]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Mark invalid page table entries correctly for PMAP as well as for the
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107
108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110 #define VM_FAULT_READ_BEHIND    8
111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117 struct faultstate {
118         vm_page_t m;
119         vm_object_t object;
120         vm_pindex_t pindex;
121         vm_page_t first_m;
122         vm_object_t     first_object;
123         vm_pindex_t first_pindex;
124         vm_map_t map;
125         vm_map_entry_t entry;
126         int lookup_still_valid;
127         struct vnode *vp;
128 };
129
130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int faultcount, int reqpage);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = FALSE;
152         }
153 }
154
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158
159         vm_object_pip_wakeup(fs->object);
160         VM_OBJECT_WUNLOCK(fs->object);
161         if (fs->object != fs->first_object) {
162                 VM_OBJECT_WLOCK(fs->first_object);
163                 vm_page_lock(fs->first_m);
164                 vm_page_free(fs->first_m);
165                 vm_page_unlock(fs->first_m);
166                 vm_object_pip_wakeup(fs->first_object);
167                 VM_OBJECT_WUNLOCK(fs->first_object);
168                 fs->first_m = NULL;
169         }
170         vm_object_deallocate(fs->first_object);
171         unlock_map(fs); 
172         if (fs->vp != NULL) { 
173                 vput(fs->vp);
174                 fs->vp = NULL;
175         }
176 }
177
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182         boolean_t need_dirty;
183
184         if (((prot & VM_PROT_WRITE) == 0 &&
185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
186             (m->oflags & VPO_UNMANAGED) != 0)
187                 return;
188
189         VM_OBJECT_ASSERT_LOCKED(m->object);
190
191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192             (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
193             (fault_flags & VM_FAULT_DIRTY) != 0;
194
195         if (set_wd)
196                 vm_object_set_writeable_dirty(m->object);
197         else
198                 /*
199                  * If two callers of vm_fault_dirty() with set_wd ==
200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201                  * flag set, other with flag clear, race, it is
202                  * possible for the no-NOSYNC thread to see m->dirty
203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204                  * around manipulation of VPO_NOSYNC and
205                  * vm_page_dirty() call, to avoid the race and keep
206                  * m->oflags consistent.
207                  */
208                 vm_page_lock(m);
209
210         /*
211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212          * if the page is already dirty to prevent data written with
213          * the expectation of being synced from not being synced.
214          * Likewise if this entry does not request NOSYNC then make
215          * sure the page isn't marked NOSYNC.  Applications sharing
216          * data should use the same flags to avoid ping ponging.
217          */
218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219                 if (m->dirty == 0) {
220                         m->oflags |= VPO_NOSYNC;
221                 }
222         } else {
223                 m->oflags &= ~VPO_NOSYNC;
224         }
225
226         /*
227          * If the fault is a write, we know that this page is being
228          * written NOW so dirty it explicitly to save on
229          * pmap_is_modified() calls later.
230          *
231          * Also tell the backing pager, if any, that it should remove
232          * any swap backing since the page is now dirty.
233          */
234         if (need_dirty)
235                 vm_page_dirty(m);
236         if (!set_wd)
237                 vm_page_unlock(m);
238         if (need_dirty)
239                 vm_pager_page_unswapped(m);
240 }
241
242 /*
243  * TRYPAGER - used by vm_fault to calculate whether the pager for the
244  *            current object *might* contain the page.
245  *
246  *            default objects are zero-fill, there is no real pager.
247  */
248 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
249                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
250
251 /*
252  *      vm_fault:
253  *
254  *      Handle a page fault occurring at the given address,
255  *      requiring the given permissions, in the map specified.
256  *      If successful, the page is inserted into the
257  *      associated physical map.
258  *
259  *      NOTE: the given address should be truncated to the
260  *      proper page address.
261  *
262  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
263  *      a standard error specifying why the fault is fatal is returned.
264  *
265  *      The map in question must be referenced, and remains so.
266  *      Caller may hold no locks.
267  */
268 int
269 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
270     int fault_flags)
271 {
272         struct thread *td;
273         int result;
274
275         td = curthread;
276         if ((td->td_pflags & TDP_NOFAULTING) != 0)
277                 return (KERN_PROTECTION_FAILURE);
278 #ifdef KTRACE
279         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
280                 ktrfault(vaddr, fault_type);
281 #endif
282         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
283             NULL);
284 #ifdef KTRACE
285         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
286                 ktrfaultend(result);
287 #endif
288         return (result);
289 }
290
291 int
292 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
293     int fault_flags, vm_page_t *m_hold)
294 {
295         vm_prot_t prot;
296         int alloc_req, era, faultcount, nera, reqpage, result;
297         boolean_t growstack, is_first_object_locked, wired;
298         int map_generation;
299         vm_object_t next_object;
300         vm_page_t marray[VM_FAULT_READ_MAX];
301         int hardfault;
302         struct faultstate fs;
303         struct vnode *vp;
304         vm_page_t m;
305         int ahead, behind, cluster_offset, error, locked;
306
307         hardfault = 0;
308         growstack = TRUE;
309         PCPU_INC(cnt.v_vm_faults);
310         fs.vp = NULL;
311         faultcount = reqpage = 0;
312
313 RetryFault:;
314
315         /*
316          * Find the backing store object and offset into it to begin the
317          * search.
318          */
319         fs.map = map;
320         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
321             &fs.first_object, &fs.first_pindex, &prot, &wired);
322         if (result != KERN_SUCCESS) {
323                 if (growstack && result == KERN_INVALID_ADDRESS &&
324                     map != kernel_map) {
325                         result = vm_map_growstack(curproc, vaddr);
326                         if (result != KERN_SUCCESS)
327                                 return (KERN_FAILURE);
328                         growstack = FALSE;
329                         goto RetryFault;
330                 }
331                 return (result);
332         }
333
334         map_generation = fs.map->timestamp;
335
336         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337                 panic("vm_fault: fault on nofault entry, addr: %lx",
338                     (u_long)vaddr);
339         }
340
341         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
342             fs.entry->wiring_thread != curthread) {
343                 vm_map_unlock_read(fs.map);
344                 vm_map_lock(fs.map);
345                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
346                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
347                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
348                         vm_map_unlock_and_wait(fs.map, 0);
349                 } else
350                         vm_map_unlock(fs.map);
351                 goto RetryFault;
352         }
353
354         if (wired)
355                 fault_type = prot | (fault_type & VM_PROT_COPY);
356
357         if (fs.vp == NULL /* avoid locked vnode leak */ &&
358             (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
359             /* avoid calling vm_object_set_writeable_dirty() */
360             ((prot & VM_PROT_WRITE) == 0 ||
361             (fs.first_object->type != OBJT_VNODE &&
362             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
363             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
364                 VM_OBJECT_RLOCK(fs.first_object);
365                 if ((prot & VM_PROT_WRITE) != 0 &&
366                     (fs.first_object->type == OBJT_VNODE ||
367                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
368                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
369                         goto fast_failed;
370                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
371                 /* A busy page can be mapped for read|execute access. */
372                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
373                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
374                         goto fast_failed;
375                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
376                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
377                    0), 0);
378                 if (result != KERN_SUCCESS)
379                         goto fast_failed;
380                 if (m_hold != NULL) {
381                         *m_hold = m;
382                         vm_page_lock(m);
383                         vm_page_hold(m);
384                         vm_page_unlock(m);
385                 }
386                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
387                     FALSE);
388                 VM_OBJECT_RUNLOCK(fs.first_object);
389                 if (!wired)
390                         vm_fault_prefault(&fs, vaddr, 0, 0);
391                 vm_map_lookup_done(fs.map, fs.entry);
392                 curthread->td_ru.ru_minflt++;
393                 return (KERN_SUCCESS);
394 fast_failed:
395                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
396                         VM_OBJECT_RUNLOCK(fs.first_object);
397                         VM_OBJECT_WLOCK(fs.first_object);
398                 }
399         } else {
400                 VM_OBJECT_WLOCK(fs.first_object);
401         }
402
403         /*
404          * Make a reference to this object to prevent its disposal while we
405          * are messing with it.  Once we have the reference, the map is free
406          * to be diddled.  Since objects reference their shadows (and copies),
407          * they will stay around as well.
408          *
409          * Bump the paging-in-progress count to prevent size changes (e.g. 
410          * truncation operations) during I/O.  This must be done after
411          * obtaining the vnode lock in order to avoid possible deadlocks.
412          */
413         vm_object_reference_locked(fs.first_object);
414         vm_object_pip_add(fs.first_object, 1);
415
416         fs.lookup_still_valid = TRUE;
417
418         fs.first_m = NULL;
419
420         /*
421          * Search for the page at object/offset.
422          */
423         fs.object = fs.first_object;
424         fs.pindex = fs.first_pindex;
425         while (TRUE) {
426                 /*
427                  * If the object is dead, we stop here
428                  */
429                 if (fs.object->flags & OBJ_DEAD) {
430                         unlock_and_deallocate(&fs);
431                         return (KERN_PROTECTION_FAILURE);
432                 }
433
434                 /*
435                  * See if page is resident
436                  */
437                 fs.m = vm_page_lookup(fs.object, fs.pindex);
438                 if (fs.m != NULL) {
439                         /*
440                          * Wait/Retry if the page is busy.  We have to do this
441                          * if the page is either exclusive or shared busy
442                          * because the vm_pager may be using read busy for
443                          * pageouts (and even pageins if it is the vnode
444                          * pager), and we could end up trying to pagein and
445                          * pageout the same page simultaneously.
446                          *
447                          * We can theoretically allow the busy case on a read
448                          * fault if the page is marked valid, but since such
449                          * pages are typically already pmap'd, putting that
450                          * special case in might be more effort then it is 
451                          * worth.  We cannot under any circumstances mess
452                          * around with a shared busied page except, perhaps,
453                          * to pmap it.
454                          */
455                         if (vm_page_busied(fs.m)) {
456                                 /*
457                                  * Reference the page before unlocking and
458                                  * sleeping so that the page daemon is less
459                                  * likely to reclaim it. 
460                                  */
461                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
462                                 if (fs.object != fs.first_object) {
463                                         if (!VM_OBJECT_TRYWLOCK(
464                                             fs.first_object)) {
465                                                 VM_OBJECT_WUNLOCK(fs.object);
466                                                 VM_OBJECT_WLOCK(fs.first_object);
467                                                 VM_OBJECT_WLOCK(fs.object);
468                                         }
469                                         vm_page_lock(fs.first_m);
470                                         vm_page_free(fs.first_m);
471                                         vm_page_unlock(fs.first_m);
472                                         vm_object_pip_wakeup(fs.first_object);
473                                         VM_OBJECT_WUNLOCK(fs.first_object);
474                                         fs.first_m = NULL;
475                                 }
476                                 unlock_map(&fs);
477                                 if (fs.m == vm_page_lookup(fs.object,
478                                     fs.pindex)) {
479                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
480                                 }
481                                 vm_object_pip_wakeup(fs.object);
482                                 VM_OBJECT_WUNLOCK(fs.object);
483                                 PCPU_INC(cnt.v_intrans);
484                                 vm_object_deallocate(fs.first_object);
485                                 goto RetryFault;
486                         }
487                         vm_page_lock(fs.m);
488                         vm_page_remque(fs.m);
489                         vm_page_unlock(fs.m);
490
491                         /*
492                          * Mark page busy for other processes, and the 
493                          * pagedaemon.  If it still isn't completely valid
494                          * (readable), jump to readrest, else break-out ( we
495                          * found the page ).
496                          */
497                         vm_page_xbusy(fs.m);
498                         if (fs.m->valid != VM_PAGE_BITS_ALL)
499                                 goto readrest;
500                         break;
501                 }
502
503                 /*
504                  * Page is not resident, If this is the search termination
505                  * or the pager might contain the page, allocate a new page.
506                  */
507                 if (TRYPAGER || fs.object == fs.first_object) {
508                         if (fs.pindex >= fs.object->size) {
509                                 unlock_and_deallocate(&fs);
510                                 return (KERN_PROTECTION_FAILURE);
511                         }
512
513                         /*
514                          * Allocate a new page for this object/offset pair.
515                          *
516                          * Unlocked read of the p_flag is harmless. At
517                          * worst, the P_KILLED might be not observed
518                          * there, and allocation can fail, causing
519                          * restart and new reading of the p_flag.
520                          */
521                         fs.m = NULL;
522                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
523 #if VM_NRESERVLEVEL > 0
524                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
525                                         fs.object->flags |= OBJ_COLORED;
526                                         fs.object->pg_color = atop(vaddr) -
527                                             fs.pindex;
528                                 }
529 #endif
530                                 alloc_req = P_KILLED(curproc) ?
531                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
532                                 if (fs.object->type != OBJT_VNODE &&
533                                     fs.object->backing_object == NULL)
534                                         alloc_req |= VM_ALLOC_ZERO;
535                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
536                                     alloc_req);
537                         }
538                         if (fs.m == NULL) {
539                                 unlock_and_deallocate(&fs);
540                                 VM_WAITPFAULT;
541                                 goto RetryFault;
542                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
543                                 break;
544                 }
545
546 readrest:
547                 /*
548                  * We have found a valid page or we have allocated a new page.
549                  * The page thus may not be valid or may not be entirely 
550                  * valid.
551                  *
552                  * Attempt to fault-in the page if there is a chance that the
553                  * pager has it, and potentially fault in additional pages
554                  * at the same time.
555                  */
556                 if (TRYPAGER) {
557                         int rv;
558                         u_char behavior = vm_map_entry_behavior(fs.entry);
559
560                         era = fs.entry->read_ahead;
561                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
562                             P_KILLED(curproc)) {
563                                 behind = 0;
564                                 nera = 0;
565                                 ahead = 0;
566                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
567                                 behind = 0;
568                                 nera = VM_FAULT_READ_AHEAD_MAX;
569                                 ahead = nera;
570                                 if (fs.pindex == fs.entry->next_read)
571                                         vm_fault_cache_behind(&fs,
572                                             VM_FAULT_READ_MAX);
573                         } else if (fs.pindex == fs.entry->next_read) {
574                                 /*
575                                  * This is a sequential fault.  Arithmetically
576                                  * increase the requested number of pages in
577                                  * the read-ahead window.  The requested
578                                  * number of pages is "# of sequential faults
579                                  * x (read ahead min + 1) + read ahead min"
580                                  */
581                                 behind = 0;
582                                 nera = VM_FAULT_READ_AHEAD_MIN;
583                                 if (era > 0) {
584                                         nera += era + 1;
585                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
586                                                 nera = VM_FAULT_READ_AHEAD_MAX;
587                                 }
588                                 ahead = nera;
589                                 if (era == VM_FAULT_READ_AHEAD_MAX)
590                                         vm_fault_cache_behind(&fs,
591                                             VM_FAULT_CACHE_BEHIND);
592                         } else {
593                                 /*
594                                  * This is a non-sequential fault.  Request a
595                                  * cluster of pages that is aligned to a
596                                  * VM_FAULT_READ_DEFAULT page offset boundary
597                                  * within the object.  Alignment to a page
598                                  * offset boundary is more likely to coincide
599                                  * with the underlying file system block than
600                                  * alignment to a virtual address boundary.
601                                  */
602                                 cluster_offset = fs.pindex %
603                                     VM_FAULT_READ_DEFAULT;
604                                 behind = ulmin(cluster_offset,
605                                     atop(vaddr - fs.entry->start));
606                                 nera = 0;
607                                 ahead = VM_FAULT_READ_DEFAULT - 1 -
608                                     cluster_offset;
609                         }
610                         ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1);
611                         if (era != nera)
612                                 fs.entry->read_ahead = nera;
613
614                         /*
615                          * Call the pager to retrieve the data, if any, after
616                          * releasing the lock on the map.  We hold a ref on
617                          * fs.object and the pages are exclusive busied.
618                          */
619                         unlock_map(&fs);
620
621                         if (fs.object->type == OBJT_VNODE) {
622                                 vp = fs.object->handle;
623                                 if (vp == fs.vp)
624                                         goto vnode_locked;
625                                 else if (fs.vp != NULL) {
626                                         vput(fs.vp);
627                                         fs.vp = NULL;
628                                 }
629                                 locked = VOP_ISLOCKED(vp);
630
631                                 if (locked != LK_EXCLUSIVE)
632                                         locked = LK_SHARED;
633                                 /* Do not sleep for vnode lock while fs.m is busy */
634                                 error = vget(vp, locked | LK_CANRECURSE |
635                                     LK_NOWAIT, curthread);
636                                 if (error != 0) {
637                                         vhold(vp);
638                                         release_page(&fs);
639                                         unlock_and_deallocate(&fs);
640                                         error = vget(vp, locked | LK_RETRY |
641                                             LK_CANRECURSE, curthread);
642                                         vdrop(vp);
643                                         fs.vp = vp;
644                                         KASSERT(error == 0,
645                                             ("vm_fault: vget failed"));
646                                         goto RetryFault;
647                                 }
648                                 fs.vp = vp;
649                         }
650 vnode_locked:
651                         KASSERT(fs.vp == NULL || !fs.map->system_map,
652                             ("vm_fault: vnode-backed object mapped by system map"));
653
654                         /*
655                          * now we find out if any other pages should be paged
656                          * in at this time this routine checks to see if the
657                          * pages surrounding this fault reside in the same
658                          * object as the page for this fault.  If they do,
659                          * then they are faulted in also into the object.  The
660                          * array "marray" returned contains an array of
661                          * vm_page_t structs where one of them is the
662                          * vm_page_t passed to the routine.  The reqpage
663                          * return value is the index into the marray for the
664                          * vm_page_t passed to the routine.
665                          *
666                          * fs.m plus the additional pages are exclusive busied.
667                          */
668                         faultcount = vm_fault_additional_pages(
669                             fs.m, behind, ahead, marray, &reqpage);
670
671                         rv = faultcount ?
672                             vm_pager_get_pages(fs.object, marray, faultcount,
673                                 reqpage) : VM_PAGER_FAIL;
674
675                         if (rv == VM_PAGER_OK) {
676                                 /*
677                                  * Found the page. Leave it busy while we play
678                                  * with it.
679                                  */
680
681                                 /*
682                                  * Relookup in case pager changed page. Pager
683                                  * is responsible for disposition of old page
684                                  * if moved.
685                                  */
686                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
687                                 if (!fs.m) {
688                                         unlock_and_deallocate(&fs);
689                                         goto RetryFault;
690                                 }
691
692                                 hardfault++;
693                                 break; /* break to PAGE HAS BEEN FOUND */
694                         }
695                         /*
696                          * Remove the bogus page (which does not exist at this
697                          * object/offset); before doing so, we must get back
698                          * our object lock to preserve our invariant.
699                          *
700                          * Also wake up any other process that may want to bring
701                          * in this page.
702                          *
703                          * If this is the top-level object, we must leave the
704                          * busy page to prevent another process from rushing
705                          * past us, and inserting the page in that object at
706                          * the same time that we are.
707                          */
708                         if (rv == VM_PAGER_ERROR)
709                                 printf("vm_fault: pager read error, pid %d (%s)\n",
710                                     curproc->p_pid, curproc->p_comm);
711                         /*
712                          * Data outside the range of the pager or an I/O error
713                          */
714                         /*
715                          * XXX - the check for kernel_map is a kludge to work
716                          * around having the machine panic on a kernel space
717                          * fault w/ I/O error.
718                          */
719                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
720                                 (rv == VM_PAGER_BAD)) {
721                                 vm_page_lock(fs.m);
722                                 vm_page_free(fs.m);
723                                 vm_page_unlock(fs.m);
724                                 fs.m = NULL;
725                                 unlock_and_deallocate(&fs);
726                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
727                         }
728                         if (fs.object != fs.first_object) {
729                                 vm_page_lock(fs.m);
730                                 vm_page_free(fs.m);
731                                 vm_page_unlock(fs.m);
732                                 fs.m = NULL;
733                                 /*
734                                  * XXX - we cannot just fall out at this
735                                  * point, m has been freed and is invalid!
736                                  */
737                         }
738                 }
739
740                 /*
741                  * We get here if the object has default pager (or unwiring) 
742                  * or the pager doesn't have the page.
743                  */
744                 if (fs.object == fs.first_object)
745                         fs.first_m = fs.m;
746
747                 /*
748                  * Move on to the next object.  Lock the next object before
749                  * unlocking the current one.
750                  */
751                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
752                 next_object = fs.object->backing_object;
753                 if (next_object == NULL) {
754                         /*
755                          * If there's no object left, fill the page in the top
756                          * object with zeros.
757                          */
758                         if (fs.object != fs.first_object) {
759                                 vm_object_pip_wakeup(fs.object);
760                                 VM_OBJECT_WUNLOCK(fs.object);
761
762                                 fs.object = fs.first_object;
763                                 fs.pindex = fs.first_pindex;
764                                 fs.m = fs.first_m;
765                                 VM_OBJECT_WLOCK(fs.object);
766                         }
767                         fs.first_m = NULL;
768
769                         /*
770                          * Zero the page if necessary and mark it valid.
771                          */
772                         if ((fs.m->flags & PG_ZERO) == 0) {
773                                 pmap_zero_page(fs.m);
774                         } else {
775                                 PCPU_INC(cnt.v_ozfod);
776                         }
777                         PCPU_INC(cnt.v_zfod);
778                         fs.m->valid = VM_PAGE_BITS_ALL;
779                         /* Don't try to prefault neighboring pages. */
780                         faultcount = 1;
781                         break;  /* break to PAGE HAS BEEN FOUND */
782                 } else {
783                         KASSERT(fs.object != next_object,
784                             ("object loop %p", next_object));
785                         VM_OBJECT_WLOCK(next_object);
786                         vm_object_pip_add(next_object, 1);
787                         if (fs.object != fs.first_object)
788                                 vm_object_pip_wakeup(fs.object);
789                         VM_OBJECT_WUNLOCK(fs.object);
790                         fs.object = next_object;
791                 }
792         }
793
794         vm_page_assert_xbusied(fs.m);
795
796         /*
797          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
798          * is held.]
799          */
800
801         /*
802          * If the page is being written, but isn't already owned by the
803          * top-level object, we have to copy it into a new page owned by the
804          * top-level object.
805          */
806         if (fs.object != fs.first_object) {
807                 /*
808                  * We only really need to copy if we want to write it.
809                  */
810                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
811                         /*
812                          * This allows pages to be virtually copied from a 
813                          * backing_object into the first_object, where the 
814                          * backing object has no other refs to it, and cannot
815                          * gain any more refs.  Instead of a bcopy, we just 
816                          * move the page from the backing object to the 
817                          * first object.  Note that we must mark the page 
818                          * dirty in the first object so that it will go out 
819                          * to swap when needed.
820                          */
821                         is_first_object_locked = FALSE;
822                         if (
823                                 /*
824                                  * Only one shadow object
825                                  */
826                                 (fs.object->shadow_count == 1) &&
827                                 /*
828                                  * No COW refs, except us
829                                  */
830                                 (fs.object->ref_count == 1) &&
831                                 /*
832                                  * No one else can look this object up
833                                  */
834                                 (fs.object->handle == NULL) &&
835                                 /*
836                                  * No other ways to look the object up
837                                  */
838                                 ((fs.object->type == OBJT_DEFAULT) ||
839                                  (fs.object->type == OBJT_SWAP)) &&
840                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
841                                 /*
842                                  * We don't chase down the shadow chain
843                                  */
844                             fs.object == fs.first_object->backing_object) {
845                                 /*
846                                  * get rid of the unnecessary page
847                                  */
848                                 vm_page_lock(fs.first_m);
849                                 vm_page_free(fs.first_m);
850                                 vm_page_unlock(fs.first_m);
851                                 /*
852                                  * grab the page and put it into the 
853                                  * process'es object.  The page is 
854                                  * automatically made dirty.
855                                  */
856                                 if (vm_page_rename(fs.m, fs.first_object,
857                                     fs.first_pindex)) {
858                                         unlock_and_deallocate(&fs);
859                                         goto RetryFault;
860                                 }
861                                 vm_page_xbusy(fs.m);
862                                 fs.first_m = fs.m;
863                                 fs.m = NULL;
864                                 PCPU_INC(cnt.v_cow_optim);
865                         } else {
866                                 /*
867                                  * Oh, well, lets copy it.
868                                  */
869                                 pmap_copy_page(fs.m, fs.first_m);
870                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
871                                 if (wired && (fault_flags &
872                                     VM_FAULT_CHANGE_WIRING) == 0) {
873                                         vm_page_lock(fs.first_m);
874                                         vm_page_wire(fs.first_m);
875                                         vm_page_unlock(fs.first_m);
876                                         
877                                         vm_page_lock(fs.m);
878                                         vm_page_unwire(fs.m, PQ_INACTIVE);
879                                         vm_page_unlock(fs.m);
880                                 }
881                                 /*
882                                  * We no longer need the old page or object.
883                                  */
884                                 release_page(&fs);
885                         }
886                         /*
887                          * fs.object != fs.first_object due to above 
888                          * conditional
889                          */
890                         vm_object_pip_wakeup(fs.object);
891                         VM_OBJECT_WUNLOCK(fs.object);
892                         /*
893                          * Only use the new page below...
894                          */
895                         fs.object = fs.first_object;
896                         fs.pindex = fs.first_pindex;
897                         fs.m = fs.first_m;
898                         if (!is_first_object_locked)
899                                 VM_OBJECT_WLOCK(fs.object);
900                         PCPU_INC(cnt.v_cow_faults);
901                         curthread->td_cow++;
902                 } else {
903                         prot &= ~VM_PROT_WRITE;
904                 }
905         }
906
907         /*
908          * We must verify that the maps have not changed since our last
909          * lookup.
910          */
911         if (!fs.lookup_still_valid) {
912                 vm_object_t retry_object;
913                 vm_pindex_t retry_pindex;
914                 vm_prot_t retry_prot;
915
916                 if (!vm_map_trylock_read(fs.map)) {
917                         release_page(&fs);
918                         unlock_and_deallocate(&fs);
919                         goto RetryFault;
920                 }
921                 fs.lookup_still_valid = TRUE;
922                 if (fs.map->timestamp != map_generation) {
923                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
924                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
925
926                         /*
927                          * If we don't need the page any longer, put it on the inactive
928                          * list (the easiest thing to do here).  If no one needs it,
929                          * pageout will grab it eventually.
930                          */
931                         if (result != KERN_SUCCESS) {
932                                 release_page(&fs);
933                                 unlock_and_deallocate(&fs);
934
935                                 /*
936                                  * If retry of map lookup would have blocked then
937                                  * retry fault from start.
938                                  */
939                                 if (result == KERN_FAILURE)
940                                         goto RetryFault;
941                                 return (result);
942                         }
943                         if ((retry_object != fs.first_object) ||
944                             (retry_pindex != fs.first_pindex)) {
945                                 release_page(&fs);
946                                 unlock_and_deallocate(&fs);
947                                 goto RetryFault;
948                         }
949
950                         /*
951                          * Check whether the protection has changed or the object has
952                          * been copied while we left the map unlocked. Changing from
953                          * read to write permission is OK - we leave the page
954                          * write-protected, and catch the write fault. Changing from
955                          * write to read permission means that we can't mark the page
956                          * write-enabled after all.
957                          */
958                         prot &= retry_prot;
959                 }
960         }
961         /*
962          * If the page was filled by a pager, update the map entry's
963          * last read offset.  Since the pager does not return the
964          * actual set of pages that it read, this update is based on
965          * the requested set.  Typically, the requested and actual
966          * sets are the same.
967          *
968          * XXX The following assignment modifies the map
969          * without holding a write lock on it.
970          */
971         if (hardfault)
972                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
973
974         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
975         vm_page_assert_xbusied(fs.m);
976
977         /*
978          * Page must be completely valid or it is not fit to
979          * map into user space.  vm_pager_get_pages() ensures this.
980          */
981         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
982             ("vm_fault: page %p partially invalid", fs.m));
983         VM_OBJECT_WUNLOCK(fs.object);
984
985         /*
986          * Put this page into the physical map.  We had to do the unlock above
987          * because pmap_enter() may sleep.  We don't put the page
988          * back on the active queue until later so that the pageout daemon
989          * won't find it (yet).
990          */
991         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
992             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
993         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
994             wired == 0)
995                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
996         VM_OBJECT_WLOCK(fs.object);
997         vm_page_lock(fs.m);
998
999         /*
1000          * If the page is not wired down, then put it where the pageout daemon
1001          * can find it.
1002          */
1003         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
1004                 if (wired)
1005                         vm_page_wire(fs.m);
1006                 else
1007                         vm_page_unwire(fs.m, PQ_ACTIVE);
1008         } else
1009                 vm_page_activate(fs.m);
1010         if (m_hold != NULL) {
1011                 *m_hold = fs.m;
1012                 vm_page_hold(fs.m);
1013         }
1014         vm_page_unlock(fs.m);
1015         vm_page_xunbusy(fs.m);
1016
1017         /*
1018          * Unlock everything, and return
1019          */
1020         unlock_and_deallocate(&fs);
1021         if (hardfault) {
1022                 PCPU_INC(cnt.v_io_faults);
1023                 curthread->td_ru.ru_majflt++;
1024         } else 
1025                 curthread->td_ru.ru_minflt++;
1026
1027         return (KERN_SUCCESS);
1028 }
1029
1030 /*
1031  * Speed up the reclamation of up to "distance" pages that precede the
1032  * faulting pindex within the first object of the shadow chain.
1033  */
1034 static void
1035 vm_fault_cache_behind(const struct faultstate *fs, int distance)
1036 {
1037         vm_object_t first_object, object;
1038         vm_page_t m, m_prev;
1039         vm_pindex_t pindex;
1040
1041         object = fs->object;
1042         VM_OBJECT_ASSERT_WLOCKED(object);
1043         first_object = fs->first_object;
1044         if (first_object != object) {
1045                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1046                         VM_OBJECT_WUNLOCK(object);
1047                         VM_OBJECT_WLOCK(first_object);
1048                         VM_OBJECT_WLOCK(object);
1049                 }
1050         }
1051         /* Neither fictitious nor unmanaged pages can be cached. */
1052         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1053                 if (fs->first_pindex < distance)
1054                         pindex = 0;
1055                 else
1056                         pindex = fs->first_pindex - distance;
1057                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1058                         pindex = OFF_TO_IDX(fs->entry->offset);
1059                 m = first_object != object ? fs->first_m : fs->m;
1060                 vm_page_assert_xbusied(m);
1061                 m_prev = vm_page_prev(m);
1062                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1063                     m->valid == VM_PAGE_BITS_ALL) {
1064                         m_prev = vm_page_prev(m);
1065                         if (vm_page_busied(m))
1066                                 continue;
1067                         vm_page_lock(m);
1068                         if (m->hold_count == 0 && m->wire_count == 0) {
1069                                 pmap_remove_all(m);
1070                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1071                                 if (m->dirty != 0)
1072                                         vm_page_deactivate(m);
1073                                 else
1074                                         vm_page_cache(m);
1075                         }
1076                         vm_page_unlock(m);
1077                 }
1078         }
1079         if (first_object != object)
1080                 VM_OBJECT_WUNLOCK(first_object);
1081 }
1082
1083 /*
1084  * vm_fault_prefault provides a quick way of clustering
1085  * pagefaults into a processes address space.  It is a "cousin"
1086  * of vm_map_pmap_enter, except it runs at page fault time instead
1087  * of mmap time.
1088  */
1089 static void
1090 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1091     int faultcount, int reqpage)
1092 {
1093         pmap_t pmap;
1094         vm_map_entry_t entry;
1095         vm_object_t backing_object, lobject;
1096         vm_offset_t addr, starta;
1097         vm_pindex_t pindex;
1098         vm_page_t m;
1099         int backward, forward, i;
1100
1101         pmap = fs->map->pmap;
1102         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1103                 return;
1104
1105         if (faultcount > 0) {
1106                 backward = reqpage;
1107                 forward = faultcount - reqpage - 1;
1108         } else {
1109                 backward = PFBAK;
1110                 forward = PFFOR;
1111         }
1112         entry = fs->entry;
1113
1114         starta = addra - backward * PAGE_SIZE;
1115         if (starta < entry->start) {
1116                 starta = entry->start;
1117         } else if (starta > addra) {
1118                 starta = 0;
1119         }
1120
1121         /*
1122          * Generate the sequence of virtual addresses that are candidates for
1123          * prefaulting in an outward spiral from the faulting virtual address,
1124          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1125          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1126          * If the candidate address doesn't have a backing physical page, then
1127          * the loop immediately terminates.
1128          */
1129         for (i = 0; i < 2 * imax(backward, forward); i++) {
1130                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1131                     PAGE_SIZE);
1132                 if (addr > addra + forward * PAGE_SIZE)
1133                         addr = 0;
1134
1135                 if (addr < starta || addr >= entry->end)
1136                         continue;
1137
1138                 if (!pmap_is_prefaultable(pmap, addr))
1139                         continue;
1140
1141                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1142                 lobject = entry->object.vm_object;
1143                 VM_OBJECT_RLOCK(lobject);
1144                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1145                     lobject->type == OBJT_DEFAULT &&
1146                     (backing_object = lobject->backing_object) != NULL) {
1147                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1148                             0, ("vm_fault_prefault: unaligned object offset"));
1149                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1150                         VM_OBJECT_RLOCK(backing_object);
1151                         VM_OBJECT_RUNLOCK(lobject);
1152                         lobject = backing_object;
1153                 }
1154                 if (m == NULL) {
1155                         VM_OBJECT_RUNLOCK(lobject);
1156                         break;
1157                 }
1158                 if (m->valid == VM_PAGE_BITS_ALL &&
1159                     (m->flags & PG_FICTITIOUS) == 0)
1160                         pmap_enter_quick(pmap, addr, m, entry->protection);
1161                 VM_OBJECT_RUNLOCK(lobject);
1162         }
1163 }
1164
1165 /*
1166  * Hold each of the physical pages that are mapped by the specified range of
1167  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1168  * and allow the specified types of access, "prot".  If all of the implied
1169  * pages are successfully held, then the number of held pages is returned
1170  * together with pointers to those pages in the array "ma".  However, if any
1171  * of the pages cannot be held, -1 is returned.
1172  */
1173 int
1174 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1175     vm_prot_t prot, vm_page_t *ma, int max_count)
1176 {
1177         vm_offset_t end, va;
1178         vm_page_t *mp;
1179         int count;
1180         boolean_t pmap_failed;
1181
1182         if (len == 0)
1183                 return (0);
1184         end = round_page(addr + len);
1185         addr = trunc_page(addr);
1186
1187         /*
1188          * Check for illegal addresses.
1189          */
1190         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1191                 return (-1);
1192
1193         if (atop(end - addr) > max_count)
1194                 panic("vm_fault_quick_hold_pages: count > max_count");
1195         count = atop(end - addr);
1196
1197         /*
1198          * Most likely, the physical pages are resident in the pmap, so it is
1199          * faster to try pmap_extract_and_hold() first.
1200          */
1201         pmap_failed = FALSE;
1202         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1203                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1204                 if (*mp == NULL)
1205                         pmap_failed = TRUE;
1206                 else if ((prot & VM_PROT_WRITE) != 0 &&
1207                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1208                         /*
1209                          * Explicitly dirty the physical page.  Otherwise, the
1210                          * caller's changes may go unnoticed because they are
1211                          * performed through an unmanaged mapping or by a DMA
1212                          * operation.
1213                          *
1214                          * The object lock is not held here.
1215                          * See vm_page_clear_dirty_mask().
1216                          */
1217                         vm_page_dirty(*mp);
1218                 }
1219         }
1220         if (pmap_failed) {
1221                 /*
1222                  * One or more pages could not be held by the pmap.  Either no
1223                  * page was mapped at the specified virtual address or that
1224                  * mapping had insufficient permissions.  Attempt to fault in
1225                  * and hold these pages.
1226                  */
1227                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1228                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1229                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1230                                 goto error;
1231         }
1232         return (count);
1233 error:  
1234         for (mp = ma; mp < ma + count; mp++)
1235                 if (*mp != NULL) {
1236                         vm_page_lock(*mp);
1237                         vm_page_unhold(*mp);
1238                         vm_page_unlock(*mp);
1239                 }
1240         return (-1);
1241 }
1242
1243 /*
1244  *      Routine:
1245  *              vm_fault_copy_entry
1246  *      Function:
1247  *              Create new shadow object backing dst_entry with private copy of
1248  *              all underlying pages. When src_entry is equal to dst_entry,
1249  *              function implements COW for wired-down map entry. Otherwise,
1250  *              it forks wired entry into dst_map.
1251  *
1252  *      In/out conditions:
1253  *              The source and destination maps must be locked for write.
1254  *              The source map entry must be wired down (or be a sharing map
1255  *              entry corresponding to a main map entry that is wired down).
1256  */
1257 void
1258 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1259     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1260     vm_ooffset_t *fork_charge)
1261 {
1262         vm_object_t backing_object, dst_object, object, src_object;
1263         vm_pindex_t dst_pindex, pindex, src_pindex;
1264         vm_prot_t access, prot;
1265         vm_offset_t vaddr;
1266         vm_page_t dst_m;
1267         vm_page_t src_m;
1268         boolean_t upgrade;
1269
1270 #ifdef  lint
1271         src_map++;
1272 #endif  /* lint */
1273
1274         upgrade = src_entry == dst_entry;
1275         access = prot = dst_entry->protection;
1276
1277         src_object = src_entry->object.vm_object;
1278         src_pindex = OFF_TO_IDX(src_entry->offset);
1279
1280         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1281                 dst_object = src_object;
1282                 vm_object_reference(dst_object);
1283         } else {
1284                 /*
1285                  * Create the top-level object for the destination entry. (Doesn't
1286                  * actually shadow anything - we copy the pages directly.)
1287                  */
1288                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1289                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1290 #if VM_NRESERVLEVEL > 0
1291                 dst_object->flags |= OBJ_COLORED;
1292                 dst_object->pg_color = atop(dst_entry->start);
1293 #endif
1294         }
1295
1296         VM_OBJECT_WLOCK(dst_object);
1297         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1298             ("vm_fault_copy_entry: vm_object not NULL"));
1299         if (src_object != dst_object) {
1300                 dst_entry->object.vm_object = dst_object;
1301                 dst_entry->offset = 0;
1302                 dst_object->charge = dst_entry->end - dst_entry->start;
1303         }
1304         if (fork_charge != NULL) {
1305                 KASSERT(dst_entry->cred == NULL,
1306                     ("vm_fault_copy_entry: leaked swp charge"));
1307                 dst_object->cred = curthread->td_ucred;
1308                 crhold(dst_object->cred);
1309                 *fork_charge += dst_object->charge;
1310         } else if (dst_object->cred == NULL) {
1311                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1312                     dst_entry));
1313                 dst_object->cred = dst_entry->cred;
1314                 dst_entry->cred = NULL;
1315         }
1316
1317         /*
1318          * If not an upgrade, then enter the mappings in the pmap as
1319          * read and/or execute accesses.  Otherwise, enter them as
1320          * write accesses.
1321          *
1322          * A writeable large page mapping is only created if all of
1323          * the constituent small page mappings are modified. Marking
1324          * PTEs as modified on inception allows promotion to happen
1325          * without taking potentially large number of soft faults.
1326          */
1327         if (!upgrade)
1328                 access &= ~VM_PROT_WRITE;
1329
1330         /*
1331          * Loop through all of the virtual pages within the entry's
1332          * range, copying each page from the source object to the
1333          * destination object.  Since the source is wired, those pages
1334          * must exist.  In contrast, the destination is pageable.
1335          * Since the destination object does share any backing storage
1336          * with the source object, all of its pages must be dirtied,
1337          * regardless of whether they can be written.
1338          */
1339         for (vaddr = dst_entry->start, dst_pindex = 0;
1340             vaddr < dst_entry->end;
1341             vaddr += PAGE_SIZE, dst_pindex++) {
1342 again:
1343                 /*
1344                  * Find the page in the source object, and copy it in.
1345                  * Because the source is wired down, the page will be
1346                  * in memory.
1347                  */
1348                 if (src_object != dst_object)
1349                         VM_OBJECT_RLOCK(src_object);
1350                 object = src_object;
1351                 pindex = src_pindex + dst_pindex;
1352                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1353                     (backing_object = object->backing_object) != NULL) {
1354                         /*
1355                          * Unless the source mapping is read-only or
1356                          * it is presently being upgraded from
1357                          * read-only, the first object in the shadow
1358                          * chain should provide all of the pages.  In
1359                          * other words, this loop body should never be
1360                          * executed when the source mapping is already
1361                          * read/write.
1362                          */
1363                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1364                             upgrade,
1365                             ("vm_fault_copy_entry: main object missing page"));
1366
1367                         VM_OBJECT_RLOCK(backing_object);
1368                         pindex += OFF_TO_IDX(object->backing_object_offset);
1369                         if (object != dst_object)
1370                                 VM_OBJECT_RUNLOCK(object);
1371                         object = backing_object;
1372                 }
1373                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1374
1375                 if (object != dst_object) {
1376                         /*
1377                          * Allocate a page in the destination object.
1378                          */
1379                         dst_m = vm_page_alloc(dst_object, (src_object ==
1380                             dst_object ? src_pindex : 0) + dst_pindex,
1381                             VM_ALLOC_NORMAL);
1382                         if (dst_m == NULL) {
1383                                 VM_OBJECT_WUNLOCK(dst_object);
1384                                 VM_OBJECT_RUNLOCK(object);
1385                                 VM_WAIT;
1386                                 VM_OBJECT_WLOCK(dst_object);
1387                                 goto again;
1388                         }
1389                         pmap_copy_page(src_m, dst_m);
1390                         VM_OBJECT_RUNLOCK(object);
1391                         dst_m->valid = VM_PAGE_BITS_ALL;
1392                         dst_m->dirty = VM_PAGE_BITS_ALL;
1393                 } else {
1394                         dst_m = src_m;
1395                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1396                                 goto again;
1397                         vm_page_xbusy(dst_m);
1398                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1399                             ("invalid dst page %p", dst_m));
1400                 }
1401                 VM_OBJECT_WUNLOCK(dst_object);
1402
1403                 /*
1404                  * Enter it in the pmap. If a wired, copy-on-write
1405                  * mapping is being replaced by a write-enabled
1406                  * mapping, then wire that new mapping.
1407                  */
1408                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1409                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1410
1411                 /*
1412                  * Mark it no longer busy, and put it on the active list.
1413                  */
1414                 VM_OBJECT_WLOCK(dst_object);
1415                 
1416                 if (upgrade) {
1417                         if (src_m != dst_m) {
1418                                 vm_page_lock(src_m);
1419                                 vm_page_unwire(src_m, PQ_INACTIVE);
1420                                 vm_page_unlock(src_m);
1421                                 vm_page_lock(dst_m);
1422                                 vm_page_wire(dst_m);
1423                                 vm_page_unlock(dst_m);
1424                         } else {
1425                                 KASSERT(dst_m->wire_count > 0,
1426                                     ("dst_m %p is not wired", dst_m));
1427                         }
1428                 } else {
1429                         vm_page_lock(dst_m);
1430                         vm_page_activate(dst_m);
1431                         vm_page_unlock(dst_m);
1432                 }
1433                 vm_page_xunbusy(dst_m);
1434         }
1435         VM_OBJECT_WUNLOCK(dst_object);
1436         if (upgrade) {
1437                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1438                 vm_object_deallocate(src_object);
1439         }
1440 }
1441
1442
1443 /*
1444  * This routine checks around the requested page for other pages that
1445  * might be able to be faulted in.  This routine brackets the viable
1446  * pages for the pages to be paged in.
1447  *
1448  * Inputs:
1449  *      m, rbehind, rahead
1450  *
1451  * Outputs:
1452  *  marray (array of vm_page_t), reqpage (index of requested page)
1453  *
1454  * Return value:
1455  *  number of pages in marray
1456  */
1457 static int
1458 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1459         vm_page_t m;
1460         int rbehind;
1461         int rahead;
1462         vm_page_t *marray;
1463         int *reqpage;
1464 {
1465         int i,j;
1466         vm_object_t object;
1467         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1468         vm_page_t rtm;
1469         int cbehind, cahead;
1470
1471         VM_OBJECT_ASSERT_WLOCKED(m->object);
1472
1473         object = m->object;
1474         pindex = m->pindex;
1475         cbehind = cahead = 0;
1476
1477         /*
1478          * if the requested page is not available, then give up now
1479          */
1480         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1481                 return 0;
1482         }
1483
1484         if ((cbehind == 0) && (cahead == 0)) {
1485                 *reqpage = 0;
1486                 marray[0] = m;
1487                 return 1;
1488         }
1489
1490         if (rahead > cahead) {
1491                 rahead = cahead;
1492         }
1493
1494         if (rbehind > cbehind) {
1495                 rbehind = cbehind;
1496         }
1497
1498         /*
1499          * scan backward for the read behind pages -- in memory 
1500          */
1501         if (pindex > 0) {
1502                 if (rbehind > pindex) {
1503                         rbehind = pindex;
1504                         startpindex = 0;
1505                 } else {
1506                         startpindex = pindex - rbehind;
1507                 }
1508
1509                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1510                     rtm->pindex >= startpindex)
1511                         startpindex = rtm->pindex + 1;
1512
1513                 /* tpindex is unsigned; beware of numeric underflow. */
1514                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1515                     tpindex < pindex; i++, tpindex--) {
1516
1517                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1518                             VM_ALLOC_IFNOTCACHED);
1519                         if (rtm == NULL) {
1520                                 /*
1521                                  * Shift the allocated pages to the
1522                                  * beginning of the array.
1523                                  */
1524                                 for (j = 0; j < i; j++) {
1525                                         marray[j] = marray[j + tpindex + 1 -
1526                                             startpindex];
1527                                 }
1528                                 break;
1529                         }
1530
1531                         marray[tpindex - startpindex] = rtm;
1532                 }
1533         } else {
1534                 startpindex = 0;
1535                 i = 0;
1536         }
1537
1538         marray[i] = m;
1539         /* page offset of the required page */
1540         *reqpage = i;
1541
1542         tpindex = pindex + 1;
1543         i++;
1544
1545         /*
1546          * scan forward for the read ahead pages
1547          */
1548         endpindex = tpindex + rahead;
1549         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1550                 endpindex = rtm->pindex;
1551         if (endpindex > object->size)
1552                 endpindex = object->size;
1553
1554         for (; tpindex < endpindex; i++, tpindex++) {
1555
1556                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1557                     VM_ALLOC_IFNOTCACHED);
1558                 if (rtm == NULL) {
1559                         break;
1560                 }
1561
1562                 marray[i] = rtm;
1563         }
1564
1565         /* return number of pages */
1566         return i;
1567 }
1568
1569 /*
1570  * Block entry into the machine-independent layer's page fault handler by
1571  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1572  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1573  * spurious page faults. 
1574  */
1575 int
1576 vm_fault_disable_pagefaults(void)
1577 {
1578
1579         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1580 }
1581
1582 void
1583 vm_fault_enable_pagefaults(int save)
1584 {
1585
1586         curthread_pflags_restore(save);
1587 }