]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
vm_page: Remove vm_page_sbusy() and vm_page_xbusy()
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118
119 #define VM_FAULT_DONTNEED_MIN   1048576
120
121 struct faultstate {
122         /* Fault parameters. */
123         vm_offset_t     vaddr;
124         vm_page_t       *m_hold;
125         vm_prot_t       fault_type;
126         vm_prot_t       prot;
127         int             fault_flags;
128         struct timeval  oom_start_time;
129         bool            oom_started;
130         boolean_t       wired;
131
132         /* Page reference for cow. */
133         vm_page_t m_cow;
134
135         /* Current object. */
136         vm_object_t     object;
137         vm_pindex_t     pindex;
138         vm_page_t       m;
139
140         /* Top-level map object. */
141         vm_object_t     first_object;
142         vm_pindex_t     first_pindex;
143         vm_page_t       first_m;
144
145         /* Map state. */
146         vm_map_t        map;
147         vm_map_entry_t  entry;
148         int             map_generation;
149         bool            lookup_still_valid;
150
151         /* Vnode if locked. */
152         struct vnode    *vp;
153 };
154
155 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
156             int ahead);
157 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
158             int backward, int forward, bool obj_locked);
159
160 static int vm_pfault_oom_attempts = 3;
161 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
162     &vm_pfault_oom_attempts, 0,
163     "Number of page allocation attempts in page fault handler before it "
164     "triggers OOM handling");
165
166 static int vm_pfault_oom_wait = 10;
167 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
168     &vm_pfault_oom_wait, 0,
169     "Number of seconds to wait for free pages before retrying "
170     "the page fault handler");
171
172 static inline void
173 fault_page_release(vm_page_t *mp)
174 {
175         vm_page_t m;
176
177         m = *mp;
178         if (m != NULL) {
179                 /*
180                  * We are likely to loop around again and attempt to busy
181                  * this page.  Deactivating it leaves it available for
182                  * pageout while optimizing fault restarts.
183                  */
184                 vm_page_deactivate(m);
185                 vm_page_xunbusy(m);
186                 *mp = NULL;
187         }
188 }
189
190 static inline void
191 fault_page_free(vm_page_t *mp)
192 {
193         vm_page_t m;
194
195         m = *mp;
196         if (m != NULL) {
197                 VM_OBJECT_ASSERT_WLOCKED(m->object);
198                 if (!vm_page_wired(m))
199                         vm_page_free(m);
200                 else
201                         vm_page_xunbusy(m);
202                 *mp = NULL;
203         }
204 }
205
206 static inline void
207 unlock_map(struct faultstate *fs)
208 {
209
210         if (fs->lookup_still_valid) {
211                 vm_map_lookup_done(fs->map, fs->entry);
212                 fs->lookup_still_valid = false;
213         }
214 }
215
216 static void
217 unlock_vp(struct faultstate *fs)
218 {
219
220         if (fs->vp != NULL) {
221                 vput(fs->vp);
222                 fs->vp = NULL;
223         }
224 }
225
226 static void
227 fault_deallocate(struct faultstate *fs)
228 {
229
230         fault_page_release(&fs->m_cow);
231         fault_page_release(&fs->m);
232         vm_object_pip_wakeup(fs->object);
233         if (fs->object != fs->first_object) {
234                 VM_OBJECT_WLOCK(fs->first_object);
235                 fault_page_free(&fs->first_m);
236                 VM_OBJECT_WUNLOCK(fs->first_object);
237                 vm_object_pip_wakeup(fs->first_object);
238         }
239         vm_object_deallocate(fs->first_object);
240         unlock_map(fs);
241         unlock_vp(fs);
242 }
243
244 static void
245 unlock_and_deallocate(struct faultstate *fs)
246 {
247
248         VM_OBJECT_WUNLOCK(fs->object);
249         fault_deallocate(fs);
250 }
251
252 static void
253 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
254 {
255         bool need_dirty;
256
257         if (((fs->prot & VM_PROT_WRITE) == 0 &&
258             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
259             (m->oflags & VPO_UNMANAGED) != 0)
260                 return;
261
262         VM_PAGE_OBJECT_BUSY_ASSERT(m);
263
264         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
265             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
266             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
267
268         vm_object_set_writeable_dirty(m->object);
269
270         /*
271          * If the fault is a write, we know that this page is being
272          * written NOW so dirty it explicitly to save on
273          * pmap_is_modified() calls later.
274          *
275          * Also, since the page is now dirty, we can possibly tell
276          * the pager to release any swap backing the page.
277          */
278         if (need_dirty && vm_page_set_dirty(m) == 0) {
279                 /*
280                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
281                  * if the page is already dirty to prevent data written with
282                  * the expectation of being synced from not being synced.
283                  * Likewise if this entry does not request NOSYNC then make
284                  * sure the page isn't marked NOSYNC.  Applications sharing
285                  * data should use the same flags to avoid ping ponging.
286                  */
287                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
288                         vm_page_aflag_set(m, PGA_NOSYNC);
289                 else
290                         vm_page_aflag_clear(m, PGA_NOSYNC);
291         }
292
293 }
294
295 /*
296  * Unlocks fs.first_object and fs.map on success.
297  */
298 static int
299 vm_fault_soft_fast(struct faultstate *fs)
300 {
301         vm_page_t m, m_map;
302 #if VM_NRESERVLEVEL > 0
303         vm_page_t m_super;
304         int flags;
305 #endif
306         int psind, rv;
307         vm_offset_t vaddr;
308
309         MPASS(fs->vp == NULL);
310         vaddr = fs->vaddr;
311         vm_object_busy(fs->first_object);
312         m = vm_page_lookup(fs->first_object, fs->first_pindex);
313         /* A busy page can be mapped for read|execute access. */
314         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
315             vm_page_busied(m)) || !vm_page_all_valid(m)) {
316                 rv = KERN_FAILURE;
317                 goto out;
318         }
319         m_map = m;
320         psind = 0;
321 #if VM_NRESERVLEVEL > 0
322         if ((m->flags & PG_FICTITIOUS) == 0 &&
323             (m_super = vm_reserv_to_superpage(m)) != NULL &&
324             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
325             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
326             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
327             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
328             pmap_ps_enabled(fs->map->pmap)) {
329                 flags = PS_ALL_VALID;
330                 if ((fs->prot & VM_PROT_WRITE) != 0) {
331                         /*
332                          * Create a superpage mapping allowing write access
333                          * only if none of the constituent pages are busy and
334                          * all of them are already dirty (except possibly for
335                          * the page that was faulted on).
336                          */
337                         flags |= PS_NONE_BUSY;
338                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
339                                 flags |= PS_ALL_DIRTY;
340                 }
341                 if (vm_page_ps_test(m_super, flags, m)) {
342                         m_map = m_super;
343                         psind = m_super->psind;
344                         vaddr = rounddown2(vaddr, pagesizes[psind]);
345                         /* Preset the modified bit for dirty superpages. */
346                         if ((flags & PS_ALL_DIRTY) != 0)
347                                 fs->fault_type |= VM_PROT_WRITE;
348                 }
349         }
350 #endif
351         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
352             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
353         if (rv != KERN_SUCCESS)
354                 goto out;
355         if (fs->m_hold != NULL) {
356                 (*fs->m_hold) = m;
357                 vm_page_wire(m);
358         }
359         if (psind == 0 && !fs->wired)
360                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
361         VM_OBJECT_RUNLOCK(fs->first_object);
362         vm_fault_dirty(fs, m);
363         vm_map_lookup_done(fs->map, fs->entry);
364         curthread->td_ru.ru_minflt++;
365
366 out:
367         vm_object_unbusy(fs->first_object);
368         return (rv);
369 }
370
371 static void
372 vm_fault_restore_map_lock(struct faultstate *fs)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
376         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
377
378         if (!vm_map_trylock_read(fs->map)) {
379                 VM_OBJECT_WUNLOCK(fs->first_object);
380                 vm_map_lock_read(fs->map);
381                 VM_OBJECT_WLOCK(fs->first_object);
382         }
383         fs->lookup_still_valid = true;
384 }
385
386 static void
387 vm_fault_populate_check_page(vm_page_t m)
388 {
389
390         /*
391          * Check each page to ensure that the pager is obeying the
392          * interface: the page must be installed in the object, fully
393          * valid, and exclusively busied.
394          */
395         MPASS(m != NULL);
396         MPASS(vm_page_all_valid(m));
397         MPASS(vm_page_xbusied(m));
398 }
399
400 static void
401 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
402     vm_pindex_t last)
403 {
404         vm_page_t m;
405         vm_pindex_t pidx;
406
407         VM_OBJECT_ASSERT_WLOCKED(object);
408         MPASS(first <= last);
409         for (pidx = first, m = vm_page_lookup(object, pidx);
410             pidx <= last; pidx++, m = vm_page_next(m)) {
411                 vm_fault_populate_check_page(m);
412                 vm_page_deactivate(m);
413                 vm_page_xunbusy(m);
414         }
415 }
416
417 static int
418 vm_fault_populate(struct faultstate *fs)
419 {
420         vm_offset_t vaddr;
421         vm_page_t m;
422         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
423         int bdry_idx, i, npages, psind, rv;
424
425         MPASS(fs->object == fs->first_object);
426         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
427         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
428         MPASS(fs->first_object->backing_object == NULL);
429         MPASS(fs->lookup_still_valid);
430
431         pager_first = OFF_TO_IDX(fs->entry->offset);
432         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
433         unlock_map(fs);
434         unlock_vp(fs);
435
436         /*
437          * Call the pager (driver) populate() method.
438          *
439          * There is no guarantee that the method will be called again
440          * if the current fault is for read, and a future fault is
441          * for write.  Report the entry's maximum allowed protection
442          * to the driver.
443          */
444         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
445             fs->fault_type, fs->entry->max_protection, &pager_first,
446             &pager_last);
447
448         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
449         if (rv == VM_PAGER_BAD) {
450                 /*
451                  * VM_PAGER_BAD is the backdoor for a pager to request
452                  * normal fault handling.
453                  */
454                 vm_fault_restore_map_lock(fs);
455                 if (fs->map->timestamp != fs->map_generation)
456                         return (KERN_RESTART);
457                 return (KERN_NOT_RECEIVER);
458         }
459         if (rv != VM_PAGER_OK)
460                 return (KERN_FAILURE); /* AKA SIGSEGV */
461
462         /* Ensure that the driver is obeying the interface. */
463         MPASS(pager_first <= pager_last);
464         MPASS(fs->first_pindex <= pager_last);
465         MPASS(fs->first_pindex >= pager_first);
466         MPASS(pager_last < fs->first_object->size);
467
468         vm_fault_restore_map_lock(fs);
469         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
470             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
471         if (fs->map->timestamp != fs->map_generation) {
472                 if (bdry_idx == 0) {
473                         vm_fault_populate_cleanup(fs->first_object, pager_first,
474                             pager_last);
475                 } else {
476                         m = vm_page_lookup(fs->first_object, pager_first);
477                         if (m != fs->m)
478                                 vm_page_xunbusy(m);
479                 }
480                 return (KERN_RESTART);
481         }
482
483         /*
484          * The map is unchanged after our last unlock.  Process the fault.
485          *
486          * First, the special case of largepage mappings, where
487          * populate only busies the first page in superpage run.
488          */
489         if (bdry_idx != 0) {
490                 KASSERT(PMAP_HAS_LARGEPAGES,
491                     ("missing pmap support for large pages"));
492                 m = vm_page_lookup(fs->first_object, pager_first);
493                 vm_fault_populate_check_page(m);
494                 VM_OBJECT_WUNLOCK(fs->first_object);
495                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
496                     fs->entry->offset;
497                 /* assert alignment for entry */
498                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
499     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
500                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
501                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
502                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
503                     ("unaligned superpage m %p %#jx", m,
504                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
505                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
506                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
507                     PMAP_ENTER_LARGEPAGE, bdry_idx);
508                 VM_OBJECT_WLOCK(fs->first_object);
509                 vm_page_xunbusy(m);
510                 if (rv != KERN_SUCCESS)
511                         goto out;
512                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
513                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
514                                 vm_page_wire(m + i);
515                 }
516                 if (fs->m_hold != NULL) {
517                         *fs->m_hold = m + (fs->first_pindex - pager_first);
518                         vm_page_wire(*fs->m_hold);
519                 }
520                 goto out;
521         }
522
523         /*
524          * The range [pager_first, pager_last] that is given to the
525          * pager is only a hint.  The pager may populate any range
526          * within the object that includes the requested page index.
527          * In case the pager expanded the range, clip it to fit into
528          * the map entry.
529          */
530         map_first = OFF_TO_IDX(fs->entry->offset);
531         if (map_first > pager_first) {
532                 vm_fault_populate_cleanup(fs->first_object, pager_first,
533                     map_first - 1);
534                 pager_first = map_first;
535         }
536         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
537         if (map_last < pager_last) {
538                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
539                     pager_last);
540                 pager_last = map_last;
541         }
542         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
543             pidx <= pager_last;
544             pidx += npages, m = vm_page_next(&m[npages - 1])) {
545                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
546
547                 psind = m->psind;
548                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
549                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
550                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
551                         psind = 0;
552
553                 npages = atop(pagesizes[psind]);
554                 for (i = 0; i < npages; i++) {
555                         vm_fault_populate_check_page(&m[i]);
556                         vm_fault_dirty(fs, &m[i]);
557                 }
558                 VM_OBJECT_WUNLOCK(fs->first_object);
559                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
560                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
561
562                 /*
563                  * pmap_enter() may fail for a superpage mapping if additional
564                  * protection policies prevent the full mapping.
565                  * For example, this will happen on amd64 if the entire
566                  * address range does not share the same userspace protection
567                  * key.  Revert to single-page mappings if this happens.
568                  */
569                 MPASS(rv == KERN_SUCCESS ||
570                     (psind > 0 && rv == KERN_PROTECTION_FAILURE));
571                 if (__predict_false(psind > 0 &&
572                     rv == KERN_PROTECTION_FAILURE)) {
573                         for (i = 0; i < npages; i++) {
574                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
575                                     &m[i], fs->prot, fs->fault_type |
576                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
577                                 MPASS(rv == KERN_SUCCESS);
578                         }
579                 }
580
581                 VM_OBJECT_WLOCK(fs->first_object);
582                 for (i = 0; i < npages; i++) {
583                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
584                                 vm_page_wire(&m[i]);
585                         else
586                                 vm_page_activate(&m[i]);
587                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
588                                 (*fs->m_hold) = &m[i];
589                                 vm_page_wire(&m[i]);
590                         }
591                         vm_page_xunbusy(&m[i]);
592                 }
593         }
594 out:
595         curthread->td_ru.ru_majflt++;
596         return (rv);
597 }
598
599 static int prot_fault_translation;
600 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
601     &prot_fault_translation, 0,
602     "Control signal to deliver on protection fault");
603
604 /* compat definition to keep common code for signal translation */
605 #define UCODE_PAGEFLT   12
606 #ifdef T_PAGEFLT
607 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
608 #endif
609
610 /*
611  *      vm_fault_trap:
612  *
613  *      Handle a page fault occurring at the given address,
614  *      requiring the given permissions, in the map specified.
615  *      If successful, the page is inserted into the
616  *      associated physical map.
617  *
618  *      NOTE: the given address should be truncated to the
619  *      proper page address.
620  *
621  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
622  *      a standard error specifying why the fault is fatal is returned.
623  *
624  *      The map in question must be referenced, and remains so.
625  *      Caller may hold no locks.
626  */
627 int
628 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
629     int fault_flags, int *signo, int *ucode)
630 {
631         int result;
632
633         MPASS(signo == NULL || ucode != NULL);
634 #ifdef KTRACE
635         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
636                 ktrfault(vaddr, fault_type);
637 #endif
638         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
639             NULL);
640         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
641             result == KERN_INVALID_ADDRESS ||
642             result == KERN_RESOURCE_SHORTAGE ||
643             result == KERN_PROTECTION_FAILURE ||
644             result == KERN_OUT_OF_BOUNDS,
645             ("Unexpected Mach error %d from vm_fault()", result));
646 #ifdef KTRACE
647         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
648                 ktrfaultend(result);
649 #endif
650         if (result != KERN_SUCCESS && signo != NULL) {
651                 switch (result) {
652                 case KERN_FAILURE:
653                 case KERN_INVALID_ADDRESS:
654                         *signo = SIGSEGV;
655                         *ucode = SEGV_MAPERR;
656                         break;
657                 case KERN_RESOURCE_SHORTAGE:
658                         *signo = SIGBUS;
659                         *ucode = BUS_OOMERR;
660                         break;
661                 case KERN_OUT_OF_BOUNDS:
662                         *signo = SIGBUS;
663                         *ucode = BUS_OBJERR;
664                         break;
665                 case KERN_PROTECTION_FAILURE:
666                         if (prot_fault_translation == 0) {
667                                 /*
668                                  * Autodetect.  This check also covers
669                                  * the images without the ABI-tag ELF
670                                  * note.
671                                  */
672                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
673                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
674                                         *signo = SIGSEGV;
675                                         *ucode = SEGV_ACCERR;
676                                 } else {
677                                         *signo = SIGBUS;
678                                         *ucode = UCODE_PAGEFLT;
679                                 }
680                         } else if (prot_fault_translation == 1) {
681                                 /* Always compat mode. */
682                                 *signo = SIGBUS;
683                                 *ucode = UCODE_PAGEFLT;
684                         } else {
685                                 /* Always SIGSEGV mode. */
686                                 *signo = SIGSEGV;
687                                 *ucode = SEGV_ACCERR;
688                         }
689                         break;
690                 default:
691                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
692                             result));
693                         break;
694                 }
695         }
696         return (result);
697 }
698
699 static int
700 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
701 {
702         struct vnode *vp;
703         int error, locked;
704
705         if (fs->object->type != OBJT_VNODE)
706                 return (KERN_SUCCESS);
707         vp = fs->object->handle;
708         if (vp == fs->vp) {
709                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
710                 return (KERN_SUCCESS);
711         }
712
713         /*
714          * Perform an unlock in case the desired vnode changed while
715          * the map was unlocked during a retry.
716          */
717         unlock_vp(fs);
718
719         locked = VOP_ISLOCKED(vp);
720         if (locked != LK_EXCLUSIVE)
721                 locked = LK_SHARED;
722
723         /*
724          * We must not sleep acquiring the vnode lock while we have
725          * the page exclusive busied or the object's
726          * paging-in-progress count incremented.  Otherwise, we could
727          * deadlock.
728          */
729         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
730         if (error == 0) {
731                 fs->vp = vp;
732                 return (KERN_SUCCESS);
733         }
734
735         vhold(vp);
736         if (objlocked)
737                 unlock_and_deallocate(fs);
738         else
739                 fault_deallocate(fs);
740         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
741         vdrop(vp);
742         fs->vp = vp;
743         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
744         return (KERN_RESOURCE_SHORTAGE);
745 }
746
747 /*
748  * Calculate the desired readahead.  Handle drop-behind.
749  *
750  * Returns the number of readahead blocks to pass to the pager.
751  */
752 static int
753 vm_fault_readahead(struct faultstate *fs)
754 {
755         int era, nera;
756         u_char behavior;
757
758         KASSERT(fs->lookup_still_valid, ("map unlocked"));
759         era = fs->entry->read_ahead;
760         behavior = vm_map_entry_behavior(fs->entry);
761         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
762                 nera = 0;
763         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
764                 nera = VM_FAULT_READ_AHEAD_MAX;
765                 if (fs->vaddr == fs->entry->next_read)
766                         vm_fault_dontneed(fs, fs->vaddr, nera);
767         } else if (fs->vaddr == fs->entry->next_read) {
768                 /*
769                  * This is a sequential fault.  Arithmetically
770                  * increase the requested number of pages in
771                  * the read-ahead window.  The requested
772                  * number of pages is "# of sequential faults
773                  * x (read ahead min + 1) + read ahead min"
774                  */
775                 nera = VM_FAULT_READ_AHEAD_MIN;
776                 if (era > 0) {
777                         nera += era + 1;
778                         if (nera > VM_FAULT_READ_AHEAD_MAX)
779                                 nera = VM_FAULT_READ_AHEAD_MAX;
780                 }
781                 if (era == VM_FAULT_READ_AHEAD_MAX)
782                         vm_fault_dontneed(fs, fs->vaddr, nera);
783         } else {
784                 /*
785                  * This is a non-sequential fault.
786                  */
787                 nera = 0;
788         }
789         if (era != nera) {
790                 /*
791                  * A read lock on the map suffices to update
792                  * the read ahead count safely.
793                  */
794                 fs->entry->read_ahead = nera;
795         }
796
797         return (nera);
798 }
799
800 static int
801 vm_fault_lookup(struct faultstate *fs)
802 {
803         int result;
804
805         KASSERT(!fs->lookup_still_valid,
806            ("vm_fault_lookup: Map already locked."));
807         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
808             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
809             &fs->first_pindex, &fs->prot, &fs->wired);
810         if (result != KERN_SUCCESS) {
811                 unlock_vp(fs);
812                 return (result);
813         }
814
815         fs->map_generation = fs->map->timestamp;
816
817         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
818                 panic("%s: fault on nofault entry, addr: %#lx",
819                     __func__, (u_long)fs->vaddr);
820         }
821
822         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
823             fs->entry->wiring_thread != curthread) {
824                 vm_map_unlock_read(fs->map);
825                 vm_map_lock(fs->map);
826                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
827                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
828                         unlock_vp(fs);
829                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
830                         vm_map_unlock_and_wait(fs->map, 0);
831                 } else
832                         vm_map_unlock(fs->map);
833                 return (KERN_RESOURCE_SHORTAGE);
834         }
835
836         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
837
838         if (fs->wired)
839                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
840         else
841                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
842                     ("!fs->wired && VM_FAULT_WIRE"));
843         fs->lookup_still_valid = true;
844
845         return (KERN_SUCCESS);
846 }
847
848 static int
849 vm_fault_relookup(struct faultstate *fs)
850 {
851         vm_object_t retry_object;
852         vm_pindex_t retry_pindex;
853         vm_prot_t retry_prot;
854         int result;
855
856         if (!vm_map_trylock_read(fs->map))
857                 return (KERN_RESTART);
858
859         fs->lookup_still_valid = true;
860         if (fs->map->timestamp == fs->map_generation)
861                 return (KERN_SUCCESS);
862
863         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
864             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
865             &fs->wired);
866         if (result != KERN_SUCCESS) {
867                 /*
868                  * If retry of map lookup would have blocked then
869                  * retry fault from start.
870                  */
871                 if (result == KERN_FAILURE)
872                         return (KERN_RESTART);
873                 return (result);
874         }
875         if (retry_object != fs->first_object ||
876             retry_pindex != fs->first_pindex)
877                 return (KERN_RESTART);
878
879         /*
880          * Check whether the protection has changed or the object has
881          * been copied while we left the map unlocked. Changing from
882          * read to write permission is OK - we leave the page
883          * write-protected, and catch the write fault. Changing from
884          * write to read permission means that we can't mark the page
885          * write-enabled after all.
886          */
887         fs->prot &= retry_prot;
888         fs->fault_type &= retry_prot;
889         if (fs->prot == 0)
890                 return (KERN_RESTART);
891
892         /* Reassert because wired may have changed. */
893         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
894             ("!wired && VM_FAULT_WIRE"));
895
896         return (KERN_SUCCESS);
897 }
898
899 static void
900 vm_fault_cow(struct faultstate *fs)
901 {
902         bool is_first_object_locked;
903
904         KASSERT(fs->object != fs->first_object,
905             ("source and target COW objects are identical"));
906
907         /*
908          * This allows pages to be virtually copied from a backing_object
909          * into the first_object, where the backing object has no other
910          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
911          * we just move the page from the backing object to the first
912          * object.  Note that we must mark the page dirty in the first
913          * object so that it will go out to swap when needed.
914          */
915         is_first_object_locked = false;
916         if (
917             /*
918              * Only one shadow object and no other refs.
919              */
920             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
921             /*
922              * No other ways to look the object up
923              */
924             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
925             /*
926              * We don't chase down the shadow chain and we can acquire locks.
927              */
928             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
929             fs->object == fs->first_object->backing_object &&
930             VM_OBJECT_TRYWLOCK(fs->object)) {
931                 /*
932                  * Remove but keep xbusy for replace.  fs->m is moved into
933                  * fs->first_object and left busy while fs->first_m is
934                  * conditionally freed.
935                  */
936                 vm_page_remove_xbusy(fs->m);
937                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
938                     fs->first_m);
939                 vm_page_dirty(fs->m);
940 #if VM_NRESERVLEVEL > 0
941                 /*
942                  * Rename the reservation.
943                  */
944                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
945                     OFF_TO_IDX(fs->first_object->backing_object_offset));
946 #endif
947                 VM_OBJECT_WUNLOCK(fs->object);
948                 VM_OBJECT_WUNLOCK(fs->first_object);
949                 fs->first_m = fs->m;
950                 fs->m = NULL;
951                 VM_CNT_INC(v_cow_optim);
952         } else {
953                 if (is_first_object_locked)
954                         VM_OBJECT_WUNLOCK(fs->first_object);
955                 /*
956                  * Oh, well, lets copy it.
957                  */
958                 pmap_copy_page(fs->m, fs->first_m);
959                 vm_page_valid(fs->first_m);
960                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
961                         vm_page_wire(fs->first_m);
962                         vm_page_unwire(fs->m, PQ_INACTIVE);
963                 }
964                 /*
965                  * Save the cow page to be released after
966                  * pmap_enter is complete.
967                  */
968                 fs->m_cow = fs->m;
969                 fs->m = NULL;
970
971                 /*
972                  * Typically, the shadow object is either private to this
973                  * address space (OBJ_ONEMAPPING) or its pages are read only.
974                  * In the highly unusual case where the pages of a shadow object
975                  * are read/write shared between this and other address spaces,
976                  * we need to ensure that any pmap-level mappings to the
977                  * original, copy-on-write page from the backing object are
978                  * removed from those other address spaces.
979                  *
980                  * The flag check is racy, but this is tolerable: if
981                  * OBJ_ONEMAPPING is cleared after the check, the busy state
982                  * ensures that new mappings of m_cow can't be created.
983                  * pmap_enter() will replace an existing mapping in the current
984                  * address space.  If OBJ_ONEMAPPING is set after the check,
985                  * removing mappings will at worse trigger some unnecessary page
986                  * faults.
987                  */
988                 vm_page_assert_xbusied(fs->m_cow);
989                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
990                         pmap_remove_all(fs->m_cow);
991         }
992
993         vm_object_pip_wakeup(fs->object);
994
995         /*
996          * Only use the new page below...
997          */
998         fs->object = fs->first_object;
999         fs->pindex = fs->first_pindex;
1000         fs->m = fs->first_m;
1001         VM_CNT_INC(v_cow_faults);
1002         curthread->td_cow++;
1003 }
1004
1005 static bool
1006 vm_fault_next(struct faultstate *fs)
1007 {
1008         vm_object_t next_object;
1009
1010         /*
1011          * The requested page does not exist at this object/
1012          * offset.  Remove the invalid page from the object,
1013          * waking up anyone waiting for it, and continue on to
1014          * the next object.  However, if this is the top-level
1015          * object, we must leave the busy page in place to
1016          * prevent another process from rushing past us, and
1017          * inserting the page in that object at the same time
1018          * that we are.
1019          */
1020         if (fs->object == fs->first_object) {
1021                 fs->first_m = fs->m;
1022                 fs->m = NULL;
1023         } else
1024                 fault_page_free(&fs->m);
1025
1026         /*
1027          * Move on to the next object.  Lock the next object before
1028          * unlocking the current one.
1029          */
1030         VM_OBJECT_ASSERT_WLOCKED(fs->object);
1031         next_object = fs->object->backing_object;
1032         if (next_object == NULL)
1033                 return (false);
1034         MPASS(fs->first_m != NULL);
1035         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1036         VM_OBJECT_WLOCK(next_object);
1037         vm_object_pip_add(next_object, 1);
1038         if (fs->object != fs->first_object)
1039                 vm_object_pip_wakeup(fs->object);
1040         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1041         VM_OBJECT_WUNLOCK(fs->object);
1042         fs->object = next_object;
1043
1044         return (true);
1045 }
1046
1047 static void
1048 vm_fault_zerofill(struct faultstate *fs)
1049 {
1050
1051         /*
1052          * If there's no object left, fill the page in the top
1053          * object with zeros.
1054          */
1055         if (fs->object != fs->first_object) {
1056                 vm_object_pip_wakeup(fs->object);
1057                 fs->object = fs->first_object;
1058                 fs->pindex = fs->first_pindex;
1059         }
1060         MPASS(fs->first_m != NULL);
1061         MPASS(fs->m == NULL);
1062         fs->m = fs->first_m;
1063         fs->first_m = NULL;
1064
1065         /*
1066          * Zero the page if necessary and mark it valid.
1067          */
1068         if ((fs->m->flags & PG_ZERO) == 0) {
1069                 pmap_zero_page(fs->m);
1070         } else {
1071                 VM_CNT_INC(v_ozfod);
1072         }
1073         VM_CNT_INC(v_zfod);
1074         vm_page_valid(fs->m);
1075 }
1076
1077 /*
1078  * Initiate page fault after timeout.  Returns true if caller should
1079  * do vm_waitpfault() after the call.
1080  */
1081 static bool
1082 vm_fault_allocate_oom(struct faultstate *fs)
1083 {
1084         struct timeval now;
1085
1086         unlock_and_deallocate(fs);
1087         if (vm_pfault_oom_attempts < 0)
1088                 return (true);
1089         if (!fs->oom_started) {
1090                 fs->oom_started = true;
1091                 getmicrotime(&fs->oom_start_time);
1092                 return (true);
1093         }
1094
1095         getmicrotime(&now);
1096         timevalsub(&now, &fs->oom_start_time);
1097         if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1098                 return (true);
1099
1100         if (bootverbose)
1101                 printf(
1102             "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1103                     curproc->p_pid, curproc->p_comm);
1104         vm_pageout_oom(VM_OOM_MEM_PF);
1105         fs->oom_started = false;
1106         return (false);
1107 }
1108
1109 /*
1110  * Allocate a page directly or via the object populate method.
1111  */
1112 static int
1113 vm_fault_allocate(struct faultstate *fs)
1114 {
1115         struct domainset *dset;
1116         int rv;
1117
1118         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1119                 rv = vm_fault_lock_vnode(fs, true);
1120                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1121                 if (rv == KERN_RESOURCE_SHORTAGE)
1122                         return (rv);
1123         }
1124
1125         if (fs->pindex >= fs->object->size)
1126                 return (KERN_OUT_OF_BOUNDS);
1127
1128         if (fs->object == fs->first_object &&
1129             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1130             fs->first_object->shadow_count == 0) {
1131                 rv = vm_fault_populate(fs);
1132                 switch (rv) {
1133                 case KERN_SUCCESS:
1134                 case KERN_FAILURE:
1135                 case KERN_PROTECTION_FAILURE:
1136                 case KERN_RESTART:
1137                         return (rv);
1138                 case KERN_NOT_RECEIVER:
1139                         /*
1140                          * Pager's populate() method
1141                          * returned VM_PAGER_BAD.
1142                          */
1143                         break;
1144                 default:
1145                         panic("inconsistent return codes");
1146                 }
1147         }
1148
1149         /*
1150          * Allocate a new page for this object/offset pair.
1151          *
1152          * If the process has a fatal signal pending, prioritize the allocation
1153          * with the expectation that the process will exit shortly and free some
1154          * pages.  In particular, the signal may have been posted by the page
1155          * daemon in an attempt to resolve an out-of-memory condition.
1156          *
1157          * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1158          * might be not observed here, and allocation fails, causing a restart
1159          * and new reading of the p_flag.
1160          */
1161         dset = fs->object->domain.dr_policy;
1162         if (dset == NULL)
1163                 dset = curthread->td_domain.dr_policy;
1164         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1165 #if VM_NRESERVLEVEL > 0
1166                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1167 #endif
1168                 fs->m = vm_page_alloc(fs->object, fs->pindex,
1169                     P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1170         }
1171         if (fs->m == NULL) {
1172                 if (vm_fault_allocate_oom(fs))
1173                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1174                 return (KERN_RESOURCE_SHORTAGE);
1175         }
1176         fs->oom_started = false;
1177
1178         return (KERN_NOT_RECEIVER);
1179 }
1180
1181 /*
1182  * Call the pager to retrieve the page if there is a chance
1183  * that the pager has it, and potentially retrieve additional
1184  * pages at the same time.
1185  */
1186 static int
1187 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1188 {
1189         vm_offset_t e_end, e_start;
1190         int ahead, behind, cluster_offset, rv;
1191         u_char behavior;
1192
1193         /*
1194          * Prepare for unlocking the map.  Save the map
1195          * entry's start and end addresses, which are used to
1196          * optimize the size of the pager operation below.
1197          * Even if the map entry's addresses change after
1198          * unlocking the map, using the saved addresses is
1199          * safe.
1200          */
1201         e_start = fs->entry->start;
1202         e_end = fs->entry->end;
1203         behavior = vm_map_entry_behavior(fs->entry);
1204
1205         /*
1206          * Release the map lock before locking the vnode or
1207          * sleeping in the pager.  (If the current object has
1208          * a shadow, then an earlier iteration of this loop
1209          * may have already unlocked the map.)
1210          */
1211         unlock_map(fs);
1212
1213         rv = vm_fault_lock_vnode(fs, false);
1214         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1215         if (rv == KERN_RESOURCE_SHORTAGE)
1216                 return (rv);
1217         KASSERT(fs->vp == NULL || !fs->map->system_map,
1218             ("vm_fault: vnode-backed object mapped by system map"));
1219
1220         /*
1221          * Page in the requested page and hint the pager,
1222          * that it may bring up surrounding pages.
1223          */
1224         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1225             P_KILLED(curproc)) {
1226                 behind = 0;
1227                 ahead = 0;
1228         } else {
1229                 /* Is this a sequential fault? */
1230                 if (nera > 0) {
1231                         behind = 0;
1232                         ahead = nera;
1233                 } else {
1234                         /*
1235                          * Request a cluster of pages that is
1236                          * aligned to a VM_FAULT_READ_DEFAULT
1237                          * page offset boundary within the
1238                          * object.  Alignment to a page offset
1239                          * boundary is more likely to coincide
1240                          * with the underlying file system
1241                          * block than alignment to a virtual
1242                          * address boundary.
1243                          */
1244                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1245                         behind = ulmin(cluster_offset,
1246                             atop(fs->vaddr - e_start));
1247                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1248                 }
1249                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1250         }
1251         *behindp = behind;
1252         *aheadp = ahead;
1253         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1254         if (rv == VM_PAGER_OK)
1255                 return (KERN_SUCCESS);
1256         if (rv == VM_PAGER_ERROR)
1257                 printf("vm_fault: pager read error, pid %d (%s)\n",
1258                     curproc->p_pid, curproc->p_comm);
1259         /*
1260          * If an I/O error occurred or the requested page was
1261          * outside the range of the pager, clean up and return
1262          * an error.
1263          */
1264         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1265                 return (KERN_OUT_OF_BOUNDS);
1266         return (KERN_NOT_RECEIVER);
1267 }
1268
1269 /*
1270  * Wait/Retry if the page is busy.  We have to do this if the page is
1271  * either exclusive or shared busy because the vm_pager may be using
1272  * read busy for pageouts (and even pageins if it is the vnode pager),
1273  * and we could end up trying to pagein and pageout the same page
1274  * simultaneously.
1275  *
1276  * We can theoretically allow the busy case on a read fault if the page
1277  * is marked valid, but since such pages are typically already pmap'd,
1278  * putting that special case in might be more effort then it is worth.
1279  * We cannot under any circumstances mess around with a shared busied
1280  * page except, perhaps, to pmap it.
1281  */
1282 static void
1283 vm_fault_busy_sleep(struct faultstate *fs)
1284 {
1285         /*
1286          * Reference the page before unlocking and
1287          * sleeping so that the page daemon is less
1288          * likely to reclaim it.
1289          */
1290         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1291         if (fs->object != fs->first_object) {
1292                 fault_page_release(&fs->first_m);
1293                 vm_object_pip_wakeup(fs->first_object);
1294         }
1295         vm_object_pip_wakeup(fs->object);
1296         unlock_map(fs);
1297         if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1298             !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1299                 VM_OBJECT_WUNLOCK(fs->object);
1300         VM_CNT_INC(v_intrans);
1301         vm_object_deallocate(fs->first_object);
1302 }
1303
1304 int
1305 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1306     int fault_flags, vm_page_t *m_hold)
1307 {
1308         struct faultstate fs;
1309         int ahead, behind, faultcount;
1310         int nera, result, rv;
1311         bool dead, hardfault;
1312
1313         VM_CNT_INC(v_vm_faults);
1314
1315         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1316                 return (KERN_PROTECTION_FAILURE);
1317
1318         fs.vp = NULL;
1319         fs.vaddr = vaddr;
1320         fs.m_hold = m_hold;
1321         fs.fault_flags = fault_flags;
1322         fs.map = map;
1323         fs.lookup_still_valid = false;
1324         fs.oom_started = false;
1325         faultcount = 0;
1326         nera = -1;
1327         hardfault = false;
1328
1329 RetryFault:
1330         fs.fault_type = fault_type;
1331
1332         /*
1333          * Find the backing store object and offset into it to begin the
1334          * search.
1335          */
1336         result = vm_fault_lookup(&fs);
1337         if (result != KERN_SUCCESS) {
1338                 if (result == KERN_RESOURCE_SHORTAGE)
1339                         goto RetryFault;
1340                 return (result);
1341         }
1342
1343         /*
1344          * Try to avoid lock contention on the top-level object through
1345          * special-case handling of some types of page faults, specifically,
1346          * those that are mapping an existing page from the top-level object.
1347          * Under this condition, a read lock on the object suffices, allowing
1348          * multiple page faults of a similar type to run in parallel.
1349          */
1350         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1351             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1352             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1353                 VM_OBJECT_RLOCK(fs.first_object);
1354                 rv = vm_fault_soft_fast(&fs);
1355                 if (rv == KERN_SUCCESS)
1356                         return (rv);
1357                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1358                         VM_OBJECT_RUNLOCK(fs.first_object);
1359                         VM_OBJECT_WLOCK(fs.first_object);
1360                 }
1361         } else {
1362                 VM_OBJECT_WLOCK(fs.first_object);
1363         }
1364
1365         /*
1366          * Make a reference to this object to prevent its disposal while we
1367          * are messing with it.  Once we have the reference, the map is free
1368          * to be diddled.  Since objects reference their shadows (and copies),
1369          * they will stay around as well.
1370          *
1371          * Bump the paging-in-progress count to prevent size changes (e.g. 
1372          * truncation operations) during I/O.
1373          */
1374         vm_object_reference_locked(fs.first_object);
1375         vm_object_pip_add(fs.first_object, 1);
1376
1377         fs.m_cow = fs.m = fs.first_m = NULL;
1378
1379         /*
1380          * Search for the page at object/offset.
1381          */
1382         fs.object = fs.first_object;
1383         fs.pindex = fs.first_pindex;
1384
1385         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1386                 rv = vm_fault_allocate(&fs);
1387                 switch (rv) {
1388                 case KERN_RESTART:
1389                         unlock_and_deallocate(&fs);
1390                         /* FALLTHROUGH */
1391                 case KERN_RESOURCE_SHORTAGE:
1392                         goto RetryFault;
1393                 case KERN_SUCCESS:
1394                 case KERN_FAILURE:
1395                 case KERN_PROTECTION_FAILURE:
1396                 case KERN_OUT_OF_BOUNDS:
1397                         unlock_and_deallocate(&fs);
1398                         return (rv);
1399                 case KERN_NOT_RECEIVER:
1400                         break;
1401                 default:
1402                         panic("vm_fault: Unhandled rv %d", rv);
1403                 }
1404         }
1405
1406         while (TRUE) {
1407                 KASSERT(fs.m == NULL,
1408                     ("page still set %p at loop start", fs.m));
1409                 /*
1410                  * If the object is marked for imminent termination,
1411                  * we retry here, since the collapse pass has raced
1412                  * with us.  Otherwise, if we see terminally dead
1413                  * object, return fail.
1414                  */
1415                 if ((fs.object->flags & OBJ_DEAD) != 0) {
1416                         dead = fs.object->type == OBJT_DEAD;
1417                         unlock_and_deallocate(&fs);
1418                         if (dead)
1419                                 return (KERN_PROTECTION_FAILURE);
1420                         pause("vmf_de", 1);
1421                         goto RetryFault;
1422                 }
1423
1424                 /*
1425                  * See if page is resident
1426                  */
1427                 fs.m = vm_page_lookup(fs.object, fs.pindex);
1428                 if (fs.m != NULL) {
1429                         if (vm_page_tryxbusy(fs.m) == 0) {
1430                                 vm_fault_busy_sleep(&fs);
1431                                 goto RetryFault;
1432                         }
1433
1434                         /*
1435                          * The page is marked busy for other processes and the
1436                          * pagedaemon.  If it still is completely valid we
1437                          * are done.
1438                          */
1439                         if (vm_page_all_valid(fs.m)) {
1440                                 VM_OBJECT_WUNLOCK(fs.object);
1441                                 break; /* break to PAGE HAS BEEN FOUND. */
1442                         }
1443                 }
1444                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1445
1446                 /*
1447                  * Page is not resident.  If the pager might contain the page
1448                  * or this is the beginning of the search, allocate a new
1449                  * page.  (Default objects are zero-fill, so there is no real
1450                  * pager for them.)
1451                  */
1452                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1453                     fs.object == fs.first_object)) {
1454                         rv = vm_fault_allocate(&fs);
1455                         switch (rv) {
1456                         case KERN_RESTART:
1457                                 unlock_and_deallocate(&fs);
1458                                 /* FALLTHROUGH */
1459                         case KERN_RESOURCE_SHORTAGE:
1460                                 goto RetryFault;
1461                         case KERN_SUCCESS:
1462                         case KERN_FAILURE:
1463                         case KERN_PROTECTION_FAILURE:
1464                         case KERN_OUT_OF_BOUNDS:
1465                                 unlock_and_deallocate(&fs);
1466                                 return (rv);
1467                         case KERN_NOT_RECEIVER:
1468                                 break;
1469                         default:
1470                                 panic("vm_fault: Unhandled rv %d", rv);
1471                         }
1472                 }
1473
1474                 /*
1475                  * Default objects have no pager so no exclusive busy exists
1476                  * to protect this page in the chain.  Skip to the next
1477                  * object without dropping the lock to preserve atomicity of
1478                  * shadow faults.
1479                  */
1480                 if (fs.object->type != OBJT_DEFAULT) {
1481                         /*
1482                          * At this point, we have either allocated a new page
1483                          * or found an existing page that is only partially
1484                          * valid.
1485                          *
1486                          * We hold a reference on the current object and the
1487                          * page is exclusive busied.  The exclusive busy
1488                          * prevents simultaneous faults and collapses while
1489                          * the object lock is dropped.
1490                          */
1491                         VM_OBJECT_WUNLOCK(fs.object);
1492
1493                         /*
1494                          * If the pager for the current object might have
1495                          * the page, then determine the number of additional
1496                          * pages to read and potentially reprioritize
1497                          * previously read pages for earlier reclamation.
1498                          * These operations should only be performed once per
1499                          * page fault.  Even if the current pager doesn't
1500                          * have the page, the number of additional pages to
1501                          * read will apply to subsequent objects in the
1502                          * shadow chain.
1503                          */
1504                         if (nera == -1 && !P_KILLED(curproc))
1505                                 nera = vm_fault_readahead(&fs);
1506
1507                         rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1508                         if (rv == KERN_SUCCESS) {
1509                                 faultcount = behind + 1 + ahead;
1510                                 hardfault = true;
1511                                 break; /* break to PAGE HAS BEEN FOUND. */
1512                         }
1513                         if (rv == KERN_RESOURCE_SHORTAGE)
1514                                 goto RetryFault;
1515                         VM_OBJECT_WLOCK(fs.object);
1516                         if (rv == KERN_OUT_OF_BOUNDS) {
1517                                 fault_page_free(&fs.m);
1518                                 unlock_and_deallocate(&fs);
1519                                 return (rv);
1520                         }
1521                 }
1522
1523                 /*
1524                  * The page was not found in the current object.  Try to
1525                  * traverse into a backing object or zero fill if none is
1526                  * found.
1527                  */
1528                 if (vm_fault_next(&fs))
1529                         continue;
1530                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1531                         if (fs.first_object == fs.object)
1532                                 fault_page_free(&fs.first_m);
1533                         unlock_and_deallocate(&fs);
1534                         return (KERN_OUT_OF_BOUNDS);
1535                 }
1536                 VM_OBJECT_WUNLOCK(fs.object);
1537                 vm_fault_zerofill(&fs);
1538                 /* Don't try to prefault neighboring pages. */
1539                 faultcount = 1;
1540                 break;  /* break to PAGE HAS BEEN FOUND. */
1541         }
1542
1543         /*
1544          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1545          * busied.  The object lock must no longer be held.
1546          */
1547         vm_page_assert_xbusied(fs.m);
1548         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1549
1550         /*
1551          * If the page is being written, but isn't already owned by the
1552          * top-level object, we have to copy it into a new page owned by the
1553          * top-level object.
1554          */
1555         if (fs.object != fs.first_object) {
1556                 /*
1557                  * We only really need to copy if we want to write it.
1558                  */
1559                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1560                         vm_fault_cow(&fs);
1561                         /*
1562                          * We only try to prefault read-only mappings to the
1563                          * neighboring pages when this copy-on-write fault is
1564                          * a hard fault.  In other cases, trying to prefault
1565                          * is typically wasted effort.
1566                          */
1567                         if (faultcount == 0)
1568                                 faultcount = 1;
1569
1570                 } else {
1571                         fs.prot &= ~VM_PROT_WRITE;
1572                 }
1573         }
1574
1575         /*
1576          * We must verify that the maps have not changed since our last
1577          * lookup.
1578          */
1579         if (!fs.lookup_still_valid) {
1580                 result = vm_fault_relookup(&fs);
1581                 if (result != KERN_SUCCESS) {
1582                         fault_deallocate(&fs);
1583                         if (result == KERN_RESTART)
1584                                 goto RetryFault;
1585                         return (result);
1586                 }
1587         }
1588         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1589
1590         /*
1591          * If the page was filled by a pager, save the virtual address that
1592          * should be faulted on next under a sequential access pattern to the
1593          * map entry.  A read lock on the map suffices to update this address
1594          * safely.
1595          */
1596         if (hardfault)
1597                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1598
1599         /*
1600          * Page must be completely valid or it is not fit to
1601          * map into user space.  vm_pager_get_pages() ensures this.
1602          */
1603         vm_page_assert_xbusied(fs.m);
1604         KASSERT(vm_page_all_valid(fs.m),
1605             ("vm_fault: page %p partially invalid", fs.m));
1606
1607         vm_fault_dirty(&fs, fs.m);
1608
1609         /*
1610          * Put this page into the physical map.  We had to do the unlock above
1611          * because pmap_enter() may sleep.  We don't put the page
1612          * back on the active queue until later so that the pageout daemon
1613          * won't find it (yet).
1614          */
1615         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1616             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1617         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1618             fs.wired == 0)
1619                 vm_fault_prefault(&fs, vaddr,
1620                     faultcount > 0 ? behind : PFBAK,
1621                     faultcount > 0 ? ahead : PFFOR, false);
1622
1623         /*
1624          * If the page is not wired down, then put it where the pageout daemon
1625          * can find it.
1626          */
1627         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1628                 vm_page_wire(fs.m);
1629         else
1630                 vm_page_activate(fs.m);
1631         if (fs.m_hold != NULL) {
1632                 (*fs.m_hold) = fs.m;
1633                 vm_page_wire(fs.m);
1634         }
1635         vm_page_xunbusy(fs.m);
1636         fs.m = NULL;
1637
1638         /*
1639          * Unlock everything, and return
1640          */
1641         fault_deallocate(&fs);
1642         if (hardfault) {
1643                 VM_CNT_INC(v_io_faults);
1644                 curthread->td_ru.ru_majflt++;
1645 #ifdef RACCT
1646                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1647                         PROC_LOCK(curproc);
1648                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1649                                 racct_add_force(curproc, RACCT_WRITEBPS,
1650                                     PAGE_SIZE + behind * PAGE_SIZE);
1651                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1652                         } else {
1653                                 racct_add_force(curproc, RACCT_READBPS,
1654                                     PAGE_SIZE + ahead * PAGE_SIZE);
1655                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1656                         }
1657                         PROC_UNLOCK(curproc);
1658                 }
1659 #endif
1660         } else 
1661                 curthread->td_ru.ru_minflt++;
1662
1663         return (KERN_SUCCESS);
1664 }
1665
1666 /*
1667  * Speed up the reclamation of pages that precede the faulting pindex within
1668  * the first object of the shadow chain.  Essentially, perform the equivalent
1669  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1670  * the faulting pindex by the cluster size when the pages read by vm_fault()
1671  * cross a cluster-size boundary.  The cluster size is the greater of the
1672  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1673  *
1674  * When "fs->first_object" is a shadow object, the pages in the backing object
1675  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1676  * function must only be concerned with pages in the first object.
1677  */
1678 static void
1679 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1680 {
1681         vm_map_entry_t entry;
1682         vm_object_t first_object, object;
1683         vm_offset_t end, start;
1684         vm_page_t m, m_next;
1685         vm_pindex_t pend, pstart;
1686         vm_size_t size;
1687
1688         object = fs->object;
1689         VM_OBJECT_ASSERT_UNLOCKED(object);
1690         first_object = fs->first_object;
1691         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1692         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1693                 VM_OBJECT_RLOCK(first_object);
1694                 size = VM_FAULT_DONTNEED_MIN;
1695                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1696                         size = pagesizes[1];
1697                 end = rounddown2(vaddr, size);
1698                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1699                     (entry = fs->entry)->start < end) {
1700                         if (end - entry->start < size)
1701                                 start = entry->start;
1702                         else
1703                                 start = end - size;
1704                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1705                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1706                             entry->start);
1707                         m_next = vm_page_find_least(first_object, pstart);
1708                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1709                             entry->start);
1710                         while ((m = m_next) != NULL && m->pindex < pend) {
1711                                 m_next = TAILQ_NEXT(m, listq);
1712                                 if (!vm_page_all_valid(m) ||
1713                                     vm_page_busied(m))
1714                                         continue;
1715
1716                                 /*
1717                                  * Don't clear PGA_REFERENCED, since it would
1718                                  * likely represent a reference by a different
1719                                  * process.
1720                                  *
1721                                  * Typically, at this point, prefetched pages
1722                                  * are still in the inactive queue.  Only
1723                                  * pages that triggered page faults are in the
1724                                  * active queue.  The test for whether the page
1725                                  * is in the inactive queue is racy; in the
1726                                  * worst case we will requeue the page
1727                                  * unnecessarily.
1728                                  */
1729                                 if (!vm_page_inactive(m))
1730                                         vm_page_deactivate(m);
1731                         }
1732                 }
1733                 VM_OBJECT_RUNLOCK(first_object);
1734         }
1735 }
1736
1737 /*
1738  * vm_fault_prefault provides a quick way of clustering
1739  * pagefaults into a processes address space.  It is a "cousin"
1740  * of vm_map_pmap_enter, except it runs at page fault time instead
1741  * of mmap time.
1742  */
1743 static void
1744 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1745     int backward, int forward, bool obj_locked)
1746 {
1747         pmap_t pmap;
1748         vm_map_entry_t entry;
1749         vm_object_t backing_object, lobject;
1750         vm_offset_t addr, starta;
1751         vm_pindex_t pindex;
1752         vm_page_t m;
1753         int i;
1754
1755         pmap = fs->map->pmap;
1756         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1757                 return;
1758
1759         entry = fs->entry;
1760
1761         if (addra < backward * PAGE_SIZE) {
1762                 starta = entry->start;
1763         } else {
1764                 starta = addra - backward * PAGE_SIZE;
1765                 if (starta < entry->start)
1766                         starta = entry->start;
1767         }
1768
1769         /*
1770          * Generate the sequence of virtual addresses that are candidates for
1771          * prefaulting in an outward spiral from the faulting virtual address,
1772          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1773          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1774          * If the candidate address doesn't have a backing physical page, then
1775          * the loop immediately terminates.
1776          */
1777         for (i = 0; i < 2 * imax(backward, forward); i++) {
1778                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1779                     PAGE_SIZE);
1780                 if (addr > addra + forward * PAGE_SIZE)
1781                         addr = 0;
1782
1783                 if (addr < starta || addr >= entry->end)
1784                         continue;
1785
1786                 if (!pmap_is_prefaultable(pmap, addr))
1787                         continue;
1788
1789                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1790                 lobject = entry->object.vm_object;
1791                 if (!obj_locked)
1792                         VM_OBJECT_RLOCK(lobject);
1793                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1794                     lobject->type == OBJT_DEFAULT &&
1795                     (backing_object = lobject->backing_object) != NULL) {
1796                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1797                             0, ("vm_fault_prefault: unaligned object offset"));
1798                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1799                         VM_OBJECT_RLOCK(backing_object);
1800                         if (!obj_locked || lobject != entry->object.vm_object)
1801                                 VM_OBJECT_RUNLOCK(lobject);
1802                         lobject = backing_object;
1803                 }
1804                 if (m == NULL) {
1805                         if (!obj_locked || lobject != entry->object.vm_object)
1806                                 VM_OBJECT_RUNLOCK(lobject);
1807                         break;
1808                 }
1809                 if (vm_page_all_valid(m) &&
1810                     (m->flags & PG_FICTITIOUS) == 0)
1811                         pmap_enter_quick(pmap, addr, m, entry->protection);
1812                 if (!obj_locked || lobject != entry->object.vm_object)
1813                         VM_OBJECT_RUNLOCK(lobject);
1814         }
1815 }
1816
1817 /*
1818  * Hold each of the physical pages that are mapped by the specified range of
1819  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1820  * and allow the specified types of access, "prot".  If all of the implied
1821  * pages are successfully held, then the number of held pages is returned
1822  * together with pointers to those pages in the array "ma".  However, if any
1823  * of the pages cannot be held, -1 is returned.
1824  */
1825 int
1826 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1827     vm_prot_t prot, vm_page_t *ma, int max_count)
1828 {
1829         vm_offset_t end, va;
1830         vm_page_t *mp;
1831         int count;
1832         boolean_t pmap_failed;
1833
1834         if (len == 0)
1835                 return (0);
1836         end = round_page(addr + len);
1837         addr = trunc_page(addr);
1838
1839         if (!vm_map_range_valid(map, addr, end))
1840                 return (-1);
1841
1842         if (atop(end - addr) > max_count)
1843                 panic("vm_fault_quick_hold_pages: count > max_count");
1844         count = atop(end - addr);
1845
1846         /*
1847          * Most likely, the physical pages are resident in the pmap, so it is
1848          * faster to try pmap_extract_and_hold() first.
1849          */
1850         pmap_failed = FALSE;
1851         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1852                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1853                 if (*mp == NULL)
1854                         pmap_failed = TRUE;
1855                 else if ((prot & VM_PROT_WRITE) != 0 &&
1856                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1857                         /*
1858                          * Explicitly dirty the physical page.  Otherwise, the
1859                          * caller's changes may go unnoticed because they are
1860                          * performed through an unmanaged mapping or by a DMA
1861                          * operation.
1862                          *
1863                          * The object lock is not held here.
1864                          * See vm_page_clear_dirty_mask().
1865                          */
1866                         vm_page_dirty(*mp);
1867                 }
1868         }
1869         if (pmap_failed) {
1870                 /*
1871                  * One or more pages could not be held by the pmap.  Either no
1872                  * page was mapped at the specified virtual address or that
1873                  * mapping had insufficient permissions.  Attempt to fault in
1874                  * and hold these pages.
1875                  *
1876                  * If vm_fault_disable_pagefaults() was called,
1877                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1878                  * acquire MD VM locks, which means we must not call
1879                  * vm_fault().  Some (out of tree) callers mark
1880                  * too wide a code area with vm_fault_disable_pagefaults()
1881                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1882                  * the proper behaviour explicitly.
1883                  */
1884                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1885                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1886                         goto error;
1887                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1888                         if (*mp == NULL && vm_fault(map, va, prot,
1889                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1890                                 goto error;
1891         }
1892         return (count);
1893 error:  
1894         for (mp = ma; mp < ma + count; mp++)
1895                 if (*mp != NULL)
1896                         vm_page_unwire(*mp, PQ_INACTIVE);
1897         return (-1);
1898 }
1899
1900 /*
1901  *      Routine:
1902  *              vm_fault_copy_entry
1903  *      Function:
1904  *              Create new shadow object backing dst_entry with private copy of
1905  *              all underlying pages. When src_entry is equal to dst_entry,
1906  *              function implements COW for wired-down map entry. Otherwise,
1907  *              it forks wired entry into dst_map.
1908  *
1909  *      In/out conditions:
1910  *              The source and destination maps must be locked for write.
1911  *              The source map entry must be wired down (or be a sharing map
1912  *              entry corresponding to a main map entry that is wired down).
1913  */
1914 void
1915 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1916     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1917     vm_ooffset_t *fork_charge)
1918 {
1919         vm_object_t backing_object, dst_object, object, src_object;
1920         vm_pindex_t dst_pindex, pindex, src_pindex;
1921         vm_prot_t access, prot;
1922         vm_offset_t vaddr;
1923         vm_page_t dst_m;
1924         vm_page_t src_m;
1925         boolean_t upgrade;
1926
1927 #ifdef  lint
1928         src_map++;
1929 #endif  /* lint */
1930
1931         upgrade = src_entry == dst_entry;
1932         access = prot = dst_entry->protection;
1933
1934         src_object = src_entry->object.vm_object;
1935         src_pindex = OFF_TO_IDX(src_entry->offset);
1936
1937         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1938                 dst_object = src_object;
1939                 vm_object_reference(dst_object);
1940         } else {
1941                 /*
1942                  * Create the top-level object for the destination entry.
1943                  * Doesn't actually shadow anything - we copy the pages
1944                  * directly.
1945                  */
1946                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1947                     dst_entry->start), NULL, NULL, 0);
1948 #if VM_NRESERVLEVEL > 0
1949                 dst_object->flags |= OBJ_COLORED;
1950                 dst_object->pg_color = atop(dst_entry->start);
1951 #endif
1952                 dst_object->domain = src_object->domain;
1953                 dst_object->charge = dst_entry->end - dst_entry->start;
1954         }
1955
1956         VM_OBJECT_WLOCK(dst_object);
1957         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1958             ("vm_fault_copy_entry: vm_object not NULL"));
1959         if (src_object != dst_object) {
1960                 dst_entry->object.vm_object = dst_object;
1961                 dst_entry->offset = 0;
1962                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1963         }
1964         if (fork_charge != NULL) {
1965                 KASSERT(dst_entry->cred == NULL,
1966                     ("vm_fault_copy_entry: leaked swp charge"));
1967                 dst_object->cred = curthread->td_ucred;
1968                 crhold(dst_object->cred);
1969                 *fork_charge += dst_object->charge;
1970         } else if ((dst_object->type == OBJT_DEFAULT ||
1971             (dst_object->flags & OBJ_SWAP) != 0) &&
1972             dst_object->cred == NULL) {
1973                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1974                     dst_entry));
1975                 dst_object->cred = dst_entry->cred;
1976                 dst_entry->cred = NULL;
1977         }
1978
1979         /*
1980          * If not an upgrade, then enter the mappings in the pmap as
1981          * read and/or execute accesses.  Otherwise, enter them as
1982          * write accesses.
1983          *
1984          * A writeable large page mapping is only created if all of
1985          * the constituent small page mappings are modified. Marking
1986          * PTEs as modified on inception allows promotion to happen
1987          * without taking potentially large number of soft faults.
1988          */
1989         if (!upgrade)
1990                 access &= ~VM_PROT_WRITE;
1991
1992         /*
1993          * Loop through all of the virtual pages within the entry's
1994          * range, copying each page from the source object to the
1995          * destination object.  Since the source is wired, those pages
1996          * must exist.  In contrast, the destination is pageable.
1997          * Since the destination object doesn't share any backing storage
1998          * with the source object, all of its pages must be dirtied,
1999          * regardless of whether they can be written.
2000          */
2001         for (vaddr = dst_entry->start, dst_pindex = 0;
2002             vaddr < dst_entry->end;
2003             vaddr += PAGE_SIZE, dst_pindex++) {
2004 again:
2005                 /*
2006                  * Find the page in the source object, and copy it in.
2007                  * Because the source is wired down, the page will be
2008                  * in memory.
2009                  */
2010                 if (src_object != dst_object)
2011                         VM_OBJECT_RLOCK(src_object);
2012                 object = src_object;
2013                 pindex = src_pindex + dst_pindex;
2014                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2015                     (backing_object = object->backing_object) != NULL) {
2016                         /*
2017                          * Unless the source mapping is read-only or
2018                          * it is presently being upgraded from
2019                          * read-only, the first object in the shadow
2020                          * chain should provide all of the pages.  In
2021                          * other words, this loop body should never be
2022                          * executed when the source mapping is already
2023                          * read/write.
2024                          */
2025                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2026                             upgrade,
2027                             ("vm_fault_copy_entry: main object missing page"));
2028
2029                         VM_OBJECT_RLOCK(backing_object);
2030                         pindex += OFF_TO_IDX(object->backing_object_offset);
2031                         if (object != dst_object)
2032                                 VM_OBJECT_RUNLOCK(object);
2033                         object = backing_object;
2034                 }
2035                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2036
2037                 if (object != dst_object) {
2038                         /*
2039                          * Allocate a page in the destination object.
2040                          */
2041                         dst_m = vm_page_alloc(dst_object, (src_object ==
2042                             dst_object ? src_pindex : 0) + dst_pindex,
2043                             VM_ALLOC_NORMAL);
2044                         if (dst_m == NULL) {
2045                                 VM_OBJECT_WUNLOCK(dst_object);
2046                                 VM_OBJECT_RUNLOCK(object);
2047                                 vm_wait(dst_object);
2048                                 VM_OBJECT_WLOCK(dst_object);
2049                                 goto again;
2050                         }
2051                         pmap_copy_page(src_m, dst_m);
2052                         VM_OBJECT_RUNLOCK(object);
2053                         dst_m->dirty = dst_m->valid = src_m->valid;
2054                 } else {
2055                         dst_m = src_m;
2056                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2057                                 goto again;
2058                         if (dst_m->pindex >= dst_object->size) {
2059                                 /*
2060                                  * We are upgrading.  Index can occur
2061                                  * out of bounds if the object type is
2062                                  * vnode and the file was truncated.
2063                                  */
2064                                 vm_page_xunbusy(dst_m);
2065                                 break;
2066                         }
2067                 }
2068                 VM_OBJECT_WUNLOCK(dst_object);
2069
2070                 /*
2071                  * Enter it in the pmap. If a wired, copy-on-write
2072                  * mapping is being replaced by a write-enabled
2073                  * mapping, then wire that new mapping.
2074                  *
2075                  * The page can be invalid if the user called
2076                  * msync(MS_INVALIDATE) or truncated the backing vnode
2077                  * or shared memory object.  In this case, do not
2078                  * insert it into pmap, but still do the copy so that
2079                  * all copies of the wired map entry have similar
2080                  * backing pages.
2081                  */
2082                 if (vm_page_all_valid(dst_m)) {
2083                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2084                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2085                 }
2086
2087                 /*
2088                  * Mark it no longer busy, and put it on the active list.
2089                  */
2090                 VM_OBJECT_WLOCK(dst_object);
2091                 
2092                 if (upgrade) {
2093                         if (src_m != dst_m) {
2094                                 vm_page_unwire(src_m, PQ_INACTIVE);
2095                                 vm_page_wire(dst_m);
2096                         } else {
2097                                 KASSERT(vm_page_wired(dst_m),
2098                                     ("dst_m %p is not wired", dst_m));
2099                         }
2100                 } else {
2101                         vm_page_activate(dst_m);
2102                 }
2103                 vm_page_xunbusy(dst_m);
2104         }
2105         VM_OBJECT_WUNLOCK(dst_object);
2106         if (upgrade) {
2107                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2108                 vm_object_deallocate(src_object);
2109         }
2110 }
2111
2112 /*
2113  * Block entry into the machine-independent layer's page fault handler by
2114  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2115  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2116  * spurious page faults. 
2117  */
2118 int
2119 vm_fault_disable_pagefaults(void)
2120 {
2121
2122         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2123 }
2124
2125 void
2126 vm_fault_enable_pagefaults(int save)
2127 {
2128
2129         curthread_pflags_restore(save);
2130 }