]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
When forking a vm space that has wired map entries, do not forget to
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101
102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
103
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107
108 static int prefault_pageorder[] = {
109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int lookup_still_valid;
132         struct vnode *vp;
133         int vfslocked;
134 };
135
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139
140         vm_page_wakeup(fs->m);
141         vm_page_lock_queues();
142         vm_page_deactivate(fs->m);
143         vm_page_unlock_queues();
144         fs->m = NULL;
145 }
146
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150
151         if (fs->lookup_still_valid) {
152                 vm_map_lookup_done(fs->map, fs->entry);
153                 fs->lookup_still_valid = FALSE;
154         }
155 }
156
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160
161         vm_object_pip_wakeup(fs->object);
162         VM_OBJECT_UNLOCK(fs->object);
163         if (fs->object != fs->first_object) {
164                 VM_OBJECT_LOCK(fs->first_object);
165                 vm_page_lock_queues();
166                 vm_page_free(fs->first_m);
167                 vm_page_unlock_queues();
168                 vm_object_pip_wakeup(fs->first_object);
169                 VM_OBJECT_UNLOCK(fs->first_object);
170                 fs->first_m = NULL;
171         }
172         vm_object_deallocate(fs->first_object);
173         unlock_map(fs); 
174         if (fs->vp != NULL) { 
175                 vput(fs->vp);
176                 fs->vp = NULL;
177         }
178         VFS_UNLOCK_GIANT(fs->vfslocked);
179         fs->vfslocked = 0;
180 }
181
182 /*
183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
184  *            current object *might* contain the page.
185  *
186  *            default objects are zero-fill, there is no real pager.
187  */
188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190
191 /*
192  *      vm_fault:
193  *
194  *      Handle a page fault occurring at the given address,
195  *      requiring the given permissions, in the map specified.
196  *      If successful, the page is inserted into the
197  *      associated physical map.
198  *
199  *      NOTE: the given address should be truncated to the
200  *      proper page address.
201  *
202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
203  *      a standard error specifying why the fault is fatal is returned.
204  *
205  *
206  *      The map in question must be referenced, and remains so.
207  *      Caller may hold no locks.
208  */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211          int fault_flags)
212 {
213         vm_prot_t prot;
214         int is_first_object_locked, result;
215         boolean_t are_queues_locked, growstack, wired;
216         int map_generation;
217         vm_object_t next_object;
218         vm_page_t marray[VM_FAULT_READ];
219         int hardfault;
220         int faultcount, ahead, behind;
221         struct faultstate fs;
222         struct vnode *vp;
223         int locked, error;
224
225         hardfault = 0;
226         growstack = TRUE;
227         PCPU_INC(cnt.v_vm_faults);
228         fs.vp = NULL;
229         fs.vfslocked = 0;
230         faultcount = behind = 0;
231
232 RetryFault:;
233
234         /*
235          * Find the backing store object and offset into it to begin the
236          * search.
237          */
238         fs.map = map;
239         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240             &fs.first_object, &fs.first_pindex, &prot, &wired);
241         if (result != KERN_SUCCESS) {
242                 if (result != KERN_PROTECTION_FAILURE ||
243                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244                         if (growstack && result == KERN_INVALID_ADDRESS &&
245                             map != kernel_map && curproc != NULL) {
246                                 result = vm_map_growstack(curproc, vaddr);
247                                 if (result != KERN_SUCCESS)
248                                         return (KERN_FAILURE);
249                                 growstack = FALSE;
250                                 goto RetryFault;
251                         }
252                         return (result);
253                 }
254
255                 /*
256                  * If we are user-wiring a r/w segment, and it is COW, then
257                  * we need to do the COW operation.  Note that we don't COW
258                  * currently RO sections now, because it is NOT desirable
259                  * to COW .text.  We simply keep .text from ever being COW'ed
260                  * and take the heat that one cannot debug wired .text sections.
261                  */
262                 result = vm_map_lookup(&fs.map, vaddr,
263                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265                 if (result != KERN_SUCCESS)
266                         return (result);
267
268                 /*
269                  * If we don't COW now, on a user wire, the user will never
270                  * be able to write to the mapping.  If we don't make this
271                  * restriction, the bookkeeping would be nearly impossible.
272                  *
273                  * XXX The following assignment modifies the map without
274                  * holding a write lock on it.
275                  */
276                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277                         fs.entry->max_protection &= ~VM_PROT_WRITE;
278         }
279
280         map_generation = fs.map->timestamp;
281
282         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283                 panic("vm_fault: fault on nofault entry, addr: %lx",
284                     (u_long)vaddr);
285         }
286
287         /*
288          * Make a reference to this object to prevent its disposal while we
289          * are messing with it.  Once we have the reference, the map is free
290          * to be diddled.  Since objects reference their shadows (and copies),
291          * they will stay around as well.
292          *
293          * Bump the paging-in-progress count to prevent size changes (e.g. 
294          * truncation operations) during I/O.  This must be done after
295          * obtaining the vnode lock in order to avoid possible deadlocks.
296          */
297         VM_OBJECT_LOCK(fs.first_object);
298         vm_object_reference_locked(fs.first_object);
299         vm_object_pip_add(fs.first_object, 1);
300
301         fs.lookup_still_valid = TRUE;
302
303         if (wired)
304                 fault_type = prot;
305
306         fs.first_m = NULL;
307
308         /*
309          * Search for the page at object/offset.
310          */
311         fs.object = fs.first_object;
312         fs.pindex = fs.first_pindex;
313         while (TRUE) {
314                 /*
315                  * If the object is dead, we stop here
316                  */
317                 if (fs.object->flags & OBJ_DEAD) {
318                         unlock_and_deallocate(&fs);
319                         return (KERN_PROTECTION_FAILURE);
320                 }
321
322                 /*
323                  * See if page is resident
324                  */
325                 fs.m = vm_page_lookup(fs.object, fs.pindex);
326                 if (fs.m != NULL) {
327                         /* 
328                          * check for page-based copy on write.
329                          * We check fs.object == fs.first_object so
330                          * as to ensure the legacy COW mechanism is
331                          * used when the page in question is part of
332                          * a shadow object.  Otherwise, vm_page_cowfault()
333                          * removes the page from the backing object, 
334                          * which is not what we want.
335                          */
336                         vm_page_lock_queues();
337                         if ((fs.m->cow) && 
338                             (fault_type & VM_PROT_WRITE) &&
339                             (fs.object == fs.first_object)) {
340                                 vm_page_cowfault(fs.m);
341                                 vm_page_unlock_queues();
342                                 unlock_and_deallocate(&fs);
343                                 goto RetryFault;
344                         }
345
346                         /*
347                          * Wait/Retry if the page is busy.  We have to do this
348                          * if the page is busy via either VPO_BUSY or 
349                          * vm_page_t->busy because the vm_pager may be using
350                          * vm_page_t->busy for pageouts ( and even pageins if
351                          * it is the vnode pager ), and we could end up trying
352                          * to pagein and pageout the same page simultaneously.
353                          *
354                          * We can theoretically allow the busy case on a read
355                          * fault if the page is marked valid, but since such
356                          * pages are typically already pmap'd, putting that
357                          * special case in might be more effort then it is 
358                          * worth.  We cannot under any circumstances mess
359                          * around with a vm_page_t->busy page except, perhaps,
360                          * to pmap it.
361                          */
362                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363                                 vm_page_unlock_queues();
364                                 VM_OBJECT_UNLOCK(fs.object);
365                                 if (fs.object != fs.first_object) {
366                                         VM_OBJECT_LOCK(fs.first_object);
367                                         vm_page_lock_queues();
368                                         vm_page_free(fs.first_m);
369                                         vm_page_unlock_queues();
370                                         vm_object_pip_wakeup(fs.first_object);
371                                         VM_OBJECT_UNLOCK(fs.first_object);
372                                         fs.first_m = NULL;
373                                 }
374                                 unlock_map(&fs);
375                                 VM_OBJECT_LOCK(fs.object);
376                                 if (fs.m == vm_page_lookup(fs.object,
377                                     fs.pindex)) {
378                                         vm_page_sleep_if_busy(fs.m, TRUE,
379                                             "vmpfw");
380                                 }
381                                 vm_object_pip_wakeup(fs.object);
382                                 VM_OBJECT_UNLOCK(fs.object);
383                                 PCPU_INC(cnt.v_intrans);
384                                 vm_object_deallocate(fs.first_object);
385                                 goto RetryFault;
386                         }
387                         vm_pageq_remove(fs.m);
388                         vm_page_unlock_queues();
389
390                         /*
391                          * Mark page busy for other processes, and the 
392                          * pagedaemon.  If it still isn't completely valid
393                          * (readable), jump to readrest, else break-out ( we
394                          * found the page ).
395                          */
396                         vm_page_busy(fs.m);
397                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
398                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
399                                 goto readrest;
400                         }
401
402                         break;
403                 }
404
405                 /*
406                  * Page is not resident, If this is the search termination
407                  * or the pager might contain the page, allocate a new page.
408                  */
409                 if (TRYPAGER || fs.object == fs.first_object) {
410                         if (fs.pindex >= fs.object->size) {
411                                 unlock_and_deallocate(&fs);
412                                 return (KERN_PROTECTION_FAILURE);
413                         }
414
415                         /*
416                          * Allocate a new page for this object/offset pair.
417                          */
418                         fs.m = NULL;
419                         if (!vm_page_count_severe()) {
420 #if VM_NRESERVLEVEL > 0
421                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
422                                         fs.object->flags |= OBJ_COLORED;
423                                         fs.object->pg_color = atop(vaddr) -
424                                             fs.pindex;
425                                 }
426 #endif
427                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
428                                     (fs.object->type == OBJT_VNODE ||
429                                      fs.object->backing_object != NULL) ?
430                                     VM_ALLOC_NORMAL : VM_ALLOC_ZERO);
431                         }
432                         if (fs.m == NULL) {
433                                 unlock_and_deallocate(&fs);
434                                 VM_WAITPFAULT;
435                                 goto RetryFault;
436                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
437                                 break;
438                 }
439
440 readrest:
441                 /*
442                  * We have found a valid page or we have allocated a new page.
443                  * The page thus may not be valid or may not be entirely 
444                  * valid.
445                  *
446                  * Attempt to fault-in the page if there is a chance that the
447                  * pager has it, and potentially fault in additional pages
448                  * at the same time.
449                  */
450                 if (TRYPAGER) {
451                         int rv;
452                         int reqpage = 0;
453                         u_char behavior = vm_map_entry_behavior(fs.entry);
454
455                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
456                                 ahead = 0;
457                                 behind = 0;
458                         } else {
459                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
460                                 if (behind > VM_FAULT_READ_BEHIND)
461                                         behind = VM_FAULT_READ_BEHIND;
462
463                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
464                                 if (ahead > VM_FAULT_READ_AHEAD)
465                                         ahead = VM_FAULT_READ_AHEAD;
466                         }
467                         is_first_object_locked = FALSE;
468                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
469                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
470                               fs.pindex >= fs.entry->lastr &&
471                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
472                             (fs.first_object == fs.object ||
473                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
474                             fs.first_object->type != OBJT_DEVICE &&
475                             fs.first_object->type != OBJT_PHYS) {
476                                 vm_pindex_t firstpindex, tmppindex;
477
478                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
479                                         firstpindex = 0;
480                                 else
481                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
482
483                                 are_queues_locked = FALSE;
484                                 /*
485                                  * note: partially valid pages cannot be 
486                                  * included in the lookahead - NFS piecemeal
487                                  * writes will barf on it badly.
488                                  */
489                                 for (tmppindex = fs.first_pindex - 1;
490                                         tmppindex >= firstpindex;
491                                         --tmppindex) {
492                                         vm_page_t mt;
493
494                                         mt = vm_page_lookup(fs.first_object, tmppindex);
495                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
496                                                 break;
497                                         if (mt->busy ||
498                                             (mt->oflags & VPO_BUSY))
499                                                 continue;
500                                         if (!are_queues_locked) {
501                                                 are_queues_locked = TRUE;
502                                                 vm_page_lock_queues();
503                                         }
504                                         if (mt->hold_count ||
505                                                 mt->wire_count) 
506                                                 continue;
507                                         pmap_remove_all(mt);
508                                         if (mt->dirty) {
509                                                 vm_page_deactivate(mt);
510                                         } else {
511                                                 vm_page_cache(mt);
512                                         }
513                                 }
514                                 if (are_queues_locked)
515                                         vm_page_unlock_queues();
516                                 ahead += behind;
517                                 behind = 0;
518                         }
519                         if (is_first_object_locked)
520                                 VM_OBJECT_UNLOCK(fs.first_object);
521
522                         /*
523                          * Call the pager to retrieve the data, if any, after
524                          * releasing the lock on the map.  We hold a ref on
525                          * fs.object and the pages are VPO_BUSY'd.
526                          */
527                         unlock_map(&fs);
528
529 vnode_lock:
530                         if (fs.object->type == OBJT_VNODE) {
531                                 vp = fs.object->handle;
532                                 if (vp == fs.vp)
533                                         goto vnode_locked;
534                                 else if (fs.vp != NULL) {
535                                         vput(fs.vp);
536                                         fs.vp = NULL;
537                                 }
538                                 locked = VOP_ISLOCKED(vp);
539
540                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
541                                         fs.vfslocked = 1;
542                                         if (!mtx_trylock(&Giant)) {
543                                                 VM_OBJECT_UNLOCK(fs.object);
544                                                 mtx_lock(&Giant);
545                                                 VM_OBJECT_LOCK(fs.object);
546                                                 goto vnode_lock;
547                                         }
548                                 }
549                                 if (locked != LK_EXCLUSIVE)
550                                         locked = LK_SHARED;
551                                 /* Do not sleep for vnode lock while fs.m is busy */
552                                 error = vget(vp, locked | LK_CANRECURSE |
553                                     LK_NOWAIT, curthread);
554                                 if (error != 0) {
555                                         int vfslocked;
556
557                                         vfslocked = fs.vfslocked;
558                                         fs.vfslocked = 0; /* Keep Giant */
559                                         vhold(vp);
560                                         release_page(&fs);
561                                         unlock_and_deallocate(&fs);
562                                         error = vget(vp, locked | LK_RETRY |
563                                             LK_CANRECURSE, curthread);
564                                         vdrop(vp);
565                                         fs.vp = vp;
566                                         fs.vfslocked = vfslocked;
567                                         KASSERT(error == 0,
568                                             ("vm_fault: vget failed"));
569                                         goto RetryFault;
570                                 }
571                                 fs.vp = vp;
572                         }
573 vnode_locked:
574                         KASSERT(fs.vp == NULL || !fs.map->system_map,
575                             ("vm_fault: vnode-backed object mapped by system map"));
576
577                         /*
578                          * now we find out if any other pages should be paged
579                          * in at this time this routine checks to see if the
580                          * pages surrounding this fault reside in the same
581                          * object as the page for this fault.  If they do,
582                          * then they are faulted in also into the object.  The
583                          * array "marray" returned contains an array of
584                          * vm_page_t structs where one of them is the
585                          * vm_page_t passed to the routine.  The reqpage
586                          * return value is the index into the marray for the
587                          * vm_page_t passed to the routine.
588                          *
589                          * fs.m plus the additional pages are VPO_BUSY'd.
590                          */
591                         faultcount = vm_fault_additional_pages(
592                             fs.m, behind, ahead, marray, &reqpage);
593
594                         rv = faultcount ?
595                             vm_pager_get_pages(fs.object, marray, faultcount,
596                                 reqpage) : VM_PAGER_FAIL;
597
598                         if (rv == VM_PAGER_OK) {
599                                 /*
600                                  * Found the page. Leave it busy while we play
601                                  * with it.
602                                  */
603
604                                 /*
605                                  * Relookup in case pager changed page. Pager
606                                  * is responsible for disposition of old page
607                                  * if moved.
608                                  */
609                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
610                                 if (!fs.m) {
611                                         unlock_and_deallocate(&fs);
612                                         goto RetryFault;
613                                 }
614
615                                 hardfault++;
616                                 break; /* break to PAGE HAS BEEN FOUND */
617                         }
618                         /*
619                          * Remove the bogus page (which does not exist at this
620                          * object/offset); before doing so, we must get back
621                          * our object lock to preserve our invariant.
622                          *
623                          * Also wake up any other process that may want to bring
624                          * in this page.
625                          *
626                          * If this is the top-level object, we must leave the
627                          * busy page to prevent another process from rushing
628                          * past us, and inserting the page in that object at
629                          * the same time that we are.
630                          */
631                         if (rv == VM_PAGER_ERROR)
632                                 printf("vm_fault: pager read error, pid %d (%s)\n",
633                                     curproc->p_pid, curproc->p_comm);
634                         /*
635                          * Data outside the range of the pager or an I/O error
636                          */
637                         /*
638                          * XXX - the check for kernel_map is a kludge to work
639                          * around having the machine panic on a kernel space
640                          * fault w/ I/O error.
641                          */
642                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
643                                 (rv == VM_PAGER_BAD)) {
644                                 vm_page_lock_queues();
645                                 vm_page_free(fs.m);
646                                 vm_page_unlock_queues();
647                                 fs.m = NULL;
648                                 unlock_and_deallocate(&fs);
649                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
650                         }
651                         if (fs.object != fs.first_object) {
652                                 vm_page_lock_queues();
653                                 vm_page_free(fs.m);
654                                 vm_page_unlock_queues();
655                                 fs.m = NULL;
656                                 /*
657                                  * XXX - we cannot just fall out at this
658                                  * point, m has been freed and is invalid!
659                                  */
660                         }
661                 }
662
663                 /*
664                  * We get here if the object has default pager (or unwiring) 
665                  * or the pager doesn't have the page.
666                  */
667                 if (fs.object == fs.first_object)
668                         fs.first_m = fs.m;
669
670                 /*
671                  * Move on to the next object.  Lock the next object before
672                  * unlocking the current one.
673                  */
674                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
675                 next_object = fs.object->backing_object;
676                 if (next_object == NULL) {
677                         /*
678                          * If there's no object left, fill the page in the top
679                          * object with zeros.
680                          */
681                         if (fs.object != fs.first_object) {
682                                 vm_object_pip_wakeup(fs.object);
683                                 VM_OBJECT_UNLOCK(fs.object);
684
685                                 fs.object = fs.first_object;
686                                 fs.pindex = fs.first_pindex;
687                                 fs.m = fs.first_m;
688                                 VM_OBJECT_LOCK(fs.object);
689                         }
690                         fs.first_m = NULL;
691
692                         /*
693                          * Zero the page if necessary and mark it valid.
694                          */
695                         if ((fs.m->flags & PG_ZERO) == 0) {
696                                 pmap_zero_page(fs.m);
697                         } else {
698                                 PCPU_INC(cnt.v_ozfod);
699                         }
700                         PCPU_INC(cnt.v_zfod);
701                         fs.m->valid = VM_PAGE_BITS_ALL;
702                         break;  /* break to PAGE HAS BEEN FOUND */
703                 } else {
704                         KASSERT(fs.object != next_object,
705                             ("object loop %p", next_object));
706                         VM_OBJECT_LOCK(next_object);
707                         vm_object_pip_add(next_object, 1);
708                         if (fs.object != fs.first_object)
709                                 vm_object_pip_wakeup(fs.object);
710                         VM_OBJECT_UNLOCK(fs.object);
711                         fs.object = next_object;
712                 }
713         }
714
715         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
716             ("vm_fault: not busy after main loop"));
717
718         /*
719          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
720          * is held.]
721          */
722
723         /*
724          * If the page is being written, but isn't already owned by the
725          * top-level object, we have to copy it into a new page owned by the
726          * top-level object.
727          */
728         if (fs.object != fs.first_object) {
729                 /*
730                  * We only really need to copy if we want to write it.
731                  */
732                 if (fault_type & VM_PROT_WRITE) {
733                         /*
734                          * This allows pages to be virtually copied from a 
735                          * backing_object into the first_object, where the 
736                          * backing object has no other refs to it, and cannot
737                          * gain any more refs.  Instead of a bcopy, we just 
738                          * move the page from the backing object to the 
739                          * first object.  Note that we must mark the page 
740                          * dirty in the first object so that it will go out 
741                          * to swap when needed.
742                          */
743                         is_first_object_locked = FALSE;
744                         if (
745                                 /*
746                                  * Only one shadow object
747                                  */
748                                 (fs.object->shadow_count == 1) &&
749                                 /*
750                                  * No COW refs, except us
751                                  */
752                                 (fs.object->ref_count == 1) &&
753                                 /*
754                                  * No one else can look this object up
755                                  */
756                                 (fs.object->handle == NULL) &&
757                                 /*
758                                  * No other ways to look the object up
759                                  */
760                                 ((fs.object->type == OBJT_DEFAULT) ||
761                                  (fs.object->type == OBJT_SWAP)) &&
762                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
763                                 /*
764                                  * We don't chase down the shadow chain
765                                  */
766                             fs.object == fs.first_object->backing_object) {
767                                 vm_page_lock_queues();
768                                 /*
769                                  * get rid of the unnecessary page
770                                  */
771                                 vm_page_free(fs.first_m);
772                                 /*
773                                  * grab the page and put it into the 
774                                  * process'es object.  The page is 
775                                  * automatically made dirty.
776                                  */
777                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
778                                 vm_page_unlock_queues();
779                                 vm_page_busy(fs.m);
780                                 fs.first_m = fs.m;
781                                 fs.m = NULL;
782                                 PCPU_INC(cnt.v_cow_optim);
783                         } else {
784                                 /*
785                                  * Oh, well, lets copy it.
786                                  */
787                                 pmap_copy_page(fs.m, fs.first_m);
788                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
789                         }
790                         if (fs.m) {
791                                 /*
792                                  * We no longer need the old page or object.
793                                  */
794                                 release_page(&fs);
795                         }
796                         /*
797                          * fs.object != fs.first_object due to above 
798                          * conditional
799                          */
800                         vm_object_pip_wakeup(fs.object);
801                         VM_OBJECT_UNLOCK(fs.object);
802                         /*
803                          * Only use the new page below...
804                          */
805                         fs.object = fs.first_object;
806                         fs.pindex = fs.first_pindex;
807                         fs.m = fs.first_m;
808                         if (!is_first_object_locked)
809                                 VM_OBJECT_LOCK(fs.object);
810                         PCPU_INC(cnt.v_cow_faults);
811                 } else {
812                         prot &= ~VM_PROT_WRITE;
813                 }
814         }
815
816         /*
817          * We must verify that the maps have not changed since our last
818          * lookup.
819          */
820         if (!fs.lookup_still_valid) {
821                 vm_object_t retry_object;
822                 vm_pindex_t retry_pindex;
823                 vm_prot_t retry_prot;
824
825                 if (!vm_map_trylock_read(fs.map)) {
826                         release_page(&fs);
827                         unlock_and_deallocate(&fs);
828                         goto RetryFault;
829                 }
830                 fs.lookup_still_valid = TRUE;
831                 if (fs.map->timestamp != map_generation) {
832                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
833                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
834
835                         /*
836                          * If we don't need the page any longer, put it on the inactive
837                          * list (the easiest thing to do here).  If no one needs it,
838                          * pageout will grab it eventually.
839                          */
840                         if (result != KERN_SUCCESS) {
841                                 release_page(&fs);
842                                 unlock_and_deallocate(&fs);
843
844                                 /*
845                                  * If retry of map lookup would have blocked then
846                                  * retry fault from start.
847                                  */
848                                 if (result == KERN_FAILURE)
849                                         goto RetryFault;
850                                 return (result);
851                         }
852                         if ((retry_object != fs.first_object) ||
853                             (retry_pindex != fs.first_pindex)) {
854                                 release_page(&fs);
855                                 unlock_and_deallocate(&fs);
856                                 goto RetryFault;
857                         }
858
859                         /*
860                          * Check whether the protection has changed or the object has
861                          * been copied while we left the map unlocked. Changing from
862                          * read to write permission is OK - we leave the page
863                          * write-protected, and catch the write fault. Changing from
864                          * write to read permission means that we can't mark the page
865                          * write-enabled after all.
866                          */
867                         prot &= retry_prot;
868                 }
869         }
870         /*
871          * If the page was filled by a pager, update the map entry's
872          * last read offset.  Since the pager does not return the
873          * actual set of pages that it read, this update is based on
874          * the requested set.  Typically, the requested and actual
875          * sets are the same.
876          *
877          * XXX The following assignment modifies the map
878          * without holding a write lock on it.
879          */
880         if (hardfault)
881                 fs.entry->lastr = fs.pindex + faultcount - behind;
882
883         if (prot & VM_PROT_WRITE) {
884                 vm_object_set_writeable_dirty(fs.object);
885
886                 /*
887                  * If the fault is a write, we know that this page is being
888                  * written NOW so dirty it explicitly to save on 
889                  * pmap_is_modified() calls later.
890                  *
891                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
892                  * if the page is already dirty to prevent data written with
893                  * the expectation of being synced from not being synced.
894                  * Likewise if this entry does not request NOSYNC then make
895                  * sure the page isn't marked NOSYNC.  Applications sharing
896                  * data should use the same flags to avoid ping ponging.
897                  *
898                  * Also tell the backing pager, if any, that it should remove
899                  * any swap backing since the page is now dirty.
900                  */
901                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
902                         if (fs.m->dirty == 0)
903                                 fs.m->oflags |= VPO_NOSYNC;
904                 } else {
905                         fs.m->oflags &= ~VPO_NOSYNC;
906                 }
907                 if (fault_flags & VM_FAULT_DIRTY) {
908                         vm_page_dirty(fs.m);
909                         vm_pager_page_unswapped(fs.m);
910                 }
911         }
912
913         /*
914          * Page had better still be busy
915          */
916         KASSERT(fs.m->oflags & VPO_BUSY,
917                 ("vm_fault: page %p not busy!", fs.m));
918         /*
919          * Page must be completely valid or it is not fit to
920          * map into user space.  vm_pager_get_pages() ensures this.
921          */
922         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
923             ("vm_fault: page %p partially invalid", fs.m));
924         VM_OBJECT_UNLOCK(fs.object);
925
926         /*
927          * Put this page into the physical map.  We had to do the unlock above
928          * because pmap_enter() may sleep.  We don't put the page
929          * back on the active queue until later so that the pageout daemon
930          * won't find it (yet).
931          */
932         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
933         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
934                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
935         }
936         VM_OBJECT_LOCK(fs.object);
937         vm_page_lock_queues();
938         vm_page_flag_set(fs.m, PG_REFERENCED);
939
940         /*
941          * If the page is not wired down, then put it where the pageout daemon
942          * can find it.
943          */
944         if (fault_flags & VM_FAULT_WIRE_MASK) {
945                 if (wired)
946                         vm_page_wire(fs.m);
947                 else
948                         vm_page_unwire(fs.m, 1);
949         } else {
950                 vm_page_activate(fs.m);
951         }
952         vm_page_unlock_queues();
953         vm_page_wakeup(fs.m);
954
955         /*
956          * Unlock everything, and return
957          */
958         unlock_and_deallocate(&fs);
959         if (hardfault)
960                 curthread->td_ru.ru_majflt++;
961         else
962                 curthread->td_ru.ru_minflt++;
963
964         return (KERN_SUCCESS);
965 }
966
967 /*
968  * vm_fault_prefault provides a quick way of clustering
969  * pagefaults into a processes address space.  It is a "cousin"
970  * of vm_map_pmap_enter, except it runs at page fault time instead
971  * of mmap time.
972  */
973 static void
974 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
975 {
976         int i;
977         vm_offset_t addr, starta;
978         vm_pindex_t pindex;
979         vm_page_t m;
980         vm_object_t object;
981
982         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
983                 return;
984
985         object = entry->object.vm_object;
986
987         starta = addra - PFBAK * PAGE_SIZE;
988         if (starta < entry->start) {
989                 starta = entry->start;
990         } else if (starta > addra) {
991                 starta = 0;
992         }
993
994         for (i = 0; i < PAGEORDER_SIZE; i++) {
995                 vm_object_t backing_object, lobject;
996
997                 addr = addra + prefault_pageorder[i];
998                 if (addr > addra + (PFFOR * PAGE_SIZE))
999                         addr = 0;
1000
1001                 if (addr < starta || addr >= entry->end)
1002                         continue;
1003
1004                 if (!pmap_is_prefaultable(pmap, addr))
1005                         continue;
1006
1007                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1008                 lobject = object;
1009                 VM_OBJECT_LOCK(lobject);
1010                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1011                     lobject->type == OBJT_DEFAULT &&
1012                     (backing_object = lobject->backing_object) != NULL) {
1013                         if (lobject->backing_object_offset & PAGE_MASK)
1014                                 break;
1015                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1016                         VM_OBJECT_LOCK(backing_object);
1017                         VM_OBJECT_UNLOCK(lobject);
1018                         lobject = backing_object;
1019                 }
1020                 /*
1021                  * give-up when a page is not in memory
1022                  */
1023                 if (m == NULL) {
1024                         VM_OBJECT_UNLOCK(lobject);
1025                         break;
1026                 }
1027                 if (m->valid == VM_PAGE_BITS_ALL &&
1028                     (m->flags & PG_FICTITIOUS) == 0) {
1029                         vm_page_lock_queues();
1030                         pmap_enter_quick(pmap, addr, m, entry->protection);
1031                         vm_page_unlock_queues();
1032                 }
1033                 VM_OBJECT_UNLOCK(lobject);
1034         }
1035 }
1036
1037 /*
1038  *      vm_fault_quick:
1039  *
1040  *      Ensure that the requested virtual address, which may be in userland,
1041  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1042  */
1043 int
1044 vm_fault_quick(caddr_t v, int prot)
1045 {
1046         int r;
1047
1048         if (prot & VM_PROT_WRITE)
1049                 r = subyte(v, fubyte(v));
1050         else
1051                 r = fubyte(v);
1052         return(r);
1053 }
1054
1055 /*
1056  *      vm_fault_wire:
1057  *
1058  *      Wire down a range of virtual addresses in a map.
1059  */
1060 int
1061 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1062     boolean_t user_wire, boolean_t fictitious)
1063 {
1064         vm_offset_t va;
1065         int rv;
1066
1067         /*
1068          * We simulate a fault to get the page and enter it in the physical
1069          * map.  For user wiring, we only ask for read access on currently
1070          * read-only sections.
1071          */
1072         for (va = start; va < end; va += PAGE_SIZE) {
1073                 rv = vm_fault(map, va,
1074                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1075                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1076                 if (rv) {
1077                         if (va != start)
1078                                 vm_fault_unwire(map, start, va, fictitious);
1079                         return (rv);
1080                 }
1081         }
1082         return (KERN_SUCCESS);
1083 }
1084
1085 /*
1086  *      vm_fault_unwire:
1087  *
1088  *      Unwire a range of virtual addresses in a map.
1089  */
1090 void
1091 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1092     boolean_t fictitious)
1093 {
1094         vm_paddr_t pa;
1095         vm_offset_t va;
1096         pmap_t pmap;
1097
1098         pmap = vm_map_pmap(map);
1099
1100         /*
1101          * Since the pages are wired down, we must be able to get their
1102          * mappings from the physical map system.
1103          */
1104         for (va = start; va < end; va += PAGE_SIZE) {
1105                 pa = pmap_extract(pmap, va);
1106                 if (pa != 0) {
1107                         pmap_change_wiring(pmap, va, FALSE);
1108                         if (!fictitious) {
1109                                 vm_page_lock_queues();
1110                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1111                                 vm_page_unlock_queues();
1112                         }
1113                 }
1114         }
1115 }
1116
1117 /*
1118  *      Routine:
1119  *              vm_fault_copy_entry
1120  *      Function:
1121  *              Copy all of the pages from a wired-down map entry to another.
1122  *
1123  *      In/out conditions:
1124  *              The source and destination maps must be locked for write.
1125  *              The source map entry must be wired down (or be a sharing map
1126  *              entry corresponding to a main map entry that is wired down).
1127  */
1128 void
1129 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1130     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1131     vm_ooffset_t *fork_charge)
1132 {
1133         vm_object_t backing_object, dst_object, object;
1134         vm_object_t src_object;
1135         vm_ooffset_t dst_offset;
1136         vm_ooffset_t src_offset;
1137         vm_pindex_t pindex;
1138         vm_prot_t prot;
1139         vm_offset_t vaddr;
1140         vm_page_t dst_m;
1141         vm_page_t src_m;
1142
1143 #ifdef  lint
1144         src_map++;
1145 #endif  /* lint */
1146
1147         src_object = src_entry->object.vm_object;
1148         src_offset = src_entry->offset;
1149
1150         /*
1151          * Create the top-level object for the destination entry. (Doesn't
1152          * actually shadow anything - we copy the pages directly.)
1153          */
1154         dst_object = vm_object_allocate(OBJT_DEFAULT,
1155             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1156 #if VM_NRESERVLEVEL > 0
1157         dst_object->flags |= OBJ_COLORED;
1158         dst_object->pg_color = atop(dst_entry->start);
1159 #endif
1160
1161         VM_OBJECT_LOCK(dst_object);
1162         KASSERT(dst_entry->object.vm_object == NULL,
1163             ("vm_fault_copy_entry: vm_object not NULL"));
1164         dst_entry->object.vm_object = dst_object;
1165         dst_entry->offset = 0;
1166         dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1167         uihold(dst_object->uip);
1168         dst_object->charge = dst_entry->end - dst_entry->start;
1169         KASSERT(dst_entry->uip == NULL,
1170             ("vm_fault_copy_entry: leaked swp charge"));
1171         *fork_charge += dst_object->charge;
1172         prot = dst_entry->max_protection;
1173
1174         /*
1175          * Loop through all of the pages in the entry's range, copying each
1176          * one from the source object (it should be there) to the destination
1177          * object.
1178          */
1179         for (vaddr = dst_entry->start, dst_offset = 0;
1180             vaddr < dst_entry->end;
1181             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1182
1183                 /*
1184                  * Allocate a page in the destination object
1185                  */
1186                 do {
1187                         dst_m = vm_page_alloc(dst_object,
1188                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1189                         if (dst_m == NULL) {
1190                                 VM_OBJECT_UNLOCK(dst_object);
1191                                 VM_WAIT;
1192                                 VM_OBJECT_LOCK(dst_object);
1193                         }
1194                 } while (dst_m == NULL);
1195
1196                 /*
1197                  * Find the page in the source object, and copy it in.
1198                  * (Because the source is wired down, the page will be in
1199                  * memory.)
1200                  */
1201                 VM_OBJECT_LOCK(src_object);
1202                 object = src_object;
1203                 pindex = 0;
1204                 while ((src_m = vm_page_lookup(object, pindex +
1205                     OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1206                     (src_entry->protection & VM_PROT_WRITE) == 0 &&
1207                     (backing_object = object->backing_object) != NULL) {
1208                         /*
1209                          * Allow fallback to backing objects if we are reading.
1210                          */
1211                         VM_OBJECT_LOCK(backing_object);
1212                         pindex += OFF_TO_IDX(object->backing_object_offset);
1213                         VM_OBJECT_UNLOCK(object);
1214                         object = backing_object;
1215                 }
1216                 if (src_m == NULL)
1217                         panic("vm_fault_copy_wired: page missing");
1218                 pmap_copy_page(src_m, dst_m);
1219                 VM_OBJECT_UNLOCK(object);
1220                 dst_m->valid = VM_PAGE_BITS_ALL;
1221                 VM_OBJECT_UNLOCK(dst_object);
1222
1223                 /*
1224                  * Enter it in the pmap as a read and/or execute access.
1225                  */
1226                 pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
1227                     prot, FALSE);
1228
1229                 /*
1230                  * Mark it no longer busy, and put it on the active list.
1231                  */
1232                 VM_OBJECT_LOCK(dst_object);
1233                 vm_page_lock_queues();
1234                 vm_page_activate(dst_m);
1235                 vm_page_unlock_queues();
1236                 vm_page_wakeup(dst_m);
1237         }
1238         VM_OBJECT_UNLOCK(dst_object);
1239 }
1240
1241
1242 /*
1243  * This routine checks around the requested page for other pages that
1244  * might be able to be faulted in.  This routine brackets the viable
1245  * pages for the pages to be paged in.
1246  *
1247  * Inputs:
1248  *      m, rbehind, rahead
1249  *
1250  * Outputs:
1251  *  marray (array of vm_page_t), reqpage (index of requested page)
1252  *
1253  * Return value:
1254  *  number of pages in marray
1255  */
1256 static int
1257 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1258         vm_page_t m;
1259         int rbehind;
1260         int rahead;
1261         vm_page_t *marray;
1262         int *reqpage;
1263 {
1264         int i,j;
1265         vm_object_t object;
1266         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1267         vm_page_t rtm;
1268         int cbehind, cahead;
1269
1270         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1271
1272         object = m->object;
1273         pindex = m->pindex;
1274         cbehind = cahead = 0;
1275
1276         /*
1277          * if the requested page is not available, then give up now
1278          */
1279         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1280                 return 0;
1281         }
1282
1283         if ((cbehind == 0) && (cahead == 0)) {
1284                 *reqpage = 0;
1285                 marray[0] = m;
1286                 return 1;
1287         }
1288
1289         if (rahead > cahead) {
1290                 rahead = cahead;
1291         }
1292
1293         if (rbehind > cbehind) {
1294                 rbehind = cbehind;
1295         }
1296
1297         /*
1298          * scan backward for the read behind pages -- in memory 
1299          */
1300         if (pindex > 0) {
1301                 if (rbehind > pindex) {
1302                         rbehind = pindex;
1303                         startpindex = 0;
1304                 } else {
1305                         startpindex = pindex - rbehind;
1306                 }
1307
1308                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1309                     rtm->pindex >= startpindex)
1310                         startpindex = rtm->pindex + 1;
1311
1312                 /* tpindex is unsigned; beware of numeric underflow. */
1313                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1314                     tpindex < pindex; i++, tpindex--) {
1315
1316                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1317                             VM_ALLOC_IFNOTCACHED);
1318                         if (rtm == NULL) {
1319                                 /*
1320                                  * Shift the allocated pages to the
1321                                  * beginning of the array.
1322                                  */
1323                                 for (j = 0; j < i; j++) {
1324                                         marray[j] = marray[j + tpindex + 1 -
1325                                             startpindex];
1326                                 }
1327                                 break;
1328                         }
1329
1330                         marray[tpindex - startpindex] = rtm;
1331                 }
1332         } else {
1333                 startpindex = 0;
1334                 i = 0;
1335         }
1336
1337         marray[i] = m;
1338         /* page offset of the required page */
1339         *reqpage = i;
1340
1341         tpindex = pindex + 1;
1342         i++;
1343
1344         /*
1345          * scan forward for the read ahead pages
1346          */
1347         endpindex = tpindex + rahead;
1348         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1349                 endpindex = rtm->pindex;
1350         if (endpindex > object->size)
1351                 endpindex = object->size;
1352
1353         for (; tpindex < endpindex; i++, tpindex++) {
1354
1355                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1356                     VM_ALLOC_IFNOTCACHED);
1357                 if (rtm == NULL) {
1358                         break;
1359                 }
1360
1361                 marray[i] = rtm;
1362         }
1363
1364         /* return number of pages */
1365         return i;
1366 }