]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Update to the current version of netmap.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107
108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110 #define VM_FAULT_READ_BEHIND    8
111 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
112 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131             int faultcount, int reqpage);
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136
137         vm_page_xunbusy(fs->m);
138         vm_page_lock(fs->m);
139         vm_page_deactivate(fs->m);
140         vm_page_unlock(fs->m);
141         fs->m = NULL;
142 }
143
144 static inline void
145 unlock_map(struct faultstate *fs)
146 {
147
148         if (fs->lookup_still_valid) {
149                 vm_map_lookup_done(fs->map, fs->entry);
150                 fs->lookup_still_valid = FALSE;
151         }
152 }
153
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
156 {
157
158         vm_object_pip_wakeup(fs->object);
159         VM_OBJECT_WUNLOCK(fs->object);
160         if (fs->object != fs->first_object) {
161                 VM_OBJECT_WLOCK(fs->first_object);
162                 vm_page_lock(fs->first_m);
163                 vm_page_free(fs->first_m);
164                 vm_page_unlock(fs->first_m);
165                 vm_object_pip_wakeup(fs->first_object);
166                 VM_OBJECT_WUNLOCK(fs->first_object);
167                 fs->first_m = NULL;
168         }
169         vm_object_deallocate(fs->first_object);
170         unlock_map(fs); 
171         if (fs->vp != NULL) { 
172                 vput(fs->vp);
173                 fs->vp = NULL;
174         }
175 }
176
177 /*
178  * TRYPAGER - used by vm_fault to calculate whether the pager for the
179  *            current object *might* contain the page.
180  *
181  *            default objects are zero-fill, there is no real pager.
182  */
183 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
184                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
185
186 /*
187  *      vm_fault:
188  *
189  *      Handle a page fault occurring at the given address,
190  *      requiring the given permissions, in the map specified.
191  *      If successful, the page is inserted into the
192  *      associated physical map.
193  *
194  *      NOTE: the given address should be truncated to the
195  *      proper page address.
196  *
197  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
198  *      a standard error specifying why the fault is fatal is returned.
199  *
200  *      The map in question must be referenced, and remains so.
201  *      Caller may hold no locks.
202  */
203 int
204 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205     int fault_flags)
206 {
207         struct thread *td;
208         int result;
209
210         td = curthread;
211         if ((td->td_pflags & TDP_NOFAULTING) != 0)
212                 return (KERN_PROTECTION_FAILURE);
213 #ifdef KTRACE
214         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
215                 ktrfault(vaddr, fault_type);
216 #endif
217         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
218             NULL);
219 #ifdef KTRACE
220         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
221                 ktrfaultend(result);
222 #endif
223         return (result);
224 }
225
226 int
227 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
228     int fault_flags, vm_page_t *m_hold)
229 {
230         vm_prot_t prot;
231         long ahead, behind;
232         int alloc_req, era, faultcount, nera, reqpage, result;
233         boolean_t growstack, is_first_object_locked, wired;
234         int map_generation;
235         vm_object_t next_object;
236         vm_page_t marray[VM_FAULT_READ_MAX];
237         int hardfault;
238         struct faultstate fs;
239         struct vnode *vp;
240         vm_page_t m;
241         int locked, error;
242
243         hardfault = 0;
244         growstack = TRUE;
245         PCPU_INC(cnt.v_vm_faults);
246         fs.vp = NULL;
247         faultcount = reqpage = 0;
248
249 RetryFault:;
250
251         /*
252          * Find the backing store object and offset into it to begin the
253          * search.
254          */
255         fs.map = map;
256         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
257             &fs.first_object, &fs.first_pindex, &prot, &wired);
258         if (result != KERN_SUCCESS) {
259                 if (growstack && result == KERN_INVALID_ADDRESS &&
260                     map != kernel_map) {
261                         result = vm_map_growstack(curproc, vaddr);
262                         if (result != KERN_SUCCESS)
263                                 return (KERN_FAILURE);
264                         growstack = FALSE;
265                         goto RetryFault;
266                 }
267                 return (result);
268         }
269
270         map_generation = fs.map->timestamp;
271
272         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
273                 if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
274                         vm_map_unlock_read(fs.map);
275                         return (KERN_FAILURE);
276                 }
277                 panic("vm_fault: fault on nofault entry, addr: %lx",
278                     (u_long)vaddr);
279         }
280
281         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
282             fs.entry->wiring_thread != curthread) {
283                 vm_map_unlock_read(fs.map);
284                 vm_map_lock(fs.map);
285                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
286                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
287                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
288                         vm_map_unlock_and_wait(fs.map, 0);
289                 } else
290                         vm_map_unlock(fs.map);
291                 goto RetryFault;
292         }
293
294         if (wired)
295                 fault_type = prot | (fault_type & VM_PROT_COPY);
296
297         if (fs.vp == NULL /* avoid locked vnode leak */ &&
298             (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
299             /* avoid calling vm_object_set_writeable_dirty() */
300             ((prot & VM_PROT_WRITE) == 0 ||
301             fs.first_object->type != OBJT_VNODE ||
302             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
303                 VM_OBJECT_RLOCK(fs.first_object);
304                 if ((prot & VM_PROT_WRITE) != 0 &&
305                     fs.first_object->type == OBJT_VNODE &&
306                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
307                         goto fast_failed;
308                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
309                 if (m == NULL || vm_page_busied(m) ||
310                     m->valid != VM_PAGE_BITS_ALL)
311                         goto fast_failed;
312                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
313                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
314                    0), 0);
315                 if (result != KERN_SUCCESS)
316                         goto fast_failed;
317                 if (m_hold != NULL) {
318                         *m_hold = m;
319                         vm_page_lock(m);
320                         vm_page_hold(m);
321                         vm_page_unlock(m);
322                 }
323                 if ((fault_type & VM_PROT_WRITE) != 0 &&
324                     (m->oflags & VPO_UNMANAGED) == 0) {
325                         vm_page_dirty(m);
326                         vm_pager_page_unswapped(m);
327                 }
328                 VM_OBJECT_RUNLOCK(fs.first_object);
329                 if (!wired)
330                         vm_fault_prefault(&fs, vaddr, 0, 0);
331                 vm_map_lookup_done(fs.map, fs.entry);
332                 curthread->td_ru.ru_minflt++;
333                 return (KERN_SUCCESS);
334 fast_failed:
335                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
336                         VM_OBJECT_RUNLOCK(fs.first_object);
337                         VM_OBJECT_WLOCK(fs.first_object);
338                 }
339         } else {
340                 VM_OBJECT_WLOCK(fs.first_object);
341         }
342
343         /*
344          * Make a reference to this object to prevent its disposal while we
345          * are messing with it.  Once we have the reference, the map is free
346          * to be diddled.  Since objects reference their shadows (and copies),
347          * they will stay around as well.
348          *
349          * Bump the paging-in-progress count to prevent size changes (e.g. 
350          * truncation operations) during I/O.  This must be done after
351          * obtaining the vnode lock in order to avoid possible deadlocks.
352          */
353         vm_object_reference_locked(fs.first_object);
354         vm_object_pip_add(fs.first_object, 1);
355
356         fs.lookup_still_valid = TRUE;
357
358         fs.first_m = NULL;
359
360         /*
361          * Search for the page at object/offset.
362          */
363         fs.object = fs.first_object;
364         fs.pindex = fs.first_pindex;
365         while (TRUE) {
366                 /*
367                  * If the object is dead, we stop here
368                  */
369                 if (fs.object->flags & OBJ_DEAD) {
370                         unlock_and_deallocate(&fs);
371                         return (KERN_PROTECTION_FAILURE);
372                 }
373
374                 /*
375                  * See if page is resident
376                  */
377                 fs.m = vm_page_lookup(fs.object, fs.pindex);
378                 if (fs.m != NULL) {
379                         /*
380                          * Wait/Retry if the page is busy.  We have to do this
381                          * if the page is either exclusive or shared busy
382                          * because the vm_pager may be using read busy for
383                          * pageouts (and even pageins if it is the vnode
384                          * pager), and we could end up trying to pagein and
385                          * pageout the same page simultaneously.
386                          *
387                          * We can theoretically allow the busy case on a read
388                          * fault if the page is marked valid, but since such
389                          * pages are typically already pmap'd, putting that
390                          * special case in might be more effort then it is 
391                          * worth.  We cannot under any circumstances mess
392                          * around with a shared busied page except, perhaps,
393                          * to pmap it.
394                          */
395                         if (vm_page_busied(fs.m)) {
396                                 /*
397                                  * Reference the page before unlocking and
398                                  * sleeping so that the page daemon is less
399                                  * likely to reclaim it. 
400                                  */
401                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
402                                 if (fs.object != fs.first_object) {
403                                         if (!VM_OBJECT_TRYWLOCK(
404                                             fs.first_object)) {
405                                                 VM_OBJECT_WUNLOCK(fs.object);
406                                                 VM_OBJECT_WLOCK(fs.first_object);
407                                                 VM_OBJECT_WLOCK(fs.object);
408                                         }
409                                         vm_page_lock(fs.first_m);
410                                         vm_page_free(fs.first_m);
411                                         vm_page_unlock(fs.first_m);
412                                         vm_object_pip_wakeup(fs.first_object);
413                                         VM_OBJECT_WUNLOCK(fs.first_object);
414                                         fs.first_m = NULL;
415                                 }
416                                 unlock_map(&fs);
417                                 if (fs.m == vm_page_lookup(fs.object,
418                                     fs.pindex)) {
419                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
420                                 }
421                                 vm_object_pip_wakeup(fs.object);
422                                 VM_OBJECT_WUNLOCK(fs.object);
423                                 PCPU_INC(cnt.v_intrans);
424                                 vm_object_deallocate(fs.first_object);
425                                 goto RetryFault;
426                         }
427                         vm_page_lock(fs.m);
428                         vm_page_remque(fs.m);
429                         vm_page_unlock(fs.m);
430
431                         /*
432                          * Mark page busy for other processes, and the 
433                          * pagedaemon.  If it still isn't completely valid
434                          * (readable), jump to readrest, else break-out ( we
435                          * found the page ).
436                          */
437                         vm_page_xbusy(fs.m);
438                         if (fs.m->valid != VM_PAGE_BITS_ALL)
439                                 goto readrest;
440                         break;
441                 }
442
443                 /*
444                  * Page is not resident, If this is the search termination
445                  * or the pager might contain the page, allocate a new page.
446                  */
447                 if (TRYPAGER || fs.object == fs.first_object) {
448                         if (fs.pindex >= fs.object->size) {
449                                 unlock_and_deallocate(&fs);
450                                 return (KERN_PROTECTION_FAILURE);
451                         }
452
453                         /*
454                          * Allocate a new page for this object/offset pair.
455                          *
456                          * Unlocked read of the p_flag is harmless. At
457                          * worst, the P_KILLED might be not observed
458                          * there, and allocation can fail, causing
459                          * restart and new reading of the p_flag.
460                          */
461                         fs.m = NULL;
462                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
463 #if VM_NRESERVLEVEL > 0
464                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
465                                         fs.object->flags |= OBJ_COLORED;
466                                         fs.object->pg_color = atop(vaddr) -
467                                             fs.pindex;
468                                 }
469 #endif
470                                 alloc_req = P_KILLED(curproc) ?
471                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
472                                 if (fs.object->type != OBJT_VNODE &&
473                                     fs.object->backing_object == NULL)
474                                         alloc_req |= VM_ALLOC_ZERO;
475                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
476                                     alloc_req);
477                         }
478                         if (fs.m == NULL) {
479                                 unlock_and_deallocate(&fs);
480                                 VM_WAITPFAULT;
481                                 goto RetryFault;
482                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
483                                 break;
484                 }
485
486 readrest:
487                 /*
488                  * We have found a valid page or we have allocated a new page.
489                  * The page thus may not be valid or may not be entirely 
490                  * valid.
491                  *
492                  * Attempt to fault-in the page if there is a chance that the
493                  * pager has it, and potentially fault in additional pages
494                  * at the same time.
495                  */
496                 if (TRYPAGER) {
497                         int rv;
498                         u_char behavior = vm_map_entry_behavior(fs.entry);
499
500                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
501                             P_KILLED(curproc)) {
502                                 behind = 0;
503                                 ahead = 0;
504                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
505                                 behind = 0;
506                                 ahead = atop(fs.entry->end - vaddr) - 1;
507                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
508                                         ahead = VM_FAULT_READ_AHEAD_MAX;
509                                 if (fs.pindex == fs.entry->next_read)
510                                         vm_fault_cache_behind(&fs,
511                                             VM_FAULT_READ_MAX);
512                         } else {
513                                 /*
514                                  * If this is a sequential page fault, then
515                                  * arithmetically increase the number of pages
516                                  * in the read-ahead window.  Otherwise, reset
517                                  * the read-ahead window to its smallest size.
518                                  */
519                                 behind = atop(vaddr - fs.entry->start);
520                                 if (behind > VM_FAULT_READ_BEHIND)
521                                         behind = VM_FAULT_READ_BEHIND;
522                                 ahead = atop(fs.entry->end - vaddr) - 1;
523                                 era = fs.entry->read_ahead;
524                                 if (fs.pindex == fs.entry->next_read) {
525                                         nera = era + behind;
526                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
527                                                 nera = VM_FAULT_READ_AHEAD_MAX;
528                                         behind = 0;
529                                         if (ahead > nera)
530                                                 ahead = nera;
531                                         if (era == VM_FAULT_READ_AHEAD_MAX)
532                                                 vm_fault_cache_behind(&fs,
533                                                     VM_FAULT_CACHE_BEHIND);
534                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
535                                         ahead = VM_FAULT_READ_AHEAD_MIN;
536                                 if (era != ahead)
537                                         fs.entry->read_ahead = ahead;
538                         }
539
540                         /*
541                          * Call the pager to retrieve the data, if any, after
542                          * releasing the lock on the map.  We hold a ref on
543                          * fs.object and the pages are exclusive busied.
544                          */
545                         unlock_map(&fs);
546
547                         if (fs.object->type == OBJT_VNODE) {
548                                 vp = fs.object->handle;
549                                 if (vp == fs.vp)
550                                         goto vnode_locked;
551                                 else if (fs.vp != NULL) {
552                                         vput(fs.vp);
553                                         fs.vp = NULL;
554                                 }
555                                 locked = VOP_ISLOCKED(vp);
556
557                                 if (locked != LK_EXCLUSIVE)
558                                         locked = LK_SHARED;
559                                 /* Do not sleep for vnode lock while fs.m is busy */
560                                 error = vget(vp, locked | LK_CANRECURSE |
561                                     LK_NOWAIT, curthread);
562                                 if (error != 0) {
563                                         vhold(vp);
564                                         release_page(&fs);
565                                         unlock_and_deallocate(&fs);
566                                         error = vget(vp, locked | LK_RETRY |
567                                             LK_CANRECURSE, curthread);
568                                         vdrop(vp);
569                                         fs.vp = vp;
570                                         KASSERT(error == 0,
571                                             ("vm_fault: vget failed"));
572                                         goto RetryFault;
573                                 }
574                                 fs.vp = vp;
575                         }
576 vnode_locked:
577                         KASSERT(fs.vp == NULL || !fs.map->system_map,
578                             ("vm_fault: vnode-backed object mapped by system map"));
579
580                         /*
581                          * now we find out if any other pages should be paged
582                          * in at this time this routine checks to see if the
583                          * pages surrounding this fault reside in the same
584                          * object as the page for this fault.  If they do,
585                          * then they are faulted in also into the object.  The
586                          * array "marray" returned contains an array of
587                          * vm_page_t structs where one of them is the
588                          * vm_page_t passed to the routine.  The reqpage
589                          * return value is the index into the marray for the
590                          * vm_page_t passed to the routine.
591                          *
592                          * fs.m plus the additional pages are exclusive busied.
593                          */
594                         faultcount = vm_fault_additional_pages(
595                             fs.m, behind, ahead, marray, &reqpage);
596
597                         rv = faultcount ?
598                             vm_pager_get_pages(fs.object, marray, faultcount,
599                                 reqpage) : VM_PAGER_FAIL;
600
601                         if (rv == VM_PAGER_OK) {
602                                 /*
603                                  * Found the page. Leave it busy while we play
604                                  * with it.
605                                  */
606
607                                 /*
608                                  * Relookup in case pager changed page. Pager
609                                  * is responsible for disposition of old page
610                                  * if moved.
611                                  */
612                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
613                                 if (!fs.m) {
614                                         unlock_and_deallocate(&fs);
615                                         goto RetryFault;
616                                 }
617
618                                 hardfault++;
619                                 break; /* break to PAGE HAS BEEN FOUND */
620                         }
621                         /*
622                          * Remove the bogus page (which does not exist at this
623                          * object/offset); before doing so, we must get back
624                          * our object lock to preserve our invariant.
625                          *
626                          * Also wake up any other process that may want to bring
627                          * in this page.
628                          *
629                          * If this is the top-level object, we must leave the
630                          * busy page to prevent another process from rushing
631                          * past us, and inserting the page in that object at
632                          * the same time that we are.
633                          */
634                         if (rv == VM_PAGER_ERROR)
635                                 printf("vm_fault: pager read error, pid %d (%s)\n",
636                                     curproc->p_pid, curproc->p_comm);
637                         /*
638                          * Data outside the range of the pager or an I/O error
639                          */
640                         /*
641                          * XXX - the check for kernel_map is a kludge to work
642                          * around having the machine panic on a kernel space
643                          * fault w/ I/O error.
644                          */
645                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
646                                 (rv == VM_PAGER_BAD)) {
647                                 vm_page_lock(fs.m);
648                                 vm_page_free(fs.m);
649                                 vm_page_unlock(fs.m);
650                                 fs.m = NULL;
651                                 unlock_and_deallocate(&fs);
652                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
653                         }
654                         if (fs.object != fs.first_object) {
655                                 vm_page_lock(fs.m);
656                                 vm_page_free(fs.m);
657                                 vm_page_unlock(fs.m);
658                                 fs.m = NULL;
659                                 /*
660                                  * XXX - we cannot just fall out at this
661                                  * point, m has been freed and is invalid!
662                                  */
663                         }
664                 }
665
666                 /*
667                  * We get here if the object has default pager (or unwiring) 
668                  * or the pager doesn't have the page.
669                  */
670                 if (fs.object == fs.first_object)
671                         fs.first_m = fs.m;
672
673                 /*
674                  * Move on to the next object.  Lock the next object before
675                  * unlocking the current one.
676                  */
677                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
678                 next_object = fs.object->backing_object;
679                 if (next_object == NULL) {
680                         /*
681                          * If there's no object left, fill the page in the top
682                          * object with zeros.
683                          */
684                         if (fs.object != fs.first_object) {
685                                 vm_object_pip_wakeup(fs.object);
686                                 VM_OBJECT_WUNLOCK(fs.object);
687
688                                 fs.object = fs.first_object;
689                                 fs.pindex = fs.first_pindex;
690                                 fs.m = fs.first_m;
691                                 VM_OBJECT_WLOCK(fs.object);
692                         }
693                         fs.first_m = NULL;
694
695                         /*
696                          * Zero the page if necessary and mark it valid.
697                          */
698                         if ((fs.m->flags & PG_ZERO) == 0) {
699                                 pmap_zero_page(fs.m);
700                         } else {
701                                 PCPU_INC(cnt.v_ozfod);
702                         }
703                         PCPU_INC(cnt.v_zfod);
704                         fs.m->valid = VM_PAGE_BITS_ALL;
705                         /* Don't try to prefault neighboring pages. */
706                         faultcount = 1;
707                         break;  /* break to PAGE HAS BEEN FOUND */
708                 } else {
709                         KASSERT(fs.object != next_object,
710                             ("object loop %p", next_object));
711                         VM_OBJECT_WLOCK(next_object);
712                         vm_object_pip_add(next_object, 1);
713                         if (fs.object != fs.first_object)
714                                 vm_object_pip_wakeup(fs.object);
715                         VM_OBJECT_WUNLOCK(fs.object);
716                         fs.object = next_object;
717                 }
718         }
719
720         vm_page_assert_xbusied(fs.m);
721
722         /*
723          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
724          * is held.]
725          */
726
727         /*
728          * If the page is being written, but isn't already owned by the
729          * top-level object, we have to copy it into a new page owned by the
730          * top-level object.
731          */
732         if (fs.object != fs.first_object) {
733                 /*
734                  * We only really need to copy if we want to write it.
735                  */
736                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
737                         /*
738                          * This allows pages to be virtually copied from a 
739                          * backing_object into the first_object, where the 
740                          * backing object has no other refs to it, and cannot
741                          * gain any more refs.  Instead of a bcopy, we just 
742                          * move the page from the backing object to the 
743                          * first object.  Note that we must mark the page 
744                          * dirty in the first object so that it will go out 
745                          * to swap when needed.
746                          */
747                         is_first_object_locked = FALSE;
748                         if (
749                                 /*
750                                  * Only one shadow object
751                                  */
752                                 (fs.object->shadow_count == 1) &&
753                                 /*
754                                  * No COW refs, except us
755                                  */
756                                 (fs.object->ref_count == 1) &&
757                                 /*
758                                  * No one else can look this object up
759                                  */
760                                 (fs.object->handle == NULL) &&
761                                 /*
762                                  * No other ways to look the object up
763                                  */
764                                 ((fs.object->type == OBJT_DEFAULT) ||
765                                  (fs.object->type == OBJT_SWAP)) &&
766                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
767                                 /*
768                                  * We don't chase down the shadow chain
769                                  */
770                             fs.object == fs.first_object->backing_object) {
771                                 /*
772                                  * get rid of the unnecessary page
773                                  */
774                                 vm_page_lock(fs.first_m);
775                                 vm_page_free(fs.first_m);
776                                 vm_page_unlock(fs.first_m);
777                                 /*
778                                  * grab the page and put it into the 
779                                  * process'es object.  The page is 
780                                  * automatically made dirty.
781                                  */
782                                 if (vm_page_rename(fs.m, fs.first_object,
783                                     fs.first_pindex)) {
784                                         unlock_and_deallocate(&fs);
785                                         goto RetryFault;
786                                 }
787                                 vm_page_xbusy(fs.m);
788                                 fs.first_m = fs.m;
789                                 fs.m = NULL;
790                                 PCPU_INC(cnt.v_cow_optim);
791                         } else {
792                                 /*
793                                  * Oh, well, lets copy it.
794                                  */
795                                 pmap_copy_page(fs.m, fs.first_m);
796                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
797                                 if (wired && (fault_flags &
798                                     VM_FAULT_CHANGE_WIRING) == 0) {
799                                         vm_page_lock(fs.first_m);
800                                         vm_page_wire(fs.first_m);
801                                         vm_page_unlock(fs.first_m);
802                                         
803                                         vm_page_lock(fs.m);
804                                         vm_page_unwire(fs.m, PQ_INACTIVE);
805                                         vm_page_unlock(fs.m);
806                                 }
807                                 /*
808                                  * We no longer need the old page or object.
809                                  */
810                                 release_page(&fs);
811                         }
812                         /*
813                          * fs.object != fs.first_object due to above 
814                          * conditional
815                          */
816                         vm_object_pip_wakeup(fs.object);
817                         VM_OBJECT_WUNLOCK(fs.object);
818                         /*
819                          * Only use the new page below...
820                          */
821                         fs.object = fs.first_object;
822                         fs.pindex = fs.first_pindex;
823                         fs.m = fs.first_m;
824                         if (!is_first_object_locked)
825                                 VM_OBJECT_WLOCK(fs.object);
826                         PCPU_INC(cnt.v_cow_faults);
827                         curthread->td_cow++;
828                 } else {
829                         prot &= ~VM_PROT_WRITE;
830                 }
831         }
832
833         /*
834          * We must verify that the maps have not changed since our last
835          * lookup.
836          */
837         if (!fs.lookup_still_valid) {
838                 vm_object_t retry_object;
839                 vm_pindex_t retry_pindex;
840                 vm_prot_t retry_prot;
841
842                 if (!vm_map_trylock_read(fs.map)) {
843                         release_page(&fs);
844                         unlock_and_deallocate(&fs);
845                         goto RetryFault;
846                 }
847                 fs.lookup_still_valid = TRUE;
848                 if (fs.map->timestamp != map_generation) {
849                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
850                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
851
852                         /*
853                          * If we don't need the page any longer, put it on the inactive
854                          * list (the easiest thing to do here).  If no one needs it,
855                          * pageout will grab it eventually.
856                          */
857                         if (result != KERN_SUCCESS) {
858                                 release_page(&fs);
859                                 unlock_and_deallocate(&fs);
860
861                                 /*
862                                  * If retry of map lookup would have blocked then
863                                  * retry fault from start.
864                                  */
865                                 if (result == KERN_FAILURE)
866                                         goto RetryFault;
867                                 return (result);
868                         }
869                         if ((retry_object != fs.first_object) ||
870                             (retry_pindex != fs.first_pindex)) {
871                                 release_page(&fs);
872                                 unlock_and_deallocate(&fs);
873                                 goto RetryFault;
874                         }
875
876                         /*
877                          * Check whether the protection has changed or the object has
878                          * been copied while we left the map unlocked. Changing from
879                          * read to write permission is OK - we leave the page
880                          * write-protected, and catch the write fault. Changing from
881                          * write to read permission means that we can't mark the page
882                          * write-enabled after all.
883                          */
884                         prot &= retry_prot;
885                 }
886         }
887         /*
888          * If the page was filled by a pager, update the map entry's
889          * last read offset.  Since the pager does not return the
890          * actual set of pages that it read, this update is based on
891          * the requested set.  Typically, the requested and actual
892          * sets are the same.
893          *
894          * XXX The following assignment modifies the map
895          * without holding a write lock on it.
896          */
897         if (hardfault)
898                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
899
900         if (((prot & VM_PROT_WRITE) != 0 ||
901             (fault_flags & VM_FAULT_DIRTY) != 0) &&
902             (fs.m->oflags & VPO_UNMANAGED) == 0) {
903                 vm_object_set_writeable_dirty(fs.object);
904
905                 /*
906                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
907                  * if the page is already dirty to prevent data written with
908                  * the expectation of being synced from not being synced.
909                  * Likewise if this entry does not request NOSYNC then make
910                  * sure the page isn't marked NOSYNC.  Applications sharing
911                  * data should use the same flags to avoid ping ponging.
912                  */
913                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
914                         if (fs.m->dirty == 0)
915                                 fs.m->oflags |= VPO_NOSYNC;
916                 } else {
917                         fs.m->oflags &= ~VPO_NOSYNC;
918                 }
919
920                 /*
921                  * If the fault is a write, we know that this page is being
922                  * written NOW so dirty it explicitly to save on 
923                  * pmap_is_modified() calls later.
924                  *
925                  * Also tell the backing pager, if any, that it should remove
926                  * any swap backing since the page is now dirty.
927                  */
928                 if (((fault_type & VM_PROT_WRITE) != 0 &&
929                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
930                     (fault_flags & VM_FAULT_DIRTY) != 0) {
931                         vm_page_dirty(fs.m);
932                         vm_pager_page_unswapped(fs.m);
933                 }
934         }
935
936         vm_page_assert_xbusied(fs.m);
937
938         /*
939          * Page must be completely valid or it is not fit to
940          * map into user space.  vm_pager_get_pages() ensures this.
941          */
942         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
943             ("vm_fault: page %p partially invalid", fs.m));
944         VM_OBJECT_WUNLOCK(fs.object);
945
946         /*
947          * Put this page into the physical map.  We had to do the unlock above
948          * because pmap_enter() may sleep.  We don't put the page
949          * back on the active queue until later so that the pageout daemon
950          * won't find it (yet).
951          */
952         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
953             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
954         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
955             wired == 0)
956                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
957         VM_OBJECT_WLOCK(fs.object);
958         vm_page_lock(fs.m);
959
960         /*
961          * If the page is not wired down, then put it where the pageout daemon
962          * can find it.
963          */
964         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
965                 if (wired)
966                         vm_page_wire(fs.m);
967                 else
968                         vm_page_unwire(fs.m, PQ_ACTIVE);
969         } else
970                 vm_page_activate(fs.m);
971         if (m_hold != NULL) {
972                 *m_hold = fs.m;
973                 vm_page_hold(fs.m);
974         }
975         vm_page_unlock(fs.m);
976         vm_page_xunbusy(fs.m);
977
978         /*
979          * Unlock everything, and return
980          */
981         unlock_and_deallocate(&fs);
982         if (hardfault) {
983                 PCPU_INC(cnt.v_io_faults);
984                 curthread->td_ru.ru_majflt++;
985         } else 
986                 curthread->td_ru.ru_minflt++;
987
988         return (KERN_SUCCESS);
989 }
990
991 /*
992  * Speed up the reclamation of up to "distance" pages that precede the
993  * faulting pindex within the first object of the shadow chain.
994  */
995 static void
996 vm_fault_cache_behind(const struct faultstate *fs, int distance)
997 {
998         vm_object_t first_object, object;
999         vm_page_t m, m_prev;
1000         vm_pindex_t pindex;
1001
1002         object = fs->object;
1003         VM_OBJECT_ASSERT_WLOCKED(object);
1004         first_object = fs->first_object;
1005         if (first_object != object) {
1006                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1007                         VM_OBJECT_WUNLOCK(object);
1008                         VM_OBJECT_WLOCK(first_object);
1009                         VM_OBJECT_WLOCK(object);
1010                 }
1011         }
1012         /* Neither fictitious nor unmanaged pages can be cached. */
1013         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1014                 if (fs->first_pindex < distance)
1015                         pindex = 0;
1016                 else
1017                         pindex = fs->first_pindex - distance;
1018                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1019                         pindex = OFF_TO_IDX(fs->entry->offset);
1020                 m = first_object != object ? fs->first_m : fs->m;
1021                 vm_page_assert_xbusied(m);
1022                 m_prev = vm_page_prev(m);
1023                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1024                     m->valid == VM_PAGE_BITS_ALL) {
1025                         m_prev = vm_page_prev(m);
1026                         if (vm_page_busied(m))
1027                                 continue;
1028                         vm_page_lock(m);
1029                         if (m->hold_count == 0 && m->wire_count == 0) {
1030                                 pmap_remove_all(m);
1031                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1032                                 if (m->dirty != 0)
1033                                         vm_page_deactivate(m);
1034                                 else
1035                                         vm_page_cache(m);
1036                         }
1037                         vm_page_unlock(m);
1038                 }
1039         }
1040         if (first_object != object)
1041                 VM_OBJECT_WUNLOCK(first_object);
1042 }
1043
1044 /*
1045  * vm_fault_prefault provides a quick way of clustering
1046  * pagefaults into a processes address space.  It is a "cousin"
1047  * of vm_map_pmap_enter, except it runs at page fault time instead
1048  * of mmap time.
1049  */
1050 static void
1051 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1052     int faultcount, int reqpage)
1053 {
1054         pmap_t pmap;
1055         vm_map_entry_t entry;
1056         vm_object_t backing_object, lobject;
1057         vm_offset_t addr, starta;
1058         vm_pindex_t pindex;
1059         vm_page_t m;
1060         int backward, forward, i;
1061
1062         pmap = fs->map->pmap;
1063         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1064                 return;
1065
1066         if (faultcount > 0) {
1067                 backward = reqpage;
1068                 forward = faultcount - reqpage - 1;
1069         } else {
1070                 backward = PFBAK;
1071                 forward = PFFOR;
1072         }
1073         entry = fs->entry;
1074
1075         starta = addra - backward * PAGE_SIZE;
1076         if (starta < entry->start) {
1077                 starta = entry->start;
1078         } else if (starta > addra) {
1079                 starta = 0;
1080         }
1081
1082         /*
1083          * Generate the sequence of virtual addresses that are candidates for
1084          * prefaulting in an outward spiral from the faulting virtual address,
1085          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1086          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1087          * If the candidate address doesn't have a backing physical page, then
1088          * the loop immediately terminates.
1089          */
1090         for (i = 0; i < 2 * imax(backward, forward); i++) {
1091                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1092                     PAGE_SIZE);
1093                 if (addr > addra + forward * PAGE_SIZE)
1094                         addr = 0;
1095
1096                 if (addr < starta || addr >= entry->end)
1097                         continue;
1098
1099                 if (!pmap_is_prefaultable(pmap, addr))
1100                         continue;
1101
1102                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1103                 lobject = entry->object.vm_object;
1104                 VM_OBJECT_RLOCK(lobject);
1105                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1106                     lobject->type == OBJT_DEFAULT &&
1107                     (backing_object = lobject->backing_object) != NULL) {
1108                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1109                             0, ("vm_fault_prefault: unaligned object offset"));
1110                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1111                         VM_OBJECT_RLOCK(backing_object);
1112                         VM_OBJECT_RUNLOCK(lobject);
1113                         lobject = backing_object;
1114                 }
1115                 if (m == NULL) {
1116                         VM_OBJECT_RUNLOCK(lobject);
1117                         break;
1118                 }
1119                 if (m->valid == VM_PAGE_BITS_ALL &&
1120                     (m->flags & PG_FICTITIOUS) == 0)
1121                         pmap_enter_quick(pmap, addr, m, entry->protection);
1122                 VM_OBJECT_RUNLOCK(lobject);
1123         }
1124 }
1125
1126 /*
1127  * Hold each of the physical pages that are mapped by the specified range of
1128  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1129  * and allow the specified types of access, "prot".  If all of the implied
1130  * pages are successfully held, then the number of held pages is returned
1131  * together with pointers to those pages in the array "ma".  However, if any
1132  * of the pages cannot be held, -1 is returned.
1133  */
1134 int
1135 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1136     vm_prot_t prot, vm_page_t *ma, int max_count)
1137 {
1138         vm_offset_t end, va;
1139         vm_page_t *mp;
1140         int count;
1141         boolean_t pmap_failed;
1142
1143         if (len == 0)
1144                 return (0);
1145         end = round_page(addr + len);
1146         addr = trunc_page(addr);
1147
1148         /*
1149          * Check for illegal addresses.
1150          */
1151         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1152                 return (-1);
1153
1154         if (atop(end - addr) > max_count)
1155                 panic("vm_fault_quick_hold_pages: count > max_count");
1156         count = atop(end - addr);
1157
1158         /*
1159          * Most likely, the physical pages are resident in the pmap, so it is
1160          * faster to try pmap_extract_and_hold() first.
1161          */
1162         pmap_failed = FALSE;
1163         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1164                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1165                 if (*mp == NULL)
1166                         pmap_failed = TRUE;
1167                 else if ((prot & VM_PROT_WRITE) != 0 &&
1168                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1169                         /*
1170                          * Explicitly dirty the physical page.  Otherwise, the
1171                          * caller's changes may go unnoticed because they are
1172                          * performed through an unmanaged mapping or by a DMA
1173                          * operation.
1174                          *
1175                          * The object lock is not held here.
1176                          * See vm_page_clear_dirty_mask().
1177                          */
1178                         vm_page_dirty(*mp);
1179                 }
1180         }
1181         if (pmap_failed) {
1182                 /*
1183                  * One or more pages could not be held by the pmap.  Either no
1184                  * page was mapped at the specified virtual address or that
1185                  * mapping had insufficient permissions.  Attempt to fault in
1186                  * and hold these pages.
1187                  */
1188                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1189                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1190                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1191                                 goto error;
1192         }
1193         return (count);
1194 error:  
1195         for (mp = ma; mp < ma + count; mp++)
1196                 if (*mp != NULL) {
1197                         vm_page_lock(*mp);
1198                         vm_page_unhold(*mp);
1199                         vm_page_unlock(*mp);
1200                 }
1201         return (-1);
1202 }
1203
1204 /*
1205  *      Routine:
1206  *              vm_fault_copy_entry
1207  *      Function:
1208  *              Create new shadow object backing dst_entry with private copy of
1209  *              all underlying pages. When src_entry is equal to dst_entry,
1210  *              function implements COW for wired-down map entry. Otherwise,
1211  *              it forks wired entry into dst_map.
1212  *
1213  *      In/out conditions:
1214  *              The source and destination maps must be locked for write.
1215  *              The source map entry must be wired down (or be a sharing map
1216  *              entry corresponding to a main map entry that is wired down).
1217  */
1218 void
1219 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1220     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1221     vm_ooffset_t *fork_charge)
1222 {
1223         vm_object_t backing_object, dst_object, object, src_object;
1224         vm_pindex_t dst_pindex, pindex, src_pindex;
1225         vm_prot_t access, prot;
1226         vm_offset_t vaddr;
1227         vm_page_t dst_m;
1228         vm_page_t src_m;
1229         boolean_t upgrade;
1230
1231 #ifdef  lint
1232         src_map++;
1233 #endif  /* lint */
1234
1235         upgrade = src_entry == dst_entry;
1236         access = prot = dst_entry->protection;
1237
1238         src_object = src_entry->object.vm_object;
1239         src_pindex = OFF_TO_IDX(src_entry->offset);
1240
1241         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1242                 dst_object = src_object;
1243                 vm_object_reference(dst_object);
1244         } else {
1245                 /*
1246                  * Create the top-level object for the destination entry. (Doesn't
1247                  * actually shadow anything - we copy the pages directly.)
1248                  */
1249                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1250                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1251 #if VM_NRESERVLEVEL > 0
1252                 dst_object->flags |= OBJ_COLORED;
1253                 dst_object->pg_color = atop(dst_entry->start);
1254 #endif
1255         }
1256
1257         VM_OBJECT_WLOCK(dst_object);
1258         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1259             ("vm_fault_copy_entry: vm_object not NULL"));
1260         if (src_object != dst_object) {
1261                 dst_entry->object.vm_object = dst_object;
1262                 dst_entry->offset = 0;
1263                 dst_object->charge = dst_entry->end - dst_entry->start;
1264         }
1265         if (fork_charge != NULL) {
1266                 KASSERT(dst_entry->cred == NULL,
1267                     ("vm_fault_copy_entry: leaked swp charge"));
1268                 dst_object->cred = curthread->td_ucred;
1269                 crhold(dst_object->cred);
1270                 *fork_charge += dst_object->charge;
1271         } else if (dst_object->cred == NULL) {
1272                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1273                     dst_entry));
1274                 dst_object->cred = dst_entry->cred;
1275                 dst_entry->cred = NULL;
1276         }
1277
1278         /*
1279          * If not an upgrade, then enter the mappings in the pmap as
1280          * read and/or execute accesses.  Otherwise, enter them as
1281          * write accesses.
1282          *
1283          * A writeable large page mapping is only created if all of
1284          * the constituent small page mappings are modified. Marking
1285          * PTEs as modified on inception allows promotion to happen
1286          * without taking potentially large number of soft faults.
1287          */
1288         if (!upgrade)
1289                 access &= ~VM_PROT_WRITE;
1290
1291         /*
1292          * Loop through all of the virtual pages within the entry's
1293          * range, copying each page from the source object to the
1294          * destination object.  Since the source is wired, those pages
1295          * must exist.  In contrast, the destination is pageable.
1296          * Since the destination object does share any backing storage
1297          * with the source object, all of its pages must be dirtied,
1298          * regardless of whether they can be written.
1299          */
1300         for (vaddr = dst_entry->start, dst_pindex = 0;
1301             vaddr < dst_entry->end;
1302             vaddr += PAGE_SIZE, dst_pindex++) {
1303 again:
1304                 /*
1305                  * Find the page in the source object, and copy it in.
1306                  * Because the source is wired down, the page will be
1307                  * in memory.
1308                  */
1309                 if (src_object != dst_object)
1310                         VM_OBJECT_RLOCK(src_object);
1311                 object = src_object;
1312                 pindex = src_pindex + dst_pindex;
1313                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1314                     (backing_object = object->backing_object) != NULL) {
1315                         /*
1316                          * Unless the source mapping is read-only or
1317                          * it is presently being upgraded from
1318                          * read-only, the first object in the shadow
1319                          * chain should provide all of the pages.  In
1320                          * other words, this loop body should never be
1321                          * executed when the source mapping is already
1322                          * read/write.
1323                          */
1324                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1325                             upgrade,
1326                             ("vm_fault_copy_entry: main object missing page"));
1327
1328                         VM_OBJECT_RLOCK(backing_object);
1329                         pindex += OFF_TO_IDX(object->backing_object_offset);
1330                         if (object != dst_object)
1331                                 VM_OBJECT_RUNLOCK(object);
1332                         object = backing_object;
1333                 }
1334                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1335
1336                 if (object != dst_object) {
1337                         /*
1338                          * Allocate a page in the destination object.
1339                          */
1340                         dst_m = vm_page_alloc(dst_object, (src_object ==
1341                             dst_object ? src_pindex : 0) + dst_pindex,
1342                             VM_ALLOC_NORMAL);
1343                         if (dst_m == NULL) {
1344                                 VM_OBJECT_WUNLOCK(dst_object);
1345                                 VM_OBJECT_RUNLOCK(object);
1346                                 VM_WAIT;
1347                                 VM_OBJECT_WLOCK(dst_object);
1348                                 goto again;
1349                         }
1350                         pmap_copy_page(src_m, dst_m);
1351                         VM_OBJECT_RUNLOCK(object);
1352                         dst_m->valid = VM_PAGE_BITS_ALL;
1353                         dst_m->dirty = VM_PAGE_BITS_ALL;
1354                 } else {
1355                         dst_m = src_m;
1356                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1357                                 goto again;
1358                         vm_page_xbusy(dst_m);
1359                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1360                             ("invalid dst page %p", dst_m));
1361                 }
1362                 VM_OBJECT_WUNLOCK(dst_object);
1363
1364                 /*
1365                  * Enter it in the pmap. If a wired, copy-on-write
1366                  * mapping is being replaced by a write-enabled
1367                  * mapping, then wire that new mapping.
1368                  */
1369                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1370                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1371
1372                 /*
1373                  * Mark it no longer busy, and put it on the active list.
1374                  */
1375                 VM_OBJECT_WLOCK(dst_object);
1376                 
1377                 if (upgrade) {
1378                         if (src_m != dst_m) {
1379                                 vm_page_lock(src_m);
1380                                 vm_page_unwire(src_m, PQ_INACTIVE);
1381                                 vm_page_unlock(src_m);
1382                                 vm_page_lock(dst_m);
1383                                 vm_page_wire(dst_m);
1384                                 vm_page_unlock(dst_m);
1385                         } else {
1386                                 KASSERT(dst_m->wire_count > 0,
1387                                     ("dst_m %p is not wired", dst_m));
1388                         }
1389                 } else {
1390                         vm_page_lock(dst_m);
1391                         vm_page_activate(dst_m);
1392                         vm_page_unlock(dst_m);
1393                 }
1394                 vm_page_xunbusy(dst_m);
1395         }
1396         VM_OBJECT_WUNLOCK(dst_object);
1397         if (upgrade) {
1398                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1399                 vm_object_deallocate(src_object);
1400         }
1401 }
1402
1403
1404 /*
1405  * This routine checks around the requested page for other pages that
1406  * might be able to be faulted in.  This routine brackets the viable
1407  * pages for the pages to be paged in.
1408  *
1409  * Inputs:
1410  *      m, rbehind, rahead
1411  *
1412  * Outputs:
1413  *  marray (array of vm_page_t), reqpage (index of requested page)
1414  *
1415  * Return value:
1416  *  number of pages in marray
1417  */
1418 static int
1419 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1420         vm_page_t m;
1421         int rbehind;
1422         int rahead;
1423         vm_page_t *marray;
1424         int *reqpage;
1425 {
1426         int i,j;
1427         vm_object_t object;
1428         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1429         vm_page_t rtm;
1430         int cbehind, cahead;
1431
1432         VM_OBJECT_ASSERT_WLOCKED(m->object);
1433
1434         object = m->object;
1435         pindex = m->pindex;
1436         cbehind = cahead = 0;
1437
1438         /*
1439          * if the requested page is not available, then give up now
1440          */
1441         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1442                 return 0;
1443         }
1444
1445         if ((cbehind == 0) && (cahead == 0)) {
1446                 *reqpage = 0;
1447                 marray[0] = m;
1448                 return 1;
1449         }
1450
1451         if (rahead > cahead) {
1452                 rahead = cahead;
1453         }
1454
1455         if (rbehind > cbehind) {
1456                 rbehind = cbehind;
1457         }
1458
1459         /*
1460          * scan backward for the read behind pages -- in memory 
1461          */
1462         if (pindex > 0) {
1463                 if (rbehind > pindex) {
1464                         rbehind = pindex;
1465                         startpindex = 0;
1466                 } else {
1467                         startpindex = pindex - rbehind;
1468                 }
1469
1470                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1471                     rtm->pindex >= startpindex)
1472                         startpindex = rtm->pindex + 1;
1473
1474                 /* tpindex is unsigned; beware of numeric underflow. */
1475                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1476                     tpindex < pindex; i++, tpindex--) {
1477
1478                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1479                             VM_ALLOC_IFNOTCACHED);
1480                         if (rtm == NULL) {
1481                                 /*
1482                                  * Shift the allocated pages to the
1483                                  * beginning of the array.
1484                                  */
1485                                 for (j = 0; j < i; j++) {
1486                                         marray[j] = marray[j + tpindex + 1 -
1487                                             startpindex];
1488                                 }
1489                                 break;
1490                         }
1491
1492                         marray[tpindex - startpindex] = rtm;
1493                 }
1494         } else {
1495                 startpindex = 0;
1496                 i = 0;
1497         }
1498
1499         marray[i] = m;
1500         /* page offset of the required page */
1501         *reqpage = i;
1502
1503         tpindex = pindex + 1;
1504         i++;
1505
1506         /*
1507          * scan forward for the read ahead pages
1508          */
1509         endpindex = tpindex + rahead;
1510         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1511                 endpindex = rtm->pindex;
1512         if (endpindex > object->size)
1513                 endpindex = object->size;
1514
1515         for (; tpindex < endpindex; i++, tpindex++) {
1516
1517                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1518                     VM_ALLOC_IFNOTCACHED);
1519                 if (rtm == NULL) {
1520                         break;
1521                 }
1522
1523                 marray[i] = rtm;
1524         }
1525
1526         /* return number of pages */
1527         return i;
1528 }
1529
1530 /*
1531  * Block entry into the machine-independent layer's page fault handler by
1532  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1533  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1534  * spurious page faults. 
1535  */
1536 int
1537 vm_fault_disable_pagefaults(void)
1538 {
1539
1540         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1541 }
1542
1543 void
1544 vm_fault_enable_pagefaults(int save)
1545 {
1546
1547         curthread_pflags_restore(save);
1548 }