]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Add a diagnostic printf for freeing a wired page. This will eventually
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $Id: vm_fault.c,v 1.87 1998/08/24 08:39:37 dfr Exp $
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_prot.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96
97 static int vm_fault_additional_pages __P((vm_page_t, int,
98                                           int, vm_page_t *, int *));
99
100 #define VM_FAULT_READ_AHEAD 8
101 #define VM_FAULT_READ_BEHIND 7
102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
103
104 struct faultstate {
105         vm_page_t m;
106         vm_object_t object;
107         vm_pindex_t pindex;
108         vm_page_t first_m;
109         vm_object_t     first_object;
110         vm_pindex_t first_pindex;
111         vm_map_t map;
112         vm_map_entry_t entry;
113         int lookup_still_valid;
114         struct vnode *vp;
115 };
116
117 static void
118 release_page(struct faultstate *fs)
119 {
120         vm_page_wakeup(fs->m);
121         vm_page_deactivate(fs->m);
122         fs->m = NULL;
123 }
124
125 static void
126 unlock_map(struct faultstate *fs)
127 {
128         if (fs->lookup_still_valid) {
129                 vm_map_lookup_done(fs->map, fs->entry);
130                 fs->lookup_still_valid = FALSE;
131         }
132 }
133
134 static void
135 _unlock_things(struct faultstate *fs, int dealloc)
136 {
137         vm_object_pip_wakeup(fs->object);
138         if (fs->object != fs->first_object) {
139                 vm_page_free(fs->first_m);
140                 vm_object_pip_wakeup(fs->first_object);
141                 fs->first_m = NULL;
142         }
143         if (dealloc) {
144                 vm_object_deallocate(fs->first_object);
145         }
146         unlock_map(fs); 
147         if (fs->vp != NULL) { 
148                 vput(fs->vp);
149                 fs->vp = NULL;
150         }
151 }
152
153 #define unlock_things(fs) _unlock_things(fs, 0)
154 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
155
156 /*
157  *      vm_fault:
158  *
159  *      Handle a page fault occuring at the given address,
160  *      requiring the given permissions, in the map specified.
161  *      If successful, the page is inserted into the
162  *      associated physical map.
163  *
164  *      NOTE: the given address should be truncated to the
165  *      proper page address.
166  *
167  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
168  *      a standard error specifying why the fault is fatal is returned.
169  *
170  *
171  *      The map in question must be referenced, and remains so.
172  *      Caller may hold no locks.
173  */
174 int
175 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
176 {
177         vm_prot_t prot;
178         int result;
179         boolean_t wired;
180         int map_generation;
181         vm_page_t old_m;
182         vm_object_t next_object;
183         vm_page_t marray[VM_FAULT_READ];
184         int hardfault;
185         int faultcount;
186         struct proc *p = curproc;       /* XXX */
187         struct faultstate fs;
188
189         cnt.v_vm_faults++;      /* needs lock XXX */
190         hardfault = 0;
191
192 RetryFault:;
193         fs.map = map;
194
195         /*
196          * Find the backing store object and offset into it to begin the
197          * search.
198          */
199         if ((result = vm_map_lookup(&fs.map, vaddr,
200                 fault_type, &fs.entry, &fs.first_object,
201                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
202                 if ((result != KERN_PROTECTION_FAILURE) ||
203                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
204                         return result;
205                 }
206
207                 /*
208                  * If we are user-wiring a r/w segment, and it is COW, then
209                  * we need to do the COW operation.  Note that we don't COW
210                  * currently RO sections now, because it is NOT desirable
211                  * to COW .text.  We simply keep .text from ever being COW'ed
212                  * and take the heat that one cannot debug wired .text sections.
213                  */
214                 result = vm_map_lookup(&fs.map, vaddr,
215                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
216                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
217                 if (result != KERN_SUCCESS) {
218                         return result;
219                 }
220
221                 /*
222                  * If we don't COW now, on a user wire, the user will never
223                  * be able to write to the mapping.  If we don't make this
224                  * restriction, the bookkeeping would be nearly impossible.
225                  */
226                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
227                         fs.entry->max_protection &= ~VM_PROT_WRITE;
228         }
229
230         map_generation = fs.map->timestamp;
231
232         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
233                 panic("vm_fault: fault on nofault entry, addr: %lx",
234                     (u_long)vaddr);
235         }
236
237         /*
238          * Make a reference to this object to prevent its disposal while we
239          * are messing with it.  Once we have the reference, the map is free
240          * to be diddled.  Since objects reference their shadows (and copies),
241          * they will stay around as well.
242          */
243         vm_object_reference(fs.first_object);
244         vm_object_pip_add(fs.first_object, 1);
245
246         fs.vp = vnode_pager_lock(fs.first_object);
247         if ((fault_type & VM_PROT_WRITE) &&
248                 (fs.first_object->type == OBJT_VNODE)) {
249                 vm_freeze_copyopts(fs.first_object,
250                         fs.first_pindex, fs.first_pindex + 1);
251         }
252
253         fs.lookup_still_valid = TRUE;
254
255         if (wired)
256                 fault_type = prot;
257
258         fs.first_m = NULL;
259
260         /*
261          * Search for the page at object/offset.
262          */
263
264         fs.object = fs.first_object;
265         fs.pindex = fs.first_pindex;
266
267         /*
268          * See whether this page is resident
269          */
270         while (TRUE) {
271
272                 if (fs.object->flags & OBJ_DEAD) {
273                         unlock_and_deallocate(&fs);
274                         return (KERN_PROTECTION_FAILURE);
275                 }
276                         
277                 fs.m = vm_page_lookup(fs.object, fs.pindex);
278                 if (fs.m != NULL) {
279                         int queue;
280                         /*
281                          * If the page is being brought in, wait for it and
282                          * then retry.
283                          */
284                         if ((fs.m->flags & PG_BUSY) ||
285                                 (fs.m->busy &&
286                                  (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
287                                 int s;
288
289                                 unlock_things(&fs);
290                                 s = splvm();
291                                 if ((fs.m->flags & PG_BUSY) ||
292                                         (fs.m->busy &&
293                                          (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
294                                         vm_page_flag_set(fs.m, PG_WANTED | PG_REFERENCED);
295                                         cnt.v_intrans++;
296                                         tsleep(fs.m, PSWP, "vmpfw", 0);
297                                 }
298                                 splx(s);
299                                 vm_object_deallocate(fs.first_object);
300                                 goto RetryFault;
301                         }
302
303                         queue = fs.m->queue;
304                         vm_page_unqueue_nowakeup(fs.m);
305
306                         /*
307                          * Mark page busy for other processes, and the pagedaemon.
308                          */
309                         if (((queue - fs.m->pc) == PQ_CACHE) &&
310                             (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
311                                 vm_page_activate(fs.m);
312                                 unlock_and_deallocate(&fs);
313                                 VM_WAIT;
314                                 goto RetryFault;
315                         }
316
317                         vm_page_busy(fs.m);
318                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
319                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
320                                 goto readrest;
321                         }
322
323                         break;
324                 }
325                 if (((fs.object->type != OBJT_DEFAULT) &&
326                                 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
327                     || (fs.object == fs.first_object)) {
328
329                         if (fs.pindex >= fs.object->size) {
330                                 unlock_and_deallocate(&fs);
331                                 return (KERN_PROTECTION_FAILURE);
332                         }
333
334                         /*
335                          * Allocate a new page for this object/offset pair.
336                          */
337                         fs.m = vm_page_alloc(fs.object, fs.pindex,
338                                 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
339
340                         if (fs.m == NULL) {
341                                 unlock_and_deallocate(&fs);
342                                 VM_WAIT;
343                                 goto RetryFault;
344                         }
345                 }
346
347 readrest:
348                 if (fs.object->type != OBJT_DEFAULT &&
349                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) {
350                         int rv;
351                         int reqpage;
352                         int ahead, behind;
353
354                         if (fs.first_object->behavior == OBJ_RANDOM) {
355                                 ahead = 0;
356                                 behind = 0;
357                         } else {
358                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
359                                 if (behind > VM_FAULT_READ_BEHIND)
360                                         behind = VM_FAULT_READ_BEHIND;
361
362                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
363                                 if (ahead > VM_FAULT_READ_AHEAD)
364                                         ahead = VM_FAULT_READ_AHEAD;
365                         }
366
367                         if ((fs.first_object->type != OBJT_DEVICE) &&
368                                 (fs.first_object->behavior == OBJ_SEQUENTIAL)) {
369                                 vm_pindex_t firstpindex, tmppindex;
370                                 if (fs.first_pindex <
371                                         2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1))
372                                         firstpindex = 0;
373                                 else
374                                         firstpindex = fs.first_pindex -
375                                                 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1);
376
377                                 for(tmppindex = fs.first_pindex - 1;
378                                         tmppindex >= firstpindex;
379                                         --tmppindex) {
380                                         vm_page_t mt;
381                                         mt = vm_page_lookup( fs.first_object, tmppindex);
382                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
383                                                 break;
384                                         if (mt->busy ||
385                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS)) ||
386                                                 mt->hold_count ||
387                                                 mt->wire_count) 
388                                                 continue;
389                                         if (mt->dirty == 0)
390                                                 vm_page_test_dirty(mt);
391                                         if (mt->dirty) {
392                                                 vm_page_protect(mt, VM_PROT_NONE);
393                                                 vm_page_deactivate(mt);
394                                         } else {
395                                                 vm_page_cache(mt);
396                                         }
397                                 }
398
399                                 ahead += behind;
400                                 behind = 0;
401                         }
402
403                         /*
404                          * now we find out if any other pages should be paged
405                          * in at this time this routine checks to see if the
406                          * pages surrounding this fault reside in the same
407                          * object as the page for this fault.  If they do,
408                          * then they are faulted in also into the object.  The
409                          * array "marray" returned contains an array of
410                          * vm_page_t structs where one of them is the
411                          * vm_page_t passed to the routine.  The reqpage
412                          * return value is the index into the marray for the
413                          * vm_page_t passed to the routine.
414                          */
415                         faultcount = vm_fault_additional_pages(
416                             fs.m, behind, ahead, marray, &reqpage);
417
418                         /*
419                          * Call the pager to retrieve the data, if any, after
420                          * releasing the lock on the map.
421                          */
422                         unlock_map(&fs);
423
424                         rv = faultcount ?
425                             vm_pager_get_pages(fs.object, marray, faultcount,
426                                 reqpage) : VM_PAGER_FAIL;
427
428                         if (rv == VM_PAGER_OK) {
429                                 /*
430                                  * Found the page. Leave it busy while we play
431                                  * with it.
432                                  */
433
434                                 /*
435                                  * Relookup in case pager changed page. Pager
436                                  * is responsible for disposition of old page
437                                  * if moved.
438                                  */
439                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
440                                 if(!fs.m) {
441                                         unlock_and_deallocate(&fs);
442                                         goto RetryFault;
443                                 }
444
445                                 hardfault++;
446                                 break;
447                         }
448                         /*
449                          * Remove the bogus page (which does not exist at this
450                          * object/offset); before doing so, we must get back
451                          * our object lock to preserve our invariant.
452                          *
453                          * Also wake up any other process that may want to bring
454                          * in this page.
455                          *
456                          * If this is the top-level object, we must leave the
457                          * busy page to prevent another process from rushing
458                          * past us, and inserting the page in that object at
459                          * the same time that we are.
460                          */
461
462                         if (rv == VM_PAGER_ERROR)
463                                 printf("vm_fault: pager read error, pid %d (%s)\n",
464                                     curproc->p_pid, curproc->p_comm);
465                         /*
466                          * Data outside the range of the pager or an I/O error
467                          */
468                         /*
469                          * XXX - the check for kernel_map is a kludge to work
470                          * around having the machine panic on a kernel space
471                          * fault w/ I/O error.
472                          */
473                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
474                                 (rv == VM_PAGER_BAD)) {
475                                 vm_page_free(fs.m);
476                                 fs.m = NULL;
477                                 unlock_and_deallocate(&fs);
478                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
479                         }
480                         if (fs.object != fs.first_object) {
481                                 vm_page_free(fs.m);
482                                 fs.m = NULL;
483                                 /*
484                                  * XXX - we cannot just fall out at this
485                                  * point, m has been freed and is invalid!
486                                  */
487                         }
488                 }
489                 /*
490                  * We get here if the object has default pager (or unwiring) or the
491                  * pager doesn't have the page.
492                  */
493                 if (fs.object == fs.first_object)
494                         fs.first_m = fs.m;
495
496                 /*
497                  * Move on to the next object.  Lock the next object before
498                  * unlocking the current one.
499                  */
500
501                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
502                 next_object = fs.object->backing_object;
503                 if (next_object == NULL) {
504                         /*
505                          * If there's no object left, fill the page in the top
506                          * object with zeros.
507                          */
508                         if (fs.object != fs.first_object) {
509                                 vm_object_pip_wakeup(fs.object);
510
511                                 fs.object = fs.first_object;
512                                 fs.pindex = fs.first_pindex;
513                                 fs.m = fs.first_m;
514                         }
515                         fs.first_m = NULL;
516
517                         if ((fs.m->flags & PG_ZERO) == 0) {
518                                 vm_page_zero_fill(fs.m);
519                                 cnt.v_ozfod++;
520                         }
521                         cnt.v_zfod++;
522                         break;
523                 } else {
524                         if (fs.object != fs.first_object) {
525                                 vm_object_pip_wakeup(fs.object);
526                         }
527                         fs.object = next_object;
528                         vm_object_pip_add(fs.object, 1);
529                 }
530         }
531
532 #if defined(DIAGNOSTIC)
533         if ((fs.m->flags & PG_BUSY) == 0)
534                 panic("vm_fault: not busy after main loop");
535 #endif
536
537         /*
538          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
539          * is held.]
540          */
541
542         old_m = fs.m;   /* save page that would be copied */
543
544         /*
545          * If the page is being written, but isn't already owned by the
546          * top-level object, we have to copy it into a new page owned by the
547          * top-level object.
548          */
549
550         if (fs.object != fs.first_object) {
551                 /*
552                  * We only really need to copy if we want to write it.
553                  */
554
555                 if (fault_type & VM_PROT_WRITE) {
556
557                         /*
558                          * This allows pages to be virtually copied from a backing_object
559                          * into the first_object, where the backing object has no other
560                          * refs to it, and cannot gain any more refs.  Instead of a
561                          * bcopy, we just move the page from the backing object to the
562                          * first object.  Note that we must mark the page dirty in the
563                          * first object so that it will go out to swap when needed.
564                          */
565                         if (map_generation == fs.map->timestamp &&
566                                 /*
567                                  * Only one shadow object
568                                  */
569                                 (fs.object->shadow_count == 1) &&
570                                 /*
571                                  * No COW refs, except us
572                                  */
573                                 (fs.object->ref_count == 1) &&
574                                 /*
575                                  * Noone else can look this object up
576                                  */
577                                 (fs.object->handle == NULL) &&
578                                 /*
579                                  * No other ways to look the object up
580                                  */
581                                 ((fs.object->type == OBJT_DEFAULT) ||
582                                  (fs.object->type == OBJT_SWAP)) &&
583                                 /*
584                                  * We don't chase down the shadow chain
585                                  */
586                                 (fs.object == fs.first_object->backing_object) &&
587
588                                 /*
589                                  * grab the lock if we need to
590                                  */
591                                 (fs.lookup_still_valid ||
592                                                 (((fs.entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) &&
593                                                  lockmgr(&fs.map->lock,
594                                                         LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0))) {
595                                 
596                                 fs.lookup_still_valid = 1;
597                                 /*
598                                  * get rid of the unnecessary page
599                                  */
600                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
601                                 vm_page_free(fs.first_m);
602                                 fs.first_m = NULL;
603
604                                 /*
605                                  * grab the page and put it into the process'es object
606                                  */
607                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
608                                 fs.first_m = fs.m;
609                                 fs.first_m->dirty = VM_PAGE_BITS_ALL;
610                                 vm_page_busy(fs.first_m);
611                                 fs.m = NULL;
612                                 cnt.v_cow_optim++;
613                         } else {
614                                 /*
615                                  * Oh, well, lets copy it.
616                                  */
617                                 vm_page_copy(fs.m, fs.first_m);
618                         }
619
620                         if (fs.m) {
621                                 /*
622                                  * We no longer need the old page or object.
623                                  */
624                                 release_page(&fs);
625                         }
626
627                         vm_object_pip_wakeup(fs.object);
628                         /*
629                          * Only use the new page below...
630                          */
631
632                         cnt.v_cow_faults++;
633                         fs.m = fs.first_m;
634                         fs.object = fs.first_object;
635                         fs.pindex = fs.first_pindex;
636
637                 } else {
638                         prot &= ~VM_PROT_WRITE;
639                 }
640         }
641
642         /*
643          * We must verify that the maps have not changed since our last
644          * lookup.
645          */
646
647         if (!fs.lookup_still_valid &&
648                 (fs.map->timestamp != map_generation)) {
649                 vm_object_t retry_object;
650                 vm_pindex_t retry_pindex;
651                 vm_prot_t retry_prot;
652
653                 /*
654                  * Since map entries may be pageable, make sure we can take a
655                  * page fault on them.
656                  */
657
658                 /*
659                  * To avoid trying to write_lock the map while another process
660                  * has it read_locked (in vm_map_pageable), we do not try for
661                  * write permission.  If the page is still writable, we will
662                  * get write permission.  If it is not, or has been marked
663                  * needs_copy, we enter the mapping without write permission,
664                  * and will merely take another fault.
665                  */
666                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
667                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
668                 map_generation = fs.map->timestamp;
669
670                 /*
671                  * If we don't need the page any longer, put it on the active
672                  * list (the easiest thing to do here).  If no one needs it,
673                  * pageout will grab it eventually.
674                  */
675
676                 if (result != KERN_SUCCESS) {
677                         release_page(&fs);
678                         unlock_and_deallocate(&fs);
679                         return (result);
680                 }
681                 fs.lookup_still_valid = TRUE;
682
683                 if ((retry_object != fs.first_object) ||
684                     (retry_pindex != fs.first_pindex)) {
685                         release_page(&fs);
686                         unlock_and_deallocate(&fs);
687                         goto RetryFault;
688                 }
689                 /*
690                  * Check whether the protection has changed or the object has
691                  * been copied while we left the map unlocked. Changing from
692                  * read to write permission is OK - we leave the page
693                  * write-protected, and catch the write fault. Changing from
694                  * write to read permission means that we can't mark the page
695                  * write-enabled after all.
696                  */
697                 prot &= retry_prot;
698         }
699
700         /*
701          * Put this page into the physical map. We had to do the unlock above
702          * because pmap_enter may cause other faults.   We don't put the page
703          * back on the active queue until later so that the page-out daemon
704          * won't find us (yet).
705          */
706
707         if (prot & VM_PROT_WRITE) {
708                 vm_page_flag_set(fs.m, PG_WRITEABLE);
709                 vm_object_set_flag(fs.m->object,
710                                    OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
711                 /*
712                  * If the fault is a write, we know that this page is being
713                  * written NOW. This will save on the pmap_is_modified() calls
714                  * later.
715                  */
716                 if (fault_flags & VM_FAULT_DIRTY) {
717                         fs.m->dirty = VM_PAGE_BITS_ALL;
718                 }
719         }
720
721         unlock_things(&fs);
722         fs.m->valid = VM_PAGE_BITS_ALL;
723         vm_page_flag_clear(fs.m, PG_ZERO);
724
725         pmap_enter(fs.map->pmap, vaddr, VM_PAGE_TO_PHYS(fs.m), prot, wired);
726         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
727                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
728         }
729
730         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
731         if (fault_flags & VM_FAULT_HOLD)
732                 vm_page_hold(fs.m);
733
734         /*
735          * If the page is not wired down, then put it where the pageout daemon
736          * can find it.
737          */
738         if (fault_flags & VM_FAULT_WIRE_MASK) {
739                 if (wired)
740                         vm_page_wire(fs.m);
741                 else
742                         vm_page_unwire(fs.m);
743         } else {
744                 vm_page_activate(fs.m);
745         }
746
747         if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
748                 if (hardfault) {
749                         curproc->p_stats->p_ru.ru_majflt++;
750                 } else {
751                         curproc->p_stats->p_ru.ru_minflt++;
752                 }
753         }
754
755         /*
756          * Unlock everything, and return
757          */
758
759         vm_page_wakeup(fs.m);
760         vm_object_deallocate(fs.first_object);
761
762         return (KERN_SUCCESS);
763
764 }
765
766 /*
767  *      vm_fault_wire:
768  *
769  *      Wire down a range of virtual addresses in a map.
770  */
771 int
772 vm_fault_wire(map, start, end)
773         vm_map_t map;
774         vm_offset_t start, end;
775 {
776
777         register vm_offset_t va;
778         register pmap_t pmap;
779         int rv;
780
781         pmap = vm_map_pmap(map);
782
783         /*
784          * Inform the physical mapping system that the range of addresses may
785          * not fault, so that page tables and such can be locked down as well.
786          */
787
788         pmap_pageable(pmap, start, end, FALSE);
789
790         /*
791          * We simulate a fault to get the page and enter it in the physical
792          * map.
793          */
794
795         for (va = start; va < end; va += PAGE_SIZE) {
796                 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
797                         VM_FAULT_CHANGE_WIRING);
798                 if (rv) {
799                         if (va != start)
800                                 vm_fault_unwire(map, start, va);
801                         return (rv);
802                 }
803         }
804         return (KERN_SUCCESS);
805 }
806
807 /*
808  *      vm_fault_user_wire:
809  *
810  *      Wire down a range of virtual addresses in a map.  This
811  *      is for user mode though, so we only ask for read access
812  *      on currently read only sections.
813  */
814 int
815 vm_fault_user_wire(map, start, end)
816         vm_map_t map;
817         vm_offset_t start, end;
818 {
819
820         register vm_offset_t va;
821         register pmap_t pmap;
822         int rv;
823
824         pmap = vm_map_pmap(map);
825
826         /*
827          * Inform the physical mapping system that the range of addresses may
828          * not fault, so that page tables and such can be locked down as well.
829          */
830
831         pmap_pageable(pmap, start, end, FALSE);
832
833         /*
834          * We simulate a fault to get the page and enter it in the physical
835          * map.
836          */
837         for (va = start; va < end; va += PAGE_SIZE) {
838                 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
839                 if (rv) {
840                         if (va != start)
841                                 vm_fault_unwire(map, start, va);
842                         return (rv);
843                 }
844         }
845         return (KERN_SUCCESS);
846 }
847
848
849 /*
850  *      vm_fault_unwire:
851  *
852  *      Unwire a range of virtual addresses in a map.
853  */
854 void
855 vm_fault_unwire(map, start, end)
856         vm_map_t map;
857         vm_offset_t start, end;
858 {
859
860         register vm_offset_t va, pa;
861         register pmap_t pmap;
862
863         pmap = vm_map_pmap(map);
864
865         /*
866          * Since the pages are wired down, we must be able to get their
867          * mappings from the physical map system.
868          */
869
870         for (va = start; va < end; va += PAGE_SIZE) {
871                 pa = pmap_extract(pmap, va);
872                 if (pa != (vm_offset_t) 0) {
873                         pmap_change_wiring(pmap, va, FALSE);
874                         vm_page_unwire(PHYS_TO_VM_PAGE(pa));
875                 }
876         }
877
878         /*
879          * Inform the physical mapping system that the range of addresses may
880          * fault, so that page tables and such may be unwired themselves.
881          */
882
883         pmap_pageable(pmap, start, end, TRUE);
884
885 }
886
887 /*
888  *      Routine:
889  *              vm_fault_copy_entry
890  *      Function:
891  *              Copy all of the pages from a wired-down map entry to another.
892  *
893  *      In/out conditions:
894  *              The source and destination maps must be locked for write.
895  *              The source map entry must be wired down (or be a sharing map
896  *              entry corresponding to a main map entry that is wired down).
897  */
898
899 void
900 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
901         vm_map_t dst_map;
902         vm_map_t src_map;
903         vm_map_entry_t dst_entry;
904         vm_map_entry_t src_entry;
905 {
906         vm_object_t dst_object;
907         vm_object_t src_object;
908         vm_ooffset_t dst_offset;
909         vm_ooffset_t src_offset;
910         vm_prot_t prot;
911         vm_offset_t vaddr;
912         vm_page_t dst_m;
913         vm_page_t src_m;
914
915 #ifdef  lint
916         src_map++;
917 #endif  /* lint */
918
919         src_object = src_entry->object.vm_object;
920         src_offset = src_entry->offset;
921
922         /*
923          * Create the top-level object for the destination entry. (Doesn't
924          * actually shadow anything - we copy the pages directly.)
925          */
926         dst_object = vm_object_allocate(OBJT_DEFAULT,
927             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
928
929         dst_entry->object.vm_object = dst_object;
930         dst_entry->offset = 0;
931
932         prot = dst_entry->max_protection;
933
934         /*
935          * Loop through all of the pages in the entry's range, copying each
936          * one from the source object (it should be there) to the destination
937          * object.
938          */
939         for (vaddr = dst_entry->start, dst_offset = 0;
940             vaddr < dst_entry->end;
941             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
942
943                 /*
944                  * Allocate a page in the destination object
945                  */
946                 do {
947                         dst_m = vm_page_alloc(dst_object,
948                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
949                         if (dst_m == NULL) {
950                                 VM_WAIT;
951                         }
952                 } while (dst_m == NULL);
953
954                 /*
955                  * Find the page in the source object, and copy it in.
956                  * (Because the source is wired down, the page will be in
957                  * memory.)
958                  */
959                 src_m = vm_page_lookup(src_object,
960                         OFF_TO_IDX(dst_offset + src_offset));
961                 if (src_m == NULL)
962                         panic("vm_fault_copy_wired: page missing");
963
964                 vm_page_copy(src_m, dst_m);
965
966                 /*
967                  * Enter it in the pmap...
968                  */
969
970                 vm_page_flag_clear(dst_m, PG_ZERO);
971                 pmap_enter(dst_map->pmap, vaddr, VM_PAGE_TO_PHYS(dst_m),
972                     prot, FALSE);
973                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
974
975                 /*
976                  * Mark it no longer busy, and put it on the active list.
977                  */
978                 vm_page_activate(dst_m);
979                 vm_page_wakeup(dst_m);
980         }
981 }
982
983
984 /*
985  * This routine checks around the requested page for other pages that
986  * might be able to be faulted in.  This routine brackets the viable
987  * pages for the pages to be paged in.
988  *
989  * Inputs:
990  *      m, rbehind, rahead
991  *
992  * Outputs:
993  *  marray (array of vm_page_t), reqpage (index of requested page)
994  *
995  * Return value:
996  *  number of pages in marray
997  */
998 static int
999 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1000         vm_page_t m;
1001         int rbehind;
1002         int rahead;
1003         vm_page_t *marray;
1004         int *reqpage;
1005 {
1006         int i,j;
1007         vm_object_t object;
1008         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1009         vm_page_t rtm;
1010         int cbehind, cahead;
1011
1012         object = m->object;
1013         pindex = m->pindex;
1014
1015         /*
1016          * we don't fault-ahead for device pager
1017          */
1018         if (object->type == OBJT_DEVICE) {
1019                 *reqpage = 0;
1020                 marray[0] = m;
1021                 return 1;
1022         }
1023
1024         /*
1025          * if the requested page is not available, then give up now
1026          */
1027
1028         if (!vm_pager_has_page(object,
1029                 OFF_TO_IDX(object->paging_offset) + pindex, &cbehind, &cahead)) {
1030                 return 0;
1031         }
1032
1033         if ((cbehind == 0) && (cahead == 0)) {
1034                 *reqpage = 0;
1035                 marray[0] = m;
1036                 return 1;
1037         }
1038
1039         if (rahead > cahead) {
1040                 rahead = cahead;
1041         }
1042
1043         if (rbehind > cbehind) {
1044                 rbehind = cbehind;
1045         }
1046
1047         /*
1048          * try to do any readahead that we might have free pages for.
1049          */
1050         if ((rahead + rbehind) >
1051                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1052                 pagedaemon_wakeup();
1053                 marray[0] = m;
1054                 *reqpage = 0;
1055                 return 1;
1056         }
1057
1058         /*
1059          * scan backward for the read behind pages -- in memory 
1060          */
1061         if (pindex > 0) {
1062                 if (rbehind > pindex) {
1063                         rbehind = pindex;
1064                         startpindex = 0;
1065                 } else {
1066                         startpindex = pindex - rbehind;
1067                 }
1068
1069                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1070                         if (vm_page_lookup( object, tpindex)) {
1071                                 startpindex = tpindex + 1;
1072                                 break;
1073                         }
1074                         if (tpindex == 0)
1075                                 break;
1076                 }
1077
1078                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1079
1080                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1081                         if (rtm == NULL) {
1082                                 for (j = 0; j < i; j++) {
1083                                         vm_page_free(marray[j]);
1084                                 }
1085                                 marray[0] = m;
1086                                 *reqpage = 0;
1087                                 return 1;
1088                         }
1089
1090                         marray[i] = rtm;
1091                 }
1092         } else {
1093                 startpindex = 0;
1094                 i = 0;
1095         }
1096
1097         marray[i] = m;
1098         /* page offset of the required page */
1099         *reqpage = i;
1100
1101         tpindex = pindex + 1;
1102         i++;
1103
1104         /*
1105          * scan forward for the read ahead pages
1106          */
1107         endpindex = tpindex + rahead;
1108         if (endpindex > object->size)
1109                 endpindex = object->size;
1110
1111         for( ; tpindex < endpindex; i++, tpindex++) {
1112
1113                 if (vm_page_lookup(object, tpindex)) {
1114                         break;
1115                 }
1116
1117                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1118                 if (rtm == NULL) {
1119                         break;
1120                 }
1121
1122                 marray[i] = rtm;
1123         }
1124
1125         /* return number of bytes of pages */
1126         return i;
1127 }