object in the shadow
1999                          * chain should provide all of the pages.  In
2000                          * other words, this loop body should never be
2001                          * executed when the source mapping is already
2002                          * read/write.
2003                          */
2004                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2005                             upgrade,
2006                             ("vm_fault_copy_entry: main object missing page"));
2007
2008                         VM_OBJECT_RLOCK(backing_object);
2009                         pindex += OFF_TO_IDX(object->backing_object_offset);
2010                         if (object != dst_object)
2011                                 VM_OBJECT_RUNLOCK(object);
2012                         object = backing_object;
2013                 }
2014                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2015
2016                 if (object != dst_object) {
2017                         /*
2018                          * Allocate a page in the destination object.
2019                          */
2020                         dst_m = vm_page_alloc(dst_object, (src_object ==
2021                             dst_object ? src_pindex : 0) + dst_pindex,
2022                             VM_ALLOC_NORMAL);
2023                         if (dst_m == NULL) {
2024                                 VM_OBJECT_WUNLOCK(dst_object);
2025                                 VM_OBJECT_RUNLOCK(object);
2026                                 vm_wait(dst_object);
2027                                 VM_OBJECT_WLOCK(dst_object);
2028                                 goto again;
2029                         }
2030                         pmap_copy_page(src_m, dst_m);
2031                         VM_OBJECT_RUNLOCK(object);
2032                         dst_m->dirty = dst_m->valid = src_m->valid;
2033                 } else {
2034                         dst_m = src_m;
2035                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2036                                 goto again;
2037                         if (dst_m->pindex >= dst_object->size) {
2038                                 /*
2039                                  * We are upgrading.  Index can occur
2040                                  * out of bounds if the object type is
2041                                  * vnode and the file was truncated.
2042                                  */
2043                                 vm_page_xunbusy(dst_m);
2044                                 break;
2045                         }
2046                 }
2047                 VM_OBJECT_WUNLOCK(dst_object);
2048
2049                 /*
2050                  * Enter it in the pmap. If a wired, copy-on-write
2051                  * mapping is being replaced by a write-enabled
2052                  * mapping, then wire that new mapping.
2053                  *
2054                  * The page can be invalid if the user called
2055                  * msync(MS_INVALIDATE) or truncated the backing vnode
2056                  * or shared memory object.  In this case, do not
2057                  * insert it into pmap, but still do the copy so that
2058                  * all copies of the wired map entry have similar
2059                  * backing pages.
2060                  */
2061                 if (vm_page_all_valid(dst_m)) {
2062                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2063                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2064                 }
2065
2066                 /*
2067                  * Mark it no longer busy, and put it on the active list.
2068                  */
2069                 VM_OBJECT_WLOCK(dst_object);
2070                 
2071                 if (upgrade) {
2072                         if (src_m != dst_m) {
2073                                 vm_page_unwire(src_m, PQ_INACTIVE);
2074                                 vm_page_wire(dst_m);
2075                         } else {
2076                                 KASSERT(vm_page_wired(dst_m),
2077                                     ("dst_m %p is not wired", dst_m));
2078                         }
2079                 } else {
2080                         vm_page_activate(dst_m);
2081                 }
2082                 vm_page_xunbusy(dst_m);
2083         }
2084         VM_OBJECT_WUNLOCK(dst_object);
2085         if (upgrade) {
2086                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2087                 vm_object_deallocate(src_object);
2088         }
2089 }
2090
2091 /*
2092  * Block entry into the machine-independent layer's page fault handler by
2093  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2094  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2095  * spurious page faults. 
2096  */
2097 int
2098 vm_fault_disable_pagefaults(void)
2099 {
2100
2101         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2102 }
2103
2104 void
2105 vm_fault_enable_pagefaults(int save)
2106 {
2107
2108         curthread_pflags_restore(save);
2109 }