]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107
108 #define PFBAK 4
109 #define PFFOR 4
110
111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113
114 #define VM_FAULT_DONTNEED_MIN   1048576
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int map_generation;
126         bool lookup_still_valid;
127         struct vnode *vp;
128 };
129
130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
131             int ahead);
132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133             int backward, int forward, bool obj_locked);
134
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138
139         vm_page_xunbusy(fs->m);
140         vm_page_lock(fs->m);
141         vm_page_deactivate(fs->m);
142         vm_page_unlock(fs->m);
143         fs->m = NULL;
144 }
145
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149
150         if (fs->lookup_still_valid) {
151                 vm_map_lookup_done(fs->map, fs->entry);
152                 fs->lookup_still_valid = false;
153         }
154 }
155
156 static void
157 unlock_vp(struct faultstate *fs)
158 {
159
160         if (fs->vp != NULL) {
161                 vput(fs->vp);
162                 fs->vp = NULL;
163         }
164 }
165
166 static void
167 unlock_and_deallocate(struct faultstate *fs)
168 {
169
170         vm_object_pip_wakeup(fs->object);
171         VM_OBJECT_WUNLOCK(fs->object);
172         if (fs->object != fs->first_object) {
173                 VM_OBJECT_WLOCK(fs->first_object);
174                 vm_page_lock(fs->first_m);
175                 vm_page_free(fs->first_m);
176                 vm_page_unlock(fs->first_m);
177                 vm_object_pip_wakeup(fs->first_object);
178                 VM_OBJECT_WUNLOCK(fs->first_object);
179                 fs->first_m = NULL;
180         }
181         vm_object_deallocate(fs->first_object);
182         unlock_map(fs);
183         unlock_vp(fs);
184 }
185
186 static void
187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188     vm_prot_t fault_type, int fault_flags, bool set_wd)
189 {
190         bool need_dirty;
191
192         if (((prot & VM_PROT_WRITE) == 0 &&
193             (fault_flags & VM_FAULT_DIRTY) == 0) ||
194             (m->oflags & VPO_UNMANAGED) != 0)
195                 return;
196
197         VM_OBJECT_ASSERT_LOCKED(m->object);
198
199         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200             (fault_flags & VM_FAULT_WIRE) == 0) ||
201             (fault_flags & VM_FAULT_DIRTY) != 0;
202
203         if (set_wd)
204                 vm_object_set_writeable_dirty(m->object);
205         else
206                 /*
207                  * If two callers of vm_fault_dirty() with set_wd ==
208                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209                  * flag set, other with flag clear, race, it is
210                  * possible for the no-NOSYNC thread to see m->dirty
211                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212                  * around manipulation of VPO_NOSYNC and
213                  * vm_page_dirty() call, to avoid the race and keep
214                  * m->oflags consistent.
215                  */
216                 vm_page_lock(m);
217
218         /*
219          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220          * if the page is already dirty to prevent data written with
221          * the expectation of being synced from not being synced.
222          * Likewise if this entry does not request NOSYNC then make
223          * sure the page isn't marked NOSYNC.  Applications sharing
224          * data should use the same flags to avoid ping ponging.
225          */
226         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227                 if (m->dirty == 0) {
228                         m->oflags |= VPO_NOSYNC;
229                 }
230         } else {
231                 m->oflags &= ~VPO_NOSYNC;
232         }
233
234         /*
235          * If the fault is a write, we know that this page is being
236          * written NOW so dirty it explicitly to save on
237          * pmap_is_modified() calls later.
238          *
239          * Also, since the page is now dirty, we can possibly tell
240          * the pager to release any swap backing the page.  Calling
241          * the pager requires a write lock on the object.
242          */
243         if (need_dirty)
244                 vm_page_dirty(m);
245         if (!set_wd)
246                 vm_page_unlock(m);
247         else if (need_dirty)
248                 vm_pager_page_unswapped(m);
249 }
250
251 static void
252 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
253 {
254
255         if (m_hold != NULL) {
256                 *m_hold = m;
257                 vm_page_lock(m);
258                 vm_page_hold(m);
259                 vm_page_unlock(m);
260         }
261 }
262
263 /*
264  * Unlocks fs.first_object and fs.map on success.
265  */
266 static int
267 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
268     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
269 {
270         vm_page_t m, m_map;
271 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
272         vm_page_t m_super;
273         int flags;
274 #endif
275         int psind, rv;
276
277         MPASS(fs->vp == NULL);
278         m = vm_page_lookup(fs->first_object, fs->first_pindex);
279         /* A busy page can be mapped for read|execute access. */
280         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
281             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
282                 return (KERN_FAILURE);
283         m_map = m;
284         psind = 0;
285 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
286         if ((m->flags & PG_FICTITIOUS) == 0 &&
287             (m_super = vm_reserv_to_superpage(m)) != NULL &&
288             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
289             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
290             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
291             (pagesizes[m_super->psind] - 1)) &&
292             pmap_ps_enabled(fs->map->pmap)) {
293                 flags = PS_ALL_VALID;
294                 if ((prot & VM_PROT_WRITE) != 0) {
295                         /*
296                          * Create a superpage mapping allowing write access
297                          * only if none of the constituent pages are busy and
298                          * all of them are already dirty (except possibly for
299                          * the page that was faulted on).
300                          */
301                         flags |= PS_NONE_BUSY;
302                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
303                                 flags |= PS_ALL_DIRTY;
304                 }
305                 if (vm_page_ps_test(m_super, flags, m)) {
306                         m_map = m_super;
307                         psind = m_super->psind;
308                         vaddr = rounddown2(vaddr, pagesizes[psind]);
309                         /* Preset the modified bit for dirty superpages. */
310                         if ((flags & PS_ALL_DIRTY) != 0)
311                                 fault_type |= VM_PROT_WRITE;
312                 }
313         }
314 #endif
315         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
316             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
317         if (rv != KERN_SUCCESS)
318                 return (rv);
319         vm_fault_fill_hold(m_hold, m);
320         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
321         if (psind == 0 && !wired)
322                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
323         VM_OBJECT_RUNLOCK(fs->first_object);
324         vm_map_lookup_done(fs->map, fs->entry);
325         curthread->td_ru.ru_minflt++;
326         return (KERN_SUCCESS);
327 }
328
329 static void
330 vm_fault_restore_map_lock(struct faultstate *fs)
331 {
332
333         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
334         MPASS(fs->first_object->paging_in_progress > 0);
335
336         if (!vm_map_trylock_read(fs->map)) {
337                 VM_OBJECT_WUNLOCK(fs->first_object);
338                 vm_map_lock_read(fs->map);
339                 VM_OBJECT_WLOCK(fs->first_object);
340         }
341         fs->lookup_still_valid = true;
342 }
343
344 static void
345 vm_fault_populate_check_page(vm_page_t m)
346 {
347
348         /*
349          * Check each page to ensure that the pager is obeying the
350          * interface: the page must be installed in the object, fully
351          * valid, and exclusively busied.
352          */
353         MPASS(m != NULL);
354         MPASS(m->valid == VM_PAGE_BITS_ALL);
355         MPASS(vm_page_xbusied(m));
356 }
357
358 static void
359 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
360     vm_pindex_t last)
361 {
362         vm_page_t m;
363         vm_pindex_t pidx;
364
365         VM_OBJECT_ASSERT_WLOCKED(object);
366         MPASS(first <= last);
367         for (pidx = first, m = vm_page_lookup(object, pidx);
368             pidx <= last; pidx++, m = vm_page_next(m)) {
369                 vm_fault_populate_check_page(m);
370                 vm_page_lock(m);
371                 vm_page_deactivate(m);
372                 vm_page_unlock(m);
373                 vm_page_xunbusy(m);
374         }
375 }
376
377 static int
378 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
379     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
380 {
381         vm_page_t m;
382         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
383         int rv;
384
385         MPASS(fs->object == fs->first_object);
386         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
387         MPASS(fs->first_object->paging_in_progress > 0);
388         MPASS(fs->first_object->backing_object == NULL);
389         MPASS(fs->lookup_still_valid);
390
391         pager_first = OFF_TO_IDX(fs->entry->offset);
392         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
393         unlock_map(fs);
394         unlock_vp(fs);
395
396         /*
397          * Call the pager (driver) populate() method.
398          *
399          * There is no guarantee that the method will be called again
400          * if the current fault is for read, and a future fault is
401          * for write.  Report the entry's maximum allowed protection
402          * to the driver.
403          */
404         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
405             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
406
407         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
408         if (rv == VM_PAGER_BAD) {
409                 /*
410                  * VM_PAGER_BAD is the backdoor for a pager to request
411                  * normal fault handling.
412                  */
413                 vm_fault_restore_map_lock(fs);
414                 if (fs->map->timestamp != fs->map_generation)
415                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
416                 return (KERN_NOT_RECEIVER);
417         }
418         if (rv != VM_PAGER_OK)
419                 return (KERN_FAILURE); /* AKA SIGSEGV */
420
421         /* Ensure that the driver is obeying the interface. */
422         MPASS(pager_first <= pager_last);
423         MPASS(fs->first_pindex <= pager_last);
424         MPASS(fs->first_pindex >= pager_first);
425         MPASS(pager_last < fs->first_object->size);
426
427         vm_fault_restore_map_lock(fs);
428         if (fs->map->timestamp != fs->map_generation) {
429                 vm_fault_populate_cleanup(fs->first_object, pager_first,
430                     pager_last);
431                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
432         }
433
434         /*
435          * The map is unchanged after our last unlock.  Process the fault.
436          *
437          * The range [pager_first, pager_last] that is given to the
438          * pager is only a hint.  The pager may populate any range
439          * within the object that includes the requested page index.
440          * In case the pager expanded the range, clip it to fit into
441          * the map entry.
442          */
443         map_first = OFF_TO_IDX(fs->entry->offset);
444         if (map_first > pager_first) {
445                 vm_fault_populate_cleanup(fs->first_object, pager_first,
446                     map_first - 1);
447                 pager_first = map_first;
448         }
449         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
450         if (map_last < pager_last) {
451                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
452                     pager_last);
453                 pager_last = map_last;
454         }
455         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
456             pidx <= pager_last; pidx++, m = vm_page_next(m)) {
457                 vm_fault_populate_check_page(m);
458                 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
459                     true);
460                 VM_OBJECT_WUNLOCK(fs->first_object);
461                 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
462                     fs->entry->offset, m, prot, fault_type | (wired ?
463                     PMAP_ENTER_WIRED : 0), 0);
464                 VM_OBJECT_WLOCK(fs->first_object);
465                 if (pidx == fs->first_pindex)
466                         vm_fault_fill_hold(m_hold, m);
467                 vm_page_lock(m);
468                 if ((fault_flags & VM_FAULT_WIRE) != 0) {
469                         KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
470                         vm_page_wire(m);
471                 } else {
472                         vm_page_activate(m);
473                 }
474                 vm_page_unlock(m);
475                 vm_page_xunbusy(m);
476         }
477         curthread->td_ru.ru_majflt++;
478         return (KERN_SUCCESS);
479 }
480
481 /*
482  *      vm_fault:
483  *
484  *      Handle a page fault occurring at the given address,
485  *      requiring the given permissions, in the map specified.
486  *      If successful, the page is inserted into the
487  *      associated physical map.
488  *
489  *      NOTE: the given address should be truncated to the
490  *      proper page address.
491  *
492  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
493  *      a standard error specifying why the fault is fatal is returned.
494  *
495  *      The map in question must be referenced, and remains so.
496  *      Caller may hold no locks.
497  */
498 int
499 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
500     int fault_flags)
501 {
502         struct thread *td;
503         int result;
504
505         td = curthread;
506         if ((td->td_pflags & TDP_NOFAULTING) != 0)
507                 return (KERN_PROTECTION_FAILURE);
508 #ifdef KTRACE
509         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
510                 ktrfault(vaddr, fault_type);
511 #endif
512         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
513             NULL);
514 #ifdef KTRACE
515         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
516                 ktrfaultend(result);
517 #endif
518         return (result);
519 }
520
521 int
522 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
523     int fault_flags, vm_page_t *m_hold)
524 {
525         struct faultstate fs;
526         struct vnode *vp;
527         vm_object_t next_object, retry_object;
528         vm_offset_t e_end, e_start;
529         vm_pindex_t retry_pindex;
530         vm_prot_t prot, retry_prot;
531         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
532         int locked, nera, result, rv;
533         u_char behavior;
534         boolean_t wired;        /* Passed by reference. */
535         bool dead, hardfault, is_first_object_locked;
536
537         PCPU_INC(cnt.v_vm_faults);
538         fs.vp = NULL;
539         faultcount = 0;
540         nera = -1;
541         hardfault = false;
542
543 RetryFault:;
544
545         /*
546          * Find the backing store object and offset into it to begin the
547          * search.
548          */
549         fs.map = map;
550         result = vm_map_lookup(&fs.map, vaddr, fault_type |
551             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
552             &fs.first_pindex, &prot, &wired);
553         if (result != KERN_SUCCESS) {
554                 unlock_vp(&fs);
555                 return (result);
556         }
557
558         fs.map_generation = fs.map->timestamp;
559
560         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
561                 panic("vm_fault: fault on nofault entry, addr: %lx",
562                     (u_long)vaddr);
563         }
564
565         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
566             fs.entry->wiring_thread != curthread) {
567                 vm_map_unlock_read(fs.map);
568                 vm_map_lock(fs.map);
569                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
570                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
571                         unlock_vp(&fs);
572                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
573                         vm_map_unlock_and_wait(fs.map, 0);
574                 } else
575                         vm_map_unlock(fs.map);
576                 goto RetryFault;
577         }
578
579         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
580
581         if (wired)
582                 fault_type = prot | (fault_type & VM_PROT_COPY);
583         else
584                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
585                     ("!wired && VM_FAULT_WIRE"));
586
587         /*
588          * Try to avoid lock contention on the top-level object through
589          * special-case handling of some types of page faults, specifically,
590          * those that are both (1) mapping an existing page from the top-
591          * level object and (2) not having to mark that object as containing
592          * dirty pages.  Under these conditions, a read lock on the top-level
593          * object suffices, allowing multiple page faults of a similar type to
594          * run in parallel on the same top-level object.
595          */
596         if (fs.vp == NULL /* avoid locked vnode leak */ &&
597             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
598             /* avoid calling vm_object_set_writeable_dirty() */
599             ((prot & VM_PROT_WRITE) == 0 ||
600             (fs.first_object->type != OBJT_VNODE &&
601             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
602             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
603                 VM_OBJECT_RLOCK(fs.first_object);
604                 if ((prot & VM_PROT_WRITE) == 0 ||
605                     (fs.first_object->type != OBJT_VNODE &&
606                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
607                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
608                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
609                             fault_flags, wired, m_hold);
610                         if (rv == KERN_SUCCESS)
611                                 return (rv);
612                 }
613                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
614                         VM_OBJECT_RUNLOCK(fs.first_object);
615                         VM_OBJECT_WLOCK(fs.first_object);
616                 }
617         } else {
618                 VM_OBJECT_WLOCK(fs.first_object);
619         }
620
621         /*
622          * Make a reference to this object to prevent its disposal while we
623          * are messing with it.  Once we have the reference, the map is free
624          * to be diddled.  Since objects reference their shadows (and copies),
625          * they will stay around as well.
626          *
627          * Bump the paging-in-progress count to prevent size changes (e.g. 
628          * truncation operations) during I/O.
629          */
630         vm_object_reference_locked(fs.first_object);
631         vm_object_pip_add(fs.first_object, 1);
632
633         fs.lookup_still_valid = true;
634
635         fs.first_m = NULL;
636
637         /*
638          * Search for the page at object/offset.
639          */
640         fs.object = fs.first_object;
641         fs.pindex = fs.first_pindex;
642         while (TRUE) {
643                 /*
644                  * If the object is marked for imminent termination,
645                  * we retry here, since the collapse pass has raced
646                  * with us.  Otherwise, if we see terminally dead
647                  * object, return fail.
648                  */
649                 if ((fs.object->flags & OBJ_DEAD) != 0) {
650                         dead = fs.object->type == OBJT_DEAD;
651                         unlock_and_deallocate(&fs);
652                         if (dead)
653                                 return (KERN_PROTECTION_FAILURE);
654                         pause("vmf_de", 1);
655                         goto RetryFault;
656                 }
657
658                 /*
659                  * See if page is resident
660                  */
661                 fs.m = vm_page_lookup(fs.object, fs.pindex);
662                 if (fs.m != NULL) {
663                         /*
664                          * Wait/Retry if the page is busy.  We have to do this
665                          * if the page is either exclusive or shared busy
666                          * because the vm_pager may be using read busy for
667                          * pageouts (and even pageins if it is the vnode
668                          * pager), and we could end up trying to pagein and
669                          * pageout the same page simultaneously.
670                          *
671                          * We can theoretically allow the busy case on a read
672                          * fault if the page is marked valid, but since such
673                          * pages are typically already pmap'd, putting that
674                          * special case in might be more effort then it is 
675                          * worth.  We cannot under any circumstances mess
676                          * around with a shared busied page except, perhaps,
677                          * to pmap it.
678                          */
679                         if (vm_page_busied(fs.m)) {
680                                 /*
681                                  * Reference the page before unlocking and
682                                  * sleeping so that the page daemon is less
683                                  * likely to reclaim it. 
684                                  */
685                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
686                                 if (fs.object != fs.first_object) {
687                                         if (!VM_OBJECT_TRYWLOCK(
688                                             fs.first_object)) {
689                                                 VM_OBJECT_WUNLOCK(fs.object);
690                                                 VM_OBJECT_WLOCK(fs.first_object);
691                                                 VM_OBJECT_WLOCK(fs.object);
692                                         }
693                                         vm_page_lock(fs.first_m);
694                                         vm_page_free(fs.first_m);
695                                         vm_page_unlock(fs.first_m);
696                                         vm_object_pip_wakeup(fs.first_object);
697                                         VM_OBJECT_WUNLOCK(fs.first_object);
698                                         fs.first_m = NULL;
699                                 }
700                                 unlock_map(&fs);
701                                 if (fs.m == vm_page_lookup(fs.object,
702                                     fs.pindex)) {
703                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
704                                 }
705                                 vm_object_pip_wakeup(fs.object);
706                                 VM_OBJECT_WUNLOCK(fs.object);
707                                 PCPU_INC(cnt.v_intrans);
708                                 vm_object_deallocate(fs.first_object);
709                                 goto RetryFault;
710                         }
711                         vm_page_lock(fs.m);
712                         vm_page_remque(fs.m);
713                         vm_page_unlock(fs.m);
714
715                         /*
716                          * Mark page busy for other processes, and the 
717                          * pagedaemon.  If it still isn't completely valid
718                          * (readable), jump to readrest, else break-out ( we
719                          * found the page ).
720                          */
721                         vm_page_xbusy(fs.m);
722                         if (fs.m->valid != VM_PAGE_BITS_ALL)
723                                 goto readrest;
724                         break;
725                 }
726                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
727
728                 /*
729                  * Page is not resident.  If the pager might contain the page
730                  * or this is the beginning of the search, allocate a new
731                  * page.  (Default objects are zero-fill, so there is no real
732                  * pager for them.)
733                  */
734                 if (fs.object->type != OBJT_DEFAULT ||
735                     fs.object == fs.first_object) {
736                         if (fs.pindex >= fs.object->size) {
737                                 unlock_and_deallocate(&fs);
738                                 return (KERN_PROTECTION_FAILURE);
739                         }
740
741                         if (fs.object == fs.first_object &&
742                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
743                             fs.first_object->shadow_count == 0) {
744                                 rv = vm_fault_populate(&fs, vaddr, prot,
745                                     fault_type, fault_flags, wired, m_hold);
746                                 switch (rv) {
747                                 case KERN_SUCCESS:
748                                 case KERN_FAILURE:
749                                         unlock_and_deallocate(&fs);
750                                         return (rv);
751                                 case KERN_RESOURCE_SHORTAGE:
752                                         unlock_and_deallocate(&fs);
753                                         goto RetryFault;
754                                 case KERN_NOT_RECEIVER:
755                                         /*
756                                          * Pager's populate() method
757                                          * returned VM_PAGER_BAD.
758                                          */
759                                         break;
760                                 default:
761                                         panic("inconsistent return codes");
762                                 }
763                         }
764
765                         /*
766                          * Allocate a new page for this object/offset pair.
767                          *
768                          * Unlocked read of the p_flag is harmless. At
769                          * worst, the P_KILLED might be not observed
770                          * there, and allocation can fail, causing
771                          * restart and new reading of the p_flag.
772                          */
773                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
774 #if VM_NRESERVLEVEL > 0
775                                 vm_object_color(fs.object, atop(vaddr) -
776                                     fs.pindex);
777 #endif
778                                 alloc_req = P_KILLED(curproc) ?
779                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
780                                 if (fs.object->type != OBJT_VNODE &&
781                                     fs.object->backing_object == NULL)
782                                         alloc_req |= VM_ALLOC_ZERO;
783                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
784                                     alloc_req);
785                         }
786                         if (fs.m == NULL) {
787                                 unlock_and_deallocate(&fs);
788                                 VM_WAITPFAULT;
789                                 goto RetryFault;
790                         }
791                 }
792
793 readrest:
794                 /*
795                  * At this point, we have either allocated a new page or found
796                  * an existing page that is only partially valid.
797                  *
798                  * We hold a reference on the current object and the page is
799                  * exclusive busied.
800                  */
801
802                 /*
803                  * If the pager for the current object might have the page,
804                  * then determine the number of additional pages to read and
805                  * potentially reprioritize previously read pages for earlier
806                  * reclamation.  These operations should only be performed
807                  * once per page fault.  Even if the current pager doesn't
808                  * have the page, the number of additional pages to read will
809                  * apply to subsequent objects in the shadow chain.
810                  */
811                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
812                     !P_KILLED(curproc)) {
813                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
814                         era = fs.entry->read_ahead;
815                         behavior = vm_map_entry_behavior(fs.entry);
816                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
817                                 nera = 0;
818                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
819                                 nera = VM_FAULT_READ_AHEAD_MAX;
820                                 if (vaddr == fs.entry->next_read)
821                                         vm_fault_dontneed(&fs, vaddr, nera);
822                         } else if (vaddr == fs.entry->next_read) {
823                                 /*
824                                  * This is a sequential fault.  Arithmetically
825                                  * increase the requested number of pages in
826                                  * the read-ahead window.  The requested
827                                  * number of pages is "# of sequential faults
828                                  * x (read ahead min + 1) + read ahead min"
829                                  */
830                                 nera = VM_FAULT_READ_AHEAD_MIN;
831                                 if (era > 0) {
832                                         nera += era + 1;
833                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
834                                                 nera = VM_FAULT_READ_AHEAD_MAX;
835                                 }
836                                 if (era == VM_FAULT_READ_AHEAD_MAX)
837                                         vm_fault_dontneed(&fs, vaddr, nera);
838                         } else {
839                                 /*
840                                  * This is a non-sequential fault.
841                                  */
842                                 nera = 0;
843                         }
844                         if (era != nera) {
845                                 /*
846                                  * A read lock on the map suffices to update
847                                  * the read ahead count safely.
848                                  */
849                                 fs.entry->read_ahead = nera;
850                         }
851
852                         /*
853                          * Prepare for unlocking the map.  Save the map
854                          * entry's start and end addresses, which are used to
855                          * optimize the size of the pager operation below.
856                          * Even if the map entry's addresses change after
857                          * unlocking the map, using the saved addresses is
858                          * safe.
859                          */
860                         e_start = fs.entry->start;
861                         e_end = fs.entry->end;
862                 }
863
864                 /*
865                  * Call the pager to retrieve the page if there is a chance
866                  * that the pager has it, and potentially retrieve additional
867                  * pages at the same time.
868                  */
869                 if (fs.object->type != OBJT_DEFAULT) {
870                         /*
871                          * Release the map lock before locking the vnode or
872                          * sleeping in the pager.  (If the current object has
873                          * a shadow, then an earlier iteration of this loop
874                          * may have already unlocked the map.)
875                          */
876                         unlock_map(&fs);
877
878                         if (fs.object->type == OBJT_VNODE &&
879                             (vp = fs.object->handle) != fs.vp) {
880                                 /*
881                                  * Perform an unlock in case the desired vnode
882                                  * changed while the map was unlocked during a
883                                  * retry.
884                                  */
885                                 unlock_vp(&fs);
886
887                                 locked = VOP_ISLOCKED(vp);
888                                 if (locked != LK_EXCLUSIVE)
889                                         locked = LK_SHARED;
890
891                                 /*
892                                  * We must not sleep acquiring the vnode lock
893                                  * while we have the page exclusive busied or
894                                  * the object's paging-in-progress count
895                                  * incremented.  Otherwise, we could deadlock.
896                                  */
897                                 error = vget(vp, locked | LK_CANRECURSE |
898                                     LK_NOWAIT, curthread);
899                                 if (error != 0) {
900                                         vhold(vp);
901                                         release_page(&fs);
902                                         unlock_and_deallocate(&fs);
903                                         error = vget(vp, locked | LK_RETRY |
904                                             LK_CANRECURSE, curthread);
905                                         vdrop(vp);
906                                         fs.vp = vp;
907                                         KASSERT(error == 0,
908                                             ("vm_fault: vget failed"));
909                                         goto RetryFault;
910                                 }
911                                 fs.vp = vp;
912                         }
913                         KASSERT(fs.vp == NULL || !fs.map->system_map,
914                             ("vm_fault: vnode-backed object mapped by system map"));
915
916                         /*
917                          * Page in the requested page and hint the pager,
918                          * that it may bring up surrounding pages.
919                          */
920                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
921                             P_KILLED(curproc)) {
922                                 behind = 0;
923                                 ahead = 0;
924                         } else {
925                                 /* Is this a sequential fault? */
926                                 if (nera > 0) {
927                                         behind = 0;
928                                         ahead = nera;
929                                 } else {
930                                         /*
931                                          * Request a cluster of pages that is
932                                          * aligned to a VM_FAULT_READ_DEFAULT
933                                          * page offset boundary within the
934                                          * object.  Alignment to a page offset
935                                          * boundary is more likely to coincide
936                                          * with the underlying file system
937                                          * block than alignment to a virtual
938                                          * address boundary.
939                                          */
940                                         cluster_offset = fs.pindex %
941                                             VM_FAULT_READ_DEFAULT;
942                                         behind = ulmin(cluster_offset,
943                                             atop(vaddr - e_start));
944                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
945                                             cluster_offset;
946                                 }
947                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
948                         }
949                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
950                             &behind, &ahead);
951                         if (rv == VM_PAGER_OK) {
952                                 faultcount = behind + 1 + ahead;
953                                 hardfault = true;
954                                 break; /* break to PAGE HAS BEEN FOUND */
955                         }
956                         if (rv == VM_PAGER_ERROR)
957                                 printf("vm_fault: pager read error, pid %d (%s)\n",
958                                     curproc->p_pid, curproc->p_comm);
959
960                         /*
961                          * If an I/O error occurred or the requested page was
962                          * outside the range of the pager, clean up and return
963                          * an error.
964                          */
965                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
966                                 vm_page_lock(fs.m);
967                                 if (fs.m->wire_count == 0)
968                                         vm_page_free(fs.m);
969                                 else
970                                         vm_page_xunbusy_maybelocked(fs.m);
971                                 vm_page_unlock(fs.m);
972                                 fs.m = NULL;
973                                 unlock_and_deallocate(&fs);
974                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
975                                     KERN_PROTECTION_FAILURE);
976                         }
977
978                         /*
979                          * The requested page does not exist at this object/
980                          * offset.  Remove the invalid page from the object,
981                          * waking up anyone waiting for it, and continue on to
982                          * the next object.  However, if this is the top-level
983                          * object, we must leave the busy page in place to
984                          * prevent another process from rushing past us, and
985                          * inserting the page in that object at the same time
986                          * that we are.
987                          */
988                         if (fs.object != fs.first_object) {
989                                 vm_page_lock(fs.m);
990                                 if (fs.m->wire_count == 0)
991                                         vm_page_free(fs.m);
992                                 else
993                                         vm_page_xunbusy_maybelocked(fs.m);
994                                 vm_page_unlock(fs.m);
995                                 fs.m = NULL;
996                         }
997                 }
998
999                 /*
1000                  * We get here if the object has default pager (or unwiring) 
1001                  * or the pager doesn't have the page.
1002                  */
1003                 if (fs.object == fs.first_object)
1004                         fs.first_m = fs.m;
1005
1006                 /*
1007                  * Move on to the next object.  Lock the next object before
1008                  * unlocking the current one.
1009                  */
1010                 next_object = fs.object->backing_object;
1011                 if (next_object == NULL) {
1012                         /*
1013                          * If there's no object left, fill the page in the top
1014                          * object with zeros.
1015                          */
1016                         if (fs.object != fs.first_object) {
1017                                 vm_object_pip_wakeup(fs.object);
1018                                 VM_OBJECT_WUNLOCK(fs.object);
1019
1020                                 fs.object = fs.first_object;
1021                                 fs.pindex = fs.first_pindex;
1022                                 fs.m = fs.first_m;
1023                                 VM_OBJECT_WLOCK(fs.object);
1024                         }
1025                         fs.first_m = NULL;
1026
1027                         /*
1028                          * Zero the page if necessary and mark it valid.
1029                          */
1030                         if ((fs.m->flags & PG_ZERO) == 0) {
1031                                 pmap_zero_page(fs.m);
1032                         } else {
1033                                 PCPU_INC(cnt.v_ozfod);
1034                         }
1035                         PCPU_INC(cnt.v_zfod);
1036                         fs.m->valid = VM_PAGE_BITS_ALL;
1037                         /* Don't try to prefault neighboring pages. */
1038                         faultcount = 1;
1039                         break;  /* break to PAGE HAS BEEN FOUND */
1040                 } else {
1041                         KASSERT(fs.object != next_object,
1042                             ("object loop %p", next_object));
1043                         VM_OBJECT_WLOCK(next_object);
1044                         vm_object_pip_add(next_object, 1);
1045                         if (fs.object != fs.first_object)
1046                                 vm_object_pip_wakeup(fs.object);
1047                         fs.pindex +=
1048                             OFF_TO_IDX(fs.object->backing_object_offset);
1049                         VM_OBJECT_WUNLOCK(fs.object);
1050                         fs.object = next_object;
1051                 }
1052         }
1053
1054         vm_page_assert_xbusied(fs.m);
1055
1056         /*
1057          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1058          * is held.]
1059          */
1060
1061         /*
1062          * If the page is being written, but isn't already owned by the
1063          * top-level object, we have to copy it into a new page owned by the
1064          * top-level object.
1065          */
1066         if (fs.object != fs.first_object) {
1067                 /*
1068                  * We only really need to copy if we want to write it.
1069                  */
1070                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1071                         /*
1072                          * This allows pages to be virtually copied from a 
1073                          * backing_object into the first_object, where the 
1074                          * backing object has no other refs to it, and cannot
1075                          * gain any more refs.  Instead of a bcopy, we just 
1076                          * move the page from the backing object to the 
1077                          * first object.  Note that we must mark the page 
1078                          * dirty in the first object so that it will go out 
1079                          * to swap when needed.
1080                          */
1081                         is_first_object_locked = false;
1082                         if (
1083                                 /*
1084                                  * Only one shadow object
1085                                  */
1086                                 (fs.object->shadow_count == 1) &&
1087                                 /*
1088                                  * No COW refs, except us
1089                                  */
1090                                 (fs.object->ref_count == 1) &&
1091                                 /*
1092                                  * No one else can look this object up
1093                                  */
1094                                 (fs.object->handle == NULL) &&
1095                                 /*
1096                                  * No other ways to look the object up
1097                                  */
1098                                 ((fs.object->type == OBJT_DEFAULT) ||
1099                                  (fs.object->type == OBJT_SWAP)) &&
1100                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1101                                 /*
1102                                  * We don't chase down the shadow chain
1103                                  */
1104                             fs.object == fs.first_object->backing_object) {
1105                                 vm_page_lock(fs.m);
1106                                 vm_page_remove(fs.m);
1107                                 vm_page_unlock(fs.m);
1108                                 vm_page_lock(fs.first_m);
1109                                 vm_page_replace_checked(fs.m, fs.first_object,
1110                                     fs.first_pindex, fs.first_m);
1111                                 vm_page_free(fs.first_m);
1112                                 vm_page_unlock(fs.first_m);
1113                                 vm_page_dirty(fs.m);
1114 #if VM_NRESERVLEVEL > 0
1115                                 /*
1116                                  * Rename the reservation.
1117                                  */
1118                                 vm_reserv_rename(fs.m, fs.first_object,
1119                                     fs.object, OFF_TO_IDX(
1120                                     fs.first_object->backing_object_offset));
1121 #endif
1122                                 /*
1123                                  * Removing the page from the backing object
1124                                  * unbusied it.
1125                                  */
1126                                 vm_page_xbusy(fs.m);
1127                                 fs.first_m = fs.m;
1128                                 fs.m = NULL;
1129                                 PCPU_INC(cnt.v_cow_optim);
1130                         } else {
1131                                 /*
1132                                  * Oh, well, lets copy it.
1133                                  */
1134                                 pmap_copy_page(fs.m, fs.first_m);
1135                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1136                                 if ((fault_flags & VM_FAULT_WIRE) == 0) {
1137                                         prot &= ~VM_PROT_WRITE;
1138                                         fault_type &= ~VM_PROT_WRITE;
1139                                 }
1140                                 if (wired && (fault_flags &
1141                                     VM_FAULT_WIRE) == 0) {
1142                                         vm_page_lock(fs.first_m);
1143                                         vm_page_wire(fs.first_m);
1144                                         vm_page_unlock(fs.first_m);
1145                                         
1146                                         vm_page_lock(fs.m);
1147                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1148                                         vm_page_unlock(fs.m);
1149                                 }
1150                                 /*
1151                                  * We no longer need the old page or object.
1152                                  */
1153                                 release_page(&fs);
1154                         }
1155                         /*
1156                          * fs.object != fs.first_object due to above 
1157                          * conditional
1158                          */
1159                         vm_object_pip_wakeup(fs.object);
1160                         VM_OBJECT_WUNLOCK(fs.object);
1161                         /*
1162                          * Only use the new page below...
1163                          */
1164                         fs.object = fs.first_object;
1165                         fs.pindex = fs.first_pindex;
1166                         fs.m = fs.first_m;
1167                         if (!is_first_object_locked)
1168                                 VM_OBJECT_WLOCK(fs.object);
1169                         PCPU_INC(cnt.v_cow_faults);
1170                         curthread->td_cow++;
1171                 } else {
1172                         prot &= ~VM_PROT_WRITE;
1173                 }
1174         }
1175
1176         /*
1177          * We must verify that the maps have not changed since our last
1178          * lookup.
1179          */
1180         if (!fs.lookup_still_valid) {
1181                 if (!vm_map_trylock_read(fs.map)) {
1182                         release_page(&fs);
1183                         unlock_and_deallocate(&fs);
1184                         goto RetryFault;
1185                 }
1186                 fs.lookup_still_valid = true;
1187                 if (fs.map->timestamp != fs.map_generation) {
1188                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1189                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1190
1191                         /*
1192                          * If we don't need the page any longer, put it on the inactive
1193                          * list (the easiest thing to do here).  If no one needs it,
1194                          * pageout will grab it eventually.
1195                          */
1196                         if (result != KERN_SUCCESS) {
1197                                 release_page(&fs);
1198                                 unlock_and_deallocate(&fs);
1199
1200                                 /*
1201                                  * If retry of map lookup would have blocked then
1202                                  * retry fault from start.
1203                                  */
1204                                 if (result == KERN_FAILURE)
1205                                         goto RetryFault;
1206                                 return (result);
1207                         }
1208                         if ((retry_object != fs.first_object) ||
1209                             (retry_pindex != fs.first_pindex)) {
1210                                 release_page(&fs);
1211                                 unlock_and_deallocate(&fs);
1212                                 goto RetryFault;
1213                         }
1214
1215                         /*
1216                          * Check whether the protection has changed or the object has
1217                          * been copied while we left the map unlocked. Changing from
1218                          * read to write permission is OK - we leave the page
1219                          * write-protected, and catch the write fault. Changing from
1220                          * write to read permission means that we can't mark the page
1221                          * write-enabled after all.
1222                          */
1223                         prot &= retry_prot;
1224                         fault_type &= retry_prot;
1225                         if (prot == 0) {
1226                                 release_page(&fs);
1227                                 unlock_and_deallocate(&fs);
1228                                 goto RetryFault;
1229                         }
1230                 }
1231         }
1232
1233         /*
1234          * If the page was filled by a pager, save the virtual address that
1235          * should be faulted on next under a sequential access pattern to the
1236          * map entry.  A read lock on the map suffices to update this address
1237          * safely.
1238          */
1239         if (hardfault)
1240                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1241
1242         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1243         vm_page_assert_xbusied(fs.m);
1244
1245         /*
1246          * Page must be completely valid or it is not fit to
1247          * map into user space.  vm_pager_get_pages() ensures this.
1248          */
1249         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1250             ("vm_fault: page %p partially invalid", fs.m));
1251         VM_OBJECT_WUNLOCK(fs.object);
1252
1253         /*
1254          * Put this page into the physical map.  We had to do the unlock above
1255          * because pmap_enter() may sleep.  We don't put the page
1256          * back on the active queue until later so that the pageout daemon
1257          * won't find it (yet).
1258          */
1259         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1260             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1261         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1262             wired == 0)
1263                 vm_fault_prefault(&fs, vaddr,
1264                     faultcount > 0 ? behind : PFBAK,
1265                     faultcount > 0 ? ahead : PFFOR, false);
1266         VM_OBJECT_WLOCK(fs.object);
1267         vm_page_lock(fs.m);
1268
1269         /*
1270          * If the page is not wired down, then put it where the pageout daemon
1271          * can find it.
1272          */
1273         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1274                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1275                 vm_page_wire(fs.m);
1276         } else
1277                 vm_page_activate(fs.m);
1278         if (m_hold != NULL) {
1279                 *m_hold = fs.m;
1280                 vm_page_hold(fs.m);
1281         }
1282         vm_page_unlock(fs.m);
1283         vm_page_xunbusy(fs.m);
1284
1285         /*
1286          * Unlock everything, and return
1287          */
1288         unlock_and_deallocate(&fs);
1289         if (hardfault) {
1290                 PCPU_INC(cnt.v_io_faults);
1291                 curthread->td_ru.ru_majflt++;
1292 #ifdef RACCT
1293                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1294                         PROC_LOCK(curproc);
1295                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1296                                 racct_add_force(curproc, RACCT_WRITEBPS,
1297                                     PAGE_SIZE + behind * PAGE_SIZE);
1298                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1299                         } else {
1300                                 racct_add_force(curproc, RACCT_READBPS,
1301                                     PAGE_SIZE + ahead * PAGE_SIZE);
1302                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1303                         }
1304                         PROC_UNLOCK(curproc);
1305                 }
1306 #endif
1307         } else 
1308                 curthread->td_ru.ru_minflt++;
1309
1310         return (KERN_SUCCESS);
1311 }
1312
1313 /*
1314  * Speed up the reclamation of pages that precede the faulting pindex within
1315  * the first object of the shadow chain.  Essentially, perform the equivalent
1316  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1317  * the faulting pindex by the cluster size when the pages read by vm_fault()
1318  * cross a cluster-size boundary.  The cluster size is the greater of the
1319  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1320  *
1321  * When "fs->first_object" is a shadow object, the pages in the backing object
1322  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1323  * function must only be concerned with pages in the first object.
1324  */
1325 static void
1326 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1327 {
1328         vm_map_entry_t entry;
1329         vm_object_t first_object, object;
1330         vm_offset_t end, start;
1331         vm_page_t m, m_next;
1332         vm_pindex_t pend, pstart;
1333         vm_size_t size;
1334
1335         object = fs->object;
1336         VM_OBJECT_ASSERT_WLOCKED(object);
1337         first_object = fs->first_object;
1338         if (first_object != object) {
1339                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1340                         VM_OBJECT_WUNLOCK(object);
1341                         VM_OBJECT_WLOCK(first_object);
1342                         VM_OBJECT_WLOCK(object);
1343                 }
1344         }
1345         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1346         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1347                 size = VM_FAULT_DONTNEED_MIN;
1348                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1349                         size = pagesizes[1];
1350                 end = rounddown2(vaddr, size);
1351                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1352                     (entry = fs->entry)->start < end) {
1353                         if (end - entry->start < size)
1354                                 start = entry->start;
1355                         else
1356                                 start = end - size;
1357                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1358                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1359                             entry->start);
1360                         m_next = vm_page_find_least(first_object, pstart);
1361                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1362                             entry->start);
1363                         while ((m = m_next) != NULL && m->pindex < pend) {
1364                                 m_next = TAILQ_NEXT(m, listq);
1365                                 if (m->valid != VM_PAGE_BITS_ALL ||
1366                                     vm_page_busied(m))
1367                                         continue;
1368
1369                                 /*
1370                                  * Don't clear PGA_REFERENCED, since it would
1371                                  * likely represent a reference by a different
1372                                  * process.
1373                                  *
1374                                  * Typically, at this point, prefetched pages
1375                                  * are still in the inactive queue.  Only
1376                                  * pages that triggered page faults are in the
1377                                  * active queue.
1378                                  */
1379                                 vm_page_lock(m);
1380                                 vm_page_deactivate(m);
1381                                 vm_page_unlock(m);
1382                         }
1383                 }
1384         }
1385         if (first_object != object)
1386                 VM_OBJECT_WUNLOCK(first_object);
1387 }
1388
1389 /*
1390  * vm_fault_prefault provides a quick way of clustering
1391  * pagefaults into a processes address space.  It is a "cousin"
1392  * of vm_map_pmap_enter, except it runs at page fault time instead
1393  * of mmap time.
1394  */
1395 static void
1396 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1397     int backward, int forward, bool obj_locked)
1398 {
1399         pmap_t pmap;
1400         vm_map_entry_t entry;
1401         vm_object_t backing_object, lobject;
1402         vm_offset_t addr, starta;
1403         vm_pindex_t pindex;
1404         vm_page_t m;
1405         int i;
1406
1407         pmap = fs->map->pmap;
1408         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1409                 return;
1410
1411         entry = fs->entry;
1412
1413         if (addra < backward * PAGE_SIZE) {
1414                 starta = entry->start;
1415         } else {
1416                 starta = addra - backward * PAGE_SIZE;
1417                 if (starta < entry->start)
1418                         starta = entry->start;
1419         }
1420
1421         /*
1422          * Generate the sequence of virtual addresses that are candidates for
1423          * prefaulting in an outward spiral from the faulting virtual address,
1424          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1425          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1426          * If the candidate address doesn't have a backing physical page, then
1427          * the loop immediately terminates.
1428          */
1429         for (i = 0; i < 2 * imax(backward, forward); i++) {
1430                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1431                     PAGE_SIZE);
1432                 if (addr > addra + forward * PAGE_SIZE)
1433                         addr = 0;
1434
1435                 if (addr < starta || addr >= entry->end)
1436                         continue;
1437
1438                 if (!pmap_is_prefaultable(pmap, addr))
1439                         continue;
1440
1441                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1442                 lobject = entry->object.vm_object;
1443                 if (!obj_locked)
1444                         VM_OBJECT_RLOCK(lobject);
1445                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1446                     lobject->type == OBJT_DEFAULT &&
1447                     (backing_object = lobject->backing_object) != NULL) {
1448                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1449                             0, ("vm_fault_prefault: unaligned object offset"));
1450                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1451                         VM_OBJECT_RLOCK(backing_object);
1452                         if (!obj_locked || lobject != entry->object.vm_object)
1453                                 VM_OBJECT_RUNLOCK(lobject);
1454                         lobject = backing_object;
1455                 }
1456                 if (m == NULL) {
1457                         if (!obj_locked || lobject != entry->object.vm_object)
1458                                 VM_OBJECT_RUNLOCK(lobject);
1459                         break;
1460                 }
1461                 if (m->valid == VM_PAGE_BITS_ALL &&
1462                     (m->flags & PG_FICTITIOUS) == 0)
1463                         pmap_enter_quick(pmap, addr, m, entry->protection);
1464                 if (!obj_locked || lobject != entry->object.vm_object)
1465                         VM_OBJECT_RUNLOCK(lobject);
1466         }
1467 }
1468
1469 /*
1470  * Hold each of the physical pages that are mapped by the specified range of
1471  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1472  * and allow the specified types of access, "prot".  If all of the implied
1473  * pages are successfully held, then the number of held pages is returned
1474  * together with pointers to those pages in the array "ma".  However, if any
1475  * of the pages cannot be held, -1 is returned.
1476  */
1477 int
1478 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1479     vm_prot_t prot, vm_page_t *ma, int max_count)
1480 {
1481         vm_offset_t end, va;
1482         vm_page_t *mp;
1483         int count;
1484         boolean_t pmap_failed;
1485
1486         if (len == 0)
1487                 return (0);
1488         end = round_page(addr + len);
1489         addr = trunc_page(addr);
1490
1491         /*
1492          * Check for illegal addresses.
1493          */
1494         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1495                 return (-1);
1496
1497         if (atop(end - addr) > max_count)
1498                 panic("vm_fault_quick_hold_pages: count > max_count");
1499         count = atop(end - addr);
1500
1501         /*
1502          * Most likely, the physical pages are resident in the pmap, so it is
1503          * faster to try pmap_extract_and_hold() first.
1504          */
1505         pmap_failed = FALSE;
1506         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1507                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1508                 if (*mp == NULL)
1509                         pmap_failed = TRUE;
1510                 else if ((prot & VM_PROT_WRITE) != 0 &&
1511                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1512                         /*
1513                          * Explicitly dirty the physical page.  Otherwise, the
1514                          * caller's changes may go unnoticed because they are
1515                          * performed through an unmanaged mapping or by a DMA
1516                          * operation.
1517                          *
1518                          * The object lock is not held here.
1519                          * See vm_page_clear_dirty_mask().
1520                          */
1521                         vm_page_dirty(*mp);
1522                 }
1523         }
1524         if (pmap_failed) {
1525                 /*
1526                  * One or more pages could not be held by the pmap.  Either no
1527                  * page was mapped at the specified virtual address or that
1528                  * mapping had insufficient permissions.  Attempt to fault in
1529                  * and hold these pages.
1530                  *
1531                  * If vm_fault_disable_pagefaults() was called,
1532                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1533                  * acquire MD VM locks, which means we must not call
1534                  * vm_fault_hold().  Some (out of tree) callers mark
1535                  * too wide a code area with vm_fault_disable_pagefaults()
1536                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1537                  * the proper behaviour explicitly.
1538                  */
1539                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1540                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1541                         goto error;
1542                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1543                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1544                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1545                                 goto error;
1546         }
1547         return (count);
1548 error:  
1549         for (mp = ma; mp < ma + count; mp++)
1550                 if (*mp != NULL) {
1551                         vm_page_lock(*mp);
1552                         vm_page_unhold(*mp);
1553                         vm_page_unlock(*mp);
1554                 }
1555         return (-1);
1556 }
1557
1558 /*
1559  *      Routine:
1560  *              vm_fault_copy_entry
1561  *      Function:
1562  *              Create new shadow object backing dst_entry with private copy of
1563  *              all underlying pages. When src_entry is equal to dst_entry,
1564  *              function implements COW for wired-down map entry. Otherwise,
1565  *              it forks wired entry into dst_map.
1566  *
1567  *      In/out conditions:
1568  *              The source and destination maps must be locked for write.
1569  *              The source map entry must be wired down (or be a sharing map
1570  *              entry corresponding to a main map entry that is wired down).
1571  */
1572 void
1573 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1574     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1575     vm_ooffset_t *fork_charge)
1576 {
1577         vm_object_t backing_object, dst_object, object, src_object;
1578         vm_pindex_t dst_pindex, pindex, src_pindex;
1579         vm_prot_t access, prot;
1580         vm_offset_t vaddr;
1581         vm_page_t dst_m;
1582         vm_page_t src_m;
1583         boolean_t upgrade;
1584
1585 #ifdef  lint
1586         src_map++;
1587 #endif  /* lint */
1588
1589         upgrade = src_entry == dst_entry;
1590         access = prot = dst_entry->protection;
1591
1592         src_object = src_entry->object.vm_object;
1593         src_pindex = OFF_TO_IDX(src_entry->offset);
1594
1595         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1596                 dst_object = src_object;
1597                 vm_object_reference(dst_object);
1598         } else {
1599                 /*
1600                  * Create the top-level object for the destination entry. (Doesn't
1601                  * actually shadow anything - we copy the pages directly.)
1602                  */
1603                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1604                     atop(dst_entry->end - dst_entry->start));
1605 #if VM_NRESERVLEVEL > 0
1606                 dst_object->flags |= OBJ_COLORED;
1607                 dst_object->pg_color = atop(dst_entry->start);
1608 #endif
1609                 dst_object->charge = dst_entry->end - dst_entry->start;
1610         }
1611
1612         VM_OBJECT_WLOCK(dst_object);
1613         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1614             ("vm_fault_copy_entry: vm_object not NULL"));
1615         if (src_object != dst_object) {
1616                 dst_entry->object.vm_object = dst_object;
1617                 dst_entry->offset = 0;
1618         }
1619         if (fork_charge != NULL) {
1620                 KASSERT(dst_entry->cred == NULL,
1621                     ("vm_fault_copy_entry: leaked swp charge"));
1622                 dst_object->cred = curthread->td_ucred;
1623                 crhold(dst_object->cred);
1624                 *fork_charge += dst_object->charge;
1625         } else if ((dst_object->type == OBJT_DEFAULT ||
1626             dst_object->type == OBJT_SWAP) &&
1627             dst_object->cred == NULL) {
1628                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1629                     dst_entry));
1630                 dst_object->cred = dst_entry->cred;
1631                 dst_entry->cred = NULL;
1632         }
1633
1634         /*
1635          * If not an upgrade, then enter the mappings in the pmap as
1636          * read and/or execute accesses.  Otherwise, enter them as
1637          * write accesses.
1638          *
1639          * A writeable large page mapping is only created if all of
1640          * the constituent small page mappings are modified. Marking
1641          * PTEs as modified on inception allows promotion to happen
1642          * without taking potentially large number of soft faults.
1643          */
1644         if (!upgrade)
1645                 access &= ~VM_PROT_WRITE;
1646
1647         /*
1648          * Loop through all of the virtual pages within the entry's
1649          * range, copying each page from the source object to the
1650          * destination object.  Since the source is wired, those pages
1651          * must exist.  In contrast, the destination is pageable.
1652          * Since the destination object doesn't share any backing storage
1653          * with the source object, all of its pages must be dirtied,
1654          * regardless of whether they can be written.
1655          */
1656         for (vaddr = dst_entry->start, dst_pindex = 0;
1657             vaddr < dst_entry->end;
1658             vaddr += PAGE_SIZE, dst_pindex++) {
1659 again:
1660                 /*
1661                  * Find the page in the source object, and copy it in.
1662                  * Because the source is wired down, the page will be
1663                  * in memory.
1664                  */
1665                 if (src_object != dst_object)
1666                         VM_OBJECT_RLOCK(src_object);
1667                 object = src_object;
1668                 pindex = src_pindex + dst_pindex;
1669                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1670                     (backing_object = object->backing_object) != NULL) {
1671                         /*
1672                          * Unless the source mapping is read-only or
1673                          * it is presently being upgraded from
1674                          * read-only, the first object in the shadow
1675                          * chain should provide all of the pages.  In
1676                          * other words, this loop body should never be
1677                          * executed when the source mapping is already
1678                          * read/write.
1679                          */
1680                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1681                             upgrade,
1682                             ("vm_fault_copy_entry: main object missing page"));
1683
1684                         VM_OBJECT_RLOCK(backing_object);
1685                         pindex += OFF_TO_IDX(object->backing_object_offset);
1686                         if (object != dst_object)
1687                                 VM_OBJECT_RUNLOCK(object);
1688                         object = backing_object;
1689                 }
1690                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1691
1692                 if (object != dst_object) {
1693                         /*
1694                          * Allocate a page in the destination object.
1695                          */
1696                         dst_m = vm_page_alloc(dst_object, (src_object ==
1697                             dst_object ? src_pindex : 0) + dst_pindex,
1698                             VM_ALLOC_NORMAL);
1699                         if (dst_m == NULL) {
1700                                 VM_OBJECT_WUNLOCK(dst_object);
1701                                 VM_OBJECT_RUNLOCK(object);
1702                                 VM_WAIT;
1703                                 VM_OBJECT_WLOCK(dst_object);
1704                                 goto again;
1705                         }
1706                         pmap_copy_page(src_m, dst_m);
1707                         VM_OBJECT_RUNLOCK(object);
1708                         dst_m->dirty = dst_m->valid = src_m->valid;
1709                 } else {
1710                         dst_m = src_m;
1711                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1712                                 goto again;
1713                         if (dst_m->pindex >= dst_object->size)
1714                                 /*
1715                                  * We are upgrading.  Index can occur
1716                                  * out of bounds if the object type is
1717                                  * vnode and the file was truncated.
1718                                  */
1719                                 break;
1720                         vm_page_xbusy(dst_m);
1721                 }
1722                 VM_OBJECT_WUNLOCK(dst_object);
1723
1724                 /*
1725                  * Enter it in the pmap. If a wired, copy-on-write
1726                  * mapping is being replaced by a write-enabled
1727                  * mapping, then wire that new mapping.
1728                  *
1729                  * The page can be invalid if the user called
1730                  * msync(MS_INVALIDATE) or truncated the backing vnode
1731                  * or shared memory object.  In this case, do not
1732                  * insert it into pmap, but still do the copy so that
1733                  * all copies of the wired map entry have similar
1734                  * backing pages.
1735                  */
1736                 if (dst_m->valid == VM_PAGE_BITS_ALL) {
1737                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1738                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1739                 }
1740
1741                 /*
1742                  * Mark it no longer busy, and put it on the active list.
1743                  */
1744                 VM_OBJECT_WLOCK(dst_object);
1745                 
1746                 if (upgrade) {
1747                         if (src_m != dst_m) {
1748                                 vm_page_lock(src_m);
1749                                 vm_page_unwire(src_m, PQ_INACTIVE);
1750                                 vm_page_unlock(src_m);
1751                                 vm_page_lock(dst_m);
1752                                 vm_page_wire(dst_m);
1753                                 vm_page_unlock(dst_m);
1754                         } else {
1755                                 KASSERT(dst_m->wire_count > 0,
1756                                     ("dst_m %p is not wired", dst_m));
1757                         }
1758                 } else {
1759                         vm_page_lock(dst_m);
1760                         vm_page_activate(dst_m);
1761                         vm_page_unlock(dst_m);
1762                 }
1763                 vm_page_xunbusy(dst_m);
1764         }
1765         VM_OBJECT_WUNLOCK(dst_object);
1766         if (upgrade) {
1767                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1768                 vm_object_deallocate(src_object);
1769         }
1770 }
1771
1772 /*
1773  * Block entry into the machine-independent layer's page fault handler by
1774  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1775  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1776  * spurious page faults. 
1777  */
1778 int
1779 vm_fault_disable_pagefaults(void)
1780 {
1781
1782         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1783 }
1784
1785 void
1786 vm_fault_enable_pagefaults(int save)
1787 {
1788
1789         curthread_pflags_restore(save);
1790 }