]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Update to byacc 20140409
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107
108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110 #define VM_FAULT_READ_BEHIND    8
111 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
112 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131             int faultcount, int reqpage);
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136
137         vm_page_xunbusy(fs->m);
138         vm_page_lock(fs->m);
139         vm_page_deactivate(fs->m);
140         vm_page_unlock(fs->m);
141         fs->m = NULL;
142 }
143
144 static inline void
145 unlock_map(struct faultstate *fs)
146 {
147
148         if (fs->lookup_still_valid) {
149                 vm_map_lookup_done(fs->map, fs->entry);
150                 fs->lookup_still_valid = FALSE;
151         }
152 }
153
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
156 {
157
158         vm_object_pip_wakeup(fs->object);
159         VM_OBJECT_WUNLOCK(fs->object);
160         if (fs->object != fs->first_object) {
161                 VM_OBJECT_WLOCK(fs->first_object);
162                 vm_page_lock(fs->first_m);
163                 vm_page_free(fs->first_m);
164                 vm_page_unlock(fs->first_m);
165                 vm_object_pip_wakeup(fs->first_object);
166                 VM_OBJECT_WUNLOCK(fs->first_object);
167                 fs->first_m = NULL;
168         }
169         vm_object_deallocate(fs->first_object);
170         unlock_map(fs); 
171         if (fs->vp != NULL) { 
172                 vput(fs->vp);
173                 fs->vp = NULL;
174         }
175 }
176
177 /*
178  * TRYPAGER - used by vm_fault to calculate whether the pager for the
179  *            current object *might* contain the page.
180  *
181  *            default objects are zero-fill, there is no real pager.
182  */
183 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
184                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
185
186 /*
187  *      vm_fault:
188  *
189  *      Handle a page fault occurring at the given address,
190  *      requiring the given permissions, in the map specified.
191  *      If successful, the page is inserted into the
192  *      associated physical map.
193  *
194  *      NOTE: the given address should be truncated to the
195  *      proper page address.
196  *
197  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
198  *      a standard error specifying why the fault is fatal is returned.
199  *
200  *      The map in question must be referenced, and remains so.
201  *      Caller may hold no locks.
202  */
203 int
204 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205     int fault_flags)
206 {
207         struct thread *td;
208         int result;
209
210         td = curthread;
211         if ((td->td_pflags & TDP_NOFAULTING) != 0)
212                 return (KERN_PROTECTION_FAILURE);
213 #ifdef KTRACE
214         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
215                 ktrfault(vaddr, fault_type);
216 #endif
217         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
218             NULL);
219 #ifdef KTRACE
220         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
221                 ktrfaultend(result);
222 #endif
223         return (result);
224 }
225
226 int
227 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
228     int fault_flags, vm_page_t *m_hold)
229 {
230         vm_prot_t prot;
231         long ahead, behind;
232         int alloc_req, era, faultcount, nera, reqpage, result;
233         boolean_t growstack, is_first_object_locked, wired;
234         int map_generation;
235         vm_object_t next_object;
236         vm_page_t marray[VM_FAULT_READ_MAX];
237         int hardfault;
238         struct faultstate fs;
239         struct vnode *vp;
240         int locked, error;
241
242         hardfault = 0;
243         growstack = TRUE;
244         PCPU_INC(cnt.v_vm_faults);
245         fs.vp = NULL;
246         faultcount = reqpage = 0;
247
248 RetryFault:;
249
250         /*
251          * Find the backing store object and offset into it to begin the
252          * search.
253          */
254         fs.map = map;
255         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
256             &fs.first_object, &fs.first_pindex, &prot, &wired);
257         if (result != KERN_SUCCESS) {
258                 if (growstack && result == KERN_INVALID_ADDRESS &&
259                     map != kernel_map) {
260                         result = vm_map_growstack(curproc, vaddr);
261                         if (result != KERN_SUCCESS)
262                                 return (KERN_FAILURE);
263                         growstack = FALSE;
264                         goto RetryFault;
265                 }
266                 return (result);
267         }
268
269         map_generation = fs.map->timestamp;
270
271         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
272                 if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
273                         vm_map_unlock_read(fs.map);
274                         return (KERN_FAILURE);
275                 }
276                 panic("vm_fault: fault on nofault entry, addr: %lx",
277                     (u_long)vaddr);
278         }
279
280         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
281             fs.entry->wiring_thread != curthread) {
282                 vm_map_unlock_read(fs.map);
283                 vm_map_lock(fs.map);
284                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
285                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
286                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
287                         vm_map_unlock_and_wait(fs.map, 0);
288                 } else
289                         vm_map_unlock(fs.map);
290                 goto RetryFault;
291         }
292
293         /*
294          * Make a reference to this object to prevent its disposal while we
295          * are messing with it.  Once we have the reference, the map is free
296          * to be diddled.  Since objects reference their shadows (and copies),
297          * they will stay around as well.
298          *
299          * Bump the paging-in-progress count to prevent size changes (e.g. 
300          * truncation operations) during I/O.  This must be done after
301          * obtaining the vnode lock in order to avoid possible deadlocks.
302          */
303         VM_OBJECT_WLOCK(fs.first_object);
304         vm_object_reference_locked(fs.first_object);
305         vm_object_pip_add(fs.first_object, 1);
306
307         fs.lookup_still_valid = TRUE;
308
309         if (wired)
310                 fault_type = prot | (fault_type & VM_PROT_COPY);
311
312         fs.first_m = NULL;
313
314         /*
315          * Search for the page at object/offset.
316          */
317         fs.object = fs.first_object;
318         fs.pindex = fs.first_pindex;
319         while (TRUE) {
320                 /*
321                  * If the object is dead, we stop here
322                  */
323                 if (fs.object->flags & OBJ_DEAD) {
324                         unlock_and_deallocate(&fs);
325                         return (KERN_PROTECTION_FAILURE);
326                 }
327
328                 /*
329                  * See if page is resident
330                  */
331                 fs.m = vm_page_lookup(fs.object, fs.pindex);
332                 if (fs.m != NULL) {
333                         /*
334                          * Wait/Retry if the page is busy.  We have to do this
335                          * if the page is either exclusive or shared busy
336                          * because the vm_pager may be using read busy for
337                          * pageouts (and even pageins if it is the vnode
338                          * pager), and we could end up trying to pagein and
339                          * pageout the same page simultaneously.
340                          *
341                          * We can theoretically allow the busy case on a read
342                          * fault if the page is marked valid, but since such
343                          * pages are typically already pmap'd, putting that
344                          * special case in might be more effort then it is 
345                          * worth.  We cannot under any circumstances mess
346                          * around with a shared busied page except, perhaps,
347                          * to pmap it.
348                          */
349                         if (vm_page_busied(fs.m)) {
350                                 /*
351                                  * Reference the page before unlocking and
352                                  * sleeping so that the page daemon is less
353                                  * likely to reclaim it. 
354                                  */
355                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
356                                 if (fs.object != fs.first_object) {
357                                         if (!VM_OBJECT_TRYWLOCK(
358                                             fs.first_object)) {
359                                                 VM_OBJECT_WUNLOCK(fs.object);
360                                                 VM_OBJECT_WLOCK(fs.first_object);
361                                                 VM_OBJECT_WLOCK(fs.object);
362                                         }
363                                         vm_page_lock(fs.first_m);
364                                         vm_page_free(fs.first_m);
365                                         vm_page_unlock(fs.first_m);
366                                         vm_object_pip_wakeup(fs.first_object);
367                                         VM_OBJECT_WUNLOCK(fs.first_object);
368                                         fs.first_m = NULL;
369                                 }
370                                 unlock_map(&fs);
371                                 if (fs.m == vm_page_lookup(fs.object,
372                                     fs.pindex)) {
373                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
374                                 }
375                                 vm_object_pip_wakeup(fs.object);
376                                 VM_OBJECT_WUNLOCK(fs.object);
377                                 PCPU_INC(cnt.v_intrans);
378                                 vm_object_deallocate(fs.first_object);
379                                 goto RetryFault;
380                         }
381                         vm_page_lock(fs.m);
382                         vm_page_remque(fs.m);
383                         vm_page_unlock(fs.m);
384
385                         /*
386                          * Mark page busy for other processes, and the 
387                          * pagedaemon.  If it still isn't completely valid
388                          * (readable), jump to readrest, else break-out ( we
389                          * found the page ).
390                          */
391                         vm_page_xbusy(fs.m);
392                         if (fs.m->valid != VM_PAGE_BITS_ALL)
393                                 goto readrest;
394                         break;
395                 }
396
397                 /*
398                  * Page is not resident, If this is the search termination
399                  * or the pager might contain the page, allocate a new page.
400                  */
401                 if (TRYPAGER || fs.object == fs.first_object) {
402                         if (fs.pindex >= fs.object->size) {
403                                 unlock_and_deallocate(&fs);
404                                 return (KERN_PROTECTION_FAILURE);
405                         }
406
407                         /*
408                          * Allocate a new page for this object/offset pair.
409                          *
410                          * Unlocked read of the p_flag is harmless. At
411                          * worst, the P_KILLED might be not observed
412                          * there, and allocation can fail, causing
413                          * restart and new reading of the p_flag.
414                          */
415                         fs.m = NULL;
416                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
417 #if VM_NRESERVLEVEL > 0
418                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
419                                         fs.object->flags |= OBJ_COLORED;
420                                         fs.object->pg_color = atop(vaddr) -
421                                             fs.pindex;
422                                 }
423 #endif
424                                 alloc_req = P_KILLED(curproc) ?
425                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
426                                 if (fs.object->type != OBJT_VNODE &&
427                                     fs.object->backing_object == NULL)
428                                         alloc_req |= VM_ALLOC_ZERO;
429                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
430                                     alloc_req);
431                         }
432                         if (fs.m == NULL) {
433                                 unlock_and_deallocate(&fs);
434                                 VM_WAITPFAULT;
435                                 goto RetryFault;
436                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
437                                 break;
438                 }
439
440 readrest:
441                 /*
442                  * We have found a valid page or we have allocated a new page.
443                  * The page thus may not be valid or may not be entirely 
444                  * valid.
445                  *
446                  * Attempt to fault-in the page if there is a chance that the
447                  * pager has it, and potentially fault in additional pages
448                  * at the same time.
449                  */
450                 if (TRYPAGER) {
451                         int rv;
452                         u_char behavior = vm_map_entry_behavior(fs.entry);
453
454                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
455                             P_KILLED(curproc)) {
456                                 behind = 0;
457                                 ahead = 0;
458                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
459                                 behind = 0;
460                                 ahead = atop(fs.entry->end - vaddr) - 1;
461                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
462                                         ahead = VM_FAULT_READ_AHEAD_MAX;
463                                 if (fs.pindex == fs.entry->next_read)
464                                         vm_fault_cache_behind(&fs,
465                                             VM_FAULT_READ_MAX);
466                         } else {
467                                 /*
468                                  * If this is a sequential page fault, then
469                                  * arithmetically increase the number of pages
470                                  * in the read-ahead window.  Otherwise, reset
471                                  * the read-ahead window to its smallest size.
472                                  */
473                                 behind = atop(vaddr - fs.entry->start);
474                                 if (behind > VM_FAULT_READ_BEHIND)
475                                         behind = VM_FAULT_READ_BEHIND;
476                                 ahead = atop(fs.entry->end - vaddr) - 1;
477                                 era = fs.entry->read_ahead;
478                                 if (fs.pindex == fs.entry->next_read) {
479                                         nera = era + behind;
480                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
481                                                 nera = VM_FAULT_READ_AHEAD_MAX;
482                                         behind = 0;
483                                         if (ahead > nera)
484                                                 ahead = nera;
485                                         if (era == VM_FAULT_READ_AHEAD_MAX)
486                                                 vm_fault_cache_behind(&fs,
487                                                     VM_FAULT_CACHE_BEHIND);
488                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
489                                         ahead = VM_FAULT_READ_AHEAD_MIN;
490                                 if (era != ahead)
491                                         fs.entry->read_ahead = ahead;
492                         }
493
494                         /*
495                          * Call the pager to retrieve the data, if any, after
496                          * releasing the lock on the map.  We hold a ref on
497                          * fs.object and the pages are exclusive busied.
498                          */
499                         unlock_map(&fs);
500
501                         if (fs.object->type == OBJT_VNODE) {
502                                 vp = fs.object->handle;
503                                 if (vp == fs.vp)
504                                         goto vnode_locked;
505                                 else if (fs.vp != NULL) {
506                                         vput(fs.vp);
507                                         fs.vp = NULL;
508                                 }
509                                 locked = VOP_ISLOCKED(vp);
510
511                                 if (locked != LK_EXCLUSIVE)
512                                         locked = LK_SHARED;
513                                 /* Do not sleep for vnode lock while fs.m is busy */
514                                 error = vget(vp, locked | LK_CANRECURSE |
515                                     LK_NOWAIT, curthread);
516                                 if (error != 0) {
517                                         vhold(vp);
518                                         release_page(&fs);
519                                         unlock_and_deallocate(&fs);
520                                         error = vget(vp, locked | LK_RETRY |
521                                             LK_CANRECURSE, curthread);
522                                         vdrop(vp);
523                                         fs.vp = vp;
524                                         KASSERT(error == 0,
525                                             ("vm_fault: vget failed"));
526                                         goto RetryFault;
527                                 }
528                                 fs.vp = vp;
529                         }
530 vnode_locked:
531                         KASSERT(fs.vp == NULL || !fs.map->system_map,
532                             ("vm_fault: vnode-backed object mapped by system map"));
533
534                         /*
535                          * now we find out if any other pages should be paged
536                          * in at this time this routine checks to see if the
537                          * pages surrounding this fault reside in the same
538                          * object as the page for this fault.  If they do,
539                          * then they are faulted in also into the object.  The
540                          * array "marray" returned contains an array of
541                          * vm_page_t structs where one of them is the
542                          * vm_page_t passed to the routine.  The reqpage
543                          * return value is the index into the marray for the
544                          * vm_page_t passed to the routine.
545                          *
546                          * fs.m plus the additional pages are exclusive busied.
547                          */
548                         faultcount = vm_fault_additional_pages(
549                             fs.m, behind, ahead, marray, &reqpage);
550
551                         rv = faultcount ?
552                             vm_pager_get_pages(fs.object, marray, faultcount,
553                                 reqpage) : VM_PAGER_FAIL;
554
555                         if (rv == VM_PAGER_OK) {
556                                 /*
557                                  * Found the page. Leave it busy while we play
558                                  * with it.
559                                  */
560
561                                 /*
562                                  * Relookup in case pager changed page. Pager
563                                  * is responsible for disposition of old page
564                                  * if moved.
565                                  */
566                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
567                                 if (!fs.m) {
568                                         unlock_and_deallocate(&fs);
569                                         goto RetryFault;
570                                 }
571
572                                 hardfault++;
573                                 break; /* break to PAGE HAS BEEN FOUND */
574                         }
575                         /*
576                          * Remove the bogus page (which does not exist at this
577                          * object/offset); before doing so, we must get back
578                          * our object lock to preserve our invariant.
579                          *
580                          * Also wake up any other process that may want to bring
581                          * in this page.
582                          *
583                          * If this is the top-level object, we must leave the
584                          * busy page to prevent another process from rushing
585                          * past us, and inserting the page in that object at
586                          * the same time that we are.
587                          */
588                         if (rv == VM_PAGER_ERROR)
589                                 printf("vm_fault: pager read error, pid %d (%s)\n",
590                                     curproc->p_pid, curproc->p_comm);
591                         /*
592                          * Data outside the range of the pager or an I/O error
593                          */
594                         /*
595                          * XXX - the check for kernel_map is a kludge to work
596                          * around having the machine panic on a kernel space
597                          * fault w/ I/O error.
598                          */
599                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
600                                 (rv == VM_PAGER_BAD)) {
601                                 vm_page_lock(fs.m);
602                                 vm_page_free(fs.m);
603                                 vm_page_unlock(fs.m);
604                                 fs.m = NULL;
605                                 unlock_and_deallocate(&fs);
606                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
607                         }
608                         if (fs.object != fs.first_object) {
609                                 vm_page_lock(fs.m);
610                                 vm_page_free(fs.m);
611                                 vm_page_unlock(fs.m);
612                                 fs.m = NULL;
613                                 /*
614                                  * XXX - we cannot just fall out at this
615                                  * point, m has been freed and is invalid!
616                                  */
617                         }
618                 }
619
620                 /*
621                  * We get here if the object has default pager (or unwiring) 
622                  * or the pager doesn't have the page.
623                  */
624                 if (fs.object == fs.first_object)
625                         fs.first_m = fs.m;
626
627                 /*
628                  * Move on to the next object.  Lock the next object before
629                  * unlocking the current one.
630                  */
631                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
632                 next_object = fs.object->backing_object;
633                 if (next_object == NULL) {
634                         /*
635                          * If there's no object left, fill the page in the top
636                          * object with zeros.
637                          */
638                         if (fs.object != fs.first_object) {
639                                 vm_object_pip_wakeup(fs.object);
640                                 VM_OBJECT_WUNLOCK(fs.object);
641
642                                 fs.object = fs.first_object;
643                                 fs.pindex = fs.first_pindex;
644                                 fs.m = fs.first_m;
645                                 VM_OBJECT_WLOCK(fs.object);
646                         }
647                         fs.first_m = NULL;
648
649                         /*
650                          * Zero the page if necessary and mark it valid.
651                          */
652                         if ((fs.m->flags & PG_ZERO) == 0) {
653                                 pmap_zero_page(fs.m);
654                         } else {
655                                 PCPU_INC(cnt.v_ozfod);
656                         }
657                         PCPU_INC(cnt.v_zfod);
658                         fs.m->valid = VM_PAGE_BITS_ALL;
659                         /* Don't try to prefault neighboring pages. */
660                         faultcount = 1;
661                         break;  /* break to PAGE HAS BEEN FOUND */
662                 } else {
663                         KASSERT(fs.object != next_object,
664                             ("object loop %p", next_object));
665                         VM_OBJECT_WLOCK(next_object);
666                         vm_object_pip_add(next_object, 1);
667                         if (fs.object != fs.first_object)
668                                 vm_object_pip_wakeup(fs.object);
669                         VM_OBJECT_WUNLOCK(fs.object);
670                         fs.object = next_object;
671                 }
672         }
673
674         vm_page_assert_xbusied(fs.m);
675
676         /*
677          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
678          * is held.]
679          */
680
681         /*
682          * If the page is being written, but isn't already owned by the
683          * top-level object, we have to copy it into a new page owned by the
684          * top-level object.
685          */
686         if (fs.object != fs.first_object) {
687                 /*
688                  * We only really need to copy if we want to write it.
689                  */
690                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
691                         /*
692                          * This allows pages to be virtually copied from a 
693                          * backing_object into the first_object, where the 
694                          * backing object has no other refs to it, and cannot
695                          * gain any more refs.  Instead of a bcopy, we just 
696                          * move the page from the backing object to the 
697                          * first object.  Note that we must mark the page 
698                          * dirty in the first object so that it will go out 
699                          * to swap when needed.
700                          */
701                         is_first_object_locked = FALSE;
702                         if (
703                                 /*
704                                  * Only one shadow object
705                                  */
706                                 (fs.object->shadow_count == 1) &&
707                                 /*
708                                  * No COW refs, except us
709                                  */
710                                 (fs.object->ref_count == 1) &&
711                                 /*
712                                  * No one else can look this object up
713                                  */
714                                 (fs.object->handle == NULL) &&
715                                 /*
716                                  * No other ways to look the object up
717                                  */
718                                 ((fs.object->type == OBJT_DEFAULT) ||
719                                  (fs.object->type == OBJT_SWAP)) &&
720                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
721                                 /*
722                                  * We don't chase down the shadow chain
723                                  */
724                             fs.object == fs.first_object->backing_object) {
725                                 /*
726                                  * get rid of the unnecessary page
727                                  */
728                                 vm_page_lock(fs.first_m);
729                                 vm_page_free(fs.first_m);
730                                 vm_page_unlock(fs.first_m);
731                                 /*
732                                  * grab the page and put it into the 
733                                  * process'es object.  The page is 
734                                  * automatically made dirty.
735                                  */
736                                 if (vm_page_rename(fs.m, fs.first_object,
737                                     fs.first_pindex)) {
738                                         unlock_and_deallocate(&fs);
739                                         goto RetryFault;
740                                 }
741                                 vm_page_xbusy(fs.m);
742                                 fs.first_m = fs.m;
743                                 fs.m = NULL;
744                                 PCPU_INC(cnt.v_cow_optim);
745                         } else {
746                                 /*
747                                  * Oh, well, lets copy it.
748                                  */
749                                 pmap_copy_page(fs.m, fs.first_m);
750                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
751                                 if (wired && (fault_flags &
752                                     VM_FAULT_CHANGE_WIRING) == 0) {
753                                         vm_page_lock(fs.first_m);
754                                         vm_page_wire(fs.first_m);
755                                         vm_page_unlock(fs.first_m);
756                                         
757                                         vm_page_lock(fs.m);
758                                         vm_page_unwire(fs.m, FALSE);
759                                         vm_page_unlock(fs.m);
760                                 }
761                                 /*
762                                  * We no longer need the old page or object.
763                                  */
764                                 release_page(&fs);
765                         }
766                         /*
767                          * fs.object != fs.first_object due to above 
768                          * conditional
769                          */
770                         vm_object_pip_wakeup(fs.object);
771                         VM_OBJECT_WUNLOCK(fs.object);
772                         /*
773                          * Only use the new page below...
774                          */
775                         fs.object = fs.first_object;
776                         fs.pindex = fs.first_pindex;
777                         fs.m = fs.first_m;
778                         if (!is_first_object_locked)
779                                 VM_OBJECT_WLOCK(fs.object);
780                         PCPU_INC(cnt.v_cow_faults);
781                         curthread->td_cow++;
782                 } else {
783                         prot &= ~VM_PROT_WRITE;
784                 }
785         }
786
787         /*
788          * We must verify that the maps have not changed since our last
789          * lookup.
790          */
791         if (!fs.lookup_still_valid) {
792                 vm_object_t retry_object;
793                 vm_pindex_t retry_pindex;
794                 vm_prot_t retry_prot;
795
796                 if (!vm_map_trylock_read(fs.map)) {
797                         release_page(&fs);
798                         unlock_and_deallocate(&fs);
799                         goto RetryFault;
800                 }
801                 fs.lookup_still_valid = TRUE;
802                 if (fs.map->timestamp != map_generation) {
803                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
804                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
805
806                         /*
807                          * If we don't need the page any longer, put it on the inactive
808                          * list (the easiest thing to do here).  If no one needs it,
809                          * pageout will grab it eventually.
810                          */
811                         if (result != KERN_SUCCESS) {
812                                 release_page(&fs);
813                                 unlock_and_deallocate(&fs);
814
815                                 /*
816                                  * If retry of map lookup would have blocked then
817                                  * retry fault from start.
818                                  */
819                                 if (result == KERN_FAILURE)
820                                         goto RetryFault;
821                                 return (result);
822                         }
823                         if ((retry_object != fs.first_object) ||
824                             (retry_pindex != fs.first_pindex)) {
825                                 release_page(&fs);
826                                 unlock_and_deallocate(&fs);
827                                 goto RetryFault;
828                         }
829
830                         /*
831                          * Check whether the protection has changed or the object has
832                          * been copied while we left the map unlocked. Changing from
833                          * read to write permission is OK - we leave the page
834                          * write-protected, and catch the write fault. Changing from
835                          * write to read permission means that we can't mark the page
836                          * write-enabled after all.
837                          */
838                         prot &= retry_prot;
839                 }
840         }
841         /*
842          * If the page was filled by a pager, update the map entry's
843          * last read offset.  Since the pager does not return the
844          * actual set of pages that it read, this update is based on
845          * the requested set.  Typically, the requested and actual
846          * sets are the same.
847          *
848          * XXX The following assignment modifies the map
849          * without holding a write lock on it.
850          */
851         if (hardfault)
852                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
853
854         if ((prot & VM_PROT_WRITE) != 0 ||
855             (fault_flags & VM_FAULT_DIRTY) != 0) {
856                 vm_object_set_writeable_dirty(fs.object);
857
858                 /*
859                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
860                  * if the page is already dirty to prevent data written with
861                  * the expectation of being synced from not being synced.
862                  * Likewise if this entry does not request NOSYNC then make
863                  * sure the page isn't marked NOSYNC.  Applications sharing
864                  * data should use the same flags to avoid ping ponging.
865                  */
866                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
867                         if (fs.m->dirty == 0)
868                                 fs.m->oflags |= VPO_NOSYNC;
869                 } else {
870                         fs.m->oflags &= ~VPO_NOSYNC;
871                 }
872
873                 /*
874                  * If the fault is a write, we know that this page is being
875                  * written NOW so dirty it explicitly to save on 
876                  * pmap_is_modified() calls later.
877                  *
878                  * Also tell the backing pager, if any, that it should remove
879                  * any swap backing since the page is now dirty.
880                  */
881                 if (((fault_type & VM_PROT_WRITE) != 0 &&
882                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
883                     (fault_flags & VM_FAULT_DIRTY) != 0) {
884                         vm_page_dirty(fs.m);
885                         vm_pager_page_unswapped(fs.m);
886                 }
887         }
888
889         vm_page_assert_xbusied(fs.m);
890
891         /*
892          * Page must be completely valid or it is not fit to
893          * map into user space.  vm_pager_get_pages() ensures this.
894          */
895         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
896             ("vm_fault: page %p partially invalid", fs.m));
897         VM_OBJECT_WUNLOCK(fs.object);
898
899         /*
900          * Put this page into the physical map.  We had to do the unlock above
901          * because pmap_enter() may sleep.  We don't put the page
902          * back on the active queue until later so that the pageout daemon
903          * won't find it (yet).
904          */
905         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
906         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
907             wired == 0)
908                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
909         VM_OBJECT_WLOCK(fs.object);
910         vm_page_lock(fs.m);
911
912         /*
913          * If the page is not wired down, then put it where the pageout daemon
914          * can find it.
915          */
916         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
917                 if (wired)
918                         vm_page_wire(fs.m);
919                 else
920                         vm_page_unwire(fs.m, 1);
921         } else
922                 vm_page_activate(fs.m);
923         if (m_hold != NULL) {
924                 *m_hold = fs.m;
925                 vm_page_hold(fs.m);
926         }
927         vm_page_unlock(fs.m);
928         vm_page_xunbusy(fs.m);
929
930         /*
931          * Unlock everything, and return
932          */
933         unlock_and_deallocate(&fs);
934         if (hardfault) {
935                 PCPU_INC(cnt.v_io_faults);
936                 curthread->td_ru.ru_majflt++;
937         } else 
938                 curthread->td_ru.ru_minflt++;
939
940         return (KERN_SUCCESS);
941 }
942
943 /*
944  * Speed up the reclamation of up to "distance" pages that precede the
945  * faulting pindex within the first object of the shadow chain.
946  */
947 static void
948 vm_fault_cache_behind(const struct faultstate *fs, int distance)
949 {
950         vm_object_t first_object, object;
951         vm_page_t m, m_prev;
952         vm_pindex_t pindex;
953
954         object = fs->object;
955         VM_OBJECT_ASSERT_WLOCKED(object);
956         first_object = fs->first_object;
957         if (first_object != object) {
958                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
959                         VM_OBJECT_WUNLOCK(object);
960                         VM_OBJECT_WLOCK(first_object);
961                         VM_OBJECT_WLOCK(object);
962                 }
963         }
964         /* Neither fictitious nor unmanaged pages can be cached. */
965         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
966                 if (fs->first_pindex < distance)
967                         pindex = 0;
968                 else
969                         pindex = fs->first_pindex - distance;
970                 if (pindex < OFF_TO_IDX(fs->entry->offset))
971                         pindex = OFF_TO_IDX(fs->entry->offset);
972                 m = first_object != object ? fs->first_m : fs->m;
973                 vm_page_assert_xbusied(m);
974                 m_prev = vm_page_prev(m);
975                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
976                     m->valid == VM_PAGE_BITS_ALL) {
977                         m_prev = vm_page_prev(m);
978                         if (vm_page_busied(m))
979                                 continue;
980                         vm_page_lock(m);
981                         if (m->hold_count == 0 && m->wire_count == 0) {
982                                 pmap_remove_all(m);
983                                 vm_page_aflag_clear(m, PGA_REFERENCED);
984                                 if (m->dirty != 0)
985                                         vm_page_deactivate(m);
986                                 else
987                                         vm_page_cache(m);
988                         }
989                         vm_page_unlock(m);
990                 }
991         }
992         if (first_object != object)
993                 VM_OBJECT_WUNLOCK(first_object);
994 }
995
996 /*
997  * vm_fault_prefault provides a quick way of clustering
998  * pagefaults into a processes address space.  It is a "cousin"
999  * of vm_map_pmap_enter, except it runs at page fault time instead
1000  * of mmap time.
1001  */
1002 static void
1003 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1004     int faultcount, int reqpage)
1005 {
1006         pmap_t pmap;
1007         vm_map_entry_t entry;
1008         vm_object_t backing_object, lobject;
1009         vm_offset_t addr, starta;
1010         vm_pindex_t pindex;
1011         vm_page_t m;
1012         int backward, forward, i;
1013
1014         pmap = fs->map->pmap;
1015         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1016                 return;
1017
1018         if (faultcount > 0) {
1019                 backward = reqpage;
1020                 forward = faultcount - reqpage - 1;
1021         } else {
1022                 backward = PFBAK;
1023                 forward = PFFOR;
1024         }
1025         entry = fs->entry;
1026
1027         starta = addra - backward * PAGE_SIZE;
1028         if (starta < entry->start) {
1029                 starta = entry->start;
1030         } else if (starta > addra) {
1031                 starta = 0;
1032         }
1033
1034         /*
1035          * Generate the sequence of virtual addresses that are candidates for
1036          * prefaulting in an outward spiral from the faulting virtual address,
1037          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1038          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1039          * If the candidate address doesn't have a backing physical page, then
1040          * the loop immediately terminates.
1041          */
1042         for (i = 0; i < 2 * imax(backward, forward); i++) {
1043                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1044                     PAGE_SIZE);
1045                 if (addr > addra + forward * PAGE_SIZE)
1046                         addr = 0;
1047
1048                 if (addr < starta || addr >= entry->end)
1049                         continue;
1050
1051                 if (!pmap_is_prefaultable(pmap, addr))
1052                         continue;
1053
1054                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1055                 lobject = entry->object.vm_object;
1056                 VM_OBJECT_RLOCK(lobject);
1057                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1058                     lobject->type == OBJT_DEFAULT &&
1059                     (backing_object = lobject->backing_object) != NULL) {
1060                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1061                             0, ("vm_fault_prefault: unaligned object offset"));
1062                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1063                         VM_OBJECT_RLOCK(backing_object);
1064                         VM_OBJECT_RUNLOCK(lobject);
1065                         lobject = backing_object;
1066                 }
1067                 if (m == NULL) {
1068                         VM_OBJECT_RUNLOCK(lobject);
1069                         break;
1070                 }
1071                 if (m->valid == VM_PAGE_BITS_ALL &&
1072                     (m->flags & PG_FICTITIOUS) == 0)
1073                         pmap_enter_quick(pmap, addr, m, entry->protection);
1074                 VM_OBJECT_RUNLOCK(lobject);
1075         }
1076 }
1077
1078 /*
1079  * Hold each of the physical pages that are mapped by the specified range of
1080  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1081  * and allow the specified types of access, "prot".  If all of the implied
1082  * pages are successfully held, then the number of held pages is returned
1083  * together with pointers to those pages in the array "ma".  However, if any
1084  * of the pages cannot be held, -1 is returned.
1085  */
1086 int
1087 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1088     vm_prot_t prot, vm_page_t *ma, int max_count)
1089 {
1090         vm_offset_t end, va;
1091         vm_page_t *mp;
1092         int count;
1093         boolean_t pmap_failed;
1094
1095         if (len == 0)
1096                 return (0);
1097         end = round_page(addr + len);
1098         addr = trunc_page(addr);
1099
1100         /*
1101          * Check for illegal addresses.
1102          */
1103         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1104                 return (-1);
1105
1106         if (atop(end - addr) > max_count)
1107                 panic("vm_fault_quick_hold_pages: count > max_count");
1108         count = atop(end - addr);
1109
1110         /*
1111          * Most likely, the physical pages are resident in the pmap, so it is
1112          * faster to try pmap_extract_and_hold() first.
1113          */
1114         pmap_failed = FALSE;
1115         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1116                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1117                 if (*mp == NULL)
1118                         pmap_failed = TRUE;
1119                 else if ((prot & VM_PROT_WRITE) != 0 &&
1120                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1121                         /*
1122                          * Explicitly dirty the physical page.  Otherwise, the
1123                          * caller's changes may go unnoticed because they are
1124                          * performed through an unmanaged mapping or by a DMA
1125                          * operation.
1126                          *
1127                          * The object lock is not held here.
1128                          * See vm_page_clear_dirty_mask().
1129                          */
1130                         vm_page_dirty(*mp);
1131                 }
1132         }
1133         if (pmap_failed) {
1134                 /*
1135                  * One or more pages could not be held by the pmap.  Either no
1136                  * page was mapped at the specified virtual address or that
1137                  * mapping had insufficient permissions.  Attempt to fault in
1138                  * and hold these pages.
1139                  */
1140                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1141                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1142                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1143                                 goto error;
1144         }
1145         return (count);
1146 error:  
1147         for (mp = ma; mp < ma + count; mp++)
1148                 if (*mp != NULL) {
1149                         vm_page_lock(*mp);
1150                         vm_page_unhold(*mp);
1151                         vm_page_unlock(*mp);
1152                 }
1153         return (-1);
1154 }
1155
1156 /*
1157  *      vm_fault_wire:
1158  *
1159  *      Wire down a range of virtual addresses in a map.
1160  */
1161 int
1162 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1163     boolean_t fictitious)
1164 {
1165         vm_offset_t va;
1166         int rv;
1167
1168         /*
1169          * We simulate a fault to get the page and enter it in the physical
1170          * map.  For user wiring, we only ask for read access on currently
1171          * read-only sections.
1172          */
1173         for (va = start; va < end; va += PAGE_SIZE) {
1174                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1175                 if (rv) {
1176                         if (va != start)
1177                                 vm_fault_unwire(map, start, va, fictitious);
1178                         return (rv);
1179                 }
1180         }
1181         return (KERN_SUCCESS);
1182 }
1183
1184 /*
1185  *      vm_fault_unwire:
1186  *
1187  *      Unwire a range of virtual addresses in a map.
1188  */
1189 void
1190 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1191     boolean_t fictitious)
1192 {
1193         vm_paddr_t pa;
1194         vm_offset_t va;
1195         vm_page_t m;
1196         pmap_t pmap;
1197
1198         pmap = vm_map_pmap(map);
1199
1200         /*
1201          * Since the pages are wired down, we must be able to get their
1202          * mappings from the physical map system.
1203          */
1204         for (va = start; va < end; va += PAGE_SIZE) {
1205                 pa = pmap_extract(pmap, va);
1206                 if (pa != 0) {
1207                         pmap_change_wiring(pmap, va, FALSE);
1208                         if (!fictitious) {
1209                                 m = PHYS_TO_VM_PAGE(pa);
1210                                 vm_page_lock(m);
1211                                 vm_page_unwire(m, TRUE);
1212                                 vm_page_unlock(m);
1213                         }
1214                 }
1215         }
1216 }
1217
1218 /*
1219  *      Routine:
1220  *              vm_fault_copy_entry
1221  *      Function:
1222  *              Create new shadow object backing dst_entry with private copy of
1223  *              all underlying pages. When src_entry is equal to dst_entry,
1224  *              function implements COW for wired-down map entry. Otherwise,
1225  *              it forks wired entry into dst_map.
1226  *
1227  *      In/out conditions:
1228  *              The source and destination maps must be locked for write.
1229  *              The source map entry must be wired down (or be a sharing map
1230  *              entry corresponding to a main map entry that is wired down).
1231  */
1232 void
1233 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1234     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1235     vm_ooffset_t *fork_charge)
1236 {
1237         vm_object_t backing_object, dst_object, object, src_object;
1238         vm_pindex_t dst_pindex, pindex, src_pindex;
1239         vm_prot_t access, prot;
1240         vm_offset_t vaddr;
1241         vm_page_t dst_m;
1242         vm_page_t src_m;
1243         boolean_t src_readonly, upgrade;
1244
1245 #ifdef  lint
1246         src_map++;
1247 #endif  /* lint */
1248
1249         upgrade = src_entry == dst_entry;
1250
1251         src_object = src_entry->object.vm_object;
1252         src_pindex = OFF_TO_IDX(src_entry->offset);
1253         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1254
1255         /*
1256          * Create the top-level object for the destination entry. (Doesn't
1257          * actually shadow anything - we copy the pages directly.)
1258          */
1259         dst_object = vm_object_allocate(OBJT_DEFAULT,
1260             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1261 #if VM_NRESERVLEVEL > 0
1262         dst_object->flags |= OBJ_COLORED;
1263         dst_object->pg_color = atop(dst_entry->start);
1264 #endif
1265
1266         VM_OBJECT_WLOCK(dst_object);
1267         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1268             ("vm_fault_copy_entry: vm_object not NULL"));
1269         dst_entry->object.vm_object = dst_object;
1270         dst_entry->offset = 0;
1271         dst_object->charge = dst_entry->end - dst_entry->start;
1272         if (fork_charge != NULL) {
1273                 KASSERT(dst_entry->cred == NULL,
1274                     ("vm_fault_copy_entry: leaked swp charge"));
1275                 dst_object->cred = curthread->td_ucred;
1276                 crhold(dst_object->cred);
1277                 *fork_charge += dst_object->charge;
1278         } else {
1279                 dst_object->cred = dst_entry->cred;
1280                 dst_entry->cred = NULL;
1281         }
1282         access = prot = dst_entry->protection;
1283         /*
1284          * If not an upgrade, then enter the mappings in the pmap as
1285          * read and/or execute accesses.  Otherwise, enter them as
1286          * write accesses.
1287          *
1288          * A writeable large page mapping is only created if all of
1289          * the constituent small page mappings are modified. Marking
1290          * PTEs as modified on inception allows promotion to happen
1291          * without taking potentially large number of soft faults.
1292          */
1293         if (!upgrade)
1294                 access &= ~VM_PROT_WRITE;
1295
1296         /*
1297          * Loop through all of the virtual pages within the entry's
1298          * range, copying each page from the source object to the
1299          * destination object.  Since the source is wired, those pages
1300          * must exist.  In contrast, the destination is pageable.
1301          * Since the destination object does share any backing storage
1302          * with the source object, all of its pages must be dirtied,
1303          * regardless of whether they can be written.
1304          */
1305         for (vaddr = dst_entry->start, dst_pindex = 0;
1306             vaddr < dst_entry->end;
1307             vaddr += PAGE_SIZE, dst_pindex++) {
1308
1309                 /*
1310                  * Allocate a page in the destination object.
1311                  */
1312                 do {
1313                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1314                             VM_ALLOC_NORMAL);
1315                         if (dst_m == NULL) {
1316                                 VM_OBJECT_WUNLOCK(dst_object);
1317                                 VM_WAIT;
1318                                 VM_OBJECT_WLOCK(dst_object);
1319                         }
1320                 } while (dst_m == NULL);
1321
1322                 /*
1323                  * Find the page in the source object, and copy it in.
1324                  * (Because the source is wired down, the page will be in
1325                  * memory.)
1326                  */
1327                 VM_OBJECT_RLOCK(src_object);
1328                 object = src_object;
1329                 pindex = src_pindex + dst_pindex;
1330                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1331                     src_readonly &&
1332                     (backing_object = object->backing_object) != NULL) {
1333                         /*
1334                          * Allow fallback to backing objects if we are reading.
1335                          */
1336                         VM_OBJECT_RLOCK(backing_object);
1337                         pindex += OFF_TO_IDX(object->backing_object_offset);
1338                         VM_OBJECT_RUNLOCK(object);
1339                         object = backing_object;
1340                 }
1341                 if (src_m == NULL)
1342                         panic("vm_fault_copy_wired: page missing");
1343                 pmap_copy_page(src_m, dst_m);
1344                 VM_OBJECT_RUNLOCK(object);
1345                 dst_m->valid = VM_PAGE_BITS_ALL;
1346                 dst_m->dirty = VM_PAGE_BITS_ALL;
1347                 VM_OBJECT_WUNLOCK(dst_object);
1348
1349                 /*
1350                  * Enter it in the pmap. If a wired, copy-on-write
1351                  * mapping is being replaced by a write-enabled
1352                  * mapping, then wire that new mapping.
1353                  */
1354                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1355
1356                 /*
1357                  * Mark it no longer busy, and put it on the active list.
1358                  */
1359                 VM_OBJECT_WLOCK(dst_object);
1360                 
1361                 if (upgrade) {
1362                         vm_page_lock(src_m);
1363                         vm_page_unwire(src_m, 0);
1364                         vm_page_unlock(src_m);
1365
1366                         vm_page_lock(dst_m);
1367                         vm_page_wire(dst_m);
1368                         vm_page_unlock(dst_m);
1369                 } else {
1370                         vm_page_lock(dst_m);
1371                         vm_page_activate(dst_m);
1372                         vm_page_unlock(dst_m);
1373                 }
1374                 vm_page_xunbusy(dst_m);
1375         }
1376         VM_OBJECT_WUNLOCK(dst_object);
1377         if (upgrade) {
1378                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1379                 vm_object_deallocate(src_object);
1380         }
1381 }
1382
1383
1384 /*
1385  * This routine checks around the requested page for other pages that
1386  * might be able to be faulted in.  This routine brackets the viable
1387  * pages for the pages to be paged in.
1388  *
1389  * Inputs:
1390  *      m, rbehind, rahead
1391  *
1392  * Outputs:
1393  *  marray (array of vm_page_t), reqpage (index of requested page)
1394  *
1395  * Return value:
1396  *  number of pages in marray
1397  */
1398 static int
1399 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1400         vm_page_t m;
1401         int rbehind;
1402         int rahead;
1403         vm_page_t *marray;
1404         int *reqpage;
1405 {
1406         int i,j;
1407         vm_object_t object;
1408         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1409         vm_page_t rtm;
1410         int cbehind, cahead;
1411
1412         VM_OBJECT_ASSERT_WLOCKED(m->object);
1413
1414         object = m->object;
1415         pindex = m->pindex;
1416         cbehind = cahead = 0;
1417
1418         /*
1419          * if the requested page is not available, then give up now
1420          */
1421         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1422                 return 0;
1423         }
1424
1425         if ((cbehind == 0) && (cahead == 0)) {
1426                 *reqpage = 0;
1427                 marray[0] = m;
1428                 return 1;
1429         }
1430
1431         if (rahead > cahead) {
1432                 rahead = cahead;
1433         }
1434
1435         if (rbehind > cbehind) {
1436                 rbehind = cbehind;
1437         }
1438
1439         /*
1440          * scan backward for the read behind pages -- in memory 
1441          */
1442         if (pindex > 0) {
1443                 if (rbehind > pindex) {
1444                         rbehind = pindex;
1445                         startpindex = 0;
1446                 } else {
1447                         startpindex = pindex - rbehind;
1448                 }
1449
1450                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1451                     rtm->pindex >= startpindex)
1452                         startpindex = rtm->pindex + 1;
1453
1454                 /* tpindex is unsigned; beware of numeric underflow. */
1455                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1456                     tpindex < pindex; i++, tpindex--) {
1457
1458                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1459                             VM_ALLOC_IFNOTCACHED);
1460                         if (rtm == NULL) {
1461                                 /*
1462                                  * Shift the allocated pages to the
1463                                  * beginning of the array.
1464                                  */
1465                                 for (j = 0; j < i; j++) {
1466                                         marray[j] = marray[j + tpindex + 1 -
1467                                             startpindex];
1468                                 }
1469                                 break;
1470                         }
1471
1472                         marray[tpindex - startpindex] = rtm;
1473                 }
1474         } else {
1475                 startpindex = 0;
1476                 i = 0;
1477         }
1478
1479         marray[i] = m;
1480         /* page offset of the required page */
1481         *reqpage = i;
1482
1483         tpindex = pindex + 1;
1484         i++;
1485
1486         /*
1487          * scan forward for the read ahead pages
1488          */
1489         endpindex = tpindex + rahead;
1490         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1491                 endpindex = rtm->pindex;
1492         if (endpindex > object->size)
1493                 endpindex = object->size;
1494
1495         for (; tpindex < endpindex; i++, tpindex++) {
1496
1497                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1498                     VM_ALLOC_IFNOTCACHED);
1499                 if (rtm == NULL) {
1500                         break;
1501                 }
1502
1503                 marray[i] = rtm;
1504         }
1505
1506         /* return number of pages */
1507         return i;
1508 }
1509
1510 /*
1511  * Block entry into the machine-independent layer's page fault handler by
1512  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1513  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1514  * spurious page faults. 
1515  */
1516 int
1517 vm_fault_disable_pagefaults(void)
1518 {
1519
1520         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1521 }
1522
1523 void
1524 vm_fault_enable_pagefaults(int save)
1525 {
1526
1527         curthread_pflags_restore(save);
1528 }