]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Upgrade Unbound to 1.6.0. More to follow.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/resourcevar.h>
90 #include <sys/rwlock.h>
91 #include <sys/sysctl.h>
92 #include <sys/vmmeter.h>
93 #include <sys/vnode.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109
110 #define PFBAK 4
111 #define PFFOR 4
112
113 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
114 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
115
116 #define VM_FAULT_DONTNEED_MIN   1048576
117
118 struct faultstate {
119         vm_page_t m;
120         vm_object_t object;
121         vm_pindex_t pindex;
122         vm_page_t first_m;
123         vm_object_t     first_object;
124         vm_pindex_t first_pindex;
125         vm_map_t map;
126         vm_map_entry_t entry;
127         int map_generation;
128         bool lookup_still_valid;
129         struct vnode *vp;
130 };
131
132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
133             int ahead);
134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
135             int backward, int forward, bool obj_locked);
136
137 static inline void
138 release_page(struct faultstate *fs)
139 {
140
141         vm_page_xunbusy(fs->m);
142         vm_page_lock(fs->m);
143         vm_page_deactivate(fs->m);
144         vm_page_unlock(fs->m);
145         fs->m = NULL;
146 }
147
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151
152         if (fs->lookup_still_valid) {
153                 vm_map_lookup_done(fs->map, fs->entry);
154                 fs->lookup_still_valid = false;
155         }
156 }
157
158 static void
159 unlock_vp(struct faultstate *fs)
160 {
161
162         if (fs->vp != NULL) {
163                 vput(fs->vp);
164                 fs->vp = NULL;
165         }
166 }
167
168 static void
169 unlock_and_deallocate(struct faultstate *fs)
170 {
171
172         vm_object_pip_wakeup(fs->object);
173         VM_OBJECT_WUNLOCK(fs->object);
174         if (fs->object != fs->first_object) {
175                 VM_OBJECT_WLOCK(fs->first_object);
176                 vm_page_lock(fs->first_m);
177                 vm_page_free(fs->first_m);
178                 vm_page_unlock(fs->first_m);
179                 vm_object_pip_wakeup(fs->first_object);
180                 VM_OBJECT_WUNLOCK(fs->first_object);
181                 fs->first_m = NULL;
182         }
183         vm_object_deallocate(fs->first_object);
184         unlock_map(fs);
185         unlock_vp(fs);
186 }
187
188 static void
189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
190     vm_prot_t fault_type, int fault_flags, bool set_wd)
191 {
192         bool need_dirty;
193
194         if (((prot & VM_PROT_WRITE) == 0 &&
195             (fault_flags & VM_FAULT_DIRTY) == 0) ||
196             (m->oflags & VPO_UNMANAGED) != 0)
197                 return;
198
199         VM_OBJECT_ASSERT_LOCKED(m->object);
200
201         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
202             (fault_flags & VM_FAULT_WIRE) == 0) ||
203             (fault_flags & VM_FAULT_DIRTY) != 0;
204
205         if (set_wd)
206                 vm_object_set_writeable_dirty(m->object);
207         else
208                 /*
209                  * If two callers of vm_fault_dirty() with set_wd ==
210                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
211                  * flag set, other with flag clear, race, it is
212                  * possible for the no-NOSYNC thread to see m->dirty
213                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
214                  * around manipulation of VPO_NOSYNC and
215                  * vm_page_dirty() call, to avoid the race and keep
216                  * m->oflags consistent.
217                  */
218                 vm_page_lock(m);
219
220         /*
221          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
222          * if the page is already dirty to prevent data written with
223          * the expectation of being synced from not being synced.
224          * Likewise if this entry does not request NOSYNC then make
225          * sure the page isn't marked NOSYNC.  Applications sharing
226          * data should use the same flags to avoid ping ponging.
227          */
228         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
229                 if (m->dirty == 0) {
230                         m->oflags |= VPO_NOSYNC;
231                 }
232         } else {
233                 m->oflags &= ~VPO_NOSYNC;
234         }
235
236         /*
237          * If the fault is a write, we know that this page is being
238          * written NOW so dirty it explicitly to save on
239          * pmap_is_modified() calls later.
240          *
241          * Also, since the page is now dirty, we can possibly tell
242          * the pager to release any swap backing the page.  Calling
243          * the pager requires a write lock on the object.
244          */
245         if (need_dirty)
246                 vm_page_dirty(m);
247         if (!set_wd)
248                 vm_page_unlock(m);
249         else if (need_dirty)
250                 vm_pager_page_unswapped(m);
251 }
252
253 static void
254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
255 {
256
257         if (m_hold != NULL) {
258                 *m_hold = m;
259                 vm_page_lock(m);
260                 vm_page_hold(m);
261                 vm_page_unlock(m);
262         }
263 }
264
265 /*
266  * Unlocks fs.first_object and fs.map on success.
267  */
268 static int
269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
270     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
271 {
272         vm_page_t m, m_map;
273 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
274         vm_page_t m_super;
275         int flags;
276 #endif
277         int psind, rv;
278
279         MPASS(fs->vp == NULL);
280         m = vm_page_lookup(fs->first_object, fs->first_pindex);
281         /* A busy page can be mapped for read|execute access. */
282         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
283             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
284                 return (KERN_FAILURE);
285         m_map = m;
286         psind = 0;
287 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
288         if ((m->flags & PG_FICTITIOUS) == 0 &&
289             (m_super = vm_reserv_to_superpage(m)) != NULL &&
290             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
291             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
292             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
293             (pagesizes[m_super->psind] - 1)) &&
294             pmap_ps_enabled(fs->map->pmap)) {
295                 flags = PS_ALL_VALID;
296                 if ((prot & VM_PROT_WRITE) != 0) {
297                         /*
298                          * Create a superpage mapping allowing write access
299                          * only if none of the constituent pages are busy and
300                          * all of them are already dirty (except possibly for
301                          * the page that was faulted on).
302                          */
303                         flags |= PS_NONE_BUSY;
304                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
305                                 flags |= PS_ALL_DIRTY;
306                 }
307                 if (vm_page_ps_test(m_super, flags, m)) {
308                         m_map = m_super;
309                         psind = m_super->psind;
310                         vaddr = rounddown2(vaddr, pagesizes[psind]);
311                         /* Preset the modified bit for dirty superpages. */
312                         if ((flags & PS_ALL_DIRTY) != 0)
313                                 fault_type |= VM_PROT_WRITE;
314                 }
315         }
316 #endif
317         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
318             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
319         if (rv != KERN_SUCCESS)
320                 return (rv);
321         vm_fault_fill_hold(m_hold, m);
322         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
323         if (psind == 0 && !wired)
324                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
325         VM_OBJECT_RUNLOCK(fs->first_object);
326         vm_map_lookup_done(fs->map, fs->entry);
327         curthread->td_ru.ru_minflt++;
328         return (KERN_SUCCESS);
329 }
330
331 static void
332 vm_fault_restore_map_lock(struct faultstate *fs)
333 {
334
335         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
336         MPASS(fs->first_object->paging_in_progress > 0);
337
338         if (!vm_map_trylock_read(fs->map)) {
339                 VM_OBJECT_WUNLOCK(fs->first_object);
340                 vm_map_lock_read(fs->map);
341                 VM_OBJECT_WLOCK(fs->first_object);
342         }
343         fs->lookup_still_valid = true;
344 }
345
346 static void
347 vm_fault_populate_check_page(vm_page_t m)
348 {
349
350         /*
351          * Check each page to ensure that the pager is obeying the
352          * interface: the page must be installed in the object, fully
353          * valid, and exclusively busied.
354          */
355         MPASS(m != NULL);
356         MPASS(m->valid == VM_PAGE_BITS_ALL);
357         MPASS(vm_page_xbusied(m));
358 }
359
360 static void
361 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
362     vm_pindex_t last)
363 {
364         vm_page_t m;
365         vm_pindex_t pidx;
366
367         VM_OBJECT_ASSERT_WLOCKED(object);
368         MPASS(first <= last);
369         for (pidx = first, m = vm_page_lookup(object, pidx);
370             pidx <= last; pidx++, m = vm_page_next(m)) {
371                 vm_fault_populate_check_page(m);
372                 vm_page_lock(m);
373                 vm_page_deactivate(m);
374                 vm_page_unlock(m);
375                 vm_page_xunbusy(m);
376         }
377 }
378
379 static int
380 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
381     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
382 {
383         vm_page_t m;
384         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
385         int rv;
386
387         MPASS(fs->object == fs->first_object);
388         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
389         MPASS(fs->first_object->paging_in_progress > 0);
390         MPASS(fs->first_object->backing_object == NULL);
391         MPASS(fs->lookup_still_valid);
392
393         pager_first = OFF_TO_IDX(fs->entry->offset);
394         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
395         unlock_map(fs);
396         unlock_vp(fs);
397
398         /*
399          * Call the pager (driver) populate() method.
400          *
401          * There is no guarantee that the method will be called again
402          * if the current fault is for read, and a future fault is
403          * for write.  Report the entry's maximum allowed protection
404          * to the driver.
405          */
406         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
407             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
408
409         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
410         if (rv == VM_PAGER_BAD) {
411                 /*
412                  * VM_PAGER_BAD is the backdoor for a pager to request
413                  * normal fault handling.
414                  */
415                 vm_fault_restore_map_lock(fs);
416                 if (fs->map->timestamp != fs->map_generation)
417                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
418                 return (KERN_NOT_RECEIVER);
419         }
420         if (rv != VM_PAGER_OK)
421                 return (KERN_FAILURE); /* AKA SIGSEGV */
422
423         /* Ensure that the driver is obeying the interface. */
424         MPASS(pager_first <= pager_last);
425         MPASS(fs->first_pindex <= pager_last);
426         MPASS(fs->first_pindex >= pager_first);
427         MPASS(pager_last < fs->first_object->size);
428
429         vm_fault_restore_map_lock(fs);
430         if (fs->map->timestamp != fs->map_generation) {
431                 vm_fault_populate_cleanup(fs->first_object, pager_first,
432                     pager_last);
433                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
434         }
435
436         /*
437          * The map is unchanged after our last unlock.  Process the fault.
438          *
439          * The range [pager_first, pager_last] that is given to the
440          * pager is only a hint.  The pager may populate any range
441          * within the object that includes the requested page index.
442          * In case the pager expanded the range, clip it to fit into
443          * the map entry.
444          */
445         map_first = OFF_TO_IDX(fs->entry->offset);
446         if (map_first > pager_first) {
447                 vm_fault_populate_cleanup(fs->first_object, pager_first,
448                     map_first - 1);
449                 pager_first = map_first;
450         }
451         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
452         if (map_last < pager_last) {
453                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
454                     pager_last);
455                 pager_last = map_last;
456         }
457         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
458             pidx <= pager_last; pidx++, m = vm_page_next(m)) {
459                 vm_fault_populate_check_page(m);
460                 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
461                     true);
462                 VM_OBJECT_WUNLOCK(fs->first_object);
463                 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
464                     fs->entry->offset, m, prot, fault_type | (wired ?
465                     PMAP_ENTER_WIRED : 0), 0);
466                 VM_OBJECT_WLOCK(fs->first_object);
467                 if (pidx == fs->first_pindex)
468                         vm_fault_fill_hold(m_hold, m);
469                 vm_page_lock(m);
470                 if ((fault_flags & VM_FAULT_WIRE) != 0) {
471                         KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
472                         vm_page_wire(m);
473                 } else {
474                         vm_page_activate(m);
475                 }
476                 vm_page_unlock(m);
477                 vm_page_xunbusy(m);
478         }
479         curthread->td_ru.ru_majflt++;
480         return (KERN_SUCCESS);
481 }
482
483 /*
484  *      vm_fault:
485  *
486  *      Handle a page fault occurring at the given address,
487  *      requiring the given permissions, in the map specified.
488  *      If successful, the page is inserted into the
489  *      associated physical map.
490  *
491  *      NOTE: the given address should be truncated to the
492  *      proper page address.
493  *
494  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
495  *      a standard error specifying why the fault is fatal is returned.
496  *
497  *      The map in question must be referenced, and remains so.
498  *      Caller may hold no locks.
499  */
500 int
501 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
502     int fault_flags)
503 {
504         struct thread *td;
505         int result;
506
507         td = curthread;
508         if ((td->td_pflags & TDP_NOFAULTING) != 0)
509                 return (KERN_PROTECTION_FAILURE);
510 #ifdef KTRACE
511         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
512                 ktrfault(vaddr, fault_type);
513 #endif
514         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
515             NULL);
516 #ifdef KTRACE
517         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
518                 ktrfaultend(result);
519 #endif
520         return (result);
521 }
522
523 int
524 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
525     int fault_flags, vm_page_t *m_hold)
526 {
527         struct faultstate fs;
528         struct vnode *vp;
529         vm_object_t next_object, retry_object;
530         vm_offset_t e_end, e_start;
531         vm_pindex_t retry_pindex;
532         vm_prot_t prot, retry_prot;
533         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
534         int locked, nera, result, rv;
535         u_char behavior;
536         boolean_t wired;        /* Passed by reference. */
537         bool dead, hardfault, is_first_object_locked;
538
539         VM_CNT_INC(v_vm_faults);
540         fs.vp = NULL;
541         faultcount = 0;
542         nera = -1;
543         hardfault = false;
544
545 RetryFault:;
546
547         /*
548          * Find the backing store object and offset into it to begin the
549          * search.
550          */
551         fs.map = map;
552         result = vm_map_lookup(&fs.map, vaddr, fault_type |
553             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
554             &fs.first_pindex, &prot, &wired);
555         if (result != KERN_SUCCESS) {
556                 unlock_vp(&fs);
557                 return (result);
558         }
559
560         fs.map_generation = fs.map->timestamp;
561
562         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
563                 panic("%s: fault on nofault entry, addr: %#lx",
564                     __func__, (u_long)vaddr);
565         }
566
567         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
568             fs.entry->wiring_thread != curthread) {
569                 vm_map_unlock_read(fs.map);
570                 vm_map_lock(fs.map);
571                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
572                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
573                         unlock_vp(&fs);
574                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
575                         vm_map_unlock_and_wait(fs.map, 0);
576                 } else
577                         vm_map_unlock(fs.map);
578                 goto RetryFault;
579         }
580
581         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
582
583         if (wired)
584                 fault_type = prot | (fault_type & VM_PROT_COPY);
585         else
586                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
587                     ("!wired && VM_FAULT_WIRE"));
588
589         /*
590          * Try to avoid lock contention on the top-level object through
591          * special-case handling of some types of page faults, specifically,
592          * those that are both (1) mapping an existing page from the top-
593          * level object and (2) not having to mark that object as containing
594          * dirty pages.  Under these conditions, a read lock on the top-level
595          * object suffices, allowing multiple page faults of a similar type to
596          * run in parallel on the same top-level object.
597          */
598         if (fs.vp == NULL /* avoid locked vnode leak */ &&
599             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
600             /* avoid calling vm_object_set_writeable_dirty() */
601             ((prot & VM_PROT_WRITE) == 0 ||
602             (fs.first_object->type != OBJT_VNODE &&
603             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
604             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
605                 VM_OBJECT_RLOCK(fs.first_object);
606                 if ((prot & VM_PROT_WRITE) == 0 ||
607                     (fs.first_object->type != OBJT_VNODE &&
608                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
609                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
610                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
611                             fault_flags, wired, m_hold);
612                         if (rv == KERN_SUCCESS)
613                                 return (rv);
614                 }
615                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
616                         VM_OBJECT_RUNLOCK(fs.first_object);
617                         VM_OBJECT_WLOCK(fs.first_object);
618                 }
619         } else {
620                 VM_OBJECT_WLOCK(fs.first_object);
621         }
622
623         /*
624          * Make a reference to this object to prevent its disposal while we
625          * are messing with it.  Once we have the reference, the map is free
626          * to be diddled.  Since objects reference their shadows (and copies),
627          * they will stay around as well.
628          *
629          * Bump the paging-in-progress count to prevent size changes (e.g. 
630          * truncation operations) during I/O.
631          */
632         vm_object_reference_locked(fs.first_object);
633         vm_object_pip_add(fs.first_object, 1);
634
635         fs.lookup_still_valid = true;
636
637         fs.first_m = NULL;
638
639         /*
640          * Search for the page at object/offset.
641          */
642         fs.object = fs.first_object;
643         fs.pindex = fs.first_pindex;
644         while (TRUE) {
645                 /*
646                  * If the object is marked for imminent termination,
647                  * we retry here, since the collapse pass has raced
648                  * with us.  Otherwise, if we see terminally dead
649                  * object, return fail.
650                  */
651                 if ((fs.object->flags & OBJ_DEAD) != 0) {
652                         dead = fs.object->type == OBJT_DEAD;
653                         unlock_and_deallocate(&fs);
654                         if (dead)
655                                 return (KERN_PROTECTION_FAILURE);
656                         pause("vmf_de", 1);
657                         goto RetryFault;
658                 }
659
660                 /*
661                  * See if page is resident
662                  */
663                 fs.m = vm_page_lookup(fs.object, fs.pindex);
664                 if (fs.m != NULL) {
665                         /*
666                          * Wait/Retry if the page is busy.  We have to do this
667                          * if the page is either exclusive or shared busy
668                          * because the vm_pager may be using read busy for
669                          * pageouts (and even pageins if it is the vnode
670                          * pager), and we could end up trying to pagein and
671                          * pageout the same page simultaneously.
672                          *
673                          * We can theoretically allow the busy case on a read
674                          * fault if the page is marked valid, but since such
675                          * pages are typically already pmap'd, putting that
676                          * special case in might be more effort then it is 
677                          * worth.  We cannot under any circumstances mess
678                          * around with a shared busied page except, perhaps,
679                          * to pmap it.
680                          */
681                         if (vm_page_busied(fs.m)) {
682                                 /*
683                                  * Reference the page before unlocking and
684                                  * sleeping so that the page daemon is less
685                                  * likely to reclaim it.
686                                  */
687                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
688                                 if (fs.object != fs.first_object) {
689                                         if (!VM_OBJECT_TRYWLOCK(
690                                             fs.first_object)) {
691                                                 VM_OBJECT_WUNLOCK(fs.object);
692                                                 VM_OBJECT_WLOCK(fs.first_object);
693                                                 VM_OBJECT_WLOCK(fs.object);
694                                         }
695                                         vm_page_lock(fs.first_m);
696                                         vm_page_free(fs.first_m);
697                                         vm_page_unlock(fs.first_m);
698                                         vm_object_pip_wakeup(fs.first_object);
699                                         VM_OBJECT_WUNLOCK(fs.first_object);
700                                         fs.first_m = NULL;
701                                 }
702                                 unlock_map(&fs);
703                                 if (fs.m == vm_page_lookup(fs.object,
704                                     fs.pindex)) {
705                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
706                                 }
707                                 vm_object_pip_wakeup(fs.object);
708                                 VM_OBJECT_WUNLOCK(fs.object);
709                                 VM_CNT_INC(v_intrans);
710                                 vm_object_deallocate(fs.first_object);
711                                 goto RetryFault;
712                         }
713
714                         /*
715                          * Mark page busy for other processes, and the 
716                          * pagedaemon.  If it still isn't completely valid
717                          * (readable), jump to readrest, else break-out ( we
718                          * found the page ).
719                          */
720                         vm_page_xbusy(fs.m);
721                         if (fs.m->valid != VM_PAGE_BITS_ALL)
722                                 goto readrest;
723                         break; /* break to PAGE HAS BEEN FOUND */
724                 }
725                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
726
727                 /*
728                  * Page is not resident.  If the pager might contain the page
729                  * or this is the beginning of the search, allocate a new
730                  * page.  (Default objects are zero-fill, so there is no real
731                  * pager for them.)
732                  */
733                 if (fs.object->type != OBJT_DEFAULT ||
734                     fs.object == fs.first_object) {
735                         if (fs.pindex >= fs.object->size) {
736                                 unlock_and_deallocate(&fs);
737                                 return (KERN_PROTECTION_FAILURE);
738                         }
739
740                         if (fs.object == fs.first_object &&
741                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
742                             fs.first_object->shadow_count == 0) {
743                                 rv = vm_fault_populate(&fs, vaddr, prot,
744                                     fault_type, fault_flags, wired, m_hold);
745                                 switch (rv) {
746                                 case KERN_SUCCESS:
747                                 case KERN_FAILURE:
748                                         unlock_and_deallocate(&fs);
749                                         return (rv);
750                                 case KERN_RESOURCE_SHORTAGE:
751                                         unlock_and_deallocate(&fs);
752                                         goto RetryFault;
753                                 case KERN_NOT_RECEIVER:
754                                         /*
755                                          * Pager's populate() method
756                                          * returned VM_PAGER_BAD.
757                                          */
758                                         break;
759                                 default:
760                                         panic("inconsistent return codes");
761                                 }
762                         }
763
764                         /*
765                          * Allocate a new page for this object/offset pair.
766                          *
767                          * Unlocked read of the p_flag is harmless. At
768                          * worst, the P_KILLED might be not observed
769                          * there, and allocation can fail, causing
770                          * restart and new reading of the p_flag.
771                          */
772                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
773 #if VM_NRESERVLEVEL > 0
774                                 vm_object_color(fs.object, atop(vaddr) -
775                                     fs.pindex);
776 #endif
777                                 alloc_req = P_KILLED(curproc) ?
778                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
779                                 if (fs.object->type != OBJT_VNODE &&
780                                     fs.object->backing_object == NULL)
781                                         alloc_req |= VM_ALLOC_ZERO;
782                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
783                                     alloc_req);
784                         }
785                         if (fs.m == NULL) {
786                                 unlock_and_deallocate(&fs);
787                                 vm_waitpfault();
788                                 goto RetryFault;
789                         }
790                 }
791
792 readrest:
793                 /*
794                  * At this point, we have either allocated a new page or found
795                  * an existing page that is only partially valid.
796                  *
797                  * We hold a reference on the current object and the page is
798                  * exclusive busied.
799                  */
800
801                 /*
802                  * If the pager for the current object might have the page,
803                  * then determine the number of additional pages to read and
804                  * potentially reprioritize previously read pages for earlier
805                  * reclamation.  These operations should only be performed
806                  * once per page fault.  Even if the current pager doesn't
807                  * have the page, the number of additional pages to read will
808                  * apply to subsequent objects in the shadow chain.
809                  */
810                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
811                     !P_KILLED(curproc)) {
812                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
813                         era = fs.entry->read_ahead;
814                         behavior = vm_map_entry_behavior(fs.entry);
815                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
816                                 nera = 0;
817                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
818                                 nera = VM_FAULT_READ_AHEAD_MAX;
819                                 if (vaddr == fs.entry->next_read)
820                                         vm_fault_dontneed(&fs, vaddr, nera);
821                         } else if (vaddr == fs.entry->next_read) {
822                                 /*
823                                  * This is a sequential fault.  Arithmetically
824                                  * increase the requested number of pages in
825                                  * the read-ahead window.  The requested
826                                  * number of pages is "# of sequential faults
827                                  * x (read ahead min + 1) + read ahead min"
828                                  */
829                                 nera = VM_FAULT_READ_AHEAD_MIN;
830                                 if (era > 0) {
831                                         nera += era + 1;
832                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
833                                                 nera = VM_FAULT_READ_AHEAD_MAX;
834                                 }
835                                 if (era == VM_FAULT_READ_AHEAD_MAX)
836                                         vm_fault_dontneed(&fs, vaddr, nera);
837                         } else {
838                                 /*
839                                  * This is a non-sequential fault.
840                                  */
841                                 nera = 0;
842                         }
843                         if (era != nera) {
844                                 /*
845                                  * A read lock on the map suffices to update
846                                  * the read ahead count safely.
847                                  */
848                                 fs.entry->read_ahead = nera;
849                         }
850
851                         /*
852                          * Prepare for unlocking the map.  Save the map
853                          * entry's start and end addresses, which are used to
854                          * optimize the size of the pager operation below.
855                          * Even if the map entry's addresses change after
856                          * unlocking the map, using the saved addresses is
857                          * safe.
858                          */
859                         e_start = fs.entry->start;
860                         e_end = fs.entry->end;
861                 }
862
863                 /*
864                  * Call the pager to retrieve the page if there is a chance
865                  * that the pager has it, and potentially retrieve additional
866                  * pages at the same time.
867                  */
868                 if (fs.object->type != OBJT_DEFAULT) {
869                         /*
870                          * Release the map lock before locking the vnode or
871                          * sleeping in the pager.  (If the current object has
872                          * a shadow, then an earlier iteration of this loop
873                          * may have already unlocked the map.)
874                          */
875                         unlock_map(&fs);
876
877                         if (fs.object->type == OBJT_VNODE &&
878                             (vp = fs.object->handle) != fs.vp) {
879                                 /*
880                                  * Perform an unlock in case the desired vnode
881                                  * changed while the map was unlocked during a
882                                  * retry.
883                                  */
884                                 unlock_vp(&fs);
885
886                                 locked = VOP_ISLOCKED(vp);
887                                 if (locked != LK_EXCLUSIVE)
888                                         locked = LK_SHARED;
889
890                                 /*
891                                  * We must not sleep acquiring the vnode lock
892                                  * while we have the page exclusive busied or
893                                  * the object's paging-in-progress count
894                                  * incremented.  Otherwise, we could deadlock.
895                                  */
896                                 error = vget(vp, locked | LK_CANRECURSE |
897                                     LK_NOWAIT, curthread);
898                                 if (error != 0) {
899                                         vhold(vp);
900                                         release_page(&fs);
901                                         unlock_and_deallocate(&fs);
902                                         error = vget(vp, locked | LK_RETRY |
903                                             LK_CANRECURSE, curthread);
904                                         vdrop(vp);
905                                         fs.vp = vp;
906                                         KASSERT(error == 0,
907                                             ("vm_fault: vget failed"));
908                                         goto RetryFault;
909                                 }
910                                 fs.vp = vp;
911                         }
912                         KASSERT(fs.vp == NULL || !fs.map->system_map,
913                             ("vm_fault: vnode-backed object mapped by system map"));
914
915                         /*
916                          * Page in the requested page and hint the pager,
917                          * that it may bring up surrounding pages.
918                          */
919                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
920                             P_KILLED(curproc)) {
921                                 behind = 0;
922                                 ahead = 0;
923                         } else {
924                                 /* Is this a sequential fault? */
925                                 if (nera > 0) {
926                                         behind = 0;
927                                         ahead = nera;
928                                 } else {
929                                         /*
930                                          * Request a cluster of pages that is
931                                          * aligned to a VM_FAULT_READ_DEFAULT
932                                          * page offset boundary within the
933                                          * object.  Alignment to a page offset
934                                          * boundary is more likely to coincide
935                                          * with the underlying file system
936                                          * block than alignment to a virtual
937                                          * address boundary.
938                                          */
939                                         cluster_offset = fs.pindex %
940                                             VM_FAULT_READ_DEFAULT;
941                                         behind = ulmin(cluster_offset,
942                                             atop(vaddr - e_start));
943                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
944                                             cluster_offset;
945                                 }
946                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
947                         }
948                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
949                             &behind, &ahead);
950                         if (rv == VM_PAGER_OK) {
951                                 faultcount = behind + 1 + ahead;
952                                 hardfault = true;
953                                 break; /* break to PAGE HAS BEEN FOUND */
954                         }
955                         if (rv == VM_PAGER_ERROR)
956                                 printf("vm_fault: pager read error, pid %d (%s)\n",
957                                     curproc->p_pid, curproc->p_comm);
958
959                         /*
960                          * If an I/O error occurred or the requested page was
961                          * outside the range of the pager, clean up and return
962                          * an error.
963                          */
964                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
965                                 vm_page_lock(fs.m);
966                                 if (fs.m->wire_count == 0)
967                                         vm_page_free(fs.m);
968                                 else
969                                         vm_page_xunbusy_maybelocked(fs.m);
970                                 vm_page_unlock(fs.m);
971                                 fs.m = NULL;
972                                 unlock_and_deallocate(&fs);
973                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
974                                     KERN_PROTECTION_FAILURE);
975                         }
976
977                         /*
978                          * The requested page does not exist at this object/
979                          * offset.  Remove the invalid page from the object,
980                          * waking up anyone waiting for it, and continue on to
981                          * the next object.  However, if this is the top-level
982                          * object, we must leave the busy page in place to
983                          * prevent another process from rushing past us, and
984                          * inserting the page in that object at the same time
985                          * that we are.
986                          */
987                         if (fs.object != fs.first_object) {
988                                 vm_page_lock(fs.m);
989                                 if (fs.m->wire_count == 0)
990                                         vm_page_free(fs.m);
991                                 else
992                                         vm_page_xunbusy_maybelocked(fs.m);
993                                 vm_page_unlock(fs.m);
994                                 fs.m = NULL;
995                         }
996                 }
997
998                 /*
999                  * We get here if the object has default pager (or unwiring) 
1000                  * or the pager doesn't have the page.
1001                  */
1002                 if (fs.object == fs.first_object)
1003                         fs.first_m = fs.m;
1004
1005                 /*
1006                  * Move on to the next object.  Lock the next object before
1007                  * unlocking the current one.
1008                  */
1009                 next_object = fs.object->backing_object;
1010                 if (next_object == NULL) {
1011                         /*
1012                          * If there's no object left, fill the page in the top
1013                          * object with zeros.
1014                          */
1015                         if (fs.object != fs.first_object) {
1016                                 vm_object_pip_wakeup(fs.object);
1017                                 VM_OBJECT_WUNLOCK(fs.object);
1018
1019                                 fs.object = fs.first_object;
1020                                 fs.pindex = fs.first_pindex;
1021                                 fs.m = fs.first_m;
1022                                 VM_OBJECT_WLOCK(fs.object);
1023                         }
1024                         fs.first_m = NULL;
1025
1026                         /*
1027                          * Zero the page if necessary and mark it valid.
1028                          */
1029                         if ((fs.m->flags & PG_ZERO) == 0) {
1030                                 pmap_zero_page(fs.m);
1031                         } else {
1032                                 VM_CNT_INC(v_ozfod);
1033                         }
1034                         VM_CNT_INC(v_zfod);
1035                         fs.m->valid = VM_PAGE_BITS_ALL;
1036                         /* Don't try to prefault neighboring pages. */
1037                         faultcount = 1;
1038                         break;  /* break to PAGE HAS BEEN FOUND */
1039                 } else {
1040                         KASSERT(fs.object != next_object,
1041                             ("object loop %p", next_object));
1042                         VM_OBJECT_WLOCK(next_object);
1043                         vm_object_pip_add(next_object, 1);
1044                         if (fs.object != fs.first_object)
1045                                 vm_object_pip_wakeup(fs.object);
1046                         fs.pindex +=
1047                             OFF_TO_IDX(fs.object->backing_object_offset);
1048                         VM_OBJECT_WUNLOCK(fs.object);
1049                         fs.object = next_object;
1050                 }
1051         }
1052
1053         vm_page_assert_xbusied(fs.m);
1054
1055         /*
1056          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1057          * is held.]
1058          */
1059
1060         /*
1061          * If the page is being written, but isn't already owned by the
1062          * top-level object, we have to copy it into a new page owned by the
1063          * top-level object.
1064          */
1065         if (fs.object != fs.first_object) {
1066                 /*
1067                  * We only really need to copy if we want to write it.
1068                  */
1069                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1070                         /*
1071                          * This allows pages to be virtually copied from a 
1072                          * backing_object into the first_object, where the 
1073                          * backing object has no other refs to it, and cannot
1074                          * gain any more refs.  Instead of a bcopy, we just 
1075                          * move the page from the backing object to the 
1076                          * first object.  Note that we must mark the page 
1077                          * dirty in the first object so that it will go out 
1078                          * to swap when needed.
1079                          */
1080                         is_first_object_locked = false;
1081                         if (
1082                                 /*
1083                                  * Only one shadow object
1084                                  */
1085                                 (fs.object->shadow_count == 1) &&
1086                                 /*
1087                                  * No COW refs, except us
1088                                  */
1089                                 (fs.object->ref_count == 1) &&
1090                                 /*
1091                                  * No one else can look this object up
1092                                  */
1093                                 (fs.object->handle == NULL) &&
1094                                 /*
1095                                  * No other ways to look the object up
1096                                  */
1097                                 ((fs.object->type == OBJT_DEFAULT) ||
1098                                  (fs.object->type == OBJT_SWAP)) &&
1099                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1100                                 /*
1101                                  * We don't chase down the shadow chain
1102                                  */
1103                             fs.object == fs.first_object->backing_object) {
1104                                 vm_page_lock(fs.m);
1105                                 vm_page_remque(fs.m);
1106                                 vm_page_remove(fs.m);
1107                                 vm_page_unlock(fs.m);
1108                                 vm_page_lock(fs.first_m);
1109                                 vm_page_replace_checked(fs.m, fs.first_object,
1110                                     fs.first_pindex, fs.first_m);
1111                                 vm_page_free(fs.first_m);
1112                                 vm_page_unlock(fs.first_m);
1113                                 vm_page_dirty(fs.m);
1114 #if VM_NRESERVLEVEL > 0
1115                                 /*
1116                                  * Rename the reservation.
1117                                  */
1118                                 vm_reserv_rename(fs.m, fs.first_object,
1119                                     fs.object, OFF_TO_IDX(
1120                                     fs.first_object->backing_object_offset));
1121 #endif
1122                                 /*
1123                                  * Removing the page from the backing object
1124                                  * unbusied it.
1125                                  */
1126                                 vm_page_xbusy(fs.m);
1127                                 fs.first_m = fs.m;
1128                                 fs.m = NULL;
1129                                 VM_CNT_INC(v_cow_optim);
1130                         } else {
1131                                 /*
1132                                  * Oh, well, lets copy it.
1133                                  */
1134                                 pmap_copy_page(fs.m, fs.first_m);
1135                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1136                                 if ((fault_flags & VM_FAULT_WIRE) == 0) {
1137                                         prot &= ~VM_PROT_WRITE;
1138                                         fault_type &= ~VM_PROT_WRITE;
1139                                 }
1140                                 if (wired && (fault_flags &
1141                                     VM_FAULT_WIRE) == 0) {
1142                                         vm_page_lock(fs.first_m);
1143                                         vm_page_wire(fs.first_m);
1144                                         vm_page_unlock(fs.first_m);
1145                                         
1146                                         vm_page_lock(fs.m);
1147                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1148                                         vm_page_unlock(fs.m);
1149                                 }
1150                                 /*
1151                                  * We no longer need the old page or object.
1152                                  */
1153                                 release_page(&fs);
1154                         }
1155                         /*
1156                          * fs.object != fs.first_object due to above 
1157                          * conditional
1158                          */
1159                         vm_object_pip_wakeup(fs.object);
1160                         VM_OBJECT_WUNLOCK(fs.object);
1161                         /*
1162                          * Only use the new page below...
1163                          */
1164                         fs.object = fs.first_object;
1165                         fs.pindex = fs.first_pindex;
1166                         fs.m = fs.first_m;
1167                         if (!is_first_object_locked)
1168                                 VM_OBJECT_WLOCK(fs.object);
1169                         VM_CNT_INC(v_cow_faults);
1170                         curthread->td_cow++;
1171                 } else {
1172                         prot &= ~VM_PROT_WRITE;
1173                 }
1174         }
1175
1176         /*
1177          * We must verify that the maps have not changed since our last
1178          * lookup.
1179          */
1180         if (!fs.lookup_still_valid) {
1181                 if (!vm_map_trylock_read(fs.map)) {
1182                         release_page(&fs);
1183                         unlock_and_deallocate(&fs);
1184                         goto RetryFault;
1185                 }
1186                 fs.lookup_still_valid = true;
1187                 if (fs.map->timestamp != fs.map_generation) {
1188                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1189                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1190
1191                         /*
1192                          * If we don't need the page any longer, put it on the inactive
1193                          * list (the easiest thing to do here).  If no one needs it,
1194                          * pageout will grab it eventually.
1195                          */
1196                         if (result != KERN_SUCCESS) {
1197                                 release_page(&fs);
1198                                 unlock_and_deallocate(&fs);
1199
1200                                 /*
1201                                  * If retry of map lookup would have blocked then
1202                                  * retry fault from start.
1203                                  */
1204                                 if (result == KERN_FAILURE)
1205                                         goto RetryFault;
1206                                 return (result);
1207                         }
1208                         if ((retry_object != fs.first_object) ||
1209                             (retry_pindex != fs.first_pindex)) {
1210                                 release_page(&fs);
1211                                 unlock_and_deallocate(&fs);
1212                                 goto RetryFault;
1213                         }
1214
1215                         /*
1216                          * Check whether the protection has changed or the object has
1217                          * been copied while we left the map unlocked. Changing from
1218                          * read to write permission is OK - we leave the page
1219                          * write-protected, and catch the write fault. Changing from
1220                          * write to read permission means that we can't mark the page
1221                          * write-enabled after all.
1222                          */
1223                         prot &= retry_prot;
1224                         fault_type &= retry_prot;
1225                         if (prot == 0) {
1226                                 release_page(&fs);
1227                                 unlock_and_deallocate(&fs);
1228                                 goto RetryFault;
1229                         }
1230                 }
1231         }
1232
1233         /*
1234          * If the page was filled by a pager, save the virtual address that
1235          * should be faulted on next under a sequential access pattern to the
1236          * map entry.  A read lock on the map suffices to update this address
1237          * safely.
1238          */
1239         if (hardfault)
1240                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1241
1242         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1243         vm_page_assert_xbusied(fs.m);
1244
1245         /*
1246          * Page must be completely valid or it is not fit to
1247          * map into user space.  vm_pager_get_pages() ensures this.
1248          */
1249         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1250             ("vm_fault: page %p partially invalid", fs.m));
1251         VM_OBJECT_WUNLOCK(fs.object);
1252
1253         /*
1254          * Put this page into the physical map.  We had to do the unlock above
1255          * because pmap_enter() may sleep.  We don't put the page
1256          * back on the active queue until later so that the pageout daemon
1257          * won't find it (yet).
1258          */
1259         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1260             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1261         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1262             wired == 0)
1263                 vm_fault_prefault(&fs, vaddr,
1264                     faultcount > 0 ? behind : PFBAK,
1265                     faultcount > 0 ? ahead : PFFOR, false);
1266         VM_OBJECT_WLOCK(fs.object);
1267         vm_page_lock(fs.m);
1268
1269         /*
1270          * If the page is not wired down, then put it where the pageout daemon
1271          * can find it.
1272          */
1273         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1274                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1275                 vm_page_wire(fs.m);
1276         } else
1277                 vm_page_activate(fs.m);
1278         if (m_hold != NULL) {
1279                 *m_hold = fs.m;
1280                 vm_page_hold(fs.m);
1281         }
1282         vm_page_unlock(fs.m);
1283         vm_page_xunbusy(fs.m);
1284
1285         /*
1286          * Unlock everything, and return
1287          */
1288         unlock_and_deallocate(&fs);
1289         if (hardfault) {
1290                 VM_CNT_INC(v_io_faults);
1291                 curthread->td_ru.ru_majflt++;
1292 #ifdef RACCT
1293                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1294                         PROC_LOCK(curproc);
1295                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1296                                 racct_add_force(curproc, RACCT_WRITEBPS,
1297                                     PAGE_SIZE + behind * PAGE_SIZE);
1298                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1299                         } else {
1300                                 racct_add_force(curproc, RACCT_READBPS,
1301                                     PAGE_SIZE + ahead * PAGE_SIZE);
1302                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1303                         }
1304                         PROC_UNLOCK(curproc);
1305                 }
1306 #endif
1307         } else 
1308                 curthread->td_ru.ru_minflt++;
1309
1310         return (KERN_SUCCESS);
1311 }
1312
1313 /*
1314  * Speed up the reclamation of pages that precede the faulting pindex within
1315  * the first object of the shadow chain.  Essentially, perform the equivalent
1316  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1317  * the faulting pindex by the cluster size when the pages read by vm_fault()
1318  * cross a cluster-size boundary.  The cluster size is the greater of the
1319  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1320  *
1321  * When "fs->first_object" is a shadow object, the pages in the backing object
1322  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1323  * function must only be concerned with pages in the first object.
1324  */
1325 static void
1326 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1327 {
1328         vm_map_entry_t entry;
1329         vm_object_t first_object, object;
1330         vm_offset_t end, start;
1331         vm_page_t m, m_next;
1332         vm_pindex_t pend, pstart;
1333         vm_size_t size;
1334
1335         object = fs->object;
1336         VM_OBJECT_ASSERT_WLOCKED(object);
1337         first_object = fs->first_object;
1338         if (first_object != object) {
1339                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1340                         VM_OBJECT_WUNLOCK(object);
1341                         VM_OBJECT_WLOCK(first_object);
1342                         VM_OBJECT_WLOCK(object);
1343                 }
1344         }
1345         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1346         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1347                 size = VM_FAULT_DONTNEED_MIN;
1348                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1349                         size = pagesizes[1];
1350                 end = rounddown2(vaddr, size);
1351                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1352                     (entry = fs->entry)->start < end) {
1353                         if (end - entry->start < size)
1354                                 start = entry->start;
1355                         else
1356                                 start = end - size;
1357                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1358                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1359                             entry->start);
1360                         m_next = vm_page_find_least(first_object, pstart);
1361                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1362                             entry->start);
1363                         while ((m = m_next) != NULL && m->pindex < pend) {
1364                                 m_next = TAILQ_NEXT(m, listq);
1365                                 if (m->valid != VM_PAGE_BITS_ALL ||
1366                                     vm_page_busied(m))
1367                                         continue;
1368
1369                                 /*
1370                                  * Don't clear PGA_REFERENCED, since it would
1371                                  * likely represent a reference by a different
1372                                  * process.
1373                                  *
1374                                  * Typically, at this point, prefetched pages
1375                                  * are still in the inactive queue.  Only
1376                                  * pages that triggered page faults are in the
1377                                  * active queue.
1378                                  */
1379                                 vm_page_lock(m);
1380                                 if (!vm_page_inactive(m))
1381                                         vm_page_deactivate(m);
1382                                 vm_page_unlock(m);
1383                         }
1384                 }
1385         }
1386         if (first_object != object)
1387                 VM_OBJECT_WUNLOCK(first_object);
1388 }
1389
1390 /*
1391  * vm_fault_prefault provides a quick way of clustering
1392  * pagefaults into a processes address space.  It is a "cousin"
1393  * of vm_map_pmap_enter, except it runs at page fault time instead
1394  * of mmap time.
1395  */
1396 static void
1397 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1398     int backward, int forward, bool obj_locked)
1399 {
1400         pmap_t pmap;
1401         vm_map_entry_t entry;
1402         vm_object_t backing_object, lobject;
1403         vm_offset_t addr, starta;
1404         vm_pindex_t pindex;
1405         vm_page_t m;
1406         int i;
1407
1408         pmap = fs->map->pmap;
1409         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1410                 return;
1411
1412         entry = fs->entry;
1413
1414         if (addra < backward * PAGE_SIZE) {
1415                 starta = entry->start;
1416         } else {
1417                 starta = addra - backward * PAGE_SIZE;
1418                 if (starta < entry->start)
1419                         starta = entry->start;
1420         }
1421
1422         /*
1423          * Generate the sequence of virtual addresses that are candidates for
1424          * prefaulting in an outward spiral from the faulting virtual address,
1425          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1426          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1427          * If the candidate address doesn't have a backing physical page, then
1428          * the loop immediately terminates.
1429          */
1430         for (i = 0; i < 2 * imax(backward, forward); i++) {
1431                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1432                     PAGE_SIZE);
1433                 if (addr > addra + forward * PAGE_SIZE)
1434                         addr = 0;
1435
1436                 if (addr < starta || addr >= entry->end)
1437                         continue;
1438
1439                 if (!pmap_is_prefaultable(pmap, addr))
1440                         continue;
1441
1442                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1443                 lobject = entry->object.vm_object;
1444                 if (!obj_locked)
1445                         VM_OBJECT_RLOCK(lobject);
1446                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1447                     lobject->type == OBJT_DEFAULT &&
1448                     (backing_object = lobject->backing_object) != NULL) {
1449                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1450                             0, ("vm_fault_prefault: unaligned object offset"));
1451                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1452                         VM_OBJECT_RLOCK(backing_object);
1453                         if (!obj_locked || lobject != entry->object.vm_object)
1454                                 VM_OBJECT_RUNLOCK(lobject);
1455                         lobject = backing_object;
1456                 }
1457                 if (m == NULL) {
1458                         if (!obj_locked || lobject != entry->object.vm_object)
1459                                 VM_OBJECT_RUNLOCK(lobject);
1460                         break;
1461                 }
1462                 if (m->valid == VM_PAGE_BITS_ALL &&
1463                     (m->flags & PG_FICTITIOUS) == 0)
1464                         pmap_enter_quick(pmap, addr, m, entry->protection);
1465                 if (!obj_locked || lobject != entry->object.vm_object)
1466                         VM_OBJECT_RUNLOCK(lobject);
1467         }
1468 }
1469
1470 /*
1471  * Hold each of the physical pages that are mapped by the specified range of
1472  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1473  * and allow the specified types of access, "prot".  If all of the implied
1474  * pages are successfully held, then the number of held pages is returned
1475  * together with pointers to those pages in the array "ma".  However, if any
1476  * of the pages cannot be held, -1 is returned.
1477  */
1478 int
1479 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1480     vm_prot_t prot, vm_page_t *ma, int max_count)
1481 {
1482         vm_offset_t end, va;
1483         vm_page_t *mp;
1484         int count;
1485         boolean_t pmap_failed;
1486
1487         if (len == 0)
1488                 return (0);
1489         end = round_page(addr + len);
1490         addr = trunc_page(addr);
1491
1492         /*
1493          * Check for illegal addresses.
1494          */
1495         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1496                 return (-1);
1497
1498         if (atop(end - addr) > max_count)
1499                 panic("vm_fault_quick_hold_pages: count > max_count");
1500         count = atop(end - addr);
1501
1502         /*
1503          * Most likely, the physical pages are resident in the pmap, so it is
1504          * faster to try pmap_extract_and_hold() first.
1505          */
1506         pmap_failed = FALSE;
1507         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1508                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1509                 if (*mp == NULL)
1510                         pmap_failed = TRUE;
1511                 else if ((prot & VM_PROT_WRITE) != 0 &&
1512                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1513                         /*
1514                          * Explicitly dirty the physical page.  Otherwise, the
1515                          * caller's changes may go unnoticed because they are
1516                          * performed through an unmanaged mapping or by a DMA
1517                          * operation.
1518                          *
1519                          * The object lock is not held here.
1520                          * See vm_page_clear_dirty_mask().
1521                          */
1522                         vm_page_dirty(*mp);
1523                 }
1524         }
1525         if (pmap_failed) {
1526                 /*
1527                  * One or more pages could not be held by the pmap.  Either no
1528                  * page was mapped at the specified virtual address or that
1529                  * mapping had insufficient permissions.  Attempt to fault in
1530                  * and hold these pages.
1531                  *
1532                  * If vm_fault_disable_pagefaults() was called,
1533                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1534                  * acquire MD VM locks, which means we must not call
1535                  * vm_fault_hold().  Some (out of tree) callers mark
1536                  * too wide a code area with vm_fault_disable_pagefaults()
1537                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1538                  * the proper behaviour explicitly.
1539                  */
1540                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1541                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1542                         goto error;
1543                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1544                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1545                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1546                                 goto error;
1547         }
1548         return (count);
1549 error:  
1550         for (mp = ma; mp < ma + count; mp++)
1551                 if (*mp != NULL) {
1552                         vm_page_lock(*mp);
1553                         vm_page_unhold(*mp);
1554                         vm_page_unlock(*mp);
1555                 }
1556         return (-1);
1557 }
1558
1559 /*
1560  *      Routine:
1561  *              vm_fault_copy_entry
1562  *      Function:
1563  *              Create new shadow object backing dst_entry with private copy of
1564  *              all underlying pages. When src_entry is equal to dst_entry,
1565  *              function implements COW for wired-down map entry. Otherwise,
1566  *              it forks wired entry into dst_map.
1567  *
1568  *      In/out conditions:
1569  *              The source and destination maps must be locked for write.
1570  *              The source map entry must be wired down (or be a sharing map
1571  *              entry corresponding to a main map entry that is wired down).
1572  */
1573 void
1574 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1575     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1576     vm_ooffset_t *fork_charge)
1577 {
1578         vm_object_t backing_object, dst_object, object, src_object;
1579         vm_pindex_t dst_pindex, pindex, src_pindex;
1580         vm_prot_t access, prot;
1581         vm_offset_t vaddr;
1582         vm_page_t dst_m;
1583         vm_page_t src_m;
1584         boolean_t upgrade;
1585
1586 #ifdef  lint
1587         src_map++;
1588 #endif  /* lint */
1589
1590         upgrade = src_entry == dst_entry;
1591         access = prot = dst_entry->protection;
1592
1593         src_object = src_entry->object.vm_object;
1594         src_pindex = OFF_TO_IDX(src_entry->offset);
1595
1596         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1597                 dst_object = src_object;
1598                 vm_object_reference(dst_object);
1599         } else {
1600                 /*
1601                  * Create the top-level object for the destination entry. (Doesn't
1602                  * actually shadow anything - we copy the pages directly.)
1603                  */
1604                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1605                     atop(dst_entry->end - dst_entry->start));
1606 #if VM_NRESERVLEVEL > 0
1607                 dst_object->flags |= OBJ_COLORED;
1608                 dst_object->pg_color = atop(dst_entry->start);
1609 #endif
1610         }
1611
1612         VM_OBJECT_WLOCK(dst_object);
1613         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1614             ("vm_fault_copy_entry: vm_object not NULL"));
1615         if (src_object != dst_object) {
1616                 dst_object->domain = src_object->domain;
1617                 dst_entry->object.vm_object = dst_object;
1618                 dst_entry->offset = 0;
1619                 dst_object->charge = dst_entry->end - dst_entry->start;
1620         }
1621         if (fork_charge != NULL) {
1622                 KASSERT(dst_entry->cred == NULL,
1623                     ("vm_fault_copy_entry: leaked swp charge"));
1624                 dst_object->cred = curthread->td_ucred;
1625                 crhold(dst_object->cred);
1626                 *fork_charge += dst_object->charge;
1627         } else if (dst_object->cred == NULL) {
1628                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1629                     dst_entry));
1630                 dst_object->cred = dst_entry->cred;
1631                 dst_entry->cred = NULL;
1632         }
1633
1634         /*
1635          * If not an upgrade, then enter the mappings in the pmap as
1636          * read and/or execute accesses.  Otherwise, enter them as
1637          * write accesses.
1638          *
1639          * A writeable large page mapping is only created if all of
1640          * the constituent small page mappings are modified. Marking
1641          * PTEs as modified on inception allows promotion to happen
1642          * without taking potentially large number of soft faults.
1643          */
1644         if (!upgrade)
1645                 access &= ~VM_PROT_WRITE;
1646
1647         /*
1648          * Loop through all of the virtual pages within the entry's
1649          * range, copying each page from the source object to the
1650          * destination object.  Since the source is wired, those pages
1651          * must exist.  In contrast, the destination is pageable.
1652          * Since the destination object does share any backing storage
1653          * with the source object, all of its pages must be dirtied,
1654          * regardless of whether they can be written.
1655          */
1656         for (vaddr = dst_entry->start, dst_pindex = 0;
1657             vaddr < dst_entry->end;
1658             vaddr += PAGE_SIZE, dst_pindex++) {
1659 again:
1660                 /*
1661                  * Find the page in the source object, and copy it in.
1662                  * Because the source is wired down, the page will be
1663                  * in memory.
1664                  */
1665                 if (src_object != dst_object)
1666                         VM_OBJECT_RLOCK(src_object);
1667                 object = src_object;
1668                 pindex = src_pindex + dst_pindex;
1669                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1670                     (backing_object = object->backing_object) != NULL) {
1671                         /*
1672                          * Unless the source mapping is read-only or
1673                          * it is presently being upgraded from
1674                          * read-only, the first object in the shadow
1675                          * chain should provide all of the pages.  In
1676                          * other words, this loop body should never be
1677                          * executed when the source mapping is already
1678                          * read/write.
1679                          */
1680                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1681                             upgrade,
1682                             ("vm_fault_copy_entry: main object missing page"));
1683
1684                         VM_OBJECT_RLOCK(backing_object);
1685                         pindex += OFF_TO_IDX(object->backing_object_offset);
1686                         if (object != dst_object)
1687                                 VM_OBJECT_RUNLOCK(object);
1688                         object = backing_object;
1689                 }
1690                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1691
1692                 if (object != dst_object) {
1693                         /*
1694                          * Allocate a page in the destination object.
1695                          */
1696                         dst_m = vm_page_alloc(dst_object, (src_object ==
1697                             dst_object ? src_pindex : 0) + dst_pindex,
1698                             VM_ALLOC_NORMAL);
1699                         if (dst_m == NULL) {
1700                                 VM_OBJECT_WUNLOCK(dst_object);
1701                                 VM_OBJECT_RUNLOCK(object);
1702                                 vm_wait(dst_object);
1703                                 VM_OBJECT_WLOCK(dst_object);
1704                                 goto again;
1705                         }
1706                         pmap_copy_page(src_m, dst_m);
1707                         VM_OBJECT_RUNLOCK(object);
1708                         dst_m->valid = VM_PAGE_BITS_ALL;
1709                         dst_m->dirty = VM_PAGE_BITS_ALL;
1710                 } else {
1711                         dst_m = src_m;
1712                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1713                                 goto again;
1714                         vm_page_xbusy(dst_m);
1715                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1716                             ("invalid dst page %p", dst_m));
1717                 }
1718                 VM_OBJECT_WUNLOCK(dst_object);
1719
1720                 /*
1721                  * Enter it in the pmap. If a wired, copy-on-write
1722                  * mapping is being replaced by a write-enabled
1723                  * mapping, then wire that new mapping.
1724                  */
1725                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1726                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1727
1728                 /*
1729                  * Mark it no longer busy, and put it on the active list.
1730                  */
1731                 VM_OBJECT_WLOCK(dst_object);
1732                 
1733                 if (upgrade) {
1734                         if (src_m != dst_m) {
1735                                 vm_page_lock(src_m);
1736                                 vm_page_unwire(src_m, PQ_INACTIVE);
1737                                 vm_page_unlock(src_m);
1738                                 vm_page_lock(dst_m);
1739                                 vm_page_wire(dst_m);
1740                                 vm_page_unlock(dst_m);
1741                         } else {
1742                                 KASSERT(dst_m->wire_count > 0,
1743                                     ("dst_m %p is not wired", dst_m));
1744                         }
1745                 } else {
1746                         vm_page_lock(dst_m);
1747                         vm_page_activate(dst_m);
1748                         vm_page_unlock(dst_m);
1749                 }
1750                 vm_page_xunbusy(dst_m);
1751         }
1752         VM_OBJECT_WUNLOCK(dst_object);
1753         if (upgrade) {
1754                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1755                 vm_object_deallocate(src_object);
1756         }
1757 }
1758
1759 /*
1760  * Block entry into the machine-independent layer's page fault handler by
1761  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1762  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1763  * spurious page faults. 
1764  */
1765 int
1766 vm_fault_disable_pagefaults(void)
1767 {
1768
1769         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1770 }
1771
1772 void
1773 vm_fault_enable_pagefaults(int save)
1774 {
1775
1776         curthread_pflags_restore(save);
1777 }