]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Revert r364310.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         /* Fault parameters. */
124         vm_offset_t     vaddr;
125         vm_page_t       *m_hold;
126         vm_prot_t       fault_type;
127         vm_prot_t       prot;
128         int             fault_flags;
129         int             oom;
130         boolean_t       wired;
131
132         /* Page reference for cow. */
133         vm_page_t m_cow;
134
135         /* Current object. */
136         vm_object_t     object;
137         vm_pindex_t     pindex;
138         vm_page_t       m;
139
140         /* Top-level map object. */
141         vm_object_t     first_object;
142         vm_pindex_t     first_pindex;
143         vm_page_t       first_m;
144
145         /* Map state. */
146         vm_map_t        map;
147         vm_map_entry_t  entry;
148         int             map_generation;
149         bool            lookup_still_valid;
150
151         /* Vnode if locked. */
152         struct vnode    *vp;
153 };
154
155 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
156             int ahead);
157 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
158             int backward, int forward, bool obj_locked);
159
160 static int vm_pfault_oom_attempts = 3;
161 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
162     &vm_pfault_oom_attempts, 0,
163     "Number of page allocation attempts in page fault handler before it "
164     "triggers OOM handling");
165
166 static int vm_pfault_oom_wait = 10;
167 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
168     &vm_pfault_oom_wait, 0,
169     "Number of seconds to wait for free pages before retrying "
170     "the page fault handler");
171
172 static inline void
173 fault_page_release(vm_page_t *mp)
174 {
175         vm_page_t m;
176
177         m = *mp;
178         if (m != NULL) {
179                 /*
180                  * We are likely to loop around again and attempt to busy
181                  * this page.  Deactivating it leaves it available for
182                  * pageout while optimizing fault restarts.
183                  */
184                 vm_page_deactivate(m);
185                 vm_page_xunbusy(m);
186                 *mp = NULL;
187         }
188 }
189
190 static inline void
191 fault_page_free(vm_page_t *mp)
192 {
193         vm_page_t m;
194
195         m = *mp;
196         if (m != NULL) {
197                 VM_OBJECT_ASSERT_WLOCKED(m->object);
198                 if (!vm_page_wired(m))
199                         vm_page_free(m);
200                 else
201                         vm_page_xunbusy(m);
202                 *mp = NULL;
203         }
204 }
205
206 static inline void
207 unlock_map(struct faultstate *fs)
208 {
209
210         if (fs->lookup_still_valid) {
211                 vm_map_lookup_done(fs->map, fs->entry);
212                 fs->lookup_still_valid = false;
213         }
214 }
215
216 static void
217 unlock_vp(struct faultstate *fs)
218 {
219
220         if (fs->vp != NULL) {
221                 vput(fs->vp);
222                 fs->vp = NULL;
223         }
224 }
225
226 static void
227 fault_deallocate(struct faultstate *fs)
228 {
229
230         fault_page_release(&fs->m_cow);
231         fault_page_release(&fs->m);
232         vm_object_pip_wakeup(fs->object);
233         if (fs->object != fs->first_object) {
234                 VM_OBJECT_WLOCK(fs->first_object);
235                 fault_page_free(&fs->first_m);
236                 VM_OBJECT_WUNLOCK(fs->first_object);
237                 vm_object_pip_wakeup(fs->first_object);
238         }
239         vm_object_deallocate(fs->first_object);
240         unlock_map(fs);
241         unlock_vp(fs);
242 }
243
244 static void
245 unlock_and_deallocate(struct faultstate *fs)
246 {
247
248         VM_OBJECT_WUNLOCK(fs->object);
249         fault_deallocate(fs);
250 }
251
252 static void
253 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
254 {
255         bool need_dirty;
256
257         if (((fs->prot & VM_PROT_WRITE) == 0 &&
258             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
259             (m->oflags & VPO_UNMANAGED) != 0)
260                 return;
261
262         VM_PAGE_OBJECT_BUSY_ASSERT(m);
263
264         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
265             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
266             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
267
268         vm_object_set_writeable_dirty(m->object);
269
270         /*
271          * If the fault is a write, we know that this page is being
272          * written NOW so dirty it explicitly to save on
273          * pmap_is_modified() calls later.
274          *
275          * Also, since the page is now dirty, we can possibly tell
276          * the pager to release any swap backing the page.
277          */
278         if (need_dirty && vm_page_set_dirty(m) == 0) {
279                 /*
280                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
281                  * if the page is already dirty to prevent data written with
282                  * the expectation of being synced from not being synced.
283                  * Likewise if this entry does not request NOSYNC then make
284                  * sure the page isn't marked NOSYNC.  Applications sharing
285                  * data should use the same flags to avoid ping ponging.
286                  */
287                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
288                         vm_page_aflag_set(m, PGA_NOSYNC);
289                 else
290                         vm_page_aflag_clear(m, PGA_NOSYNC);
291         }
292
293 }
294
295 /*
296  * Unlocks fs.first_object and fs.map on success.
297  */
298 static int
299 vm_fault_soft_fast(struct faultstate *fs)
300 {
301         vm_page_t m, m_map;
302 #if VM_NRESERVLEVEL > 0
303         vm_page_t m_super;
304         int flags;
305 #endif
306         int psind, rv;
307         vm_offset_t vaddr;
308
309         MPASS(fs->vp == NULL);
310         vaddr = fs->vaddr;
311         vm_object_busy(fs->first_object);
312         m = vm_page_lookup(fs->first_object, fs->first_pindex);
313         /* A busy page can be mapped for read|execute access. */
314         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
315             vm_page_busied(m)) || !vm_page_all_valid(m)) {
316                 rv = KERN_FAILURE;
317                 goto out;
318         }
319         m_map = m;
320         psind = 0;
321 #if VM_NRESERVLEVEL > 0
322         if ((m->flags & PG_FICTITIOUS) == 0 &&
323             (m_super = vm_reserv_to_superpage(m)) != NULL &&
324             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
325             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
326             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
327             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
328             pmap_ps_enabled(fs->map->pmap)) {
329                 flags = PS_ALL_VALID;
330                 if ((fs->prot & VM_PROT_WRITE) != 0) {
331                         /*
332                          * Create a superpage mapping allowing write access
333                          * only if none of the constituent pages are busy and
334                          * all of them are already dirty (except possibly for
335                          * the page that was faulted on).
336                          */
337                         flags |= PS_NONE_BUSY;
338                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
339                                 flags |= PS_ALL_DIRTY;
340                 }
341                 if (vm_page_ps_test(m_super, flags, m)) {
342                         m_map = m_super;
343                         psind = m_super->psind;
344                         vaddr = rounddown2(vaddr, pagesizes[psind]);
345                         /* Preset the modified bit for dirty superpages. */
346                         if ((flags & PS_ALL_DIRTY) != 0)
347                                 fs->fault_type |= VM_PROT_WRITE;
348                 }
349         }
350 #endif
351         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
352             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
353         if (rv != KERN_SUCCESS)
354                 goto out;
355         if (fs->m_hold != NULL) {
356                 (*fs->m_hold) = m;
357                 vm_page_wire(m);
358         }
359         if (psind == 0 && !fs->wired)
360                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
361         VM_OBJECT_RUNLOCK(fs->first_object);
362         vm_fault_dirty(fs, m);
363         vm_map_lookup_done(fs->map, fs->entry);
364         curthread->td_ru.ru_minflt++;
365
366 out:
367         vm_object_unbusy(fs->first_object);
368         return (rv);
369 }
370
371 static void
372 vm_fault_restore_map_lock(struct faultstate *fs)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
376         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
377
378         if (!vm_map_trylock_read(fs->map)) {
379                 VM_OBJECT_WUNLOCK(fs->first_object);
380                 vm_map_lock_read(fs->map);
381                 VM_OBJECT_WLOCK(fs->first_object);
382         }
383         fs->lookup_still_valid = true;
384 }
385
386 static void
387 vm_fault_populate_check_page(vm_page_t m)
388 {
389
390         /*
391          * Check each page to ensure that the pager is obeying the
392          * interface: the page must be installed in the object, fully
393          * valid, and exclusively busied.
394          */
395         MPASS(m != NULL);
396         MPASS(vm_page_all_valid(m));
397         MPASS(vm_page_xbusied(m));
398 }
399
400 static void
401 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
402     vm_pindex_t last)
403 {
404         vm_page_t m;
405         vm_pindex_t pidx;
406
407         VM_OBJECT_ASSERT_WLOCKED(object);
408         MPASS(first <= last);
409         for (pidx = first, m = vm_page_lookup(object, pidx);
410             pidx <= last; pidx++, m = vm_page_next(m)) {
411                 vm_fault_populate_check_page(m);
412                 vm_page_deactivate(m);
413                 vm_page_xunbusy(m);
414         }
415 }
416
417 static int
418 vm_fault_populate(struct faultstate *fs)
419 {
420         vm_offset_t vaddr;
421         vm_page_t m;
422         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
423         int i, npages, psind, rv;
424
425         MPASS(fs->object == fs->first_object);
426         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
427         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
428         MPASS(fs->first_object->backing_object == NULL);
429         MPASS(fs->lookup_still_valid);
430
431         pager_first = OFF_TO_IDX(fs->entry->offset);
432         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
433         unlock_map(fs);
434         unlock_vp(fs);
435
436         /*
437          * Call the pager (driver) populate() method.
438          *
439          * There is no guarantee that the method will be called again
440          * if the current fault is for read, and a future fault is
441          * for write.  Report the entry's maximum allowed protection
442          * to the driver.
443          */
444         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
445             fs->fault_type, fs->entry->max_protection, &pager_first, &pager_last);
446
447         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
448         if (rv == VM_PAGER_BAD) {
449                 /*
450                  * VM_PAGER_BAD is the backdoor for a pager to request
451                  * normal fault handling.
452                  */
453                 vm_fault_restore_map_lock(fs);
454                 if (fs->map->timestamp != fs->map_generation)
455                         return (KERN_RESTART);
456                 return (KERN_NOT_RECEIVER);
457         }
458         if (rv != VM_PAGER_OK)
459                 return (KERN_FAILURE); /* AKA SIGSEGV */
460
461         /* Ensure that the driver is obeying the interface. */
462         MPASS(pager_first <= pager_last);
463         MPASS(fs->first_pindex <= pager_last);
464         MPASS(fs->first_pindex >= pager_first);
465         MPASS(pager_last < fs->first_object->size);
466
467         vm_fault_restore_map_lock(fs);
468         if (fs->map->timestamp != fs->map_generation) {
469                 vm_fault_populate_cleanup(fs->first_object, pager_first,
470                     pager_last);
471                 return (KERN_RESTART);
472         }
473
474         /*
475          * The map is unchanged after our last unlock.  Process the fault.
476          *
477          * The range [pager_first, pager_last] that is given to the
478          * pager is only a hint.  The pager may populate any range
479          * within the object that includes the requested page index.
480          * In case the pager expanded the range, clip it to fit into
481          * the map entry.
482          */
483         map_first = OFF_TO_IDX(fs->entry->offset);
484         if (map_first > pager_first) {
485                 vm_fault_populate_cleanup(fs->first_object, pager_first,
486                     map_first - 1);
487                 pager_first = map_first;
488         }
489         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
490         if (map_last < pager_last) {
491                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
492                     pager_last);
493                 pager_last = map_last;
494         }
495         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
496             pidx <= pager_last;
497             pidx += npages, m = vm_page_next(&m[npages - 1])) {
498                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
499 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
500     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
501                 psind = m->psind;
502                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
503                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
504                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
505                         psind = 0;
506 #else
507                 psind = 0;
508 #endif          
509                 npages = atop(pagesizes[psind]);
510                 for (i = 0; i < npages; i++) {
511                         vm_fault_populate_check_page(&m[i]);
512                         vm_fault_dirty(fs, &m[i]);
513                 }
514                 VM_OBJECT_WUNLOCK(fs->first_object);
515                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
516                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
517 #if defined(__amd64__)
518                 if (psind > 0 && rv == KERN_FAILURE) {
519                         for (i = 0; i < npages; i++) {
520                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
521                                     &m[i], fs->prot, fs->fault_type |
522                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
523                                 MPASS(rv == KERN_SUCCESS);
524                         }
525                 }
526 #else
527                 MPASS(rv == KERN_SUCCESS);
528 #endif
529                 VM_OBJECT_WLOCK(fs->first_object);
530                 for (i = 0; i < npages; i++) {
531                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
532                                 vm_page_wire(&m[i]);
533                         else
534                                 vm_page_activate(&m[i]);
535                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
536                                 (*fs->m_hold) = &m[i];
537                                 vm_page_wire(&m[i]);
538                         }
539                         vm_page_xunbusy(&m[i]);
540                 }
541         }
542         curthread->td_ru.ru_majflt++;
543         return (KERN_SUCCESS);
544 }
545
546 static int prot_fault_translation;
547 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
548     &prot_fault_translation, 0,
549     "Control signal to deliver on protection fault");
550
551 /* compat definition to keep common code for signal translation */
552 #define UCODE_PAGEFLT   12
553 #ifdef T_PAGEFLT
554 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
555 #endif
556
557 /*
558  *      vm_fault_trap:
559  *
560  *      Handle a page fault occurring at the given address,
561  *      requiring the given permissions, in the map specified.
562  *      If successful, the page is inserted into the
563  *      associated physical map.
564  *
565  *      NOTE: the given address should be truncated to the
566  *      proper page address.
567  *
568  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
569  *      a standard error specifying why the fault is fatal is returned.
570  *
571  *      The map in question must be referenced, and remains so.
572  *      Caller may hold no locks.
573  */
574 int
575 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
576     int fault_flags, int *signo, int *ucode)
577 {
578         int result;
579
580         MPASS(signo == NULL || ucode != NULL);
581 #ifdef KTRACE
582         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
583                 ktrfault(vaddr, fault_type);
584 #endif
585         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
586             NULL);
587         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
588             result == KERN_INVALID_ADDRESS ||
589             result == KERN_RESOURCE_SHORTAGE ||
590             result == KERN_PROTECTION_FAILURE ||
591             result == KERN_OUT_OF_BOUNDS,
592             ("Unexpected Mach error %d from vm_fault()", result));
593 #ifdef KTRACE
594         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
595                 ktrfaultend(result);
596 #endif
597         if (result != KERN_SUCCESS && signo != NULL) {
598                 switch (result) {
599                 case KERN_FAILURE:
600                 case KERN_INVALID_ADDRESS:
601                         *signo = SIGSEGV;
602                         *ucode = SEGV_MAPERR;
603                         break;
604                 case KERN_RESOURCE_SHORTAGE:
605                         *signo = SIGBUS;
606                         *ucode = BUS_OOMERR;
607                         break;
608                 case KERN_OUT_OF_BOUNDS:
609                         *signo = SIGBUS;
610                         *ucode = BUS_OBJERR;
611                         break;
612                 case KERN_PROTECTION_FAILURE:
613                         if (prot_fault_translation == 0) {
614                                 /*
615                                  * Autodetect.  This check also covers
616                                  * the images without the ABI-tag ELF
617                                  * note.
618                                  */
619                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
620                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
621                                         *signo = SIGSEGV;
622                                         *ucode = SEGV_ACCERR;
623                                 } else {
624                                         *signo = SIGBUS;
625                                         *ucode = UCODE_PAGEFLT;
626                                 }
627                         } else if (prot_fault_translation == 1) {
628                                 /* Always compat mode. */
629                                 *signo = SIGBUS;
630                                 *ucode = UCODE_PAGEFLT;
631                         } else {
632                                 /* Always SIGSEGV mode. */
633                                 *signo = SIGSEGV;
634                                 *ucode = SEGV_ACCERR;
635                         }
636                         break;
637                 default:
638                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
639                             result));
640                         break;
641                 }
642         }
643         return (result);
644 }
645
646 static int
647 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
648 {
649         struct vnode *vp;
650         int error, locked;
651
652         if (fs->object->type != OBJT_VNODE)
653                 return (KERN_SUCCESS);
654         vp = fs->object->handle;
655         if (vp == fs->vp) {
656                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
657                 return (KERN_SUCCESS);
658         }
659
660         /*
661          * Perform an unlock in case the desired vnode changed while
662          * the map was unlocked during a retry.
663          */
664         unlock_vp(fs);
665
666         locked = VOP_ISLOCKED(vp);
667         if (locked != LK_EXCLUSIVE)
668                 locked = LK_SHARED;
669
670         /*
671          * We must not sleep acquiring the vnode lock while we have
672          * the page exclusive busied or the object's
673          * paging-in-progress count incremented.  Otherwise, we could
674          * deadlock.
675          */
676         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
677         if (error == 0) {
678                 fs->vp = vp;
679                 return (KERN_SUCCESS);
680         }
681
682         vhold(vp);
683         if (objlocked)
684                 unlock_and_deallocate(fs);
685         else
686                 fault_deallocate(fs);
687         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
688         vdrop(vp);
689         fs->vp = vp;
690         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
691         return (KERN_RESOURCE_SHORTAGE);
692 }
693
694 /*
695  * Calculate the desired readahead.  Handle drop-behind.
696  *
697  * Returns the number of readahead blocks to pass to the pager.
698  */
699 static int
700 vm_fault_readahead(struct faultstate *fs)
701 {
702         int era, nera;
703         u_char behavior;
704
705         KASSERT(fs->lookup_still_valid, ("map unlocked"));
706         era = fs->entry->read_ahead;
707         behavior = vm_map_entry_behavior(fs->entry);
708         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
709                 nera = 0;
710         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
711                 nera = VM_FAULT_READ_AHEAD_MAX;
712                 if (fs->vaddr == fs->entry->next_read)
713                         vm_fault_dontneed(fs, fs->vaddr, nera);
714         } else if (fs->vaddr == fs->entry->next_read) {
715                 /*
716                  * This is a sequential fault.  Arithmetically
717                  * increase the requested number of pages in
718                  * the read-ahead window.  The requested
719                  * number of pages is "# of sequential faults
720                  * x (read ahead min + 1) + read ahead min"
721                  */
722                 nera = VM_FAULT_READ_AHEAD_MIN;
723                 if (era > 0) {
724                         nera += era + 1;
725                         if (nera > VM_FAULT_READ_AHEAD_MAX)
726                                 nera = VM_FAULT_READ_AHEAD_MAX;
727                 }
728                 if (era == VM_FAULT_READ_AHEAD_MAX)
729                         vm_fault_dontneed(fs, fs->vaddr, nera);
730         } else {
731                 /*
732                  * This is a non-sequential fault.
733                  */
734                 nera = 0;
735         }
736         if (era != nera) {
737                 /*
738                  * A read lock on the map suffices to update
739                  * the read ahead count safely.
740                  */
741                 fs->entry->read_ahead = nera;
742         }
743
744         return (nera);
745 }
746
747 static int
748 vm_fault_lookup(struct faultstate *fs)
749 {
750         int result;
751
752         KASSERT(!fs->lookup_still_valid,
753            ("vm_fault_lookup: Map already locked."));
754         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
755             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
756             &fs->first_pindex, &fs->prot, &fs->wired);
757         if (result != KERN_SUCCESS) {
758                 unlock_vp(fs);
759                 return (result);
760         }
761
762         fs->map_generation = fs->map->timestamp;
763
764         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
765                 panic("%s: fault on nofault entry, addr: %#lx",
766                     __func__, (u_long)fs->vaddr);
767         }
768
769         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
770             fs->entry->wiring_thread != curthread) {
771                 vm_map_unlock_read(fs->map);
772                 vm_map_lock(fs->map);
773                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
774                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
775                         unlock_vp(fs);
776                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
777                         vm_map_unlock_and_wait(fs->map, 0);
778                 } else
779                         vm_map_unlock(fs->map);
780                 return (KERN_RESOURCE_SHORTAGE);
781         }
782
783         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
784
785         if (fs->wired)
786                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
787         else
788                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
789                     ("!fs->wired && VM_FAULT_WIRE"));
790         fs->lookup_still_valid = true;
791
792         return (KERN_SUCCESS);
793 }
794
795 static int
796 vm_fault_relookup(struct faultstate *fs)
797 {
798         vm_object_t retry_object;
799         vm_pindex_t retry_pindex;
800         vm_prot_t retry_prot;
801         int result;
802
803         if (!vm_map_trylock_read(fs->map))
804                 return (KERN_RESTART);
805
806         fs->lookup_still_valid = true;
807         if (fs->map->timestamp == fs->map_generation)
808                 return (KERN_SUCCESS);
809
810         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
811             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
812             &fs->wired);
813         if (result != KERN_SUCCESS) {
814                 /*
815                  * If retry of map lookup would have blocked then
816                  * retry fault from start.
817                  */
818                 if (result == KERN_FAILURE)
819                         return (KERN_RESTART);
820                 return (result);
821         }
822         if (retry_object != fs->first_object ||
823             retry_pindex != fs->first_pindex)
824                 return (KERN_RESTART);
825
826         /*
827          * Check whether the protection has changed or the object has
828          * been copied while we left the map unlocked. Changing from
829          * read to write permission is OK - we leave the page
830          * write-protected, and catch the write fault. Changing from
831          * write to read permission means that we can't mark the page
832          * write-enabled after all.
833          */
834         fs->prot &= retry_prot;
835         fs->fault_type &= retry_prot;
836         if (fs->prot == 0)
837                 return (KERN_RESTART);
838
839         /* Reassert because wired may have changed. */
840         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
841             ("!wired && VM_FAULT_WIRE"));
842
843         return (KERN_SUCCESS);
844 }
845
846 static void
847 vm_fault_cow(struct faultstate *fs)
848 {
849         bool is_first_object_locked;
850
851         /*
852          * This allows pages to be virtually copied from a backing_object
853          * into the first_object, where the backing object has no other
854          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
855          * we just move the page from the backing object to the first
856          * object.  Note that we must mark the page dirty in the first
857          * object so that it will go out to swap when needed.
858          */
859         is_first_object_locked = false;
860         if (
861             /*
862              * Only one shadow object and no other refs.
863              */
864             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
865             /*
866              * No other ways to look the object up
867              */
868             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
869             /*
870              * We don't chase down the shadow chain and we can acquire locks.
871              */
872             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
873             fs->object == fs->first_object->backing_object &&
874             VM_OBJECT_TRYWLOCK(fs->object)) {
875
876                 /*
877                  * Remove but keep xbusy for replace.  fs->m is moved into
878                  * fs->first_object and left busy while fs->first_m is
879                  * conditionally freed.
880                  */
881                 vm_page_remove_xbusy(fs->m);
882                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
883                     fs->first_m);
884                 vm_page_dirty(fs->m);
885 #if VM_NRESERVLEVEL > 0
886                 /*
887                  * Rename the reservation.
888                  */
889                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
890                     OFF_TO_IDX(fs->first_object->backing_object_offset));
891 #endif
892                 VM_OBJECT_WUNLOCK(fs->object);
893                 VM_OBJECT_WUNLOCK(fs->first_object);
894                 fs->first_m = fs->m;
895                 fs->m = NULL;
896                 VM_CNT_INC(v_cow_optim);
897         } else {
898                 if (is_first_object_locked)
899                         VM_OBJECT_WUNLOCK(fs->first_object);
900                 /*
901                  * Oh, well, lets copy it.
902                  */
903                 pmap_copy_page(fs->m, fs->first_m);
904                 vm_page_valid(fs->first_m);
905                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
906                         vm_page_wire(fs->first_m);
907                         vm_page_unwire(fs->m, PQ_INACTIVE);
908                 }
909                 /*
910                  * Save the cow page to be released after
911                  * pmap_enter is complete.
912                  */
913                 fs->m_cow = fs->m;
914                 fs->m = NULL;
915         }
916         /*
917          * fs->object != fs->first_object due to above 
918          * conditional
919          */
920         vm_object_pip_wakeup(fs->object);
921
922         /*
923          * Only use the new page below...
924          */
925         fs->object = fs->first_object;
926         fs->pindex = fs->first_pindex;
927         fs->m = fs->first_m;
928         VM_CNT_INC(v_cow_faults);
929         curthread->td_cow++;
930 }
931
932 static bool
933 vm_fault_next(struct faultstate *fs)
934 {
935         vm_object_t next_object;
936
937         /*
938          * The requested page does not exist at this object/
939          * offset.  Remove the invalid page from the object,
940          * waking up anyone waiting for it, and continue on to
941          * the next object.  However, if this is the top-level
942          * object, we must leave the busy page in place to
943          * prevent another process from rushing past us, and
944          * inserting the page in that object at the same time
945          * that we are.
946          */
947         if (fs->object == fs->first_object) {
948                 fs->first_m = fs->m;
949                 fs->m = NULL;
950         } else
951                 fault_page_free(&fs->m);
952
953         /*
954          * Move on to the next object.  Lock the next object before
955          * unlocking the current one.
956          */
957         VM_OBJECT_ASSERT_WLOCKED(fs->object);
958         next_object = fs->object->backing_object;
959         if (next_object == NULL)
960                 return (false);
961         MPASS(fs->first_m != NULL);
962         KASSERT(fs->object != next_object, ("object loop %p", next_object));
963         VM_OBJECT_WLOCK(next_object);
964         vm_object_pip_add(next_object, 1);
965         if (fs->object != fs->first_object)
966                 vm_object_pip_wakeup(fs->object);
967         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
968         VM_OBJECT_WUNLOCK(fs->object);
969         fs->object = next_object;
970
971         return (true);
972 }
973
974 static void
975 vm_fault_zerofill(struct faultstate *fs)
976 {
977
978         /*
979          * If there's no object left, fill the page in the top
980          * object with zeros.
981          */
982         if (fs->object != fs->first_object) {
983                 vm_object_pip_wakeup(fs->object);
984                 fs->object = fs->first_object;
985                 fs->pindex = fs->first_pindex;
986         }
987         MPASS(fs->first_m != NULL);
988         MPASS(fs->m == NULL);
989         fs->m = fs->first_m;
990         fs->first_m = NULL;
991
992         /*
993          * Zero the page if necessary and mark it valid.
994          */
995         if ((fs->m->flags & PG_ZERO) == 0) {
996                 pmap_zero_page(fs->m);
997         } else {
998                 VM_CNT_INC(v_ozfod);
999         }
1000         VM_CNT_INC(v_zfod);
1001         vm_page_valid(fs->m);
1002 }
1003
1004 /*
1005  * Allocate a page directly or via the object populate method.
1006  */
1007 static int
1008 vm_fault_allocate(struct faultstate *fs)
1009 {
1010         struct domainset *dset;
1011         int alloc_req;
1012         int rv;
1013
1014
1015         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1016                 rv = vm_fault_lock_vnode(fs, true);
1017                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1018                 if (rv == KERN_RESOURCE_SHORTAGE)
1019                         return (rv);
1020         }
1021
1022         if (fs->pindex >= fs->object->size)
1023                 return (KERN_OUT_OF_BOUNDS);
1024
1025         if (fs->object == fs->first_object &&
1026             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1027             fs->first_object->shadow_count == 0) {
1028                 rv = vm_fault_populate(fs);
1029                 switch (rv) {
1030                 case KERN_SUCCESS:
1031                 case KERN_FAILURE:
1032                 case KERN_RESTART:
1033                         return (rv);
1034                 case KERN_NOT_RECEIVER:
1035                         /*
1036                          * Pager's populate() method
1037                          * returned VM_PAGER_BAD.
1038                          */
1039                         break;
1040                 default:
1041                         panic("inconsistent return codes");
1042                 }
1043         }
1044
1045         /*
1046          * Allocate a new page for this object/offset pair.
1047          *
1048          * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1049          * might be not observed there, and allocation can fail, causing
1050          * restart and new reading of the p_flag.
1051          */
1052         dset = fs->object->domain.dr_policy;
1053         if (dset == NULL)
1054                 dset = curthread->td_domain.dr_policy;
1055         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1056 #if VM_NRESERVLEVEL > 0
1057                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1058 #endif
1059                 alloc_req = P_KILLED(curproc) ?
1060                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1061                 if (fs->object->type != OBJT_VNODE &&
1062                     fs->object->backing_object == NULL)
1063                         alloc_req |= VM_ALLOC_ZERO;
1064                 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1065         }
1066         if (fs->m == NULL) {
1067                 unlock_and_deallocate(fs);
1068                 if (vm_pfault_oom_attempts < 0 ||
1069                     fs->oom < vm_pfault_oom_attempts) {
1070                         fs->oom++;
1071                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1072                 } else  {
1073                         if (bootverbose)
1074                                 printf(
1075                 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1076                                     curproc->p_pid, curproc->p_comm);
1077                         vm_pageout_oom(VM_OOM_MEM_PF);
1078                         fs->oom = 0;
1079                 }
1080                 return (KERN_RESOURCE_SHORTAGE);
1081         }
1082         fs->oom = 0;
1083
1084         return (KERN_NOT_RECEIVER);
1085 }
1086
1087 /*
1088  * Call the pager to retrieve the page if there is a chance
1089  * that the pager has it, and potentially retrieve additional
1090  * pages at the same time.
1091  */
1092 static int
1093 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1094 {
1095         vm_offset_t e_end, e_start;
1096         int ahead, behind, cluster_offset, rv;
1097         u_char behavior;
1098
1099         /*
1100          * Prepare for unlocking the map.  Save the map
1101          * entry's start and end addresses, which are used to
1102          * optimize the size of the pager operation below.
1103          * Even if the map entry's addresses change after
1104          * unlocking the map, using the saved addresses is
1105          * safe.
1106          */
1107         e_start = fs->entry->start;
1108         e_end = fs->entry->end;
1109         behavior = vm_map_entry_behavior(fs->entry);
1110
1111         /*
1112          * Release the map lock before locking the vnode or
1113          * sleeping in the pager.  (If the current object has
1114          * a shadow, then an earlier iteration of this loop
1115          * may have already unlocked the map.)
1116          */
1117         unlock_map(fs);
1118
1119         rv = vm_fault_lock_vnode(fs, false);
1120         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1121         if (rv == KERN_RESOURCE_SHORTAGE)
1122                 return (rv);
1123         KASSERT(fs->vp == NULL || !fs->map->system_map,
1124             ("vm_fault: vnode-backed object mapped by system map"));
1125
1126         /*
1127          * Page in the requested page and hint the pager,
1128          * that it may bring up surrounding pages.
1129          */
1130         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1131             P_KILLED(curproc)) {
1132                 behind = 0;
1133                 ahead = 0;
1134         } else {
1135                 /* Is this a sequential fault? */
1136                 if (nera > 0) {
1137                         behind = 0;
1138                         ahead = nera;
1139                 } else {
1140                         /*
1141                          * Request a cluster of pages that is
1142                          * aligned to a VM_FAULT_READ_DEFAULT
1143                          * page offset boundary within the
1144                          * object.  Alignment to a page offset
1145                          * boundary is more likely to coincide
1146                          * with the underlying file system
1147                          * block than alignment to a virtual
1148                          * address boundary.
1149                          */
1150                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1151                         behind = ulmin(cluster_offset,
1152                             atop(fs->vaddr - e_start));
1153                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1154                 }
1155                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1156         }
1157         *behindp = behind;
1158         *aheadp = ahead;
1159         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1160         if (rv == VM_PAGER_OK)
1161                 return (KERN_SUCCESS);
1162         if (rv == VM_PAGER_ERROR)
1163                 printf("vm_fault: pager read error, pid %d (%s)\n",
1164                     curproc->p_pid, curproc->p_comm);
1165         /*
1166          * If an I/O error occurred or the requested page was
1167          * outside the range of the pager, clean up and return
1168          * an error.
1169          */
1170         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1171                 return (KERN_OUT_OF_BOUNDS);
1172         return (KERN_NOT_RECEIVER);
1173 }
1174
1175 /*
1176  * Wait/Retry if the page is busy.  We have to do this if the page is
1177  * either exclusive or shared busy because the vm_pager may be using
1178  * read busy for pageouts (and even pageins if it is the vnode pager),
1179  * and we could end up trying to pagein and pageout the same page
1180  * simultaneously.
1181  *
1182  * We can theoretically allow the busy case on a read fault if the page
1183  * is marked valid, but since such pages are typically already pmap'd,
1184  * putting that special case in might be more effort then it is worth.
1185  * We cannot under any circumstances mess around with a shared busied
1186  * page except, perhaps, to pmap it.
1187  */
1188 static void
1189 vm_fault_busy_sleep(struct faultstate *fs)
1190 {
1191         /*
1192          * Reference the page before unlocking and
1193          * sleeping so that the page daemon is less
1194          * likely to reclaim it.
1195          */
1196         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1197         if (fs->object != fs->first_object) {
1198                 fault_page_release(&fs->first_m);
1199                 vm_object_pip_wakeup(fs->first_object);
1200         }
1201         vm_object_pip_wakeup(fs->object);
1202         unlock_map(fs);
1203         if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1204                 vm_page_busy_sleep(fs->m, "vmpfw", false);
1205         else
1206                 VM_OBJECT_WUNLOCK(fs->object);
1207         VM_CNT_INC(v_intrans);
1208         vm_object_deallocate(fs->first_object);
1209 }
1210
1211 int
1212 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1213     int fault_flags, vm_page_t *m_hold)
1214 {
1215         struct faultstate fs;
1216         int ahead, behind, faultcount;
1217         int nera, result, rv;
1218         bool dead, hardfault;
1219
1220         VM_CNT_INC(v_vm_faults);
1221
1222         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1223                 return (KERN_PROTECTION_FAILURE);
1224
1225         fs.vp = NULL;
1226         fs.vaddr = vaddr;
1227         fs.m_hold = m_hold;
1228         fs.fault_flags = fault_flags;
1229         fs.map = map;
1230         fs.lookup_still_valid = false;
1231         fs.oom = 0;
1232         faultcount = 0;
1233         nera = -1;
1234         hardfault = false;
1235
1236 RetryFault:
1237         fs.fault_type = fault_type;
1238
1239         /*
1240          * Find the backing store object and offset into it to begin the
1241          * search.
1242          */
1243         result = vm_fault_lookup(&fs);
1244         if (result != KERN_SUCCESS) {
1245                 if (result == KERN_RESOURCE_SHORTAGE)
1246                         goto RetryFault;
1247                 return (result);
1248         }
1249
1250         /*
1251          * Try to avoid lock contention on the top-level object through
1252          * special-case handling of some types of page faults, specifically,
1253          * those that are mapping an existing page from the top-level object.
1254          * Under this condition, a read lock on the object suffices, allowing
1255          * multiple page faults of a similar type to run in parallel.
1256          */
1257         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1258             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1259                 VM_OBJECT_RLOCK(fs.first_object);
1260                 rv = vm_fault_soft_fast(&fs);
1261                 if (rv == KERN_SUCCESS)
1262                         return (rv);
1263                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1264                         VM_OBJECT_RUNLOCK(fs.first_object);
1265                         VM_OBJECT_WLOCK(fs.first_object);
1266                 }
1267         } else {
1268                 VM_OBJECT_WLOCK(fs.first_object);
1269         }
1270
1271         /*
1272          * Make a reference to this object to prevent its disposal while we
1273          * are messing with it.  Once we have the reference, the map is free
1274          * to be diddled.  Since objects reference their shadows (and copies),
1275          * they will stay around as well.
1276          *
1277          * Bump the paging-in-progress count to prevent size changes (e.g. 
1278          * truncation operations) during I/O.
1279          */
1280         vm_object_reference_locked(fs.first_object);
1281         vm_object_pip_add(fs.first_object, 1);
1282
1283         fs.m_cow = fs.m = fs.first_m = NULL;
1284
1285         /*
1286          * Search for the page at object/offset.
1287          */
1288         fs.object = fs.first_object;
1289         fs.pindex = fs.first_pindex;
1290         while (TRUE) {
1291                 KASSERT(fs.m == NULL,
1292                     ("page still set %p at loop start", fs.m));
1293                 /*
1294                  * If the object is marked for imminent termination,
1295                  * we retry here, since the collapse pass has raced
1296                  * with us.  Otherwise, if we see terminally dead
1297                  * object, return fail.
1298                  */
1299                 if ((fs.object->flags & OBJ_DEAD) != 0) {
1300                         dead = fs.object->type == OBJT_DEAD;
1301                         unlock_and_deallocate(&fs);
1302                         if (dead)
1303                                 return (KERN_PROTECTION_FAILURE);
1304                         pause("vmf_de", 1);
1305                         goto RetryFault;
1306                 }
1307
1308                 /*
1309                  * See if page is resident
1310                  */
1311                 fs.m = vm_page_lookup(fs.object, fs.pindex);
1312                 if (fs.m != NULL) {
1313                         if (vm_page_tryxbusy(fs.m) == 0) {
1314                                 vm_fault_busy_sleep(&fs);
1315                                 goto RetryFault;
1316                         }
1317
1318                         /*
1319                          * The page is marked busy for other processes and the
1320                          * pagedaemon.  If it still is completely valid we
1321                          * are done.
1322                          */
1323                         if (vm_page_all_valid(fs.m)) {
1324                                 VM_OBJECT_WUNLOCK(fs.object);
1325                                 break; /* break to PAGE HAS BEEN FOUND. */
1326                         }
1327                 }
1328                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1329
1330                 /*
1331                  * Page is not resident.  If the pager might contain the page
1332                  * or this is the beginning of the search, allocate a new
1333                  * page.  (Default objects are zero-fill, so there is no real
1334                  * pager for them.)
1335                  */
1336                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1337                     fs.object == fs.first_object)) {
1338                         rv = vm_fault_allocate(&fs);
1339                         switch (rv) {
1340                         case KERN_RESTART:
1341                                 unlock_and_deallocate(&fs);
1342                                 /* FALLTHROUGH */
1343                         case KERN_RESOURCE_SHORTAGE:
1344                                 goto RetryFault;
1345                         case KERN_SUCCESS:
1346                         case KERN_FAILURE:
1347                         case KERN_OUT_OF_BOUNDS:
1348                                 unlock_and_deallocate(&fs);
1349                                 return (rv);
1350                         case KERN_NOT_RECEIVER:
1351                                 break;
1352                         default:
1353                                 panic("vm_fault: Unhandled rv %d", rv);
1354                         }
1355                 }
1356
1357                 /*
1358                  * Default objects have no pager so no exclusive busy exists
1359                  * to protect this page in the chain.  Skip to the next
1360                  * object without dropping the lock to preserve atomicity of
1361                  * shadow faults.
1362                  */
1363                 if (fs.object->type != OBJT_DEFAULT) {
1364                         /*
1365                          * At this point, we have either allocated a new page
1366                          * or found an existing page that is only partially
1367                          * valid.
1368                          *
1369                          * We hold a reference on the current object and the
1370                          * page is exclusive busied.  The exclusive busy
1371                          * prevents simultaneous faults and collapses while
1372                          * the object lock is dropped.
1373                          */
1374                         VM_OBJECT_WUNLOCK(fs.object);
1375
1376                         /*
1377                          * If the pager for the current object might have
1378                          * the page, then determine the number of additional
1379                          * pages to read and potentially reprioritize
1380                          * previously read pages for earlier reclamation.
1381                          * These operations should only be performed once per
1382                          * page fault.  Even if the current pager doesn't
1383                          * have the page, the number of additional pages to
1384                          * read will apply to subsequent objects in the
1385                          * shadow chain.
1386                          */
1387                         if (nera == -1 && !P_KILLED(curproc))
1388                                 nera = vm_fault_readahead(&fs);
1389
1390                         rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1391                         if (rv == KERN_SUCCESS) {
1392                                 faultcount = behind + 1 + ahead;
1393                                 hardfault = true;
1394                                 break; /* break to PAGE HAS BEEN FOUND. */
1395                         }
1396                         if (rv == KERN_RESOURCE_SHORTAGE)
1397                                 goto RetryFault;
1398                         VM_OBJECT_WLOCK(fs.object);
1399                         if (rv == KERN_OUT_OF_BOUNDS) {
1400                                 fault_page_free(&fs.m);
1401                                 unlock_and_deallocate(&fs);
1402                                 return (rv);
1403                         }
1404                 }
1405
1406                 /*
1407                  * The page was not found in the current object.  Try to
1408                  * traverse into a backing object or zero fill if none is
1409                  * found.
1410                  */
1411                 if (vm_fault_next(&fs))
1412                         continue;
1413                 VM_OBJECT_WUNLOCK(fs.object);
1414                 vm_fault_zerofill(&fs);
1415                 /* Don't try to prefault neighboring pages. */
1416                 faultcount = 1;
1417                 break;  /* break to PAGE HAS BEEN FOUND. */
1418         }
1419
1420         /*
1421          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1422          * busied.  The object lock must no longer be held.
1423          */
1424         vm_page_assert_xbusied(fs.m);
1425         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1426
1427         /*
1428          * If the page is being written, but isn't already owned by the
1429          * top-level object, we have to copy it into a new page owned by the
1430          * top-level object.
1431          */
1432         if (fs.object != fs.first_object) {
1433                 /*
1434                  * We only really need to copy if we want to write it.
1435                  */
1436                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1437                         vm_fault_cow(&fs);
1438                         /*
1439                          * We only try to prefault read-only mappings to the
1440                          * neighboring pages when this copy-on-write fault is
1441                          * a hard fault.  In other cases, trying to prefault
1442                          * is typically wasted effort.
1443                          */
1444                         if (faultcount == 0)
1445                                 faultcount = 1;
1446
1447                 } else {
1448                         fs.prot &= ~VM_PROT_WRITE;
1449                 }
1450         }
1451
1452         /*
1453          * We must verify that the maps have not changed since our last
1454          * lookup.
1455          */
1456         if (!fs.lookup_still_valid) {
1457                 result = vm_fault_relookup(&fs);
1458                 if (result != KERN_SUCCESS) {
1459                         fault_deallocate(&fs);
1460                         if (result == KERN_RESTART)
1461                                 goto RetryFault;
1462                         return (result);
1463                 }
1464         }
1465         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1466
1467         /*
1468          * If the page was filled by a pager, save the virtual address that
1469          * should be faulted on next under a sequential access pattern to the
1470          * map entry.  A read lock on the map suffices to update this address
1471          * safely.
1472          */
1473         if (hardfault)
1474                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1475
1476         /*
1477          * Page must be completely valid or it is not fit to
1478          * map into user space.  vm_pager_get_pages() ensures this.
1479          */
1480         vm_page_assert_xbusied(fs.m);
1481         KASSERT(vm_page_all_valid(fs.m),
1482             ("vm_fault: page %p partially invalid", fs.m));
1483
1484         vm_fault_dirty(&fs, fs.m);
1485
1486         /*
1487          * Put this page into the physical map.  We had to do the unlock above
1488          * because pmap_enter() may sleep.  We don't put the page
1489          * back on the active queue until later so that the pageout daemon
1490          * won't find it (yet).
1491          */
1492         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1493             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1494         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1495             fs.wired == 0)
1496                 vm_fault_prefault(&fs, vaddr,
1497                     faultcount > 0 ? behind : PFBAK,
1498                     faultcount > 0 ? ahead : PFFOR, false);
1499
1500         /*
1501          * If the page is not wired down, then put it where the pageout daemon
1502          * can find it.
1503          */
1504         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1505                 vm_page_wire(fs.m);
1506         else
1507                 vm_page_activate(fs.m);
1508         if (fs.m_hold != NULL) {
1509                 (*fs.m_hold) = fs.m;
1510                 vm_page_wire(fs.m);
1511         }
1512         vm_page_xunbusy(fs.m);
1513         fs.m = NULL;
1514
1515         /*
1516          * Unlock everything, and return
1517          */
1518         fault_deallocate(&fs);
1519         if (hardfault) {
1520                 VM_CNT_INC(v_io_faults);
1521                 curthread->td_ru.ru_majflt++;
1522 #ifdef RACCT
1523                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1524                         PROC_LOCK(curproc);
1525                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1526                                 racct_add_force(curproc, RACCT_WRITEBPS,
1527                                     PAGE_SIZE + behind * PAGE_SIZE);
1528                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1529                         } else {
1530                                 racct_add_force(curproc, RACCT_READBPS,
1531                                     PAGE_SIZE + ahead * PAGE_SIZE);
1532                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1533                         }
1534                         PROC_UNLOCK(curproc);
1535                 }
1536 #endif
1537         } else 
1538                 curthread->td_ru.ru_minflt++;
1539
1540         return (KERN_SUCCESS);
1541 }
1542
1543 /*
1544  * Speed up the reclamation of pages that precede the faulting pindex within
1545  * the first object of the shadow chain.  Essentially, perform the equivalent
1546  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1547  * the faulting pindex by the cluster size when the pages read by vm_fault()
1548  * cross a cluster-size boundary.  The cluster size is the greater of the
1549  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1550  *
1551  * When "fs->first_object" is a shadow object, the pages in the backing object
1552  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1553  * function must only be concerned with pages in the first object.
1554  */
1555 static void
1556 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1557 {
1558         vm_map_entry_t entry;
1559         vm_object_t first_object, object;
1560         vm_offset_t end, start;
1561         vm_page_t m, m_next;
1562         vm_pindex_t pend, pstart;
1563         vm_size_t size;
1564
1565         object = fs->object;
1566         VM_OBJECT_ASSERT_UNLOCKED(object);
1567         first_object = fs->first_object;
1568         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1569         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1570                 VM_OBJECT_RLOCK(first_object);
1571                 size = VM_FAULT_DONTNEED_MIN;
1572                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1573                         size = pagesizes[1];
1574                 end = rounddown2(vaddr, size);
1575                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1576                     (entry = fs->entry)->start < end) {
1577                         if (end - entry->start < size)
1578                                 start = entry->start;
1579                         else
1580                                 start = end - size;
1581                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1582                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1583                             entry->start);
1584                         m_next = vm_page_find_least(first_object, pstart);
1585                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1586                             entry->start);
1587                         while ((m = m_next) != NULL && m->pindex < pend) {
1588                                 m_next = TAILQ_NEXT(m, listq);
1589                                 if (!vm_page_all_valid(m) ||
1590                                     vm_page_busied(m))
1591                                         continue;
1592
1593                                 /*
1594                                  * Don't clear PGA_REFERENCED, since it would
1595                                  * likely represent a reference by a different
1596                                  * process.
1597                                  *
1598                                  * Typically, at this point, prefetched pages
1599                                  * are still in the inactive queue.  Only
1600                                  * pages that triggered page faults are in the
1601                                  * active queue.  The test for whether the page
1602                                  * is in the inactive queue is racy; in the
1603                                  * worst case we will requeue the page
1604                                  * unnecessarily.
1605                                  */
1606                                 if (!vm_page_inactive(m))
1607                                         vm_page_deactivate(m);
1608                         }
1609                 }
1610                 VM_OBJECT_RUNLOCK(first_object);
1611         }
1612 }
1613
1614 /*
1615  * vm_fault_prefault provides a quick way of clustering
1616  * pagefaults into a processes address space.  It is a "cousin"
1617  * of vm_map_pmap_enter, except it runs at page fault time instead
1618  * of mmap time.
1619  */
1620 static void
1621 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1622     int backward, int forward, bool obj_locked)
1623 {
1624         pmap_t pmap;
1625         vm_map_entry_t entry;
1626         vm_object_t backing_object, lobject;
1627         vm_offset_t addr, starta;
1628         vm_pindex_t pindex;
1629         vm_page_t m;
1630         int i;
1631
1632         pmap = fs->map->pmap;
1633         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1634                 return;
1635
1636         entry = fs->entry;
1637
1638         if (addra < backward * PAGE_SIZE) {
1639                 starta = entry->start;
1640         } else {
1641                 starta = addra - backward * PAGE_SIZE;
1642                 if (starta < entry->start)
1643                         starta = entry->start;
1644         }
1645
1646         /*
1647          * Generate the sequence of virtual addresses that are candidates for
1648          * prefaulting in an outward spiral from the faulting virtual address,
1649          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1650          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1651          * If the candidate address doesn't have a backing physical page, then
1652          * the loop immediately terminates.
1653          */
1654         for (i = 0; i < 2 * imax(backward, forward); i++) {
1655                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1656                     PAGE_SIZE);
1657                 if (addr > addra + forward * PAGE_SIZE)
1658                         addr = 0;
1659
1660                 if (addr < starta || addr >= entry->end)
1661                         continue;
1662
1663                 if (!pmap_is_prefaultable(pmap, addr))
1664                         continue;
1665
1666                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1667                 lobject = entry->object.vm_object;
1668                 if (!obj_locked)
1669                         VM_OBJECT_RLOCK(lobject);
1670                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1671                     lobject->type == OBJT_DEFAULT &&
1672                     (backing_object = lobject->backing_object) != NULL) {
1673                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1674                             0, ("vm_fault_prefault: unaligned object offset"));
1675                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1676                         VM_OBJECT_RLOCK(backing_object);
1677                         if (!obj_locked || lobject != entry->object.vm_object)
1678                                 VM_OBJECT_RUNLOCK(lobject);
1679                         lobject = backing_object;
1680                 }
1681                 if (m == NULL) {
1682                         if (!obj_locked || lobject != entry->object.vm_object)
1683                                 VM_OBJECT_RUNLOCK(lobject);
1684                         break;
1685                 }
1686                 if (vm_page_all_valid(m) &&
1687                     (m->flags & PG_FICTITIOUS) == 0)
1688                         pmap_enter_quick(pmap, addr, m, entry->protection);
1689                 if (!obj_locked || lobject != entry->object.vm_object)
1690                         VM_OBJECT_RUNLOCK(lobject);
1691         }
1692 }
1693
1694 /*
1695  * Hold each of the physical pages that are mapped by the specified range of
1696  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1697  * and allow the specified types of access, "prot".  If all of the implied
1698  * pages are successfully held, then the number of held pages is returned
1699  * together with pointers to those pages in the array "ma".  However, if any
1700  * of the pages cannot be held, -1 is returned.
1701  */
1702 int
1703 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1704     vm_prot_t prot, vm_page_t *ma, int max_count)
1705 {
1706         vm_offset_t end, va;
1707         vm_page_t *mp;
1708         int count;
1709         boolean_t pmap_failed;
1710
1711         if (len == 0)
1712                 return (0);
1713         end = round_page(addr + len);
1714         addr = trunc_page(addr);
1715
1716         if (!vm_map_range_valid(map, addr, end))
1717                 return (-1);
1718
1719         if (atop(end - addr) > max_count)
1720                 panic("vm_fault_quick_hold_pages: count > max_count");
1721         count = atop(end - addr);
1722
1723         /*
1724          * Most likely, the physical pages are resident in the pmap, so it is
1725          * faster to try pmap_extract_and_hold() first.
1726          */
1727         pmap_failed = FALSE;
1728         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1729                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1730                 if (*mp == NULL)
1731                         pmap_failed = TRUE;
1732                 else if ((prot & VM_PROT_WRITE) != 0 &&
1733                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1734                         /*
1735                          * Explicitly dirty the physical page.  Otherwise, the
1736                          * caller's changes may go unnoticed because they are
1737                          * performed through an unmanaged mapping or by a DMA
1738                          * operation.
1739                          *
1740                          * The object lock is not held here.
1741                          * See vm_page_clear_dirty_mask().
1742                          */
1743                         vm_page_dirty(*mp);
1744                 }
1745         }
1746         if (pmap_failed) {
1747                 /*
1748                  * One or more pages could not be held by the pmap.  Either no
1749                  * page was mapped at the specified virtual address or that
1750                  * mapping had insufficient permissions.  Attempt to fault in
1751                  * and hold these pages.
1752                  *
1753                  * If vm_fault_disable_pagefaults() was called,
1754                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1755                  * acquire MD VM locks, which means we must not call
1756                  * vm_fault().  Some (out of tree) callers mark
1757                  * too wide a code area with vm_fault_disable_pagefaults()
1758                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1759                  * the proper behaviour explicitly.
1760                  */
1761                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1762                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1763                         goto error;
1764                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1765                         if (*mp == NULL && vm_fault(map, va, prot,
1766                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1767                                 goto error;
1768         }
1769         return (count);
1770 error:  
1771         for (mp = ma; mp < ma + count; mp++)
1772                 if (*mp != NULL)
1773                         vm_page_unwire(*mp, PQ_INACTIVE);
1774         return (-1);
1775 }
1776
1777 /*
1778  *      Routine:
1779  *              vm_fault_copy_entry
1780  *      Function:
1781  *              Create new shadow object backing dst_entry with private copy of
1782  *              all underlying pages. When src_entry is equal to dst_entry,
1783  *              function implements COW for wired-down map entry. Otherwise,
1784  *              it forks wired entry into dst_map.
1785  *
1786  *      In/out conditions:
1787  *              The source and destination maps must be locked for write.
1788  *              The source map entry must be wired down (or be a sharing map
1789  *              entry corresponding to a main map entry that is wired down).
1790  */
1791 void
1792 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1793     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1794     vm_ooffset_t *fork_charge)
1795 {
1796         vm_object_t backing_object, dst_object, object, src_object;
1797         vm_pindex_t dst_pindex, pindex, src_pindex;
1798         vm_prot_t access, prot;
1799         vm_offset_t vaddr;
1800         vm_page_t dst_m;
1801         vm_page_t src_m;
1802         boolean_t upgrade;
1803
1804 #ifdef  lint
1805         src_map++;
1806 #endif  /* lint */
1807
1808         upgrade = src_entry == dst_entry;
1809         access = prot = dst_entry->protection;
1810
1811         src_object = src_entry->object.vm_object;
1812         src_pindex = OFF_TO_IDX(src_entry->offset);
1813
1814         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1815                 dst_object = src_object;
1816                 vm_object_reference(dst_object);
1817         } else {
1818                 /*
1819                  * Create the top-level object for the destination entry.
1820                  * Doesn't actually shadow anything - we copy the pages
1821                  * directly.
1822                  */
1823                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1824                     dst_entry->start), NULL, NULL, 0);
1825 #if VM_NRESERVLEVEL > 0
1826                 dst_object->flags |= OBJ_COLORED;
1827                 dst_object->pg_color = atop(dst_entry->start);
1828 #endif
1829                 dst_object->domain = src_object->domain;
1830                 dst_object->charge = dst_entry->end - dst_entry->start;
1831         }
1832
1833         VM_OBJECT_WLOCK(dst_object);
1834         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1835             ("vm_fault_copy_entry: vm_object not NULL"));
1836         if (src_object != dst_object) {
1837                 dst_entry->object.vm_object = dst_object;
1838                 dst_entry->offset = 0;
1839                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1840         }
1841         if (fork_charge != NULL) {
1842                 KASSERT(dst_entry->cred == NULL,
1843                     ("vm_fault_copy_entry: leaked swp charge"));
1844                 dst_object->cred = curthread->td_ucred;
1845                 crhold(dst_object->cred);
1846                 *fork_charge += dst_object->charge;
1847         } else if ((dst_object->type == OBJT_DEFAULT ||
1848             dst_object->type == OBJT_SWAP) &&
1849             dst_object->cred == NULL) {
1850                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1851                     dst_entry));
1852                 dst_object->cred = dst_entry->cred;
1853                 dst_entry->cred = NULL;
1854         }
1855
1856         /*
1857          * If not an upgrade, then enter the mappings in the pmap as
1858          * read and/or execute accesses.  Otherwise, enter them as
1859          * write accesses.
1860          *
1861          * A writeable large page mapping is only created if all of
1862          * the constituent small page mappings are modified. Marking
1863          * PTEs as modified on inception allows promotion to happen
1864          * without taking potentially large number of soft faults.
1865          */
1866         if (!upgrade)
1867                 access &= ~VM_PROT_WRITE;
1868
1869         /*
1870          * Loop through all of the virtual pages within the entry's
1871          * range, copying each page from the source object to the
1872          * destination object.  Since the source is wired, those pages
1873          * must exist.  In contrast, the destination is pageable.
1874          * Since the destination object doesn't share any backing storage
1875          * with the source object, all of its pages must be dirtied,
1876          * regardless of whether they can be written.
1877          */
1878         for (vaddr = dst_entry->start, dst_pindex = 0;
1879             vaddr < dst_entry->end;
1880             vaddr += PAGE_SIZE, dst_pindex++) {
1881 again:
1882                 /*
1883                  * Find the page in the source object, and copy it in.
1884                  * Because the source is wired down, the page will be
1885                  * in memory.
1886                  */
1887                 if (src_object != dst_object)
1888                         VM_OBJECT_RLOCK(src_object);
1889                 object = src_object;
1890                 pindex = src_pindex + dst_pindex;
1891                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1892                     (backing_object = object->backing_object) != NULL) {
1893                         /*
1894                          * Unless the source mapping is read-only or
1895                          * it is presently being upgraded from
1896                          * read-only, the first object in the shadow
1897                          * chain should provide all of the pages.  In
1898                          * other words, this loop body should never be
1899                          * executed when the source mapping is already
1900                          * read/write.
1901                          */
1902                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1903                             upgrade,
1904                             ("vm_fault_copy_entry: main object missing page"));
1905
1906                         VM_OBJECT_RLOCK(backing_object);
1907                         pindex += OFF_TO_IDX(object->backing_object_offset);
1908                         if (object != dst_object)
1909                                 VM_OBJECT_RUNLOCK(object);
1910                         object = backing_object;
1911                 }
1912                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1913
1914                 if (object != dst_object) {
1915                         /*
1916                          * Allocate a page in the destination object.
1917                          */
1918                         dst_m = vm_page_alloc(dst_object, (src_object ==
1919                             dst_object ? src_pindex : 0) + dst_pindex,
1920                             VM_ALLOC_NORMAL);
1921                         if (dst_m == NULL) {
1922                                 VM_OBJECT_WUNLOCK(dst_object);
1923                                 VM_OBJECT_RUNLOCK(object);
1924                                 vm_wait(dst_object);
1925                                 VM_OBJECT_WLOCK(dst_object);
1926                                 goto again;
1927                         }
1928                         pmap_copy_page(src_m, dst_m);
1929                         VM_OBJECT_RUNLOCK(object);
1930                         dst_m->dirty = dst_m->valid = src_m->valid;
1931                 } else {
1932                         dst_m = src_m;
1933                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
1934                                 goto again;
1935                         if (dst_m->pindex >= dst_object->size) {
1936                                 /*
1937                                  * We are upgrading.  Index can occur
1938                                  * out of bounds if the object type is
1939                                  * vnode and the file was truncated.
1940                                  */
1941                                 vm_page_xunbusy(dst_m);
1942                                 break;
1943                         }
1944                 }
1945                 VM_OBJECT_WUNLOCK(dst_object);
1946
1947                 /*
1948                  * Enter it in the pmap. If a wired, copy-on-write
1949                  * mapping is being replaced by a write-enabled
1950                  * mapping, then wire that new mapping.
1951                  *
1952                  * The page can be invalid if the user called
1953                  * msync(MS_INVALIDATE) or truncated the backing vnode
1954                  * or shared memory object.  In this case, do not
1955                  * insert it into pmap, but still do the copy so that
1956                  * all copies of the wired map entry have similar
1957                  * backing pages.
1958                  */
1959                 if (vm_page_all_valid(dst_m)) {
1960                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1961                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1962                 }
1963
1964                 /*
1965                  * Mark it no longer busy, and put it on the active list.
1966                  */
1967                 VM_OBJECT_WLOCK(dst_object);
1968                 
1969                 if (upgrade) {
1970                         if (src_m != dst_m) {
1971                                 vm_page_unwire(src_m, PQ_INACTIVE);
1972                                 vm_page_wire(dst_m);
1973                         } else {
1974                                 KASSERT(vm_page_wired(dst_m),
1975                                     ("dst_m %p is not wired", dst_m));
1976                         }
1977                 } else {
1978                         vm_page_activate(dst_m);
1979                 }
1980                 vm_page_xunbusy(dst_m);
1981         }
1982         VM_OBJECT_WUNLOCK(dst_object);
1983         if (upgrade) {
1984                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1985                 vm_object_deallocate(src_object);
1986         }
1987 }
1988
1989 /*
1990  * Block entry into the machine-independent layer's page fault handler by
1991  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1992  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1993  * spurious page faults. 
1994  */
1995 int
1996 vm_fault_disable_pagefaults(void)
1997 {
1998
1999         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2000 }
2001
2002 void
2003 vm_fault_enable_pagefaults(int save)
2004 {
2005
2006         curthread_pflags_restore(save);
2007 }