]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
uma: Make the cache alignment mask unsigned
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/mutex.h>
86 #include <sys/pctrie.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/refcount.h>
90 #include <sys/resourcevar.h>
91 #include <sys/rwlock.h>
92 #include <sys/signalvar.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysent.h>
95 #include <sys/vmmeter.h>
96 #include <sys/vnode.h>
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_reserv.h>
112
113 #define PFBAK 4
114 #define PFFOR 4
115
116 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
117
118 #define VM_FAULT_DONTNEED_MIN   1048576
119
120 struct faultstate {
121         /* Fault parameters. */
122         vm_offset_t     vaddr;
123         vm_page_t       *m_hold;
124         vm_prot_t       fault_type;
125         vm_prot_t       prot;
126         int             fault_flags;
127         boolean_t       wired;
128
129         /* Control state. */
130         struct timeval  oom_start_time;
131         bool            oom_started;
132         int             nera;
133         bool            can_read_lock;
134
135         /* Page reference for cow. */
136         vm_page_t m_cow;
137
138         /* Current object. */
139         vm_object_t     object;
140         vm_pindex_t     pindex;
141         vm_page_t       m;
142
143         /* Top-level map object. */
144         vm_object_t     first_object;
145         vm_pindex_t     first_pindex;
146         vm_page_t       first_m;
147
148         /* Map state. */
149         vm_map_t        map;
150         vm_map_entry_t  entry;
151         int             map_generation;
152         bool            lookup_still_valid;
153
154         /* Vnode if locked. */
155         struct vnode    *vp;
156 };
157
158 /*
159  * Return codes for internal fault routines.
160  */
161 enum fault_status {
162         FAULT_SUCCESS = 10000,  /* Return success to user. */
163         FAULT_FAILURE,          /* Return failure to user. */
164         FAULT_CONTINUE,         /* Continue faulting. */
165         FAULT_RESTART,          /* Restart fault. */
166         FAULT_OUT_OF_BOUNDS,    /* Invalid address for pager. */
167         FAULT_HARD,             /* Performed I/O. */
168         FAULT_SOFT,             /* Found valid page. */
169         FAULT_PROTECTION_FAILURE, /* Invalid access. */
170 };
171
172 enum fault_next_status {
173         FAULT_NEXT_GOTOBJ = 1,
174         FAULT_NEXT_NOOBJ,
175         FAULT_NEXT_RESTART,
176 };
177
178 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
179             int ahead);
180 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
181             int backward, int forward, bool obj_locked);
182
183 static int vm_pfault_oom_attempts = 3;
184 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
185     &vm_pfault_oom_attempts, 0,
186     "Number of page allocation attempts in page fault handler before it "
187     "triggers OOM handling");
188
189 static int vm_pfault_oom_wait = 10;
190 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
191     &vm_pfault_oom_wait, 0,
192     "Number of seconds to wait for free pages before retrying "
193     "the page fault handler");
194
195 static inline void
196 vm_fault_page_release(vm_page_t *mp)
197 {
198         vm_page_t m;
199
200         m = *mp;
201         if (m != NULL) {
202                 /*
203                  * We are likely to loop around again and attempt to busy
204                  * this page.  Deactivating it leaves it available for
205                  * pageout while optimizing fault restarts.
206                  */
207                 vm_page_deactivate(m);
208                 vm_page_xunbusy(m);
209                 *mp = NULL;
210         }
211 }
212
213 static inline void
214 vm_fault_page_free(vm_page_t *mp)
215 {
216         vm_page_t m;
217
218         m = *mp;
219         if (m != NULL) {
220                 VM_OBJECT_ASSERT_WLOCKED(m->object);
221                 if (!vm_page_wired(m))
222                         vm_page_free(m);
223                 else
224                         vm_page_xunbusy(m);
225                 *mp = NULL;
226         }
227 }
228
229 /*
230  * Return true if a vm_pager_get_pages() call is needed in order to check
231  * whether the pager might have a particular page, false if it can be determined
232  * immediately that the pager can not have a copy.  For swap objects, this can
233  * be checked quickly.
234  */
235 static inline bool
236 vm_fault_object_needs_getpages(vm_object_t object)
237 {
238         VM_OBJECT_ASSERT_LOCKED(object);
239
240         return ((object->flags & OBJ_SWAP) == 0 ||
241             !pctrie_is_empty(&object->un_pager.swp.swp_blks));
242 }
243
244 static inline void
245 vm_fault_unlock_map(struct faultstate *fs)
246 {
247
248         if (fs->lookup_still_valid) {
249                 vm_map_lookup_done(fs->map, fs->entry);
250                 fs->lookup_still_valid = false;
251         }
252 }
253
254 static void
255 vm_fault_unlock_vp(struct faultstate *fs)
256 {
257
258         if (fs->vp != NULL) {
259                 vput(fs->vp);
260                 fs->vp = NULL;
261         }
262 }
263
264 static void
265 vm_fault_deallocate(struct faultstate *fs)
266 {
267
268         vm_fault_page_release(&fs->m_cow);
269         vm_fault_page_release(&fs->m);
270         vm_object_pip_wakeup(fs->object);
271         if (fs->object != fs->first_object) {
272                 VM_OBJECT_WLOCK(fs->first_object);
273                 vm_fault_page_free(&fs->first_m);
274                 VM_OBJECT_WUNLOCK(fs->first_object);
275                 vm_object_pip_wakeup(fs->first_object);
276         }
277         vm_object_deallocate(fs->first_object);
278         vm_fault_unlock_map(fs);
279         vm_fault_unlock_vp(fs);
280 }
281
282 static void
283 vm_fault_unlock_and_deallocate(struct faultstate *fs)
284 {
285
286         VM_OBJECT_UNLOCK(fs->object);
287         vm_fault_deallocate(fs);
288 }
289
290 static void
291 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
292 {
293         bool need_dirty;
294
295         if (((fs->prot & VM_PROT_WRITE) == 0 &&
296             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
297             (m->oflags & VPO_UNMANAGED) != 0)
298                 return;
299
300         VM_PAGE_OBJECT_BUSY_ASSERT(m);
301
302         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
303             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
304             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
305
306         vm_object_set_writeable_dirty(m->object);
307
308         /*
309          * If the fault is a write, we know that this page is being
310          * written NOW so dirty it explicitly to save on
311          * pmap_is_modified() calls later.
312          *
313          * Also, since the page is now dirty, we can possibly tell
314          * the pager to release any swap backing the page.
315          */
316         if (need_dirty && vm_page_set_dirty(m) == 0) {
317                 /*
318                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
319                  * if the page is already dirty to prevent data written with
320                  * the expectation of being synced from not being synced.
321                  * Likewise if this entry does not request NOSYNC then make
322                  * sure the page isn't marked NOSYNC.  Applications sharing
323                  * data should use the same flags to avoid ping ponging.
324                  */
325                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
326                         vm_page_aflag_set(m, PGA_NOSYNC);
327                 else
328                         vm_page_aflag_clear(m, PGA_NOSYNC);
329         }
330
331 }
332
333 /*
334  * Unlocks fs.first_object and fs.map on success.
335  */
336 static enum fault_status
337 vm_fault_soft_fast(struct faultstate *fs)
338 {
339         vm_page_t m, m_map;
340 #if VM_NRESERVLEVEL > 0
341         vm_page_t m_super;
342         int flags;
343 #endif
344         int psind;
345         vm_offset_t vaddr;
346
347         MPASS(fs->vp == NULL);
348
349         /*
350          * If we fail, vast majority of the time it is because the page is not
351          * there to begin with. Opportunistically perform the lookup and
352          * subsequent checks without the object lock, revalidate later.
353          *
354          * Note: a busy page can be mapped for read|execute access.
355          */
356         m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
357         if (m == NULL || !vm_page_all_valid(m) ||
358             ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
359                 VM_OBJECT_WLOCK(fs->first_object);
360                 return (FAULT_FAILURE);
361         }
362
363         vaddr = fs->vaddr;
364
365         VM_OBJECT_RLOCK(fs->first_object);
366
367         /*
368          * Now that we stabilized the state, revalidate the page is in the shape
369          * we encountered above.
370          */
371
372         if (m->object != fs->first_object || m->pindex != fs->first_pindex)
373                 goto fail;
374
375         vm_object_busy(fs->first_object);
376
377         if (!vm_page_all_valid(m) ||
378             ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
379                 goto fail_busy;
380
381         m_map = m;
382         psind = 0;
383 #if VM_NRESERVLEVEL > 0
384         if ((m->flags & PG_FICTITIOUS) == 0 &&
385             (m_super = vm_reserv_to_superpage(m)) != NULL &&
386             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
387             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
388             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
389             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
390             pmap_ps_enabled(fs->map->pmap)) {
391                 flags = PS_ALL_VALID;
392                 if ((fs->prot & VM_PROT_WRITE) != 0) {
393                         /*
394                          * Create a superpage mapping allowing write access
395                          * only if none of the constituent pages are busy and
396                          * all of them are already dirty (except possibly for
397                          * the page that was faulted on).
398                          */
399                         flags |= PS_NONE_BUSY;
400                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
401                                 flags |= PS_ALL_DIRTY;
402                 }
403                 if (vm_page_ps_test(m_super, flags, m)) {
404                         m_map = m_super;
405                         psind = m_super->psind;
406                         vaddr = rounddown2(vaddr, pagesizes[psind]);
407                         /* Preset the modified bit for dirty superpages. */
408                         if ((flags & PS_ALL_DIRTY) != 0)
409                                 fs->fault_type |= VM_PROT_WRITE;
410                 }
411         }
412 #endif
413         if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
414             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
415             KERN_SUCCESS)
416                 goto fail_busy;
417         if (fs->m_hold != NULL) {
418                 (*fs->m_hold) = m;
419                 vm_page_wire(m);
420         }
421         if (psind == 0 && !fs->wired)
422                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
423         VM_OBJECT_RUNLOCK(fs->first_object);
424         vm_fault_dirty(fs, m);
425         vm_object_unbusy(fs->first_object);
426         vm_map_lookup_done(fs->map, fs->entry);
427         curthread->td_ru.ru_minflt++;
428         return (FAULT_SUCCESS);
429 fail_busy:
430         vm_object_unbusy(fs->first_object);
431 fail:
432         if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
433                 VM_OBJECT_RUNLOCK(fs->first_object);
434                 VM_OBJECT_WLOCK(fs->first_object);
435         }
436         return (FAULT_FAILURE);
437 }
438
439 static void
440 vm_fault_restore_map_lock(struct faultstate *fs)
441 {
442
443         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
444         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
445
446         if (!vm_map_trylock_read(fs->map)) {
447                 VM_OBJECT_WUNLOCK(fs->first_object);
448                 vm_map_lock_read(fs->map);
449                 VM_OBJECT_WLOCK(fs->first_object);
450         }
451         fs->lookup_still_valid = true;
452 }
453
454 static void
455 vm_fault_populate_check_page(vm_page_t m)
456 {
457
458         /*
459          * Check each page to ensure that the pager is obeying the
460          * interface: the page must be installed in the object, fully
461          * valid, and exclusively busied.
462          */
463         MPASS(m != NULL);
464         MPASS(vm_page_all_valid(m));
465         MPASS(vm_page_xbusied(m));
466 }
467
468 static void
469 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
470     vm_pindex_t last)
471 {
472         vm_page_t m;
473         vm_pindex_t pidx;
474
475         VM_OBJECT_ASSERT_WLOCKED(object);
476         MPASS(first <= last);
477         for (pidx = first, m = vm_page_lookup(object, pidx);
478             pidx <= last; pidx++, m = vm_page_next(m)) {
479                 vm_fault_populate_check_page(m);
480                 vm_page_deactivate(m);
481                 vm_page_xunbusy(m);
482         }
483 }
484
485 static enum fault_status
486 vm_fault_populate(struct faultstate *fs)
487 {
488         vm_offset_t vaddr;
489         vm_page_t m;
490         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
491         int bdry_idx, i, npages, psind, rv;
492         enum fault_status res;
493
494         MPASS(fs->object == fs->first_object);
495         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
496         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
497         MPASS(fs->first_object->backing_object == NULL);
498         MPASS(fs->lookup_still_valid);
499
500         pager_first = OFF_TO_IDX(fs->entry->offset);
501         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
502         vm_fault_unlock_map(fs);
503         vm_fault_unlock_vp(fs);
504
505         res = FAULT_SUCCESS;
506
507         /*
508          * Call the pager (driver) populate() method.
509          *
510          * There is no guarantee that the method will be called again
511          * if the current fault is for read, and a future fault is
512          * for write.  Report the entry's maximum allowed protection
513          * to the driver.
514          */
515         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
516             fs->fault_type, fs->entry->max_protection, &pager_first,
517             &pager_last);
518
519         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
520         if (rv == VM_PAGER_BAD) {
521                 /*
522                  * VM_PAGER_BAD is the backdoor for a pager to request
523                  * normal fault handling.
524                  */
525                 vm_fault_restore_map_lock(fs);
526                 if (fs->map->timestamp != fs->map_generation)
527                         return (FAULT_RESTART);
528                 return (FAULT_CONTINUE);
529         }
530         if (rv != VM_PAGER_OK)
531                 return (FAULT_FAILURE); /* AKA SIGSEGV */
532
533         /* Ensure that the driver is obeying the interface. */
534         MPASS(pager_first <= pager_last);
535         MPASS(fs->first_pindex <= pager_last);
536         MPASS(fs->first_pindex >= pager_first);
537         MPASS(pager_last < fs->first_object->size);
538
539         vm_fault_restore_map_lock(fs);
540         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
541         if (fs->map->timestamp != fs->map_generation) {
542                 if (bdry_idx == 0) {
543                         vm_fault_populate_cleanup(fs->first_object, pager_first,
544                             pager_last);
545                 } else {
546                         m = vm_page_lookup(fs->first_object, pager_first);
547                         if (m != fs->m)
548                                 vm_page_xunbusy(m);
549                 }
550                 return (FAULT_RESTART);
551         }
552
553         /*
554          * The map is unchanged after our last unlock.  Process the fault.
555          *
556          * First, the special case of largepage mappings, where
557          * populate only busies the first page in superpage run.
558          */
559         if (bdry_idx != 0) {
560                 KASSERT(PMAP_HAS_LARGEPAGES,
561                     ("missing pmap support for large pages"));
562                 m = vm_page_lookup(fs->first_object, pager_first);
563                 vm_fault_populate_check_page(m);
564                 VM_OBJECT_WUNLOCK(fs->first_object);
565                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
566                     fs->entry->offset;
567                 /* assert alignment for entry */
568                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
569     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
570                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
571                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
572                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
573                     ("unaligned superpage m %p %#jx", m,
574                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
575                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
576                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
577                     PMAP_ENTER_LARGEPAGE, bdry_idx);
578                 VM_OBJECT_WLOCK(fs->first_object);
579                 vm_page_xunbusy(m);
580                 if (rv != KERN_SUCCESS) {
581                         res = FAULT_FAILURE;
582                         goto out;
583                 }
584                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
585                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
586                                 vm_page_wire(m + i);
587                 }
588                 if (fs->m_hold != NULL) {
589                         *fs->m_hold = m + (fs->first_pindex - pager_first);
590                         vm_page_wire(*fs->m_hold);
591                 }
592                 goto out;
593         }
594
595         /*
596          * The range [pager_first, pager_last] that is given to the
597          * pager is only a hint.  The pager may populate any range
598          * within the object that includes the requested page index.
599          * In case the pager expanded the range, clip it to fit into
600          * the map entry.
601          */
602         map_first = OFF_TO_IDX(fs->entry->offset);
603         if (map_first > pager_first) {
604                 vm_fault_populate_cleanup(fs->first_object, pager_first,
605                     map_first - 1);
606                 pager_first = map_first;
607         }
608         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
609         if (map_last < pager_last) {
610                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
611                     pager_last);
612                 pager_last = map_last;
613         }
614         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
615             pidx <= pager_last;
616             pidx += npages, m = vm_page_next(&m[npages - 1])) {
617                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
618
619                 psind = m->psind;
620                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
621                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
622                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
623                         psind = 0;
624
625                 npages = atop(pagesizes[psind]);
626                 for (i = 0; i < npages; i++) {
627                         vm_fault_populate_check_page(&m[i]);
628                         vm_fault_dirty(fs, &m[i]);
629                 }
630                 VM_OBJECT_WUNLOCK(fs->first_object);
631                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
632                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
633
634                 /*
635                  * pmap_enter() may fail for a superpage mapping if additional
636                  * protection policies prevent the full mapping.
637                  * For example, this will happen on amd64 if the entire
638                  * address range does not share the same userspace protection
639                  * key.  Revert to single-page mappings if this happens.
640                  */
641                 MPASS(rv == KERN_SUCCESS ||
642                     (psind > 0 && rv == KERN_PROTECTION_FAILURE));
643                 if (__predict_false(psind > 0 &&
644                     rv == KERN_PROTECTION_FAILURE)) {
645                         MPASS(!fs->wired);
646                         for (i = 0; i < npages; i++) {
647                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
648                                     &m[i], fs->prot, fs->fault_type, 0);
649                                 MPASS(rv == KERN_SUCCESS);
650                         }
651                 }
652
653                 VM_OBJECT_WLOCK(fs->first_object);
654                 for (i = 0; i < npages; i++) {
655                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
656                             m[i].pindex == fs->first_pindex)
657                                 vm_page_wire(&m[i]);
658                         else
659                                 vm_page_activate(&m[i]);
660                         if (fs->m_hold != NULL &&
661                             m[i].pindex == fs->first_pindex) {
662                                 (*fs->m_hold) = &m[i];
663                                 vm_page_wire(&m[i]);
664                         }
665                         vm_page_xunbusy(&m[i]);
666                 }
667         }
668 out:
669         curthread->td_ru.ru_majflt++;
670         return (res);
671 }
672
673 static int prot_fault_translation;
674 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
675     &prot_fault_translation, 0,
676     "Control signal to deliver on protection fault");
677
678 /* compat definition to keep common code for signal translation */
679 #define UCODE_PAGEFLT   12
680 #ifdef T_PAGEFLT
681 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
682 #endif
683
684 /*
685  *      vm_fault_trap:
686  *
687  *      Handle a page fault occurring at the given address,
688  *      requiring the given permissions, in the map specified.
689  *      If successful, the page is inserted into the
690  *      associated physical map.
691  *
692  *      NOTE: the given address should be truncated to the
693  *      proper page address.
694  *
695  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
696  *      a standard error specifying why the fault is fatal is returned.
697  *
698  *      The map in question must be referenced, and remains so.
699  *      Caller may hold no locks.
700  */
701 int
702 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
703     int fault_flags, int *signo, int *ucode)
704 {
705         int result;
706
707         MPASS(signo == NULL || ucode != NULL);
708 #ifdef KTRACE
709         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
710                 ktrfault(vaddr, fault_type);
711 #endif
712         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
713             NULL);
714         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
715             result == KERN_INVALID_ADDRESS ||
716             result == KERN_RESOURCE_SHORTAGE ||
717             result == KERN_PROTECTION_FAILURE ||
718             result == KERN_OUT_OF_BOUNDS,
719             ("Unexpected Mach error %d from vm_fault()", result));
720 #ifdef KTRACE
721         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
722                 ktrfaultend(result);
723 #endif
724         if (result != KERN_SUCCESS && signo != NULL) {
725                 switch (result) {
726                 case KERN_FAILURE:
727                 case KERN_INVALID_ADDRESS:
728                         *signo = SIGSEGV;
729                         *ucode = SEGV_MAPERR;
730                         break;
731                 case KERN_RESOURCE_SHORTAGE:
732                         *signo = SIGBUS;
733                         *ucode = BUS_OOMERR;
734                         break;
735                 case KERN_OUT_OF_BOUNDS:
736                         *signo = SIGBUS;
737                         *ucode = BUS_OBJERR;
738                         break;
739                 case KERN_PROTECTION_FAILURE:
740                         if (prot_fault_translation == 0) {
741                                 /*
742                                  * Autodetect.  This check also covers
743                                  * the images without the ABI-tag ELF
744                                  * note.
745                                  */
746                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
747                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
748                                         *signo = SIGSEGV;
749                                         *ucode = SEGV_ACCERR;
750                                 } else {
751                                         *signo = SIGBUS;
752                                         *ucode = UCODE_PAGEFLT;
753                                 }
754                         } else if (prot_fault_translation == 1) {
755                                 /* Always compat mode. */
756                                 *signo = SIGBUS;
757                                 *ucode = UCODE_PAGEFLT;
758                         } else {
759                                 /* Always SIGSEGV mode. */
760                                 *signo = SIGSEGV;
761                                 *ucode = SEGV_ACCERR;
762                         }
763                         break;
764                 default:
765                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
766                             result));
767                         break;
768                 }
769         }
770         return (result);
771 }
772
773 static bool
774 vm_fault_object_ensure_wlocked(struct faultstate *fs)
775 {
776         if (fs->object == fs->first_object)
777                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
778
779         if (!fs->can_read_lock)  {
780                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
781                 return (true);
782         }
783
784         if (VM_OBJECT_WOWNED(fs->object))
785                 return (true);
786
787         if (VM_OBJECT_TRYUPGRADE(fs->object))
788                 return (true);
789
790         return (false);
791 }
792
793 static enum fault_status
794 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
795 {
796         struct vnode *vp;
797         int error, locked;
798
799         if (fs->object->type != OBJT_VNODE)
800                 return (FAULT_CONTINUE);
801         vp = fs->object->handle;
802         if (vp == fs->vp) {
803                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
804                 return (FAULT_CONTINUE);
805         }
806
807         /*
808          * Perform an unlock in case the desired vnode changed while
809          * the map was unlocked during a retry.
810          */
811         vm_fault_unlock_vp(fs);
812
813         locked = VOP_ISLOCKED(vp);
814         if (locked != LK_EXCLUSIVE)
815                 locked = LK_SHARED;
816
817         /*
818          * We must not sleep acquiring the vnode lock while we have
819          * the page exclusive busied or the object's
820          * paging-in-progress count incremented.  Otherwise, we could
821          * deadlock.
822          */
823         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
824         if (error == 0) {
825                 fs->vp = vp;
826                 return (FAULT_CONTINUE);
827         }
828
829         vhold(vp);
830         if (objlocked)
831                 vm_fault_unlock_and_deallocate(fs);
832         else
833                 vm_fault_deallocate(fs);
834         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
835         vdrop(vp);
836         fs->vp = vp;
837         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
838         return (FAULT_RESTART);
839 }
840
841 /*
842  * Calculate the desired readahead.  Handle drop-behind.
843  *
844  * Returns the number of readahead blocks to pass to the pager.
845  */
846 static int
847 vm_fault_readahead(struct faultstate *fs)
848 {
849         int era, nera;
850         u_char behavior;
851
852         KASSERT(fs->lookup_still_valid, ("map unlocked"));
853         era = fs->entry->read_ahead;
854         behavior = vm_map_entry_behavior(fs->entry);
855         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
856                 nera = 0;
857         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
858                 nera = VM_FAULT_READ_AHEAD_MAX;
859                 if (fs->vaddr == fs->entry->next_read)
860                         vm_fault_dontneed(fs, fs->vaddr, nera);
861         } else if (fs->vaddr == fs->entry->next_read) {
862                 /*
863                  * This is a sequential fault.  Arithmetically
864                  * increase the requested number of pages in
865                  * the read-ahead window.  The requested
866                  * number of pages is "# of sequential faults
867                  * x (read ahead min + 1) + read ahead min"
868                  */
869                 nera = VM_FAULT_READ_AHEAD_MIN;
870                 if (era > 0) {
871                         nera += era + 1;
872                         if (nera > VM_FAULT_READ_AHEAD_MAX)
873                                 nera = VM_FAULT_READ_AHEAD_MAX;
874                 }
875                 if (era == VM_FAULT_READ_AHEAD_MAX)
876                         vm_fault_dontneed(fs, fs->vaddr, nera);
877         } else {
878                 /*
879                  * This is a non-sequential fault.
880                  */
881                 nera = 0;
882         }
883         if (era != nera) {
884                 /*
885                  * A read lock on the map suffices to update
886                  * the read ahead count safely.
887                  */
888                 fs->entry->read_ahead = nera;
889         }
890
891         return (nera);
892 }
893
894 static int
895 vm_fault_lookup(struct faultstate *fs)
896 {
897         int result;
898
899         KASSERT(!fs->lookup_still_valid,
900            ("vm_fault_lookup: Map already locked."));
901         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
902             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
903             &fs->first_pindex, &fs->prot, &fs->wired);
904         if (result != KERN_SUCCESS) {
905                 vm_fault_unlock_vp(fs);
906                 return (result);
907         }
908
909         fs->map_generation = fs->map->timestamp;
910
911         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
912                 panic("%s: fault on nofault entry, addr: %#lx",
913                     __func__, (u_long)fs->vaddr);
914         }
915
916         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
917             fs->entry->wiring_thread != curthread) {
918                 vm_map_unlock_read(fs->map);
919                 vm_map_lock(fs->map);
920                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
921                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
922                         vm_fault_unlock_vp(fs);
923                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
924                         vm_map_unlock_and_wait(fs->map, 0);
925                 } else
926                         vm_map_unlock(fs->map);
927                 return (KERN_RESOURCE_SHORTAGE);
928         }
929
930         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
931
932         if (fs->wired)
933                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
934         else
935                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
936                     ("!fs->wired && VM_FAULT_WIRE"));
937         fs->lookup_still_valid = true;
938
939         return (KERN_SUCCESS);
940 }
941
942 static int
943 vm_fault_relookup(struct faultstate *fs)
944 {
945         vm_object_t retry_object;
946         vm_pindex_t retry_pindex;
947         vm_prot_t retry_prot;
948         int result;
949
950         if (!vm_map_trylock_read(fs->map))
951                 return (KERN_RESTART);
952
953         fs->lookup_still_valid = true;
954         if (fs->map->timestamp == fs->map_generation)
955                 return (KERN_SUCCESS);
956
957         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
958             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
959             &fs->wired);
960         if (result != KERN_SUCCESS) {
961                 /*
962                  * If retry of map lookup would have blocked then
963                  * retry fault from start.
964                  */
965                 if (result == KERN_FAILURE)
966                         return (KERN_RESTART);
967                 return (result);
968         }
969         if (retry_object != fs->first_object ||
970             retry_pindex != fs->first_pindex)
971                 return (KERN_RESTART);
972
973         /*
974          * Check whether the protection has changed or the object has
975          * been copied while we left the map unlocked. Changing from
976          * read to write permission is OK - we leave the page
977          * write-protected, and catch the write fault. Changing from
978          * write to read permission means that we can't mark the page
979          * write-enabled after all.
980          */
981         fs->prot &= retry_prot;
982         fs->fault_type &= retry_prot;
983         if (fs->prot == 0)
984                 return (KERN_RESTART);
985
986         /* Reassert because wired may have changed. */
987         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
988             ("!wired && VM_FAULT_WIRE"));
989
990         return (KERN_SUCCESS);
991 }
992
993 static void
994 vm_fault_cow(struct faultstate *fs)
995 {
996         bool is_first_object_locked;
997
998         KASSERT(fs->object != fs->first_object,
999             ("source and target COW objects are identical"));
1000
1001         /*
1002          * This allows pages to be virtually copied from a backing_object
1003          * into the first_object, where the backing object has no other
1004          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1005          * we just move the page from the backing object to the first
1006          * object.  Note that we must mark the page dirty in the first
1007          * object so that it will go out to swap when needed.
1008          */
1009         is_first_object_locked = false;
1010         if (
1011             /*
1012              * Only one shadow object and no other refs.
1013              */
1014             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1015             /*
1016              * No other ways to look the object up
1017              */
1018             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1019             /*
1020              * We don't chase down the shadow chain and we can acquire locks.
1021              */
1022             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1023             fs->object == fs->first_object->backing_object &&
1024             VM_OBJECT_TRYWLOCK(fs->object)) {
1025                 /*
1026                  * Remove but keep xbusy for replace.  fs->m is moved into
1027                  * fs->first_object and left busy while fs->first_m is
1028                  * conditionally freed.
1029                  */
1030                 vm_page_remove_xbusy(fs->m);
1031                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1032                     fs->first_m);
1033                 vm_page_dirty(fs->m);
1034 #if VM_NRESERVLEVEL > 0
1035                 /*
1036                  * Rename the reservation.
1037                  */
1038                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1039                     OFF_TO_IDX(fs->first_object->backing_object_offset));
1040 #endif
1041                 VM_OBJECT_WUNLOCK(fs->object);
1042                 VM_OBJECT_WUNLOCK(fs->first_object);
1043                 fs->first_m = fs->m;
1044                 fs->m = NULL;
1045                 VM_CNT_INC(v_cow_optim);
1046         } else {
1047                 if (is_first_object_locked)
1048                         VM_OBJECT_WUNLOCK(fs->first_object);
1049                 /*
1050                  * Oh, well, lets copy it.
1051                  */
1052                 pmap_copy_page(fs->m, fs->first_m);
1053                 vm_page_valid(fs->first_m);
1054                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1055                         vm_page_wire(fs->first_m);
1056                         vm_page_unwire(fs->m, PQ_INACTIVE);
1057                 }
1058                 /*
1059                  * Save the cow page to be released after
1060                  * pmap_enter is complete.
1061                  */
1062                 fs->m_cow = fs->m;
1063                 fs->m = NULL;
1064
1065                 /*
1066                  * Typically, the shadow object is either private to this
1067                  * address space (OBJ_ONEMAPPING) or its pages are read only.
1068                  * In the highly unusual case where the pages of a shadow object
1069                  * are read/write shared between this and other address spaces,
1070                  * we need to ensure that any pmap-level mappings to the
1071                  * original, copy-on-write page from the backing object are
1072                  * removed from those other address spaces.
1073                  *
1074                  * The flag check is racy, but this is tolerable: if
1075                  * OBJ_ONEMAPPING is cleared after the check, the busy state
1076                  * ensures that new mappings of m_cow can't be created.
1077                  * pmap_enter() will replace an existing mapping in the current
1078                  * address space.  If OBJ_ONEMAPPING is set after the check,
1079                  * removing mappings will at worse trigger some unnecessary page
1080                  * faults.
1081                  */
1082                 vm_page_assert_xbusied(fs->m_cow);
1083                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1084                         pmap_remove_all(fs->m_cow);
1085         }
1086
1087         vm_object_pip_wakeup(fs->object);
1088
1089         /*
1090          * Only use the new page below...
1091          */
1092         fs->object = fs->first_object;
1093         fs->pindex = fs->first_pindex;
1094         fs->m = fs->first_m;
1095         VM_CNT_INC(v_cow_faults);
1096         curthread->td_cow++;
1097 }
1098
1099 static enum fault_next_status
1100 vm_fault_next(struct faultstate *fs)
1101 {
1102         vm_object_t next_object;
1103
1104         if (fs->object == fs->first_object || !fs->can_read_lock)
1105                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1106         else
1107                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1108
1109         /*
1110          * The requested page does not exist at this object/
1111          * offset.  Remove the invalid page from the object,
1112          * waking up anyone waiting for it, and continue on to
1113          * the next object.  However, if this is the top-level
1114          * object, we must leave the busy page in place to
1115          * prevent another process from rushing past us, and
1116          * inserting the page in that object at the same time
1117          * that we are.
1118          */
1119         if (fs->object == fs->first_object) {
1120                 fs->first_m = fs->m;
1121                 fs->m = NULL;
1122         } else if (fs->m != NULL) {
1123                 if (!vm_fault_object_ensure_wlocked(fs)) {
1124                         fs->can_read_lock = false;
1125                         vm_fault_unlock_and_deallocate(fs);
1126                         return (FAULT_NEXT_RESTART);
1127                 }
1128                 vm_fault_page_free(&fs->m);
1129         }
1130
1131         /*
1132          * Move on to the next object.  Lock the next object before
1133          * unlocking the current one.
1134          */
1135         next_object = fs->object->backing_object;
1136         if (next_object == NULL)
1137                 return (FAULT_NEXT_NOOBJ);
1138         MPASS(fs->first_m != NULL);
1139         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1140         if (fs->can_read_lock)
1141                 VM_OBJECT_RLOCK(next_object);
1142         else
1143                 VM_OBJECT_WLOCK(next_object);
1144         vm_object_pip_add(next_object, 1);
1145         if (fs->object != fs->first_object)
1146                 vm_object_pip_wakeup(fs->object);
1147         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1148         VM_OBJECT_UNLOCK(fs->object);
1149         fs->object = next_object;
1150
1151         return (FAULT_NEXT_GOTOBJ);
1152 }
1153
1154 static void
1155 vm_fault_zerofill(struct faultstate *fs)
1156 {
1157
1158         /*
1159          * If there's no object left, fill the page in the top
1160          * object with zeros.
1161          */
1162         if (fs->object != fs->first_object) {
1163                 vm_object_pip_wakeup(fs->object);
1164                 fs->object = fs->first_object;
1165                 fs->pindex = fs->first_pindex;
1166         }
1167         MPASS(fs->first_m != NULL);
1168         MPASS(fs->m == NULL);
1169         fs->m = fs->first_m;
1170         fs->first_m = NULL;
1171
1172         /*
1173          * Zero the page if necessary and mark it valid.
1174          */
1175         if ((fs->m->flags & PG_ZERO) == 0) {
1176                 pmap_zero_page(fs->m);
1177         } else {
1178                 VM_CNT_INC(v_ozfod);
1179         }
1180         VM_CNT_INC(v_zfod);
1181         vm_page_valid(fs->m);
1182 }
1183
1184 /*
1185  * Initiate page fault after timeout.  Returns true if caller should
1186  * do vm_waitpfault() after the call.
1187  */
1188 static bool
1189 vm_fault_allocate_oom(struct faultstate *fs)
1190 {
1191         struct timeval now;
1192
1193         vm_fault_unlock_and_deallocate(fs);
1194         if (vm_pfault_oom_attempts < 0)
1195                 return (true);
1196         if (!fs->oom_started) {
1197                 fs->oom_started = true;
1198                 getmicrotime(&fs->oom_start_time);
1199                 return (true);
1200         }
1201
1202         getmicrotime(&now);
1203         timevalsub(&now, &fs->oom_start_time);
1204         if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1205                 return (true);
1206
1207         if (bootverbose)
1208                 printf(
1209             "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1210                     curproc->p_pid, curproc->p_comm);
1211         vm_pageout_oom(VM_OOM_MEM_PF);
1212         fs->oom_started = false;
1213         return (false);
1214 }
1215
1216 /*
1217  * Allocate a page directly or via the object populate method.
1218  */
1219 static enum fault_status
1220 vm_fault_allocate(struct faultstate *fs)
1221 {
1222         struct domainset *dset;
1223         enum fault_status res;
1224
1225         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1226                 res = vm_fault_lock_vnode(fs, true);
1227                 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1228                 if (res == FAULT_RESTART)
1229                         return (res);
1230         }
1231
1232         if (fs->pindex >= fs->object->size) {
1233                 vm_fault_unlock_and_deallocate(fs);
1234                 return (FAULT_OUT_OF_BOUNDS);
1235         }
1236
1237         if (fs->object == fs->first_object &&
1238             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1239             fs->first_object->shadow_count == 0) {
1240                 res = vm_fault_populate(fs);
1241                 switch (res) {
1242                 case FAULT_SUCCESS:
1243                 case FAULT_FAILURE:
1244                 case FAULT_RESTART:
1245                         vm_fault_unlock_and_deallocate(fs);
1246                         return (res);
1247                 case FAULT_CONTINUE:
1248                         /*
1249                          * Pager's populate() method
1250                          * returned VM_PAGER_BAD.
1251                          */
1252                         break;
1253                 default:
1254                         panic("inconsistent return codes");
1255                 }
1256         }
1257
1258         /*
1259          * Allocate a new page for this object/offset pair.
1260          *
1261          * If the process has a fatal signal pending, prioritize the allocation
1262          * with the expectation that the process will exit shortly and free some
1263          * pages.  In particular, the signal may have been posted by the page
1264          * daemon in an attempt to resolve an out-of-memory condition.
1265          *
1266          * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1267          * might be not observed here, and allocation fails, causing a restart
1268          * and new reading of the p_flag.
1269          */
1270         dset = fs->object->domain.dr_policy;
1271         if (dset == NULL)
1272                 dset = curthread->td_domain.dr_policy;
1273         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1274 #if VM_NRESERVLEVEL > 0
1275                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1276 #endif
1277                 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1278                         vm_fault_unlock_and_deallocate(fs);
1279                         return (FAULT_FAILURE);
1280                 }
1281                 fs->m = vm_page_alloc(fs->object, fs->pindex,
1282                     P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1283         }
1284         if (fs->m == NULL) {
1285                 if (vm_fault_allocate_oom(fs))
1286                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1287                 return (FAULT_RESTART);
1288         }
1289         fs->oom_started = false;
1290
1291         return (FAULT_CONTINUE);
1292 }
1293
1294 /*
1295  * Call the pager to retrieve the page if there is a chance
1296  * that the pager has it, and potentially retrieve additional
1297  * pages at the same time.
1298  */
1299 static enum fault_status
1300 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1301 {
1302         vm_offset_t e_end, e_start;
1303         int ahead, behind, cluster_offset, rv;
1304         enum fault_status status;
1305         u_char behavior;
1306
1307         /*
1308          * Prepare for unlocking the map.  Save the map
1309          * entry's start and end addresses, which are used to
1310          * optimize the size of the pager operation below.
1311          * Even if the map entry's addresses change after
1312          * unlocking the map, using the saved addresses is
1313          * safe.
1314          */
1315         e_start = fs->entry->start;
1316         e_end = fs->entry->end;
1317         behavior = vm_map_entry_behavior(fs->entry);
1318
1319         /*
1320          * If the pager for the current object might have
1321          * the page, then determine the number of additional
1322          * pages to read and potentially reprioritize
1323          * previously read pages for earlier reclamation.
1324          * These operations should only be performed once per
1325          * page fault.  Even if the current pager doesn't
1326          * have the page, the number of additional pages to
1327          * read will apply to subsequent objects in the
1328          * shadow chain.
1329          */
1330         if (fs->nera == -1 && !P_KILLED(curproc))
1331                 fs->nera = vm_fault_readahead(fs);
1332
1333         /*
1334          * Release the map lock before locking the vnode or
1335          * sleeping in the pager.  (If the current object has
1336          * a shadow, then an earlier iteration of this loop
1337          * may have already unlocked the map.)
1338          */
1339         vm_fault_unlock_map(fs);
1340
1341         status = vm_fault_lock_vnode(fs, false);
1342         MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1343         if (status == FAULT_RESTART)
1344                 return (status);
1345         KASSERT(fs->vp == NULL || !fs->map->system_map,
1346             ("vm_fault: vnode-backed object mapped by system map"));
1347
1348         /*
1349          * Page in the requested page and hint the pager,
1350          * that it may bring up surrounding pages.
1351          */
1352         if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1353             P_KILLED(curproc)) {
1354                 behind = 0;
1355                 ahead = 0;
1356         } else {
1357                 /* Is this a sequential fault? */
1358                 if (fs->nera > 0) {
1359                         behind = 0;
1360                         ahead = fs->nera;
1361                 } else {
1362                         /*
1363                          * Request a cluster of pages that is
1364                          * aligned to a VM_FAULT_READ_DEFAULT
1365                          * page offset boundary within the
1366                          * object.  Alignment to a page offset
1367                          * boundary is more likely to coincide
1368                          * with the underlying file system
1369                          * block than alignment to a virtual
1370                          * address boundary.
1371                          */
1372                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1373                         behind = ulmin(cluster_offset,
1374                             atop(fs->vaddr - e_start));
1375                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1376                 }
1377                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1378         }
1379         *behindp = behind;
1380         *aheadp = ahead;
1381         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1382         if (rv == VM_PAGER_OK)
1383                 return (FAULT_HARD);
1384         if (rv == VM_PAGER_ERROR)
1385                 printf("vm_fault: pager read error, pid %d (%s)\n",
1386                     curproc->p_pid, curproc->p_comm);
1387         /*
1388          * If an I/O error occurred or the requested page was
1389          * outside the range of the pager, clean up and return
1390          * an error.
1391          */
1392         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1393                 VM_OBJECT_WLOCK(fs->object);
1394                 vm_fault_page_free(&fs->m);
1395                 vm_fault_unlock_and_deallocate(fs);
1396                 return (FAULT_OUT_OF_BOUNDS);
1397         }
1398         KASSERT(rv == VM_PAGER_FAIL,
1399             ("%s: unexpected pager error %d", __func__, rv));
1400         return (FAULT_CONTINUE);
1401 }
1402
1403 /*
1404  * Wait/Retry if the page is busy.  We have to do this if the page is
1405  * either exclusive or shared busy because the vm_pager may be using
1406  * read busy for pageouts (and even pageins if it is the vnode pager),
1407  * and we could end up trying to pagein and pageout the same page
1408  * simultaneously.
1409  *
1410  * We can theoretically allow the busy case on a read fault if the page
1411  * is marked valid, but since such pages are typically already pmap'd,
1412  * putting that special case in might be more effort then it is worth.
1413  * We cannot under any circumstances mess around with a shared busied
1414  * page except, perhaps, to pmap it.
1415  */
1416 static void
1417 vm_fault_busy_sleep(struct faultstate *fs)
1418 {
1419         /*
1420          * Reference the page before unlocking and
1421          * sleeping so that the page daemon is less
1422          * likely to reclaim it.
1423          */
1424         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1425         if (fs->object != fs->first_object) {
1426                 vm_fault_page_release(&fs->first_m);
1427                 vm_object_pip_wakeup(fs->first_object);
1428         }
1429         vm_object_pip_wakeup(fs->object);
1430         vm_fault_unlock_map(fs);
1431         if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1432             !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1433                 VM_OBJECT_UNLOCK(fs->object);
1434         VM_CNT_INC(v_intrans);
1435         vm_object_deallocate(fs->first_object);
1436 }
1437
1438 /*
1439  * Handle page lookup, populate, allocate, page-in for the current
1440  * object.
1441  *
1442  * The object is locked on entry and will remain locked with a return
1443  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1444  * Otherwise, the object will be unlocked upon return.
1445  */
1446 static enum fault_status
1447 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1448 {
1449         enum fault_status res;
1450         bool dead;
1451
1452         if (fs->object == fs->first_object || !fs->can_read_lock)
1453                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1454         else
1455                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1456
1457         /*
1458          * If the object is marked for imminent termination, we retry
1459          * here, since the collapse pass has raced with us.  Otherwise,
1460          * if we see terminally dead object, return fail.
1461          */
1462         if ((fs->object->flags & OBJ_DEAD) != 0) {
1463                 dead = fs->object->type == OBJT_DEAD;
1464                 vm_fault_unlock_and_deallocate(fs);
1465                 if (dead)
1466                         return (FAULT_PROTECTION_FAILURE);
1467                 pause("vmf_de", 1);
1468                 return (FAULT_RESTART);
1469         }
1470
1471         /*
1472          * See if the page is resident.
1473          */
1474         fs->m = vm_page_lookup(fs->object, fs->pindex);
1475         if (fs->m != NULL) {
1476                 if (!vm_page_tryxbusy(fs->m)) {
1477                         vm_fault_busy_sleep(fs);
1478                         return (FAULT_RESTART);
1479                 }
1480
1481                 /*
1482                  * The page is marked busy for other processes and the
1483                  * pagedaemon.  If it is still completely valid we are
1484                  * done.
1485                  */
1486                 if (vm_page_all_valid(fs->m)) {
1487                         VM_OBJECT_UNLOCK(fs->object);
1488                         return (FAULT_SOFT);
1489                 }
1490         }
1491
1492         /*
1493          * Page is not resident.  If the pager might contain the page
1494          * or this is the beginning of the search, allocate a new
1495          * page.
1496          */
1497         if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1498             fs->object == fs->first_object)) {
1499                 if (!vm_fault_object_ensure_wlocked(fs)) {
1500                         fs->can_read_lock = false;
1501                         vm_fault_unlock_and_deallocate(fs);
1502                         return (FAULT_RESTART);
1503                 }
1504                 res = vm_fault_allocate(fs);
1505                 if (res != FAULT_CONTINUE)
1506                         return (res);
1507         }
1508
1509         /*
1510          * Check to see if the pager can possibly satisfy this fault.
1511          * If not, skip to the next object without dropping the lock to
1512          * preserve atomicity of shadow faults.
1513          */
1514         if (vm_fault_object_needs_getpages(fs->object)) {
1515                 /*
1516                  * At this point, we have either allocated a new page
1517                  * or found an existing page that is only partially
1518                  * valid.
1519                  *
1520                  * We hold a reference on the current object and the
1521                  * page is exclusive busied.  The exclusive busy
1522                  * prevents simultaneous faults and collapses while
1523                  * the object lock is dropped.
1524                  */
1525                 VM_OBJECT_UNLOCK(fs->object);
1526                 res = vm_fault_getpages(fs, behindp, aheadp);
1527                 if (res == FAULT_CONTINUE)
1528                         VM_OBJECT_WLOCK(fs->object);
1529         } else {
1530                 res = FAULT_CONTINUE;
1531         }
1532         return (res);
1533 }
1534
1535 int
1536 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1537     int fault_flags, vm_page_t *m_hold)
1538 {
1539         struct faultstate fs;
1540         int ahead, behind, faultcount, rv;
1541         enum fault_status res;
1542         enum fault_next_status res_next;
1543         bool hardfault;
1544
1545         VM_CNT_INC(v_vm_faults);
1546
1547         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1548                 return (KERN_PROTECTION_FAILURE);
1549
1550         fs.vp = NULL;
1551         fs.vaddr = vaddr;
1552         fs.m_hold = m_hold;
1553         fs.fault_flags = fault_flags;
1554         fs.map = map;
1555         fs.lookup_still_valid = false;
1556         fs.oom_started = false;
1557         fs.nera = -1;
1558         fs.can_read_lock = true;
1559         faultcount = 0;
1560         hardfault = false;
1561
1562 RetryFault:
1563         fs.fault_type = fault_type;
1564
1565         /*
1566          * Find the backing store object and offset into it to begin the
1567          * search.
1568          */
1569         rv = vm_fault_lookup(&fs);
1570         if (rv != KERN_SUCCESS) {
1571                 if (rv == KERN_RESOURCE_SHORTAGE)
1572                         goto RetryFault;
1573                 return (rv);
1574         }
1575
1576         /*
1577          * Try to avoid lock contention on the top-level object through
1578          * special-case handling of some types of page faults, specifically,
1579          * those that are mapping an existing page from the top-level object.
1580          * Under this condition, a read lock on the object suffices, allowing
1581          * multiple page faults of a similar type to run in parallel.
1582          */
1583         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1584             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1585             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1586                 res = vm_fault_soft_fast(&fs);
1587                 if (res == FAULT_SUCCESS) {
1588                         VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1589                         return (KERN_SUCCESS);
1590                 }
1591                 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1592         } else {
1593                 VM_OBJECT_WLOCK(fs.first_object);
1594         }
1595
1596         /*
1597          * Make a reference to this object to prevent its disposal while we
1598          * are messing with it.  Once we have the reference, the map is free
1599          * to be diddled.  Since objects reference their shadows (and copies),
1600          * they will stay around as well.
1601          *
1602          * Bump the paging-in-progress count to prevent size changes (e.g. 
1603          * truncation operations) during I/O.
1604          */
1605         vm_object_reference_locked(fs.first_object);
1606         vm_object_pip_add(fs.first_object, 1);
1607
1608         fs.m_cow = fs.m = fs.first_m = NULL;
1609
1610         /*
1611          * Search for the page at object/offset.
1612          */
1613         fs.object = fs.first_object;
1614         fs.pindex = fs.first_pindex;
1615
1616         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1617                 res = vm_fault_allocate(&fs);
1618                 switch (res) {
1619                 case FAULT_RESTART:
1620                         goto RetryFault;
1621                 case FAULT_SUCCESS:
1622                         return (KERN_SUCCESS);
1623                 case FAULT_FAILURE:
1624                         return (KERN_FAILURE);
1625                 case FAULT_OUT_OF_BOUNDS:
1626                         return (KERN_OUT_OF_BOUNDS);
1627                 case FAULT_CONTINUE:
1628                         break;
1629                 default:
1630                         panic("vm_fault: Unhandled status %d", res);
1631                 }
1632         }
1633
1634         while (TRUE) {
1635                 KASSERT(fs.m == NULL,
1636                     ("page still set %p at loop start", fs.m));
1637
1638                 res = vm_fault_object(&fs, &behind, &ahead);
1639                 switch (res) {
1640                 case FAULT_SOFT:
1641                         goto found;
1642                 case FAULT_HARD:
1643                         faultcount = behind + 1 + ahead;
1644                         hardfault = true;
1645                         goto found;
1646                 case FAULT_RESTART:
1647                         goto RetryFault;
1648                 case FAULT_SUCCESS:
1649                         return (KERN_SUCCESS);
1650                 case FAULT_FAILURE:
1651                         return (KERN_FAILURE);
1652                 case FAULT_OUT_OF_BOUNDS:
1653                         return (KERN_OUT_OF_BOUNDS);
1654                 case FAULT_PROTECTION_FAILURE:
1655                         return (KERN_PROTECTION_FAILURE);
1656                 case FAULT_CONTINUE:
1657                         break;
1658                 default:
1659                         panic("vm_fault: Unhandled status %d", res);
1660                 }
1661
1662                 /*
1663                  * The page was not found in the current object.  Try to
1664                  * traverse into a backing object or zero fill if none is
1665                  * found.
1666                  */
1667                 res_next = vm_fault_next(&fs);
1668                 if (res_next == FAULT_NEXT_RESTART)
1669                         goto RetryFault;
1670                 else if (res_next == FAULT_NEXT_GOTOBJ)
1671                         continue;
1672                 MPASS(res_next == FAULT_NEXT_NOOBJ);
1673                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1674                         if (fs.first_object == fs.object)
1675                                 vm_fault_page_free(&fs.first_m);
1676                         vm_fault_unlock_and_deallocate(&fs);
1677                         return (KERN_OUT_OF_BOUNDS);
1678                 }
1679                 VM_OBJECT_UNLOCK(fs.object);
1680                 vm_fault_zerofill(&fs);
1681                 /* Don't try to prefault neighboring pages. */
1682                 faultcount = 1;
1683                 break;
1684         }
1685
1686 found:
1687         /*
1688          * A valid page has been found and exclusively busied.  The
1689          * object lock must no longer be held.
1690          */
1691         vm_page_assert_xbusied(fs.m);
1692         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1693
1694         /*
1695          * If the page is being written, but isn't already owned by the
1696          * top-level object, we have to copy it into a new page owned by the
1697          * top-level object.
1698          */
1699         if (fs.object != fs.first_object) {
1700                 /*
1701                  * We only really need to copy if we want to write it.
1702                  */
1703                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1704                         vm_fault_cow(&fs);
1705                         /*
1706                          * We only try to prefault read-only mappings to the
1707                          * neighboring pages when this copy-on-write fault is
1708                          * a hard fault.  In other cases, trying to prefault
1709                          * is typically wasted effort.
1710                          */
1711                         if (faultcount == 0)
1712                                 faultcount = 1;
1713
1714                 } else {
1715                         fs.prot &= ~VM_PROT_WRITE;
1716                 }
1717         }
1718
1719         /*
1720          * We must verify that the maps have not changed since our last
1721          * lookup.
1722          */
1723         if (!fs.lookup_still_valid) {
1724                 rv = vm_fault_relookup(&fs);
1725                 if (rv != KERN_SUCCESS) {
1726                         vm_fault_deallocate(&fs);
1727                         if (rv == KERN_RESTART)
1728                                 goto RetryFault;
1729                         return (rv);
1730                 }
1731         }
1732         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1733
1734         /*
1735          * If the page was filled by a pager, save the virtual address that
1736          * should be faulted on next under a sequential access pattern to the
1737          * map entry.  A read lock on the map suffices to update this address
1738          * safely.
1739          */
1740         if (hardfault)
1741                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1742
1743         /*
1744          * Page must be completely valid or it is not fit to
1745          * map into user space.  vm_pager_get_pages() ensures this.
1746          */
1747         vm_page_assert_xbusied(fs.m);
1748         KASSERT(vm_page_all_valid(fs.m),
1749             ("vm_fault: page %p partially invalid", fs.m));
1750
1751         vm_fault_dirty(&fs, fs.m);
1752
1753         /*
1754          * Put this page into the physical map.  We had to do the unlock above
1755          * because pmap_enter() may sleep.  We don't put the page
1756          * back on the active queue until later so that the pageout daemon
1757          * won't find it (yet).
1758          */
1759         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1760             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1761         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1762             fs.wired == 0)
1763                 vm_fault_prefault(&fs, vaddr,
1764                     faultcount > 0 ? behind : PFBAK,
1765                     faultcount > 0 ? ahead : PFFOR, false);
1766
1767         /*
1768          * If the page is not wired down, then put it where the pageout daemon
1769          * can find it.
1770          */
1771         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1772                 vm_page_wire(fs.m);
1773         else
1774                 vm_page_activate(fs.m);
1775         if (fs.m_hold != NULL) {
1776                 (*fs.m_hold) = fs.m;
1777                 vm_page_wire(fs.m);
1778         }
1779         vm_page_xunbusy(fs.m);
1780         fs.m = NULL;
1781
1782         /*
1783          * Unlock everything, and return
1784          */
1785         vm_fault_deallocate(&fs);
1786         if (hardfault) {
1787                 VM_CNT_INC(v_io_faults);
1788                 curthread->td_ru.ru_majflt++;
1789 #ifdef RACCT
1790                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1791                         PROC_LOCK(curproc);
1792                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1793                                 racct_add_force(curproc, RACCT_WRITEBPS,
1794                                     PAGE_SIZE + behind * PAGE_SIZE);
1795                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1796                         } else {
1797                                 racct_add_force(curproc, RACCT_READBPS,
1798                                     PAGE_SIZE + ahead * PAGE_SIZE);
1799                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1800                         }
1801                         PROC_UNLOCK(curproc);
1802                 }
1803 #endif
1804         } else 
1805                 curthread->td_ru.ru_minflt++;
1806
1807         return (KERN_SUCCESS);
1808 }
1809
1810 /*
1811  * Speed up the reclamation of pages that precede the faulting pindex within
1812  * the first object of the shadow chain.  Essentially, perform the equivalent
1813  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1814  * the faulting pindex by the cluster size when the pages read by vm_fault()
1815  * cross a cluster-size boundary.  The cluster size is the greater of the
1816  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1817  *
1818  * When "fs->first_object" is a shadow object, the pages in the backing object
1819  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1820  * function must only be concerned with pages in the first object.
1821  */
1822 static void
1823 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1824 {
1825         vm_map_entry_t entry;
1826         vm_object_t first_object;
1827         vm_offset_t end, start;
1828         vm_page_t m, m_next;
1829         vm_pindex_t pend, pstart;
1830         vm_size_t size;
1831
1832         VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1833         first_object = fs->first_object;
1834         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1835         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1836                 VM_OBJECT_RLOCK(first_object);
1837                 size = VM_FAULT_DONTNEED_MIN;
1838                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1839                         size = pagesizes[1];
1840                 end = rounddown2(vaddr, size);
1841                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1842                     (entry = fs->entry)->start < end) {
1843                         if (end - entry->start < size)
1844                                 start = entry->start;
1845                         else
1846                                 start = end - size;
1847                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1848                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1849                             entry->start);
1850                         m_next = vm_page_find_least(first_object, pstart);
1851                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1852                             entry->start);
1853                         while ((m = m_next) != NULL && m->pindex < pend) {
1854                                 m_next = TAILQ_NEXT(m, listq);
1855                                 if (!vm_page_all_valid(m) ||
1856                                     vm_page_busied(m))
1857                                         continue;
1858
1859                                 /*
1860                                  * Don't clear PGA_REFERENCED, since it would
1861                                  * likely represent a reference by a different
1862                                  * process.
1863                                  *
1864                                  * Typically, at this point, prefetched pages
1865                                  * are still in the inactive queue.  Only
1866                                  * pages that triggered page faults are in the
1867                                  * active queue.  The test for whether the page
1868                                  * is in the inactive queue is racy; in the
1869                                  * worst case we will requeue the page
1870                                  * unnecessarily.
1871                                  */
1872                                 if (!vm_page_inactive(m))
1873                                         vm_page_deactivate(m);
1874                         }
1875                 }
1876                 VM_OBJECT_RUNLOCK(first_object);
1877         }
1878 }
1879
1880 /*
1881  * vm_fault_prefault provides a quick way of clustering
1882  * pagefaults into a processes address space.  It is a "cousin"
1883  * of vm_map_pmap_enter, except it runs at page fault time instead
1884  * of mmap time.
1885  */
1886 static void
1887 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1888     int backward, int forward, bool obj_locked)
1889 {
1890         pmap_t pmap;
1891         vm_map_entry_t entry;
1892         vm_object_t backing_object, lobject;
1893         vm_offset_t addr, starta;
1894         vm_pindex_t pindex;
1895         vm_page_t m;
1896         int i;
1897
1898         pmap = fs->map->pmap;
1899         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1900                 return;
1901
1902         entry = fs->entry;
1903
1904         if (addra < backward * PAGE_SIZE) {
1905                 starta = entry->start;
1906         } else {
1907                 starta = addra - backward * PAGE_SIZE;
1908                 if (starta < entry->start)
1909                         starta = entry->start;
1910         }
1911
1912         /*
1913          * Generate the sequence of virtual addresses that are candidates for
1914          * prefaulting in an outward spiral from the faulting virtual address,
1915          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1916          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1917          * If the candidate address doesn't have a backing physical page, then
1918          * the loop immediately terminates.
1919          */
1920         for (i = 0; i < 2 * imax(backward, forward); i++) {
1921                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1922                     PAGE_SIZE);
1923                 if (addr > addra + forward * PAGE_SIZE)
1924                         addr = 0;
1925
1926                 if (addr < starta || addr >= entry->end)
1927                         continue;
1928
1929                 if (!pmap_is_prefaultable(pmap, addr))
1930                         continue;
1931
1932                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1933                 lobject = entry->object.vm_object;
1934                 if (!obj_locked)
1935                         VM_OBJECT_RLOCK(lobject);
1936                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1937                     !vm_fault_object_needs_getpages(lobject) &&
1938                     (backing_object = lobject->backing_object) != NULL) {
1939                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1940                             0, ("vm_fault_prefault: unaligned object offset"));
1941                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1942                         VM_OBJECT_RLOCK(backing_object);
1943                         if (!obj_locked || lobject != entry->object.vm_object)
1944                                 VM_OBJECT_RUNLOCK(lobject);
1945                         lobject = backing_object;
1946                 }
1947                 if (m == NULL) {
1948                         if (!obj_locked || lobject != entry->object.vm_object)
1949                                 VM_OBJECT_RUNLOCK(lobject);
1950                         break;
1951                 }
1952                 if (vm_page_all_valid(m) &&
1953                     (m->flags & PG_FICTITIOUS) == 0)
1954                         pmap_enter_quick(pmap, addr, m, entry->protection);
1955                 if (!obj_locked || lobject != entry->object.vm_object)
1956                         VM_OBJECT_RUNLOCK(lobject);
1957         }
1958 }
1959
1960 /*
1961  * Hold each of the physical pages that are mapped by the specified range of
1962  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1963  * and allow the specified types of access, "prot".  If all of the implied
1964  * pages are successfully held, then the number of held pages is returned
1965  * together with pointers to those pages in the array "ma".  However, if any
1966  * of the pages cannot be held, -1 is returned.
1967  */
1968 int
1969 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1970     vm_prot_t prot, vm_page_t *ma, int max_count)
1971 {
1972         vm_offset_t end, va;
1973         vm_page_t *mp;
1974         int count;
1975         boolean_t pmap_failed;
1976
1977         if (len == 0)
1978                 return (0);
1979         end = round_page(addr + len);
1980         addr = trunc_page(addr);
1981
1982         if (!vm_map_range_valid(map, addr, end))
1983                 return (-1);
1984
1985         if (atop(end - addr) > max_count)
1986                 panic("vm_fault_quick_hold_pages: count > max_count");
1987         count = atop(end - addr);
1988
1989         /*
1990          * Most likely, the physical pages are resident in the pmap, so it is
1991          * faster to try pmap_extract_and_hold() first.
1992          */
1993         pmap_failed = FALSE;
1994         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1995                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1996                 if (*mp == NULL)
1997                         pmap_failed = TRUE;
1998                 else if ((prot & VM_PROT_WRITE) != 0 &&
1999                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
2000                         /*
2001                          * Explicitly dirty the physical page.  Otherwise, the
2002                          * caller's changes may go unnoticed because they are
2003                          * performed through an unmanaged mapping or by a DMA
2004                          * operation.
2005                          *
2006                          * The object lock is not held here.
2007                          * See vm_page_clear_dirty_mask().
2008                          */
2009                         vm_page_dirty(*mp);
2010                 }
2011         }
2012         if (pmap_failed) {
2013                 /*
2014                  * One or more pages could not be held by the pmap.  Either no
2015                  * page was mapped at the specified virtual address or that
2016                  * mapping had insufficient permissions.  Attempt to fault in
2017                  * and hold these pages.
2018                  *
2019                  * If vm_fault_disable_pagefaults() was called,
2020                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
2021                  * acquire MD VM locks, which means we must not call
2022                  * vm_fault().  Some (out of tree) callers mark
2023                  * too wide a code area with vm_fault_disable_pagefaults()
2024                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
2025                  * the proper behaviour explicitly.
2026                  */
2027                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2028                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
2029                         goto error;
2030                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2031                         if (*mp == NULL && vm_fault(map, va, prot,
2032                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2033                                 goto error;
2034         }
2035         return (count);
2036 error:  
2037         for (mp = ma; mp < ma + count; mp++)
2038                 if (*mp != NULL)
2039                         vm_page_unwire(*mp, PQ_INACTIVE);
2040         return (-1);
2041 }
2042
2043 /*
2044  *      Routine:
2045  *              vm_fault_copy_entry
2046  *      Function:
2047  *              Create new object backing dst_entry with private copy of all
2048  *              underlying pages. When src_entry is equal to dst_entry, function
2049  *              implements COW for wired-down map entry. Otherwise, it forks
2050  *              wired entry into dst_map.
2051  *
2052  *      In/out conditions:
2053  *              The source and destination maps must be locked for write.
2054  *              The source map entry must be wired down (or be a sharing map
2055  *              entry corresponding to a main map entry that is wired down).
2056  */
2057 void
2058 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2059     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2060     vm_ooffset_t *fork_charge)
2061 {
2062         vm_object_t backing_object, dst_object, object, src_object;
2063         vm_pindex_t dst_pindex, pindex, src_pindex;
2064         vm_prot_t access, prot;
2065         vm_offset_t vaddr;
2066         vm_page_t dst_m;
2067         vm_page_t src_m;
2068         bool upgrade;
2069
2070         upgrade = src_entry == dst_entry;
2071         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2072             ("vm_fault_copy_entry: vm_object not NULL"));
2073
2074         /*
2075          * If not an upgrade, then enter the mappings in the pmap as
2076          * read and/or execute accesses.  Otherwise, enter them as
2077          * write accesses.
2078          *
2079          * A writeable large page mapping is only created if all of
2080          * the constituent small page mappings are modified. Marking
2081          * PTEs as modified on inception allows promotion to happen
2082          * without taking potentially large number of soft faults.
2083          */
2084         access = prot = dst_entry->protection;
2085         if (!upgrade)
2086                 access &= ~VM_PROT_WRITE;
2087
2088         src_object = src_entry->object.vm_object;
2089         src_pindex = OFF_TO_IDX(src_entry->offset);
2090
2091         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2092                 dst_object = src_object;
2093                 vm_object_reference(dst_object);
2094         } else {
2095                 /*
2096                  * Create the top-level object for the destination entry.
2097                  * Doesn't actually shadow anything - we copy the pages
2098                  * directly.
2099                  */
2100                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2101                     dst_entry->start), NULL, NULL, 0);
2102 #if VM_NRESERVLEVEL > 0
2103                 dst_object->flags |= OBJ_COLORED;
2104                 dst_object->pg_color = atop(dst_entry->start);
2105 #endif
2106                 dst_object->domain = src_object->domain;
2107                 dst_object->charge = dst_entry->end - dst_entry->start;
2108
2109                 dst_entry->object.vm_object = dst_object;
2110                 dst_entry->offset = 0;
2111                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2112         }
2113
2114         VM_OBJECT_WLOCK(dst_object);
2115         if (fork_charge != NULL) {
2116                 KASSERT(dst_entry->cred == NULL,
2117                     ("vm_fault_copy_entry: leaked swp charge"));
2118                 dst_object->cred = curthread->td_ucred;
2119                 crhold(dst_object->cred);
2120                 *fork_charge += dst_object->charge;
2121         } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2122             dst_object->cred == NULL) {
2123                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2124                     dst_entry));
2125                 dst_object->cred = dst_entry->cred;
2126                 dst_entry->cred = NULL;
2127         }
2128
2129         /*
2130          * Loop through all of the virtual pages within the entry's
2131          * range, copying each page from the source object to the
2132          * destination object.  Since the source is wired, those pages
2133          * must exist.  In contrast, the destination is pageable.
2134          * Since the destination object doesn't share any backing storage
2135          * with the source object, all of its pages must be dirtied,
2136          * regardless of whether they can be written.
2137          */
2138         for (vaddr = dst_entry->start, dst_pindex = 0;
2139             vaddr < dst_entry->end;
2140             vaddr += PAGE_SIZE, dst_pindex++) {
2141 again:
2142                 /*
2143                  * Find the page in the source object, and copy it in.
2144                  * Because the source is wired down, the page will be
2145                  * in memory.
2146                  */
2147                 if (src_object != dst_object)
2148                         VM_OBJECT_RLOCK(src_object);
2149                 object = src_object;
2150                 pindex = src_pindex + dst_pindex;
2151                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2152                     (backing_object = object->backing_object) != NULL) {
2153                         /*
2154                          * Unless the source mapping is read-only or
2155                          * it is presently being upgraded from
2156                          * read-only, the first object in the shadow
2157                          * chain should provide all of the pages.  In
2158                          * other words, this loop body should never be
2159                          * executed when the source mapping is already
2160                          * read/write.
2161                          */
2162                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2163                             upgrade,
2164                             ("vm_fault_copy_entry: main object missing page"));
2165
2166                         VM_OBJECT_RLOCK(backing_object);
2167                         pindex += OFF_TO_IDX(object->backing_object_offset);
2168                         if (object != dst_object)
2169                                 VM_OBJECT_RUNLOCK(object);
2170                         object = backing_object;
2171                 }
2172                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2173
2174                 if (object != dst_object) {
2175                         /*
2176                          * Allocate a page in the destination object.
2177                          */
2178                         dst_m = vm_page_alloc(dst_object, (src_object ==
2179                             dst_object ? src_pindex : 0) + dst_pindex,
2180                             VM_ALLOC_NORMAL);
2181                         if (dst_m == NULL) {
2182                                 VM_OBJECT_WUNLOCK(dst_object);
2183                                 VM_OBJECT_RUNLOCK(object);
2184                                 vm_wait(dst_object);
2185                                 VM_OBJECT_WLOCK(dst_object);
2186                                 goto again;
2187                         }
2188
2189                         /*
2190                          * See the comment in vm_fault_cow().
2191                          */
2192                         if (src_object == dst_object &&
2193                             (object->flags & OBJ_ONEMAPPING) == 0)
2194                                 pmap_remove_all(src_m);
2195                         pmap_copy_page(src_m, dst_m);
2196
2197                         /*
2198                          * The object lock does not guarantee that "src_m" will
2199                          * transition from invalid to valid, but it does ensure
2200                          * that "src_m" will not transition from valid to
2201                          * invalid.
2202                          */
2203                         dst_m->dirty = dst_m->valid = src_m->valid;
2204                         VM_OBJECT_RUNLOCK(object);
2205                 } else {
2206                         dst_m = src_m;
2207                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2208                                 goto again;
2209                         if (dst_m->pindex >= dst_object->size) {
2210                                 /*
2211                                  * We are upgrading.  Index can occur
2212                                  * out of bounds if the object type is
2213                                  * vnode and the file was truncated.
2214                                  */
2215                                 vm_page_xunbusy(dst_m);
2216                                 break;
2217                         }
2218                 }
2219
2220                 /*
2221                  * Enter it in the pmap. If a wired, copy-on-write
2222                  * mapping is being replaced by a write-enabled
2223                  * mapping, then wire that new mapping.
2224                  *
2225                  * The page can be invalid if the user called
2226                  * msync(MS_INVALIDATE) or truncated the backing vnode
2227                  * or shared memory object.  In this case, do not
2228                  * insert it into pmap, but still do the copy so that
2229                  * all copies of the wired map entry have similar
2230                  * backing pages.
2231                  */
2232                 if (vm_page_all_valid(dst_m)) {
2233                         VM_OBJECT_WUNLOCK(dst_object);
2234                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2235                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2236                         VM_OBJECT_WLOCK(dst_object);
2237                 }
2238
2239                 /*
2240                  * Mark it no longer busy, and put it on the active list.
2241                  */
2242                 if (upgrade) {
2243                         if (src_m != dst_m) {
2244                                 vm_page_unwire(src_m, PQ_INACTIVE);
2245                                 vm_page_wire(dst_m);
2246                         } else {
2247                                 KASSERT(vm_page_wired(dst_m),
2248                                     ("dst_m %p is not wired", dst_m));
2249                         }
2250                 } else {
2251                         vm_page_activate(dst_m);
2252                 }
2253                 vm_page_xunbusy(dst_m);
2254         }
2255         VM_OBJECT_WUNLOCK(dst_object);
2256         if (upgrade) {
2257                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2258                 vm_object_deallocate(src_object);
2259         }
2260 }
2261
2262 /*
2263  * Block entry into the machine-independent layer's page fault handler by
2264  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2265  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2266  * spurious page faults. 
2267  */
2268 int
2269 vm_fault_disable_pagefaults(void)
2270 {
2271
2272         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2273 }
2274
2275 void
2276 vm_fault_enable_pagefaults(int save)
2277 {
2278
2279         curthread_pflags_restore(save);
2280 }