]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/vm/vm_fault.c
Document r273199, support for building VM images for the Microsoft
[FreeBSD/releng/10.1.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107
108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110 #define VM_FAULT_READ_BEHIND    8
111 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
112 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131             int faultcount, int reqpage);
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136
137         vm_page_xunbusy(fs->m);
138         vm_page_lock(fs->m);
139         vm_page_deactivate(fs->m);
140         vm_page_unlock(fs->m);
141         fs->m = NULL;
142 }
143
144 static inline void
145 unlock_map(struct faultstate *fs)
146 {
147
148         if (fs->lookup_still_valid) {
149                 vm_map_lookup_done(fs->map, fs->entry);
150                 fs->lookup_still_valid = FALSE;
151         }
152 }
153
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
156 {
157
158         vm_object_pip_wakeup(fs->object);
159         VM_OBJECT_WUNLOCK(fs->object);
160         if (fs->object != fs->first_object) {
161                 VM_OBJECT_WLOCK(fs->first_object);
162                 vm_page_lock(fs->first_m);
163                 vm_page_free(fs->first_m);
164                 vm_page_unlock(fs->first_m);
165                 vm_object_pip_wakeup(fs->first_object);
166                 VM_OBJECT_WUNLOCK(fs->first_object);
167                 fs->first_m = NULL;
168         }
169         vm_object_deallocate(fs->first_object);
170         unlock_map(fs); 
171         if (fs->vp != NULL) { 
172                 vput(fs->vp);
173                 fs->vp = NULL;
174         }
175 }
176
177 static void
178 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
179     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
180 {
181         boolean_t need_dirty;
182
183         if (((prot & VM_PROT_WRITE) == 0 &&
184             (fault_flags & VM_FAULT_DIRTY) == 0) ||
185             (m->oflags & VPO_UNMANAGED) != 0)
186                 return;
187
188         VM_OBJECT_ASSERT_LOCKED(m->object);
189
190         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
191             (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
192             (fault_flags & VM_FAULT_DIRTY) != 0;
193
194         if (set_wd)
195                 vm_object_set_writeable_dirty(m->object);
196         else
197                 /*
198                  * If two callers of vm_fault_dirty() with set_wd ==
199                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
200                  * flag set, other with flag clear, race, it is
201                  * possible for the no-NOSYNC thread to see m->dirty
202                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
203                  * around manipulation of VPO_NOSYNC and
204                  * vm_page_dirty() call, to avoid the race and keep
205                  * m->oflags consistent.
206                  */
207                 vm_page_lock(m);
208
209         /*
210          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
211          * if the page is already dirty to prevent data written with
212          * the expectation of being synced from not being synced.
213          * Likewise if this entry does not request NOSYNC then make
214          * sure the page isn't marked NOSYNC.  Applications sharing
215          * data should use the same flags to avoid ping ponging.
216          */
217         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
218                 if (m->dirty == 0) {
219                         m->oflags |= VPO_NOSYNC;
220                 }
221         } else {
222                 m->oflags &= ~VPO_NOSYNC;
223         }
224
225         /*
226          * If the fault is a write, we know that this page is being
227          * written NOW so dirty it explicitly to save on
228          * pmap_is_modified() calls later.
229          *
230          * Also tell the backing pager, if any, that it should remove
231          * any swap backing since the page is now dirty.
232          */
233         if (need_dirty)
234                 vm_page_dirty(m);
235         if (!set_wd)
236                 vm_page_unlock(m);
237         if (need_dirty)
238                 vm_pager_page_unswapped(m);
239 }
240
241 /*
242  * TRYPAGER - used by vm_fault to calculate whether the pager for the
243  *            current object *might* contain the page.
244  *
245  *            default objects are zero-fill, there is no real pager.
246  */
247 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
248                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
249
250 /*
251  *      vm_fault:
252  *
253  *      Handle a page fault occurring at the given address,
254  *      requiring the given permissions, in the map specified.
255  *      If successful, the page is inserted into the
256  *      associated physical map.
257  *
258  *      NOTE: the given address should be truncated to the
259  *      proper page address.
260  *
261  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
262  *      a standard error specifying why the fault is fatal is returned.
263  *
264  *      The map in question must be referenced, and remains so.
265  *      Caller may hold no locks.
266  */
267 int
268 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
269     int fault_flags)
270 {
271         struct thread *td;
272         int result;
273
274         td = curthread;
275         if ((td->td_pflags & TDP_NOFAULTING) != 0)
276                 return (KERN_PROTECTION_FAILURE);
277 #ifdef KTRACE
278         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
279                 ktrfault(vaddr, fault_type);
280 #endif
281         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
282             NULL);
283 #ifdef KTRACE
284         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
285                 ktrfaultend(result);
286 #endif
287         return (result);
288 }
289
290 int
291 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
292     int fault_flags, vm_page_t *m_hold)
293 {
294         vm_prot_t prot;
295         long ahead, behind;
296         int alloc_req, era, faultcount, nera, reqpage, result;
297         boolean_t growstack, is_first_object_locked, wired;
298         int map_generation;
299         vm_object_t next_object;
300         vm_page_t marray[VM_FAULT_READ_MAX];
301         int hardfault;
302         struct faultstate fs;
303         struct vnode *vp;
304         vm_page_t m;
305         int locked, error;
306
307         hardfault = 0;
308         growstack = TRUE;
309         PCPU_INC(cnt.v_vm_faults);
310         fs.vp = NULL;
311         faultcount = reqpage = 0;
312
313 RetryFault:;
314
315         /*
316          * Find the backing store object and offset into it to begin the
317          * search.
318          */
319         fs.map = map;
320         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
321             &fs.first_object, &fs.first_pindex, &prot, &wired);
322         if (result != KERN_SUCCESS) {
323                 if (growstack && result == KERN_INVALID_ADDRESS &&
324                     map != kernel_map) {
325                         result = vm_map_growstack(curproc, vaddr);
326                         if (result != KERN_SUCCESS)
327                                 return (KERN_FAILURE);
328                         growstack = FALSE;
329                         goto RetryFault;
330                 }
331                 return (result);
332         }
333
334         map_generation = fs.map->timestamp;
335
336         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337                 if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
338                         vm_map_unlock_read(fs.map);
339                         return (KERN_FAILURE);
340                 }
341                 panic("vm_fault: fault on nofault entry, addr: %lx",
342                     (u_long)vaddr);
343         }
344
345         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
346             fs.entry->wiring_thread != curthread) {
347                 vm_map_unlock_read(fs.map);
348                 vm_map_lock(fs.map);
349                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
350                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
351                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
352                         vm_map_unlock_and_wait(fs.map, 0);
353                 } else
354                         vm_map_unlock(fs.map);
355                 goto RetryFault;
356         }
357
358         if (wired)
359                 fault_type = prot | (fault_type & VM_PROT_COPY);
360
361         if (fs.vp == NULL /* avoid locked vnode leak */ &&
362             (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
363             /* avoid calling vm_object_set_writeable_dirty() */
364             ((prot & VM_PROT_WRITE) == 0 ||
365             fs.first_object->type != OBJT_VNODE ||
366             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
367                 VM_OBJECT_RLOCK(fs.first_object);
368                 if ((prot & VM_PROT_WRITE) != 0 &&
369                     fs.first_object->type == OBJT_VNODE &&
370                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
371                         goto fast_failed;
372                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
373                 /* A busy page can be mapped for read|execute access. */
374                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
375                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
376                         goto fast_failed;
377                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
378                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
379                    0), 0);
380                 if (result != KERN_SUCCESS)
381                         goto fast_failed;
382                 if (m_hold != NULL) {
383                         *m_hold = m;
384                         vm_page_lock(m);
385                         vm_page_hold(m);
386                         vm_page_unlock(m);
387                 }
388                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
389                     FALSE);
390                 VM_OBJECT_RUNLOCK(fs.first_object);
391                 if (!wired)
392                         vm_fault_prefault(&fs, vaddr, 0, 0);
393                 vm_map_lookup_done(fs.map, fs.entry);
394                 curthread->td_ru.ru_minflt++;
395                 return (KERN_SUCCESS);
396 fast_failed:
397                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
398                         VM_OBJECT_RUNLOCK(fs.first_object);
399                         VM_OBJECT_WLOCK(fs.first_object);
400                 }
401         } else {
402                 VM_OBJECT_WLOCK(fs.first_object);
403         }
404
405         /*
406          * Make a reference to this object to prevent its disposal while we
407          * are messing with it.  Once we have the reference, the map is free
408          * to be diddled.  Since objects reference their shadows (and copies),
409          * they will stay around as well.
410          *
411          * Bump the paging-in-progress count to prevent size changes (e.g. 
412          * truncation operations) during I/O.  This must be done after
413          * obtaining the vnode lock in order to avoid possible deadlocks.
414          */
415         vm_object_reference_locked(fs.first_object);
416         vm_object_pip_add(fs.first_object, 1);
417
418         fs.lookup_still_valid = TRUE;
419
420         fs.first_m = NULL;
421
422         /*
423          * Search for the page at object/offset.
424          */
425         fs.object = fs.first_object;
426         fs.pindex = fs.first_pindex;
427         while (TRUE) {
428                 /*
429                  * If the object is dead, we stop here
430                  */
431                 if (fs.object->flags & OBJ_DEAD) {
432                         unlock_and_deallocate(&fs);
433                         return (KERN_PROTECTION_FAILURE);
434                 }
435
436                 /*
437                  * See if page is resident
438                  */
439                 fs.m = vm_page_lookup(fs.object, fs.pindex);
440                 if (fs.m != NULL) {
441                         /*
442                          * Wait/Retry if the page is busy.  We have to do this
443                          * if the page is either exclusive or shared busy
444                          * because the vm_pager may be using read busy for
445                          * pageouts (and even pageins if it is the vnode
446                          * pager), and we could end up trying to pagein and
447                          * pageout the same page simultaneously.
448                          *
449                          * We can theoretically allow the busy case on a read
450                          * fault if the page is marked valid, but since such
451                          * pages are typically already pmap'd, putting that
452                          * special case in might be more effort then it is 
453                          * worth.  We cannot under any circumstances mess
454                          * around with a shared busied page except, perhaps,
455                          * to pmap it.
456                          */
457                         if (vm_page_busied(fs.m)) {
458                                 /*
459                                  * Reference the page before unlocking and
460                                  * sleeping so that the page daemon is less
461                                  * likely to reclaim it. 
462                                  */
463                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
464                                 if (fs.object != fs.first_object) {
465                                         if (!VM_OBJECT_TRYWLOCK(
466                                             fs.first_object)) {
467                                                 VM_OBJECT_WUNLOCK(fs.object);
468                                                 VM_OBJECT_WLOCK(fs.first_object);
469                                                 VM_OBJECT_WLOCK(fs.object);
470                                         }
471                                         vm_page_lock(fs.first_m);
472                                         vm_page_free(fs.first_m);
473                                         vm_page_unlock(fs.first_m);
474                                         vm_object_pip_wakeup(fs.first_object);
475                                         VM_OBJECT_WUNLOCK(fs.first_object);
476                                         fs.first_m = NULL;
477                                 }
478                                 unlock_map(&fs);
479                                 if (fs.m == vm_page_lookup(fs.object,
480                                     fs.pindex)) {
481                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
482                                 }
483                                 vm_object_pip_wakeup(fs.object);
484                                 VM_OBJECT_WUNLOCK(fs.object);
485                                 PCPU_INC(cnt.v_intrans);
486                                 vm_object_deallocate(fs.first_object);
487                                 goto RetryFault;
488                         }
489                         vm_page_lock(fs.m);
490                         vm_page_remque(fs.m);
491                         vm_page_unlock(fs.m);
492
493                         /*
494                          * Mark page busy for other processes, and the 
495                          * pagedaemon.  If it still isn't completely valid
496                          * (readable), jump to readrest, else break-out ( we
497                          * found the page ).
498                          */
499                         vm_page_xbusy(fs.m);
500                         if (fs.m->valid != VM_PAGE_BITS_ALL)
501                                 goto readrest;
502                         break;
503                 }
504
505                 /*
506                  * Page is not resident, If this is the search termination
507                  * or the pager might contain the page, allocate a new page.
508                  */
509                 if (TRYPAGER || fs.object == fs.first_object) {
510                         if (fs.pindex >= fs.object->size) {
511                                 unlock_and_deallocate(&fs);
512                                 return (KERN_PROTECTION_FAILURE);
513                         }
514
515                         /*
516                          * Allocate a new page for this object/offset pair.
517                          *
518                          * Unlocked read of the p_flag is harmless. At
519                          * worst, the P_KILLED might be not observed
520                          * there, and allocation can fail, causing
521                          * restart and new reading of the p_flag.
522                          */
523                         fs.m = NULL;
524                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
525 #if VM_NRESERVLEVEL > 0
526                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
527                                         fs.object->flags |= OBJ_COLORED;
528                                         fs.object->pg_color = atop(vaddr) -
529                                             fs.pindex;
530                                 }
531 #endif
532                                 alloc_req = P_KILLED(curproc) ?
533                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
534                                 if (fs.object->type != OBJT_VNODE &&
535                                     fs.object->backing_object == NULL)
536                                         alloc_req |= VM_ALLOC_ZERO;
537                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
538                                     alloc_req);
539                         }
540                         if (fs.m == NULL) {
541                                 unlock_and_deallocate(&fs);
542                                 VM_WAITPFAULT;
543                                 goto RetryFault;
544                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
545                                 break;
546                 }
547
548 readrest:
549                 /*
550                  * We have found a valid page or we have allocated a new page.
551                  * The page thus may not be valid or may not be entirely 
552                  * valid.
553                  *
554                  * Attempt to fault-in the page if there is a chance that the
555                  * pager has it, and potentially fault in additional pages
556                  * at the same time.
557                  */
558                 if (TRYPAGER) {
559                         int rv;
560                         u_char behavior = vm_map_entry_behavior(fs.entry);
561
562                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
563                             P_KILLED(curproc)) {
564                                 behind = 0;
565                                 ahead = 0;
566                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
567                                 behind = 0;
568                                 ahead = atop(fs.entry->end - vaddr) - 1;
569                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
570                                         ahead = VM_FAULT_READ_AHEAD_MAX;
571                                 if (fs.pindex == fs.entry->next_read)
572                                         vm_fault_cache_behind(&fs,
573                                             VM_FAULT_READ_MAX);
574                         } else {
575                                 /*
576                                  * If this is a sequential page fault, then
577                                  * arithmetically increase the number of pages
578                                  * in the read-ahead window.  Otherwise, reset
579                                  * the read-ahead window to its smallest size.
580                                  */
581                                 behind = atop(vaddr - fs.entry->start);
582                                 if (behind > VM_FAULT_READ_BEHIND)
583                                         behind = VM_FAULT_READ_BEHIND;
584                                 ahead = atop(fs.entry->end - vaddr) - 1;
585                                 era = fs.entry->read_ahead;
586                                 if (fs.pindex == fs.entry->next_read) {
587                                         nera = era + behind;
588                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
589                                                 nera = VM_FAULT_READ_AHEAD_MAX;
590                                         behind = 0;
591                                         if (ahead > nera)
592                                                 ahead = nera;
593                                         if (era == VM_FAULT_READ_AHEAD_MAX)
594                                                 vm_fault_cache_behind(&fs,
595                                                     VM_FAULT_CACHE_BEHIND);
596                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
597                                         ahead = VM_FAULT_READ_AHEAD_MIN;
598                                 if (era != ahead)
599                                         fs.entry->read_ahead = ahead;
600                         }
601
602                         /*
603                          * Call the pager to retrieve the data, if any, after
604                          * releasing the lock on the map.  We hold a ref on
605                          * fs.object and the pages are exclusive busied.
606                          */
607                         unlock_map(&fs);
608
609                         if (fs.object->type == OBJT_VNODE) {
610                                 vp = fs.object->handle;
611                                 if (vp == fs.vp)
612                                         goto vnode_locked;
613                                 else if (fs.vp != NULL) {
614                                         vput(fs.vp);
615                                         fs.vp = NULL;
616                                 }
617                                 locked = VOP_ISLOCKED(vp);
618
619                                 if (locked != LK_EXCLUSIVE)
620                                         locked = LK_SHARED;
621                                 /* Do not sleep for vnode lock while fs.m is busy */
622                                 error = vget(vp, locked | LK_CANRECURSE |
623                                     LK_NOWAIT, curthread);
624                                 if (error != 0) {
625                                         vhold(vp);
626                                         release_page(&fs);
627                                         unlock_and_deallocate(&fs);
628                                         error = vget(vp, locked | LK_RETRY |
629                                             LK_CANRECURSE, curthread);
630                                         vdrop(vp);
631                                         fs.vp = vp;
632                                         KASSERT(error == 0,
633                                             ("vm_fault: vget failed"));
634                                         goto RetryFault;
635                                 }
636                                 fs.vp = vp;
637                         }
638 vnode_locked:
639                         KASSERT(fs.vp == NULL || !fs.map->system_map,
640                             ("vm_fault: vnode-backed object mapped by system map"));
641
642                         /*
643                          * now we find out if any other pages should be paged
644                          * in at this time this routine checks to see if the
645                          * pages surrounding this fault reside in the same
646                          * object as the page for this fault.  If they do,
647                          * then they are faulted in also into the object.  The
648                          * array "marray" returned contains an array of
649                          * vm_page_t structs where one of them is the
650                          * vm_page_t passed to the routine.  The reqpage
651                          * return value is the index into the marray for the
652                          * vm_page_t passed to the routine.
653                          *
654                          * fs.m plus the additional pages are exclusive busied.
655                          */
656                         faultcount = vm_fault_additional_pages(
657                             fs.m, behind, ahead, marray, &reqpage);
658
659                         rv = faultcount ?
660                             vm_pager_get_pages(fs.object, marray, faultcount,
661                                 reqpage) : VM_PAGER_FAIL;
662
663                         if (rv == VM_PAGER_OK) {
664                                 /*
665                                  * Found the page. Leave it busy while we play
666                                  * with it.
667                                  */
668
669                                 /*
670                                  * Relookup in case pager changed page. Pager
671                                  * is responsible for disposition of old page
672                                  * if moved.
673                                  */
674                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
675                                 if (!fs.m) {
676                                         unlock_and_deallocate(&fs);
677                                         goto RetryFault;
678                                 }
679
680                                 hardfault++;
681                                 break; /* break to PAGE HAS BEEN FOUND */
682                         }
683                         /*
684                          * Remove the bogus page (which does not exist at this
685                          * object/offset); before doing so, we must get back
686                          * our object lock to preserve our invariant.
687                          *
688                          * Also wake up any other process that may want to bring
689                          * in this page.
690                          *
691                          * If this is the top-level object, we must leave the
692                          * busy page to prevent another process from rushing
693                          * past us, and inserting the page in that object at
694                          * the same time that we are.
695                          */
696                         if (rv == VM_PAGER_ERROR)
697                                 printf("vm_fault: pager read error, pid %d (%s)\n",
698                                     curproc->p_pid, curproc->p_comm);
699                         /*
700                          * Data outside the range of the pager or an I/O error
701                          */
702                         /*
703                          * XXX - the check for kernel_map is a kludge to work
704                          * around having the machine panic on a kernel space
705                          * fault w/ I/O error.
706                          */
707                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
708                                 (rv == VM_PAGER_BAD)) {
709                                 vm_page_lock(fs.m);
710                                 vm_page_free(fs.m);
711                                 vm_page_unlock(fs.m);
712                                 fs.m = NULL;
713                                 unlock_and_deallocate(&fs);
714                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
715                         }
716                         if (fs.object != fs.first_object) {
717                                 vm_page_lock(fs.m);
718                                 vm_page_free(fs.m);
719                                 vm_page_unlock(fs.m);
720                                 fs.m = NULL;
721                                 /*
722                                  * XXX - we cannot just fall out at this
723                                  * point, m has been freed and is invalid!
724                                  */
725                         }
726                 }
727
728                 /*
729                  * We get here if the object has default pager (or unwiring) 
730                  * or the pager doesn't have the page.
731                  */
732                 if (fs.object == fs.first_object)
733                         fs.first_m = fs.m;
734
735                 /*
736                  * Move on to the next object.  Lock the next object before
737                  * unlocking the current one.
738                  */
739                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
740                 next_object = fs.object->backing_object;
741                 if (next_object == NULL) {
742                         /*
743                          * If there's no object left, fill the page in the top
744                          * object with zeros.
745                          */
746                         if (fs.object != fs.first_object) {
747                                 vm_object_pip_wakeup(fs.object);
748                                 VM_OBJECT_WUNLOCK(fs.object);
749
750                                 fs.object = fs.first_object;
751                                 fs.pindex = fs.first_pindex;
752                                 fs.m = fs.first_m;
753                                 VM_OBJECT_WLOCK(fs.object);
754                         }
755                         fs.first_m = NULL;
756
757                         /*
758                          * Zero the page if necessary and mark it valid.
759                          */
760                         if ((fs.m->flags & PG_ZERO) == 0) {
761                                 pmap_zero_page(fs.m);
762                         } else {
763                                 PCPU_INC(cnt.v_ozfod);
764                         }
765                         PCPU_INC(cnt.v_zfod);
766                         fs.m->valid = VM_PAGE_BITS_ALL;
767                         /* Don't try to prefault neighboring pages. */
768                         faultcount = 1;
769                         break;  /* break to PAGE HAS BEEN FOUND */
770                 } else {
771                         KASSERT(fs.object != next_object,
772                             ("object loop %p", next_object));
773                         VM_OBJECT_WLOCK(next_object);
774                         vm_object_pip_add(next_object, 1);
775                         if (fs.object != fs.first_object)
776                                 vm_object_pip_wakeup(fs.object);
777                         VM_OBJECT_WUNLOCK(fs.object);
778                         fs.object = next_object;
779                 }
780         }
781
782         vm_page_assert_xbusied(fs.m);
783
784         /*
785          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
786          * is held.]
787          */
788
789         /*
790          * If the page is being written, but isn't already owned by the
791          * top-level object, we have to copy it into a new page owned by the
792          * top-level object.
793          */
794         if (fs.object != fs.first_object) {
795                 /*
796                  * We only really need to copy if we want to write it.
797                  */
798                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
799                         /*
800                          * This allows pages to be virtually copied from a 
801                          * backing_object into the first_object, where the 
802                          * backing object has no other refs to it, and cannot
803                          * gain any more refs.  Instead of a bcopy, we just 
804                          * move the page from the backing object to the 
805                          * first object.  Note that we must mark the page 
806                          * dirty in the first object so that it will go out 
807                          * to swap when needed.
808                          */
809                         is_first_object_locked = FALSE;
810                         if (
811                                 /*
812                                  * Only one shadow object
813                                  */
814                                 (fs.object->shadow_count == 1) &&
815                                 /*
816                                  * No COW refs, except us
817                                  */
818                                 (fs.object->ref_count == 1) &&
819                                 /*
820                                  * No one else can look this object up
821                                  */
822                                 (fs.object->handle == NULL) &&
823                                 /*
824                                  * No other ways to look the object up
825                                  */
826                                 ((fs.object->type == OBJT_DEFAULT) ||
827                                  (fs.object->type == OBJT_SWAP)) &&
828                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
829                                 /*
830                                  * We don't chase down the shadow chain
831                                  */
832                             fs.object == fs.first_object->backing_object) {
833                                 /*
834                                  * get rid of the unnecessary page
835                                  */
836                                 vm_page_lock(fs.first_m);
837                                 vm_page_free(fs.first_m);
838                                 vm_page_unlock(fs.first_m);
839                                 /*
840                                  * grab the page and put it into the 
841                                  * process'es object.  The page is 
842                                  * automatically made dirty.
843                                  */
844                                 if (vm_page_rename(fs.m, fs.first_object,
845                                     fs.first_pindex)) {
846                                         unlock_and_deallocate(&fs);
847                                         goto RetryFault;
848                                 }
849                                 vm_page_xbusy(fs.m);
850                                 fs.first_m = fs.m;
851                                 fs.m = NULL;
852                                 PCPU_INC(cnt.v_cow_optim);
853                         } else {
854                                 /*
855                                  * Oh, well, lets copy it.
856                                  */
857                                 pmap_copy_page(fs.m, fs.first_m);
858                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
859                                 if (wired && (fault_flags &
860                                     VM_FAULT_CHANGE_WIRING) == 0) {
861                                         vm_page_lock(fs.first_m);
862                                         vm_page_wire(fs.first_m);
863                                         vm_page_unlock(fs.first_m);
864                                         
865                                         vm_page_lock(fs.m);
866                                         vm_page_unwire(fs.m, FALSE);
867                                         vm_page_unlock(fs.m);
868                                 }
869                                 /*
870                                  * We no longer need the old page or object.
871                                  */
872                                 release_page(&fs);
873                         }
874                         /*
875                          * fs.object != fs.first_object due to above 
876                          * conditional
877                          */
878                         vm_object_pip_wakeup(fs.object);
879                         VM_OBJECT_WUNLOCK(fs.object);
880                         /*
881                          * Only use the new page below...
882                          */
883                         fs.object = fs.first_object;
884                         fs.pindex = fs.first_pindex;
885                         fs.m = fs.first_m;
886                         if (!is_first_object_locked)
887                                 VM_OBJECT_WLOCK(fs.object);
888                         PCPU_INC(cnt.v_cow_faults);
889                         curthread->td_cow++;
890                 } else {
891                         prot &= ~VM_PROT_WRITE;
892                 }
893         }
894
895         /*
896          * We must verify that the maps have not changed since our last
897          * lookup.
898          */
899         if (!fs.lookup_still_valid) {
900                 vm_object_t retry_object;
901                 vm_pindex_t retry_pindex;
902                 vm_prot_t retry_prot;
903
904                 if (!vm_map_trylock_read(fs.map)) {
905                         release_page(&fs);
906                         unlock_and_deallocate(&fs);
907                         goto RetryFault;
908                 }
909                 fs.lookup_still_valid = TRUE;
910                 if (fs.map->timestamp != map_generation) {
911                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
912                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
913
914                         /*
915                          * If we don't need the page any longer, put it on the inactive
916                          * list (the easiest thing to do here).  If no one needs it,
917                          * pageout will grab it eventually.
918                          */
919                         if (result != KERN_SUCCESS) {
920                                 release_page(&fs);
921                                 unlock_and_deallocate(&fs);
922
923                                 /*
924                                  * If retry of map lookup would have blocked then
925                                  * retry fault from start.
926                                  */
927                                 if (result == KERN_FAILURE)
928                                         goto RetryFault;
929                                 return (result);
930                         }
931                         if ((retry_object != fs.first_object) ||
932                             (retry_pindex != fs.first_pindex)) {
933                                 release_page(&fs);
934                                 unlock_and_deallocate(&fs);
935                                 goto RetryFault;
936                         }
937
938                         /*
939                          * Check whether the protection has changed or the object has
940                          * been copied while we left the map unlocked. Changing from
941                          * read to write permission is OK - we leave the page
942                          * write-protected, and catch the write fault. Changing from
943                          * write to read permission means that we can't mark the page
944                          * write-enabled after all.
945                          */
946                         prot &= retry_prot;
947                 }
948         }
949         /*
950          * If the page was filled by a pager, update the map entry's
951          * last read offset.  Since the pager does not return the
952          * actual set of pages that it read, this update is based on
953          * the requested set.  Typically, the requested and actual
954          * sets are the same.
955          *
956          * XXX The following assignment modifies the map
957          * without holding a write lock on it.
958          */
959         if (hardfault)
960                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
961
962         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
963         vm_page_assert_xbusied(fs.m);
964
965         /*
966          * Page must be completely valid or it is not fit to
967          * map into user space.  vm_pager_get_pages() ensures this.
968          */
969         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
970             ("vm_fault: page %p partially invalid", fs.m));
971         VM_OBJECT_WUNLOCK(fs.object);
972
973         /*
974          * Put this page into the physical map.  We had to do the unlock above
975          * because pmap_enter() may sleep.  We don't put the page
976          * back on the active queue until later so that the pageout daemon
977          * won't find it (yet).
978          */
979         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
980             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
981         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
982             wired == 0)
983                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
984         VM_OBJECT_WLOCK(fs.object);
985         vm_page_lock(fs.m);
986
987         /*
988          * If the page is not wired down, then put it where the pageout daemon
989          * can find it.
990          */
991         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
992                 if (wired)
993                         vm_page_wire(fs.m);
994                 else
995                         vm_page_unwire(fs.m, 1);
996         } else
997                 vm_page_activate(fs.m);
998         if (m_hold != NULL) {
999                 *m_hold = fs.m;
1000                 vm_page_hold(fs.m);
1001         }
1002         vm_page_unlock(fs.m);
1003         vm_page_xunbusy(fs.m);
1004
1005         /*
1006          * Unlock everything, and return
1007          */
1008         unlock_and_deallocate(&fs);
1009         if (hardfault) {
1010                 PCPU_INC(cnt.v_io_faults);
1011                 curthread->td_ru.ru_majflt++;
1012         } else 
1013                 curthread->td_ru.ru_minflt++;
1014
1015         return (KERN_SUCCESS);
1016 }
1017
1018 /*
1019  * Speed up the reclamation of up to "distance" pages that precede the
1020  * faulting pindex within the first object of the shadow chain.
1021  */
1022 static void
1023 vm_fault_cache_behind(const struct faultstate *fs, int distance)
1024 {
1025         vm_object_t first_object, object;
1026         vm_page_t m, m_prev;
1027         vm_pindex_t pindex;
1028
1029         object = fs->object;
1030         VM_OBJECT_ASSERT_WLOCKED(object);
1031         first_object = fs->first_object;
1032         if (first_object != object) {
1033                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1034                         VM_OBJECT_WUNLOCK(object);
1035                         VM_OBJECT_WLOCK(first_object);
1036                         VM_OBJECT_WLOCK(object);
1037                 }
1038         }
1039         /* Neither fictitious nor unmanaged pages can be cached. */
1040         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1041                 if (fs->first_pindex < distance)
1042                         pindex = 0;
1043                 else
1044                         pindex = fs->first_pindex - distance;
1045                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1046                         pindex = OFF_TO_IDX(fs->entry->offset);
1047                 m = first_object != object ? fs->first_m : fs->m;
1048                 vm_page_assert_xbusied(m);
1049                 m_prev = vm_page_prev(m);
1050                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1051                     m->valid == VM_PAGE_BITS_ALL) {
1052                         m_prev = vm_page_prev(m);
1053                         if (vm_page_busied(m))
1054                                 continue;
1055                         vm_page_lock(m);
1056                         if (m->hold_count == 0 && m->wire_count == 0) {
1057                                 pmap_remove_all(m);
1058                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1059                                 if (m->dirty != 0)
1060                                         vm_page_deactivate(m);
1061                                 else
1062                                         vm_page_cache(m);
1063                         }
1064                         vm_page_unlock(m);
1065                 }
1066         }
1067         if (first_object != object)
1068                 VM_OBJECT_WUNLOCK(first_object);
1069 }
1070
1071 /*
1072  * vm_fault_prefault provides a quick way of clustering
1073  * pagefaults into a processes address space.  It is a "cousin"
1074  * of vm_map_pmap_enter, except it runs at page fault time instead
1075  * of mmap time.
1076  */
1077 static void
1078 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1079     int faultcount, int reqpage)
1080 {
1081         pmap_t pmap;
1082         vm_map_entry_t entry;
1083         vm_object_t backing_object, lobject;
1084         vm_offset_t addr, starta;
1085         vm_pindex_t pindex;
1086         vm_page_t m;
1087         int backward, forward, i;
1088
1089         pmap = fs->map->pmap;
1090         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1091                 return;
1092
1093         if (faultcount > 0) {
1094                 backward = reqpage;
1095                 forward = faultcount - reqpage - 1;
1096         } else {
1097                 backward = PFBAK;
1098                 forward = PFFOR;
1099         }
1100         entry = fs->entry;
1101
1102         starta = addra - backward * PAGE_SIZE;
1103         if (starta < entry->start) {
1104                 starta = entry->start;
1105         } else if (starta > addra) {
1106                 starta = 0;
1107         }
1108
1109         /*
1110          * Generate the sequence of virtual addresses that are candidates for
1111          * prefaulting in an outward spiral from the faulting virtual address,
1112          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1113          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1114          * If the candidate address doesn't have a backing physical page, then
1115          * the loop immediately terminates.
1116          */
1117         for (i = 0; i < 2 * imax(backward, forward); i++) {
1118                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1119                     PAGE_SIZE);
1120                 if (addr > addra + forward * PAGE_SIZE)
1121                         addr = 0;
1122
1123                 if (addr < starta || addr >= entry->end)
1124                         continue;
1125
1126                 if (!pmap_is_prefaultable(pmap, addr))
1127                         continue;
1128
1129                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1130                 lobject = entry->object.vm_object;
1131                 VM_OBJECT_RLOCK(lobject);
1132                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1133                     lobject->type == OBJT_DEFAULT &&
1134                     (backing_object = lobject->backing_object) != NULL) {
1135                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1136                             0, ("vm_fault_prefault: unaligned object offset"));
1137                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1138                         VM_OBJECT_RLOCK(backing_object);
1139                         VM_OBJECT_RUNLOCK(lobject);
1140                         lobject = backing_object;
1141                 }
1142                 if (m == NULL) {
1143                         VM_OBJECT_RUNLOCK(lobject);
1144                         break;
1145                 }
1146                 if (m->valid == VM_PAGE_BITS_ALL &&
1147                     (m->flags & PG_FICTITIOUS) == 0)
1148                         pmap_enter_quick(pmap, addr, m, entry->protection);
1149                 VM_OBJECT_RUNLOCK(lobject);
1150         }
1151 }
1152
1153 /*
1154  * Hold each of the physical pages that are mapped by the specified range of
1155  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1156  * and allow the specified types of access, "prot".  If all of the implied
1157  * pages are successfully held, then the number of held pages is returned
1158  * together with pointers to those pages in the array "ma".  However, if any
1159  * of the pages cannot be held, -1 is returned.
1160  */
1161 int
1162 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1163     vm_prot_t prot, vm_page_t *ma, int max_count)
1164 {
1165         vm_offset_t end, va;
1166         vm_page_t *mp;
1167         int count;
1168         boolean_t pmap_failed;
1169
1170         if (len == 0)
1171                 return (0);
1172         end = round_page(addr + len);
1173         addr = trunc_page(addr);
1174
1175         /*
1176          * Check for illegal addresses.
1177          */
1178         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1179                 return (-1);
1180
1181         if (atop(end - addr) > max_count)
1182                 panic("vm_fault_quick_hold_pages: count > max_count");
1183         count = atop(end - addr);
1184
1185         /*
1186          * Most likely, the physical pages are resident in the pmap, so it is
1187          * faster to try pmap_extract_and_hold() first.
1188          */
1189         pmap_failed = FALSE;
1190         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1191                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1192                 if (*mp == NULL)
1193                         pmap_failed = TRUE;
1194                 else if ((prot & VM_PROT_WRITE) != 0 &&
1195                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1196                         /*
1197                          * Explicitly dirty the physical page.  Otherwise, the
1198                          * caller's changes may go unnoticed because they are
1199                          * performed through an unmanaged mapping or by a DMA
1200                          * operation.
1201                          *
1202                          * The object lock is not held here.
1203                          * See vm_page_clear_dirty_mask().
1204                          */
1205                         vm_page_dirty(*mp);
1206                 }
1207         }
1208         if (pmap_failed) {
1209                 /*
1210                  * One or more pages could not be held by the pmap.  Either no
1211                  * page was mapped at the specified virtual address or that
1212                  * mapping had insufficient permissions.  Attempt to fault in
1213                  * and hold these pages.
1214                  */
1215                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1216                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1217                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1218                                 goto error;
1219         }
1220         return (count);
1221 error:  
1222         for (mp = ma; mp < ma + count; mp++)
1223                 if (*mp != NULL) {
1224                         vm_page_lock(*mp);
1225                         vm_page_unhold(*mp);
1226                         vm_page_unlock(*mp);
1227                 }
1228         return (-1);
1229 }
1230
1231 /*
1232  *      Routine:
1233  *              vm_fault_copy_entry
1234  *      Function:
1235  *              Create new shadow object backing dst_entry with private copy of
1236  *              all underlying pages. When src_entry is equal to dst_entry,
1237  *              function implements COW for wired-down map entry. Otherwise,
1238  *              it forks wired entry into dst_map.
1239  *
1240  *      In/out conditions:
1241  *              The source and destination maps must be locked for write.
1242  *              The source map entry must be wired down (or be a sharing map
1243  *              entry corresponding to a main map entry that is wired down).
1244  */
1245 void
1246 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1247     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1248     vm_ooffset_t *fork_charge)
1249 {
1250         vm_object_t backing_object, dst_object, object, src_object;
1251         vm_pindex_t dst_pindex, pindex, src_pindex;
1252         vm_prot_t access, prot;
1253         vm_offset_t vaddr;
1254         vm_page_t dst_m;
1255         vm_page_t src_m;
1256         boolean_t upgrade;
1257
1258 #ifdef  lint
1259         src_map++;
1260 #endif  /* lint */
1261
1262         upgrade = src_entry == dst_entry;
1263         access = prot = dst_entry->protection;
1264
1265         src_object = src_entry->object.vm_object;
1266         src_pindex = OFF_TO_IDX(src_entry->offset);
1267
1268         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1269                 dst_object = src_object;
1270                 vm_object_reference(dst_object);
1271         } else {
1272                 /*
1273                  * Create the top-level object for the destination entry. (Doesn't
1274                  * actually shadow anything - we copy the pages directly.)
1275                  */
1276                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1277                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1278 #if VM_NRESERVLEVEL > 0
1279                 dst_object->flags |= OBJ_COLORED;
1280                 dst_object->pg_color = atop(dst_entry->start);
1281 #endif
1282         }
1283
1284         VM_OBJECT_WLOCK(dst_object);
1285         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1286             ("vm_fault_copy_entry: vm_object not NULL"));
1287         if (src_object != dst_object) {
1288                 dst_entry->object.vm_object = dst_object;
1289                 dst_entry->offset = 0;
1290                 dst_object->charge = dst_entry->end - dst_entry->start;
1291         }
1292         if (fork_charge != NULL) {
1293                 KASSERT(dst_entry->cred == NULL,
1294                     ("vm_fault_copy_entry: leaked swp charge"));
1295                 dst_object->cred = curthread->td_ucred;
1296                 crhold(dst_object->cred);
1297                 *fork_charge += dst_object->charge;
1298         } else if (dst_object->cred == NULL) {
1299                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1300                     dst_entry));
1301                 dst_object->cred = dst_entry->cred;
1302                 dst_entry->cred = NULL;
1303         }
1304
1305         /*
1306          * If not an upgrade, then enter the mappings in the pmap as
1307          * read and/or execute accesses.  Otherwise, enter them as
1308          * write accesses.
1309          *
1310          * A writeable large page mapping is only created if all of
1311          * the constituent small page mappings are modified. Marking
1312          * PTEs as modified on inception allows promotion to happen
1313          * without taking potentially large number of soft faults.
1314          */
1315         if (!upgrade)
1316                 access &= ~VM_PROT_WRITE;
1317
1318         /*
1319          * Loop through all of the virtual pages within the entry's
1320          * range, copying each page from the source object to the
1321          * destination object.  Since the source is wired, those pages
1322          * must exist.  In contrast, the destination is pageable.
1323          * Since the destination object does share any backing storage
1324          * with the source object, all of its pages must be dirtied,
1325          * regardless of whether they can be written.
1326          */
1327         for (vaddr = dst_entry->start, dst_pindex = 0;
1328             vaddr < dst_entry->end;
1329             vaddr += PAGE_SIZE, dst_pindex++) {
1330 again:
1331                 /*
1332                  * Find the page in the source object, and copy it in.
1333                  * Because the source is wired down, the page will be
1334                  * in memory.
1335                  */
1336                 if (src_object != dst_object)
1337                         VM_OBJECT_RLOCK(src_object);
1338                 object = src_object;
1339                 pindex = src_pindex + dst_pindex;
1340                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1341                     (backing_object = object->backing_object) != NULL) {
1342                         /*
1343                          * Unless the source mapping is read-only or
1344                          * it is presently being upgraded from
1345                          * read-only, the first object in the shadow
1346                          * chain should provide all of the pages.  In
1347                          * other words, this loop body should never be
1348                          * executed when the source mapping is already
1349                          * read/write.
1350                          */
1351                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1352                             upgrade,
1353                             ("vm_fault_copy_entry: main object missing page"));
1354
1355                         VM_OBJECT_RLOCK(backing_object);
1356                         pindex += OFF_TO_IDX(object->backing_object_offset);
1357                         if (object != dst_object)
1358                                 VM_OBJECT_RUNLOCK(object);
1359                         object = backing_object;
1360                 }
1361                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1362
1363                 if (object != dst_object) {
1364                         /*
1365                          * Allocate a page in the destination object.
1366                          */
1367                         dst_m = vm_page_alloc(dst_object, (src_object ==
1368                             dst_object ? src_pindex : 0) + dst_pindex,
1369                             VM_ALLOC_NORMAL);
1370                         if (dst_m == NULL) {
1371                                 VM_OBJECT_WUNLOCK(dst_object);
1372                                 VM_OBJECT_RUNLOCK(object);
1373                                 VM_WAIT;
1374                                 VM_OBJECT_WLOCK(dst_object);
1375                                 goto again;
1376                         }
1377                         pmap_copy_page(src_m, dst_m);
1378                         VM_OBJECT_RUNLOCK(object);
1379                         dst_m->valid = VM_PAGE_BITS_ALL;
1380                         dst_m->dirty = VM_PAGE_BITS_ALL;
1381                 } else {
1382                         dst_m = src_m;
1383                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1384                                 goto again;
1385                         vm_page_xbusy(dst_m);
1386                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1387                             ("invalid dst page %p", dst_m));
1388                 }
1389                 VM_OBJECT_WUNLOCK(dst_object);
1390
1391                 /*
1392                  * Enter it in the pmap. If a wired, copy-on-write
1393                  * mapping is being replaced by a write-enabled
1394                  * mapping, then wire that new mapping.
1395                  */
1396                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1397                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1398
1399                 /*
1400                  * Mark it no longer busy, and put it on the active list.
1401                  */
1402                 VM_OBJECT_WLOCK(dst_object);
1403                 
1404                 if (upgrade) {
1405                         if (src_m != dst_m) {
1406                                 vm_page_lock(src_m);
1407                                 vm_page_unwire(src_m, 0);
1408                                 vm_page_unlock(src_m);
1409                                 vm_page_lock(dst_m);
1410                                 vm_page_wire(dst_m);
1411                                 vm_page_unlock(dst_m);
1412                         } else {
1413                                 KASSERT(dst_m->wire_count > 0,
1414                                     ("dst_m %p is not wired", dst_m));
1415                         }
1416                 } else {
1417                         vm_page_lock(dst_m);
1418                         vm_page_activate(dst_m);
1419                         vm_page_unlock(dst_m);
1420                 }
1421                 vm_page_xunbusy(dst_m);
1422         }
1423         VM_OBJECT_WUNLOCK(dst_object);
1424         if (upgrade) {
1425                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1426                 vm_object_deallocate(src_object);
1427         }
1428 }
1429
1430
1431 /*
1432  * This routine checks around the requested page for other pages that
1433  * might be able to be faulted in.  This routine brackets the viable
1434  * pages for the pages to be paged in.
1435  *
1436  * Inputs:
1437  *      m, rbehind, rahead
1438  *
1439  * Outputs:
1440  *  marray (array of vm_page_t), reqpage (index of requested page)
1441  *
1442  * Return value:
1443  *  number of pages in marray
1444  */
1445 static int
1446 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1447         vm_page_t m;
1448         int rbehind;
1449         int rahead;
1450         vm_page_t *marray;
1451         int *reqpage;
1452 {
1453         int i,j;
1454         vm_object_t object;
1455         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1456         vm_page_t rtm;
1457         int cbehind, cahead;
1458
1459         VM_OBJECT_ASSERT_WLOCKED(m->object);
1460
1461         object = m->object;
1462         pindex = m->pindex;
1463         cbehind = cahead = 0;
1464
1465         /*
1466          * if the requested page is not available, then give up now
1467          */
1468         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1469                 return 0;
1470         }
1471
1472         if ((cbehind == 0) && (cahead == 0)) {
1473                 *reqpage = 0;
1474                 marray[0] = m;
1475                 return 1;
1476         }
1477
1478         if (rahead > cahead) {
1479                 rahead = cahead;
1480         }
1481
1482         if (rbehind > cbehind) {
1483                 rbehind = cbehind;
1484         }
1485
1486         /*
1487          * scan backward for the read behind pages -- in memory 
1488          */
1489         if (pindex > 0) {
1490                 if (rbehind > pindex) {
1491                         rbehind = pindex;
1492                         startpindex = 0;
1493                 } else {
1494                         startpindex = pindex - rbehind;
1495                 }
1496
1497                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1498                     rtm->pindex >= startpindex)
1499                         startpindex = rtm->pindex + 1;
1500
1501                 /* tpindex is unsigned; beware of numeric underflow. */
1502                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1503                     tpindex < pindex; i++, tpindex--) {
1504
1505                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1506                             VM_ALLOC_IFNOTCACHED);
1507                         if (rtm == NULL) {
1508                                 /*
1509                                  * Shift the allocated pages to the
1510                                  * beginning of the array.
1511                                  */
1512                                 for (j = 0; j < i; j++) {
1513                                         marray[j] = marray[j + tpindex + 1 -
1514                                             startpindex];
1515                                 }
1516                                 break;
1517                         }
1518
1519                         marray[tpindex - startpindex] = rtm;
1520                 }
1521         } else {
1522                 startpindex = 0;
1523                 i = 0;
1524         }
1525
1526         marray[i] = m;
1527         /* page offset of the required page */
1528         *reqpage = i;
1529
1530         tpindex = pindex + 1;
1531         i++;
1532
1533         /*
1534          * scan forward for the read ahead pages
1535          */
1536         endpindex = tpindex + rahead;
1537         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1538                 endpindex = rtm->pindex;
1539         if (endpindex > object->size)
1540                 endpindex = object->size;
1541
1542         for (; tpindex < endpindex; i++, tpindex++) {
1543
1544                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1545                     VM_ALLOC_IFNOTCACHED);
1546                 if (rtm == NULL) {
1547                         break;
1548                 }
1549
1550                 marray[i] = rtm;
1551         }
1552
1553         /* return number of pages */
1554         return i;
1555 }
1556
1557 /*
1558  * Block entry into the machine-independent layer's page fault handler by
1559  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1560  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1561  * spurious page faults. 
1562  */
1563 int
1564 vm_fault_disable_pagefaults(void)
1565 {
1566
1567         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1568 }
1569
1570 void
1571 vm_fault_enable_pagefaults(int save)
1572 {
1573
1574         curthread_pflags_restore(save);
1575 }