]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
libunwind: update to upstream snapshot r272680
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107
108 #define PFBAK 4
109 #define PFFOR 4
110
111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113
114 #define VM_FAULT_DONTNEED_MIN   1048576
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130             int ahead);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int backward, int forward);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = FALSE;
152         }
153 }
154
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158
159         vm_object_pip_wakeup(fs->object);
160         VM_OBJECT_WUNLOCK(fs->object);
161         if (fs->object != fs->first_object) {
162                 VM_OBJECT_WLOCK(fs->first_object);
163                 vm_page_lock(fs->first_m);
164                 vm_page_free(fs->first_m);
165                 vm_page_unlock(fs->first_m);
166                 vm_object_pip_wakeup(fs->first_object);
167                 VM_OBJECT_WUNLOCK(fs->first_object);
168                 fs->first_m = NULL;
169         }
170         vm_object_deallocate(fs->first_object);
171         unlock_map(fs); 
172         if (fs->vp != NULL) { 
173                 vput(fs->vp);
174                 fs->vp = NULL;
175         }
176 }
177
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182         boolean_t need_dirty;
183
184         if (((prot & VM_PROT_WRITE) == 0 &&
185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
186             (m->oflags & VPO_UNMANAGED) != 0)
187                 return;
188
189         VM_OBJECT_ASSERT_LOCKED(m->object);
190
191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192             (fault_flags & VM_FAULT_WIRE) == 0) ||
193             (fault_flags & VM_FAULT_DIRTY) != 0;
194
195         if (set_wd)
196                 vm_object_set_writeable_dirty(m->object);
197         else
198                 /*
199                  * If two callers of vm_fault_dirty() with set_wd ==
200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201                  * flag set, other with flag clear, race, it is
202                  * possible for the no-NOSYNC thread to see m->dirty
203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204                  * around manipulation of VPO_NOSYNC and
205                  * vm_page_dirty() call, to avoid the race and keep
206                  * m->oflags consistent.
207                  */
208                 vm_page_lock(m);
209
210         /*
211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212          * if the page is already dirty to prevent data written with
213          * the expectation of being synced from not being synced.
214          * Likewise if this entry does not request NOSYNC then make
215          * sure the page isn't marked NOSYNC.  Applications sharing
216          * data should use the same flags to avoid ping ponging.
217          */
218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219                 if (m->dirty == 0) {
220                         m->oflags |= VPO_NOSYNC;
221                 }
222         } else {
223                 m->oflags &= ~VPO_NOSYNC;
224         }
225
226         /*
227          * If the fault is a write, we know that this page is being
228          * written NOW so dirty it explicitly to save on
229          * pmap_is_modified() calls later.
230          *
231          * Also tell the backing pager, if any, that it should remove
232          * any swap backing since the page is now dirty.
233          */
234         if (need_dirty)
235                 vm_page_dirty(m);
236         if (!set_wd)
237                 vm_page_unlock(m);
238         if (need_dirty)
239                 vm_pager_page_unswapped(m);
240 }
241
242 /*
243  *      vm_fault:
244  *
245  *      Handle a page fault occurring at the given address,
246  *      requiring the given permissions, in the map specified.
247  *      If successful, the page is inserted into the
248  *      associated physical map.
249  *
250  *      NOTE: the given address should be truncated to the
251  *      proper page address.
252  *
253  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
254  *      a standard error specifying why the fault is fatal is returned.
255  *
256  *      The map in question must be referenced, and remains so.
257  *      Caller may hold no locks.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261     int fault_flags)
262 {
263         struct thread *td;
264         int result;
265
266         td = curthread;
267         if ((td->td_pflags & TDP_NOFAULTING) != 0)
268                 return (KERN_PROTECTION_FAILURE);
269 #ifdef KTRACE
270         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271                 ktrfault(vaddr, fault_type);
272 #endif
273         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274             NULL);
275 #ifdef KTRACE
276         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277                 ktrfaultend(result);
278 #endif
279         return (result);
280 }
281
282 int
283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284     int fault_flags, vm_page_t *m_hold)
285 {
286         vm_prot_t prot;
287         int alloc_req, era, faultcount, nera, result;
288         boolean_t dead, growstack, is_first_object_locked, wired;
289         int map_generation;
290         vm_object_t next_object;
291         int hardfault;
292         struct faultstate fs;
293         struct vnode *vp;
294         vm_page_t m;
295         int ahead, behind, cluster_offset, error, locked;
296
297         hardfault = 0;
298         growstack = TRUE;
299         PCPU_INC(cnt.v_vm_faults);
300         fs.vp = NULL;
301         faultcount = 0;
302
303 RetryFault:;
304
305         /*
306          * Find the backing store object and offset into it to begin the
307          * search.
308          */
309         fs.map = map;
310         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
311             &fs.first_object, &fs.first_pindex, &prot, &wired);
312         if (result != KERN_SUCCESS) {
313                 if (growstack && result == KERN_INVALID_ADDRESS &&
314                     map != kernel_map) {
315                         result = vm_map_growstack(curproc, vaddr);
316                         if (result != KERN_SUCCESS)
317                                 return (KERN_FAILURE);
318                         growstack = FALSE;
319                         goto RetryFault;
320                 }
321                 return (result);
322         }
323
324         map_generation = fs.map->timestamp;
325
326         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
327                 panic("vm_fault: fault on nofault entry, addr: %lx",
328                     (u_long)vaddr);
329         }
330
331         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
332             fs.entry->wiring_thread != curthread) {
333                 vm_map_unlock_read(fs.map);
334                 vm_map_lock(fs.map);
335                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
336                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
337                         if (fs.vp != NULL) {
338                                 vput(fs.vp);
339                                 fs.vp = NULL;
340                         }
341                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
342                         vm_map_unlock_and_wait(fs.map, 0);
343                 } else
344                         vm_map_unlock(fs.map);
345                 goto RetryFault;
346         }
347
348         if (wired)
349                 fault_type = prot | (fault_type & VM_PROT_COPY);
350         else
351                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
352                     ("!wired && VM_FAULT_WIRE"));
353
354         if (fs.vp == NULL /* avoid locked vnode leak */ &&
355             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
356             /* avoid calling vm_object_set_writeable_dirty() */
357             ((prot & VM_PROT_WRITE) == 0 ||
358             (fs.first_object->type != OBJT_VNODE &&
359             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
360             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
361                 VM_OBJECT_RLOCK(fs.first_object);
362                 if ((prot & VM_PROT_WRITE) != 0 &&
363                     (fs.first_object->type == OBJT_VNODE ||
364                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
365                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
366                         goto fast_failed;
367                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
368                 /* A busy page can be mapped for read|execute access. */
369                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
370                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
371                         goto fast_failed;
372                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
373                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
374                    0), 0);
375                 if (result != KERN_SUCCESS)
376                         goto fast_failed;
377                 if (m_hold != NULL) {
378                         *m_hold = m;
379                         vm_page_lock(m);
380                         vm_page_hold(m);
381                         vm_page_unlock(m);
382                 }
383                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
384                     FALSE);
385                 VM_OBJECT_RUNLOCK(fs.first_object);
386                 if (!wired)
387                         vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
388                 vm_map_lookup_done(fs.map, fs.entry);
389                 curthread->td_ru.ru_minflt++;
390                 return (KERN_SUCCESS);
391 fast_failed:
392                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
393                         VM_OBJECT_RUNLOCK(fs.first_object);
394                         VM_OBJECT_WLOCK(fs.first_object);
395                 }
396         } else {
397                 VM_OBJECT_WLOCK(fs.first_object);
398         }
399
400         /*
401          * Make a reference to this object to prevent its disposal while we
402          * are messing with it.  Once we have the reference, the map is free
403          * to be diddled.  Since objects reference their shadows (and copies),
404          * they will stay around as well.
405          *
406          * Bump the paging-in-progress count to prevent size changes (e.g. 
407          * truncation operations) during I/O.  This must be done after
408          * obtaining the vnode lock in order to avoid possible deadlocks.
409          */
410         vm_object_reference_locked(fs.first_object);
411         vm_object_pip_add(fs.first_object, 1);
412
413         fs.lookup_still_valid = TRUE;
414
415         fs.first_m = NULL;
416
417         /*
418          * Search for the page at object/offset.
419          */
420         fs.object = fs.first_object;
421         fs.pindex = fs.first_pindex;
422         while (TRUE) {
423                 /*
424                  * If the object is marked for imminent termination,
425                  * we retry here, since the collapse pass has raced
426                  * with us.  Otherwise, if we see terminally dead
427                  * object, return fail.
428                  */
429                 if ((fs.object->flags & OBJ_DEAD) != 0) {
430                         dead = fs.object->type == OBJT_DEAD;
431                         unlock_and_deallocate(&fs);
432                         if (dead)
433                                 return (KERN_PROTECTION_FAILURE);
434                         pause("vmf_de", 1);
435                         goto RetryFault;
436                 }
437
438                 /*
439                  * See if page is resident
440                  */
441                 fs.m = vm_page_lookup(fs.object, fs.pindex);
442                 if (fs.m != NULL) {
443                         /*
444                          * Wait/Retry if the page is busy.  We have to do this
445                          * if the page is either exclusive or shared busy
446                          * because the vm_pager may be using read busy for
447                          * pageouts (and even pageins if it is the vnode
448                          * pager), and we could end up trying to pagein and
449                          * pageout the same page simultaneously.
450                          *
451                          * We can theoretically allow the busy case on a read
452                          * fault if the page is marked valid, but since such
453                          * pages are typically already pmap'd, putting that
454                          * special case in might be more effort then it is 
455                          * worth.  We cannot under any circumstances mess
456                          * around with a shared busied page except, perhaps,
457                          * to pmap it.
458                          */
459                         if (vm_page_busied(fs.m)) {
460                                 /*
461                                  * Reference the page before unlocking and
462                                  * sleeping so that the page daemon is less
463                                  * likely to reclaim it. 
464                                  */
465                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
466                                 if (fs.object != fs.first_object) {
467                                         if (!VM_OBJECT_TRYWLOCK(
468                                             fs.first_object)) {
469                                                 VM_OBJECT_WUNLOCK(fs.object);
470                                                 VM_OBJECT_WLOCK(fs.first_object);
471                                                 VM_OBJECT_WLOCK(fs.object);
472                                         }
473                                         vm_page_lock(fs.first_m);
474                                         vm_page_free(fs.first_m);
475                                         vm_page_unlock(fs.first_m);
476                                         vm_object_pip_wakeup(fs.first_object);
477                                         VM_OBJECT_WUNLOCK(fs.first_object);
478                                         fs.first_m = NULL;
479                                 }
480                                 unlock_map(&fs);
481                                 if (fs.m == vm_page_lookup(fs.object,
482                                     fs.pindex)) {
483                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
484                                 }
485                                 vm_object_pip_wakeup(fs.object);
486                                 VM_OBJECT_WUNLOCK(fs.object);
487                                 PCPU_INC(cnt.v_intrans);
488                                 vm_object_deallocate(fs.first_object);
489                                 goto RetryFault;
490                         }
491                         vm_page_lock(fs.m);
492                         vm_page_remque(fs.m);
493                         vm_page_unlock(fs.m);
494
495                         /*
496                          * Mark page busy for other processes, and the 
497                          * pagedaemon.  If it still isn't completely valid
498                          * (readable), jump to readrest, else break-out ( we
499                          * found the page ).
500                          */
501                         vm_page_xbusy(fs.m);
502                         if (fs.m->valid != VM_PAGE_BITS_ALL)
503                                 goto readrest;
504                         break;
505                 }
506                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
507
508                 /*
509                  * Page is not resident.  If the pager might contain the page
510                  * or this is the beginning of the search, allocate a new
511                  * page.  (Default objects are zero-fill, so there is no real
512                  * pager for them.)
513                  */
514                 if (fs.object->type != OBJT_DEFAULT ||
515                     fs.object == fs.first_object) {
516                         if (fs.pindex >= fs.object->size) {
517                                 unlock_and_deallocate(&fs);
518                                 return (KERN_PROTECTION_FAILURE);
519                         }
520
521                         /*
522                          * Allocate a new page for this object/offset pair.
523                          *
524                          * Unlocked read of the p_flag is harmless. At
525                          * worst, the P_KILLED might be not observed
526                          * there, and allocation can fail, causing
527                          * restart and new reading of the p_flag.
528                          */
529                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
530 #if VM_NRESERVLEVEL > 0
531                                 vm_object_color(fs.object, atop(vaddr) -
532                                     fs.pindex);
533 #endif
534                                 alloc_req = P_KILLED(curproc) ?
535                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
536                                 if (fs.object->type != OBJT_VNODE &&
537                                     fs.object->backing_object == NULL)
538                                         alloc_req |= VM_ALLOC_ZERO;
539                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
540                                     alloc_req);
541                         }
542                         if (fs.m == NULL) {
543                                 unlock_and_deallocate(&fs);
544                                 VM_WAITPFAULT;
545                                 goto RetryFault;
546                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
547                                 break;
548                 }
549
550 readrest:
551                 /*
552                  * We have either allocated a new page or found an existing
553                  * page that is only partially valid.
554                  *
555                  * Attempt to fault-in the page if there is a chance that the
556                  * pager has it, and potentially fault in additional pages
557                  * at the same time.
558                  */
559                 if (fs.object->type != OBJT_DEFAULT) {
560                         int rv;
561                         u_char behavior = vm_map_entry_behavior(fs.entry);
562
563                         era = fs.entry->read_ahead;
564                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
565                             P_KILLED(curproc)) {
566                                 behind = 0;
567                                 nera = 0;
568                                 ahead = 0;
569                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
570                                 behind = 0;
571                                 nera = VM_FAULT_READ_AHEAD_MAX;
572                                 ahead = nera;
573                                 if (vaddr == fs.entry->next_read)
574                                         vm_fault_dontneed(&fs, vaddr, ahead);
575                         } else if (vaddr == fs.entry->next_read) {
576                                 /*
577                                  * This is a sequential fault.  Arithmetically
578                                  * increase the requested number of pages in
579                                  * the read-ahead window.  The requested
580                                  * number of pages is "# of sequential faults
581                                  * x (read ahead min + 1) + read ahead min"
582                                  */
583                                 behind = 0;
584                                 nera = VM_FAULT_READ_AHEAD_MIN;
585                                 if (era > 0) {
586                                         nera += era + 1;
587                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
588                                                 nera = VM_FAULT_READ_AHEAD_MAX;
589                                 }
590                                 ahead = nera;
591                                 if (era == VM_FAULT_READ_AHEAD_MAX)
592                                         vm_fault_dontneed(&fs, vaddr, ahead);
593                         } else {
594                                 /*
595                                  * This is a non-sequential fault.  Request a
596                                  * cluster of pages that is aligned to a
597                                  * VM_FAULT_READ_DEFAULT page offset boundary
598                                  * within the object.  Alignment to a page
599                                  * offset boundary is more likely to coincide
600                                  * with the underlying file system block than
601                                  * alignment to a virtual address boundary.
602                                  */
603                                 cluster_offset = fs.pindex %
604                                     VM_FAULT_READ_DEFAULT;
605                                 behind = ulmin(cluster_offset,
606                                     atop(vaddr - fs.entry->start));
607                                 nera = 0;
608                                 ahead = VM_FAULT_READ_DEFAULT - 1 -
609                                     cluster_offset;
610                         }
611                         ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1);
612                         if (era != nera)
613                                 fs.entry->read_ahead = nera;
614
615                         /*
616                          * Call the pager to retrieve the data, if any, after
617                          * releasing the lock on the map.  We hold a ref on
618                          * fs.object and the pages are exclusive busied.
619                          */
620                         unlock_map(&fs);
621
622                         if (fs.object->type == OBJT_VNODE) {
623                                 vp = fs.object->handle;
624                                 if (vp == fs.vp)
625                                         goto vnode_locked;
626                                 else if (fs.vp != NULL) {
627                                         vput(fs.vp);
628                                         fs.vp = NULL;
629                                 }
630                                 locked = VOP_ISLOCKED(vp);
631
632                                 if (locked != LK_EXCLUSIVE)
633                                         locked = LK_SHARED;
634                                 /* Do not sleep for vnode lock while fs.m is busy */
635                                 error = vget(vp, locked | LK_CANRECURSE |
636                                     LK_NOWAIT, curthread);
637                                 if (error != 0) {
638                                         vhold(vp);
639                                         release_page(&fs);
640                                         unlock_and_deallocate(&fs);
641                                         error = vget(vp, locked | LK_RETRY |
642                                             LK_CANRECURSE, curthread);
643                                         vdrop(vp);
644                                         fs.vp = vp;
645                                         KASSERT(error == 0,
646                                             ("vm_fault: vget failed"));
647                                         goto RetryFault;
648                                 }
649                                 fs.vp = vp;
650                         }
651 vnode_locked:
652                         KASSERT(fs.vp == NULL || !fs.map->system_map,
653                             ("vm_fault: vnode-backed object mapped by system map"));
654
655                         /*
656                          * Page in the requested page and hint the pager,
657                          * that it may bring up surrounding pages.
658                          */
659                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
660                             &behind, &ahead);
661                         if (rv == VM_PAGER_OK) {
662                                 faultcount = behind + 1 + ahead;
663                                 hardfault++;
664                                 break; /* break to PAGE HAS BEEN FOUND */
665                         }
666                         if (rv == VM_PAGER_ERROR)
667                                 printf("vm_fault: pager read error, pid %d (%s)\n",
668                                     curproc->p_pid, curproc->p_comm);
669
670                         /*
671                          * If an I/O error occurred or the requested page was
672                          * outside the range of the pager, clean up and return
673                          * an error.
674                          */
675                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
676                                 vm_page_lock(fs.m);
677                                 vm_page_free(fs.m);
678                                 vm_page_unlock(fs.m);
679                                 fs.m = NULL;
680                                 unlock_and_deallocate(&fs);
681                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
682                                     KERN_PROTECTION_FAILURE);
683                         }
684
685                         /*
686                          * The requested page does not exist at this object/
687                          * offset.  Remove the invalid page from the object,
688                          * waking up anyone waiting for it, and continue on to
689                          * the next object.  However, if this is the top-level
690                          * object, we must leave the busy page in place to
691                          * prevent another process from rushing past us, and
692                          * inserting the page in that object at the same time
693                          * that we are.
694                          */
695                         if (fs.object != fs.first_object) {
696                                 vm_page_lock(fs.m);
697                                 vm_page_free(fs.m);
698                                 vm_page_unlock(fs.m);
699                                 fs.m = NULL;
700                         }
701                 }
702
703                 /*
704                  * We get here if the object has default pager (or unwiring) 
705                  * or the pager doesn't have the page.
706                  */
707                 if (fs.object == fs.first_object)
708                         fs.first_m = fs.m;
709
710                 /*
711                  * Move on to the next object.  Lock the next object before
712                  * unlocking the current one.
713                  */
714                 next_object = fs.object->backing_object;
715                 if (next_object == NULL) {
716                         /*
717                          * If there's no object left, fill the page in the top
718                          * object with zeros.
719                          */
720                         if (fs.object != fs.first_object) {
721                                 vm_object_pip_wakeup(fs.object);
722                                 VM_OBJECT_WUNLOCK(fs.object);
723
724                                 fs.object = fs.first_object;
725                                 fs.pindex = fs.first_pindex;
726                                 fs.m = fs.first_m;
727                                 VM_OBJECT_WLOCK(fs.object);
728                         }
729                         fs.first_m = NULL;
730
731                         /*
732                          * Zero the page if necessary and mark it valid.
733                          */
734                         if ((fs.m->flags & PG_ZERO) == 0) {
735                                 pmap_zero_page(fs.m);
736                         } else {
737                                 PCPU_INC(cnt.v_ozfod);
738                         }
739                         PCPU_INC(cnt.v_zfod);
740                         fs.m->valid = VM_PAGE_BITS_ALL;
741                         /* Don't try to prefault neighboring pages. */
742                         faultcount = 1;
743                         break;  /* break to PAGE HAS BEEN FOUND */
744                 } else {
745                         KASSERT(fs.object != next_object,
746                             ("object loop %p", next_object));
747                         VM_OBJECT_WLOCK(next_object);
748                         vm_object_pip_add(next_object, 1);
749                         if (fs.object != fs.first_object)
750                                 vm_object_pip_wakeup(fs.object);
751                         fs.pindex +=
752                             OFF_TO_IDX(fs.object->backing_object_offset);
753                         VM_OBJECT_WUNLOCK(fs.object);
754                         fs.object = next_object;
755                 }
756         }
757
758         vm_page_assert_xbusied(fs.m);
759
760         /*
761          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
762          * is held.]
763          */
764
765         /*
766          * If the page is being written, but isn't already owned by the
767          * top-level object, we have to copy it into a new page owned by the
768          * top-level object.
769          */
770         if (fs.object != fs.first_object) {
771                 /*
772                  * We only really need to copy if we want to write it.
773                  */
774                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
775                         /*
776                          * This allows pages to be virtually copied from a 
777                          * backing_object into the first_object, where the 
778                          * backing object has no other refs to it, and cannot
779                          * gain any more refs.  Instead of a bcopy, we just 
780                          * move the page from the backing object to the 
781                          * first object.  Note that we must mark the page 
782                          * dirty in the first object so that it will go out 
783                          * to swap when needed.
784                          */
785                         is_first_object_locked = FALSE;
786                         if (
787                                 /*
788                                  * Only one shadow object
789                                  */
790                                 (fs.object->shadow_count == 1) &&
791                                 /*
792                                  * No COW refs, except us
793                                  */
794                                 (fs.object->ref_count == 1) &&
795                                 /*
796                                  * No one else can look this object up
797                                  */
798                                 (fs.object->handle == NULL) &&
799                                 /*
800                                  * No other ways to look the object up
801                                  */
802                                 ((fs.object->type == OBJT_DEFAULT) ||
803                                  (fs.object->type == OBJT_SWAP)) &&
804                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
805                                 /*
806                                  * We don't chase down the shadow chain
807                                  */
808                             fs.object == fs.first_object->backing_object) {
809                                 vm_page_lock(fs.m);
810                                 vm_page_remove(fs.m);
811                                 vm_page_unlock(fs.m);
812                                 vm_page_lock(fs.first_m);
813                                 vm_page_replace_checked(fs.m, fs.first_object,
814                                     fs.first_pindex, fs.first_m);
815                                 vm_page_free(fs.first_m);
816                                 vm_page_unlock(fs.first_m);
817                                 vm_page_dirty(fs.m);
818 #if VM_NRESERVLEVEL > 0
819                                 /*
820                                  * Rename the reservation.
821                                  */
822                                 vm_reserv_rename(fs.m, fs.first_object,
823                                     fs.object, OFF_TO_IDX(
824                                     fs.first_object->backing_object_offset));
825 #endif
826                                 /*
827                                  * Removing the page from the backing object
828                                  * unbusied it.
829                                  */
830                                 vm_page_xbusy(fs.m);
831                                 fs.first_m = fs.m;
832                                 fs.m = NULL;
833                                 PCPU_INC(cnt.v_cow_optim);
834                         } else {
835                                 /*
836                                  * Oh, well, lets copy it.
837                                  */
838                                 pmap_copy_page(fs.m, fs.first_m);
839                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
840                                 if (wired && (fault_flags &
841                                     VM_FAULT_WIRE) == 0) {
842                                         vm_page_lock(fs.first_m);
843                                         vm_page_wire(fs.first_m);
844                                         vm_page_unlock(fs.first_m);
845                                         
846                                         vm_page_lock(fs.m);
847                                         vm_page_unwire(fs.m, PQ_INACTIVE);
848                                         vm_page_unlock(fs.m);
849                                 }
850                                 /*
851                                  * We no longer need the old page or object.
852                                  */
853                                 release_page(&fs);
854                         }
855                         /*
856                          * fs.object != fs.first_object due to above 
857                          * conditional
858                          */
859                         vm_object_pip_wakeup(fs.object);
860                         VM_OBJECT_WUNLOCK(fs.object);
861                         /*
862                          * Only use the new page below...
863                          */
864                         fs.object = fs.first_object;
865                         fs.pindex = fs.first_pindex;
866                         fs.m = fs.first_m;
867                         if (!is_first_object_locked)
868                                 VM_OBJECT_WLOCK(fs.object);
869                         PCPU_INC(cnt.v_cow_faults);
870                         curthread->td_cow++;
871                 } else {
872                         prot &= ~VM_PROT_WRITE;
873                 }
874         }
875
876         /*
877          * We must verify that the maps have not changed since our last
878          * lookup.
879          */
880         if (!fs.lookup_still_valid) {
881                 vm_object_t retry_object;
882                 vm_pindex_t retry_pindex;
883                 vm_prot_t retry_prot;
884
885                 if (!vm_map_trylock_read(fs.map)) {
886                         release_page(&fs);
887                         unlock_and_deallocate(&fs);
888                         goto RetryFault;
889                 }
890                 fs.lookup_still_valid = TRUE;
891                 if (fs.map->timestamp != map_generation) {
892                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
893                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
894
895                         /*
896                          * If we don't need the page any longer, put it on the inactive
897                          * list (the easiest thing to do here).  If no one needs it,
898                          * pageout will grab it eventually.
899                          */
900                         if (result != KERN_SUCCESS) {
901                                 release_page(&fs);
902                                 unlock_and_deallocate(&fs);
903
904                                 /*
905                                  * If retry of map lookup would have blocked then
906                                  * retry fault from start.
907                                  */
908                                 if (result == KERN_FAILURE)
909                                         goto RetryFault;
910                                 return (result);
911                         }
912                         if ((retry_object != fs.first_object) ||
913                             (retry_pindex != fs.first_pindex)) {
914                                 release_page(&fs);
915                                 unlock_and_deallocate(&fs);
916                                 goto RetryFault;
917                         }
918
919                         /*
920                          * Check whether the protection has changed or the object has
921                          * been copied while we left the map unlocked. Changing from
922                          * read to write permission is OK - we leave the page
923                          * write-protected, and catch the write fault. Changing from
924                          * write to read permission means that we can't mark the page
925                          * write-enabled after all.
926                          */
927                         prot &= retry_prot;
928                 }
929         }
930
931         /*
932          * If the page was filled by a pager, save the virtual address that
933          * should be faulted on next under a sequential access pattern to the
934          * map entry.  A read lock on the map suffices to update this address
935          * safely.
936          */
937         if (hardfault)
938                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
939
940         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
941         vm_page_assert_xbusied(fs.m);
942
943         /*
944          * Page must be completely valid or it is not fit to
945          * map into user space.  vm_pager_get_pages() ensures this.
946          */
947         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
948             ("vm_fault: page %p partially invalid", fs.m));
949         VM_OBJECT_WUNLOCK(fs.object);
950
951         /*
952          * Put this page into the physical map.  We had to do the unlock above
953          * because pmap_enter() may sleep.  We don't put the page
954          * back on the active queue until later so that the pageout daemon
955          * won't find it (yet).
956          */
957         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
958             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
959         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
960             wired == 0)
961                 vm_fault_prefault(&fs, vaddr,
962                     faultcount > 0 ? behind : PFBAK,
963                     faultcount > 0 ? ahead : PFFOR);
964         VM_OBJECT_WLOCK(fs.object);
965         vm_page_lock(fs.m);
966
967         /*
968          * If the page is not wired down, then put it where the pageout daemon
969          * can find it.
970          */
971         if ((fault_flags & VM_FAULT_WIRE) != 0) {
972                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
973                 vm_page_wire(fs.m);
974         } else
975                 vm_page_activate(fs.m);
976         if (m_hold != NULL) {
977                 *m_hold = fs.m;
978                 vm_page_hold(fs.m);
979         }
980         vm_page_unlock(fs.m);
981         vm_page_xunbusy(fs.m);
982
983         /*
984          * Unlock everything, and return
985          */
986         unlock_and_deallocate(&fs);
987         if (hardfault) {
988                 PCPU_INC(cnt.v_io_faults);
989                 curthread->td_ru.ru_majflt++;
990 #ifdef RACCT
991                 if (racct_enable && fs.object->type == OBJT_VNODE) {
992                         PROC_LOCK(curproc);
993                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
994                                 racct_add_force(curproc, RACCT_WRITEBPS,
995                                     PAGE_SIZE + behind * PAGE_SIZE);
996                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
997                         } else {
998                                 racct_add_force(curproc, RACCT_READBPS,
999                                     PAGE_SIZE + ahead * PAGE_SIZE);
1000                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1001                         }
1002                         PROC_UNLOCK(curproc);
1003                 }
1004 #endif
1005         } else 
1006                 curthread->td_ru.ru_minflt++;
1007
1008         return (KERN_SUCCESS);
1009 }
1010
1011 /*
1012  * Speed up the reclamation of pages that precede the faulting pindex within
1013  * the first object of the shadow chain.  Essentially, perform the equivalent
1014  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1015  * the faulting pindex by the cluster size when the pages read by vm_fault()
1016  * cross a cluster-size boundary.  The cluster size is the greater of the
1017  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1018  *
1019  * When "fs->first_object" is a shadow object, the pages in the backing object
1020  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1021  * function must only be concerned with pages in the first object.
1022  */
1023 static void
1024 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1025 {
1026         vm_map_entry_t entry;
1027         vm_object_t first_object, object;
1028         vm_offset_t end, start;
1029         vm_page_t m, m_next;
1030         vm_pindex_t pend, pstart;
1031         vm_size_t size;
1032
1033         object = fs->object;
1034         VM_OBJECT_ASSERT_WLOCKED(object);
1035         first_object = fs->first_object;
1036         if (first_object != object) {
1037                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1038                         VM_OBJECT_WUNLOCK(object);
1039                         VM_OBJECT_WLOCK(first_object);
1040                         VM_OBJECT_WLOCK(object);
1041                 }
1042         }
1043         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1044         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1045                 size = VM_FAULT_DONTNEED_MIN;
1046                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1047                         size = pagesizes[1];
1048                 end = rounddown2(vaddr, size);
1049                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1050                     (entry = fs->entry)->start < end) {
1051                         if (end - entry->start < size)
1052                                 start = entry->start;
1053                         else
1054                                 start = end - size;
1055                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1056                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1057                             entry->start);
1058                         m_next = vm_page_find_least(first_object, pstart);
1059                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1060                             entry->start);
1061                         while ((m = m_next) != NULL && m->pindex < pend) {
1062                                 m_next = TAILQ_NEXT(m, listq);
1063                                 if (m->valid != VM_PAGE_BITS_ALL ||
1064                                     vm_page_busied(m))
1065                                         continue;
1066
1067                                 /*
1068                                  * Don't clear PGA_REFERENCED, since it would
1069                                  * likely represent a reference by a different
1070                                  * process.
1071                                  *
1072                                  * Typically, at this point, prefetched pages
1073                                  * are still in the inactive queue.  Only
1074                                  * pages that triggered page faults are in the
1075                                  * active queue.
1076                                  */
1077                                 vm_page_lock(m);
1078                                 vm_page_deactivate(m);
1079                                 vm_page_unlock(m);
1080                         }
1081                 }
1082         }
1083         if (first_object != object)
1084                 VM_OBJECT_WUNLOCK(first_object);
1085 }
1086
1087 /*
1088  * vm_fault_prefault provides a quick way of clustering
1089  * pagefaults into a processes address space.  It is a "cousin"
1090  * of vm_map_pmap_enter, except it runs at page fault time instead
1091  * of mmap time.
1092  */
1093 static void
1094 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1095     int backward, int forward)
1096 {
1097         pmap_t pmap;
1098         vm_map_entry_t entry;
1099         vm_object_t backing_object, lobject;
1100         vm_offset_t addr, starta;
1101         vm_pindex_t pindex;
1102         vm_page_t m;
1103         int i;
1104
1105         pmap = fs->map->pmap;
1106         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1107                 return;
1108
1109         entry = fs->entry;
1110
1111         starta = addra - backward * PAGE_SIZE;
1112         if (starta < entry->start) {
1113                 starta = entry->start;
1114         } else if (starta > addra) {
1115                 starta = 0;
1116         }
1117
1118         /*
1119          * Generate the sequence of virtual addresses that are candidates for
1120          * prefaulting in an outward spiral from the faulting virtual address,
1121          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1122          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1123          * If the candidate address doesn't have a backing physical page, then
1124          * the loop immediately terminates.
1125          */
1126         for (i = 0; i < 2 * imax(backward, forward); i++) {
1127                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1128                     PAGE_SIZE);
1129                 if (addr > addra + forward * PAGE_SIZE)
1130                         addr = 0;
1131
1132                 if (addr < starta || addr >= entry->end)
1133                         continue;
1134
1135                 if (!pmap_is_prefaultable(pmap, addr))
1136                         continue;
1137
1138                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1139                 lobject = entry->object.vm_object;
1140                 VM_OBJECT_RLOCK(lobject);
1141                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1142                     lobject->type == OBJT_DEFAULT &&
1143                     (backing_object = lobject->backing_object) != NULL) {
1144                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1145                             0, ("vm_fault_prefault: unaligned object offset"));
1146                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1147                         VM_OBJECT_RLOCK(backing_object);
1148                         VM_OBJECT_RUNLOCK(lobject);
1149                         lobject = backing_object;
1150                 }
1151                 if (m == NULL) {
1152                         VM_OBJECT_RUNLOCK(lobject);
1153                         break;
1154                 }
1155                 if (m->valid == VM_PAGE_BITS_ALL &&
1156                     (m->flags & PG_FICTITIOUS) == 0)
1157                         pmap_enter_quick(pmap, addr, m, entry->protection);
1158                 VM_OBJECT_RUNLOCK(lobject);
1159         }
1160 }
1161
1162 /*
1163  * Hold each of the physical pages that are mapped by the specified range of
1164  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1165  * and allow the specified types of access, "prot".  If all of the implied
1166  * pages are successfully held, then the number of held pages is returned
1167  * together with pointers to those pages in the array "ma".  However, if any
1168  * of the pages cannot be held, -1 is returned.
1169  */
1170 int
1171 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1172     vm_prot_t prot, vm_page_t *ma, int max_count)
1173 {
1174         vm_offset_t end, va;
1175         vm_page_t *mp;
1176         int count;
1177         boolean_t pmap_failed;
1178
1179         if (len == 0)
1180                 return (0);
1181         end = round_page(addr + len);
1182         addr = trunc_page(addr);
1183
1184         /*
1185          * Check for illegal addresses.
1186          */
1187         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1188                 return (-1);
1189
1190         if (atop(end - addr) > max_count)
1191                 panic("vm_fault_quick_hold_pages: count > max_count");
1192         count = atop(end - addr);
1193
1194         /*
1195          * Most likely, the physical pages are resident in the pmap, so it is
1196          * faster to try pmap_extract_and_hold() first.
1197          */
1198         pmap_failed = FALSE;
1199         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1200                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1201                 if (*mp == NULL)
1202                         pmap_failed = TRUE;
1203                 else if ((prot & VM_PROT_WRITE) != 0 &&
1204                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1205                         /*
1206                          * Explicitly dirty the physical page.  Otherwise, the
1207                          * caller's changes may go unnoticed because they are
1208                          * performed through an unmanaged mapping or by a DMA
1209                          * operation.
1210                          *
1211                          * The object lock is not held here.
1212                          * See vm_page_clear_dirty_mask().
1213                          */
1214                         vm_page_dirty(*mp);
1215                 }
1216         }
1217         if (pmap_failed) {
1218                 /*
1219                  * One or more pages could not be held by the pmap.  Either no
1220                  * page was mapped at the specified virtual address or that
1221                  * mapping had insufficient permissions.  Attempt to fault in
1222                  * and hold these pages.
1223                  */
1224                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1225                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1226                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1227                                 goto error;
1228         }
1229         return (count);
1230 error:  
1231         for (mp = ma; mp < ma + count; mp++)
1232                 if (*mp != NULL) {
1233                         vm_page_lock(*mp);
1234                         vm_page_unhold(*mp);
1235                         vm_page_unlock(*mp);
1236                 }
1237         return (-1);
1238 }
1239
1240 /*
1241  *      Routine:
1242  *              vm_fault_copy_entry
1243  *      Function:
1244  *              Create new shadow object backing dst_entry with private copy of
1245  *              all underlying pages. When src_entry is equal to dst_entry,
1246  *              function implements COW for wired-down map entry. Otherwise,
1247  *              it forks wired entry into dst_map.
1248  *
1249  *      In/out conditions:
1250  *              The source and destination maps must be locked for write.
1251  *              The source map entry must be wired down (or be a sharing map
1252  *              entry corresponding to a main map entry that is wired down).
1253  */
1254 void
1255 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1256     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1257     vm_ooffset_t *fork_charge)
1258 {
1259         vm_object_t backing_object, dst_object, object, src_object;
1260         vm_pindex_t dst_pindex, pindex, src_pindex;
1261         vm_prot_t access, prot;
1262         vm_offset_t vaddr;
1263         vm_page_t dst_m;
1264         vm_page_t src_m;
1265         boolean_t upgrade;
1266
1267 #ifdef  lint
1268         src_map++;
1269 #endif  /* lint */
1270
1271         upgrade = src_entry == dst_entry;
1272         access = prot = dst_entry->protection;
1273
1274         src_object = src_entry->object.vm_object;
1275         src_pindex = OFF_TO_IDX(src_entry->offset);
1276
1277         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1278                 dst_object = src_object;
1279                 vm_object_reference(dst_object);
1280         } else {
1281                 /*
1282                  * Create the top-level object for the destination entry. (Doesn't
1283                  * actually shadow anything - we copy the pages directly.)
1284                  */
1285                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1286                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1287 #if VM_NRESERVLEVEL > 0
1288                 dst_object->flags |= OBJ_COLORED;
1289                 dst_object->pg_color = atop(dst_entry->start);
1290 #endif
1291         }
1292
1293         VM_OBJECT_WLOCK(dst_object);
1294         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1295             ("vm_fault_copy_entry: vm_object not NULL"));
1296         if (src_object != dst_object) {
1297                 dst_entry->object.vm_object = dst_object;
1298                 dst_entry->offset = 0;
1299                 dst_object->charge = dst_entry->end - dst_entry->start;
1300         }
1301         if (fork_charge != NULL) {
1302                 KASSERT(dst_entry->cred == NULL,
1303                     ("vm_fault_copy_entry: leaked swp charge"));
1304                 dst_object->cred = curthread->td_ucred;
1305                 crhold(dst_object->cred);
1306                 *fork_charge += dst_object->charge;
1307         } else if (dst_object->cred == NULL) {
1308                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1309                     dst_entry));
1310                 dst_object->cred = dst_entry->cred;
1311                 dst_entry->cred = NULL;
1312         }
1313
1314         /*
1315          * If not an upgrade, then enter the mappings in the pmap as
1316          * read and/or execute accesses.  Otherwise, enter them as
1317          * write accesses.
1318          *
1319          * A writeable large page mapping is only created if all of
1320          * the constituent small page mappings are modified. Marking
1321          * PTEs as modified on inception allows promotion to happen
1322          * without taking potentially large number of soft faults.
1323          */
1324         if (!upgrade)
1325                 access &= ~VM_PROT_WRITE;
1326
1327         /*
1328          * Loop through all of the virtual pages within the entry's
1329          * range, copying each page from the source object to the
1330          * destination object.  Since the source is wired, those pages
1331          * must exist.  In contrast, the destination is pageable.
1332          * Since the destination object does share any backing storage
1333          * with the source object, all of its pages must be dirtied,
1334          * regardless of whether they can be written.
1335          */
1336         for (vaddr = dst_entry->start, dst_pindex = 0;
1337             vaddr < dst_entry->end;
1338             vaddr += PAGE_SIZE, dst_pindex++) {
1339 again:
1340                 /*
1341                  * Find the page in the source object, and copy it in.
1342                  * Because the source is wired down, the page will be
1343                  * in memory.
1344                  */
1345                 if (src_object != dst_object)
1346                         VM_OBJECT_RLOCK(src_object);
1347                 object = src_object;
1348                 pindex = src_pindex + dst_pindex;
1349                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1350                     (backing_object = object->backing_object) != NULL) {
1351                         /*
1352                          * Unless the source mapping is read-only or
1353                          * it is presently being upgraded from
1354                          * read-only, the first object in the shadow
1355                          * chain should provide all of the pages.  In
1356                          * other words, this loop body should never be
1357                          * executed when the source mapping is already
1358                          * read/write.
1359                          */
1360                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1361                             upgrade,
1362                             ("vm_fault_copy_entry: main object missing page"));
1363
1364                         VM_OBJECT_RLOCK(backing_object);
1365                         pindex += OFF_TO_IDX(object->backing_object_offset);
1366                         if (object != dst_object)
1367                                 VM_OBJECT_RUNLOCK(object);
1368                         object = backing_object;
1369                 }
1370                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1371
1372                 if (object != dst_object) {
1373                         /*
1374                          * Allocate a page in the destination object.
1375                          */
1376                         dst_m = vm_page_alloc(dst_object, (src_object ==
1377                             dst_object ? src_pindex : 0) + dst_pindex,
1378                             VM_ALLOC_NORMAL);
1379                         if (dst_m == NULL) {
1380                                 VM_OBJECT_WUNLOCK(dst_object);
1381                                 VM_OBJECT_RUNLOCK(object);
1382                                 VM_WAIT;
1383                                 VM_OBJECT_WLOCK(dst_object);
1384                                 goto again;
1385                         }
1386                         pmap_copy_page(src_m, dst_m);
1387                         VM_OBJECT_RUNLOCK(object);
1388                         dst_m->valid = VM_PAGE_BITS_ALL;
1389                         dst_m->dirty = VM_PAGE_BITS_ALL;
1390                 } else {
1391                         dst_m = src_m;
1392                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1393                                 goto again;
1394                         vm_page_xbusy(dst_m);
1395                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1396                             ("invalid dst page %p", dst_m));
1397                 }
1398                 VM_OBJECT_WUNLOCK(dst_object);
1399
1400                 /*
1401                  * Enter it in the pmap. If a wired, copy-on-write
1402                  * mapping is being replaced by a write-enabled
1403                  * mapping, then wire that new mapping.
1404                  */
1405                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1406                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1407
1408                 /*
1409                  * Mark it no longer busy, and put it on the active list.
1410                  */
1411                 VM_OBJECT_WLOCK(dst_object);
1412                 
1413                 if (upgrade) {
1414                         if (src_m != dst_m) {
1415                                 vm_page_lock(src_m);
1416                                 vm_page_unwire(src_m, PQ_INACTIVE);
1417                                 vm_page_unlock(src_m);
1418                                 vm_page_lock(dst_m);
1419                                 vm_page_wire(dst_m);
1420                                 vm_page_unlock(dst_m);
1421                         } else {
1422                                 KASSERT(dst_m->wire_count > 0,
1423                                     ("dst_m %p is not wired", dst_m));
1424                         }
1425                 } else {
1426                         vm_page_lock(dst_m);
1427                         vm_page_activate(dst_m);
1428                         vm_page_unlock(dst_m);
1429                 }
1430                 vm_page_xunbusy(dst_m);
1431         }
1432         VM_OBJECT_WUNLOCK(dst_object);
1433         if (upgrade) {
1434                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1435                 vm_object_deallocate(src_object);
1436         }
1437 }
1438
1439 /*
1440  * Block entry into the machine-independent layer's page fault handler by
1441  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1442  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1443  * spurious page faults. 
1444  */
1445 int
1446 vm_fault_disable_pagefaults(void)
1447 {
1448
1449         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1450 }
1451
1452 void
1453 vm_fault_enable_pagefaults(int save)
1454 {
1455
1456         curthread_pflags_restore(save);
1457 }