]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
vm: consistently prefix fault helpers with vm_fault_
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/pctrie.h>
89 #include <sys/proc.h>
90 #include <sys/racct.h>
91 #include <sys/refcount.h>
92 #include <sys/resourcevar.h>
93 #include <sys/rwlock.h>
94 #include <sys/signalvar.h>
95 #include <sys/sysctl.h>
96 #include <sys/sysent.h>
97 #include <sys/vmmeter.h>
98 #include <sys/vnode.h>
99 #ifdef KTRACE
100 #include <sys/ktrace.h>
101 #endif
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/vm_reserv.h>
114
115 #define PFBAK 4
116 #define PFFOR 4
117
118 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         /* Fault parameters. */
124         vm_offset_t     vaddr;
125         vm_page_t       *m_hold;
126         vm_prot_t       fault_type;
127         vm_prot_t       prot;
128         int             fault_flags;
129         boolean_t       wired;
130
131         /* Control state. */
132         struct timeval  oom_start_time;
133         bool            oom_started;
134         int             nera;
135         bool            can_read_lock;
136
137         /* Page reference for cow. */
138         vm_page_t m_cow;
139
140         /* Current object. */
141         vm_object_t     object;
142         vm_pindex_t     pindex;
143         vm_page_t       m;
144
145         /* Top-level map object. */
146         vm_object_t     first_object;
147         vm_pindex_t     first_pindex;
148         vm_page_t       first_m;
149
150         /* Map state. */
151         vm_map_t        map;
152         vm_map_entry_t  entry;
153         int             map_generation;
154         bool            lookup_still_valid;
155
156         /* Vnode if locked. */
157         struct vnode    *vp;
158 };
159
160 /*
161  * Return codes for internal fault routines.
162  */
163 enum fault_status {
164         FAULT_SUCCESS = 1,      /* Return success to user. */
165         FAULT_FAILURE,          /* Return failure to user. */
166         FAULT_CONTINUE,         /* Continue faulting. */
167         FAULT_RESTART,          /* Restart fault. */
168         FAULT_OUT_OF_BOUNDS,    /* Invalid address for pager. */
169         FAULT_HARD,             /* Performed I/O. */
170         FAULT_SOFT,             /* Found valid page. */
171         FAULT_PROTECTION_FAILURE, /* Invalid access. */
172 };
173
174 enum fault_next_status {
175         FAULT_NEXT_GOTOBJ = 1,
176         FAULT_NEXT_NOOBJ,
177         FAULT_NEXT_RESTART,
178 };
179
180 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
181             int ahead);
182 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
183             int backward, int forward, bool obj_locked);
184
185 static int vm_pfault_oom_attempts = 3;
186 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
187     &vm_pfault_oom_attempts, 0,
188     "Number of page allocation attempts in page fault handler before it "
189     "triggers OOM handling");
190
191 static int vm_pfault_oom_wait = 10;
192 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
193     &vm_pfault_oom_wait, 0,
194     "Number of seconds to wait for free pages before retrying "
195     "the page fault handler");
196
197 static inline void
198 vm_fault_page_release(vm_page_t *mp)
199 {
200         vm_page_t m;
201
202         m = *mp;
203         if (m != NULL) {
204                 /*
205                  * We are likely to loop around again and attempt to busy
206                  * this page.  Deactivating it leaves it available for
207                  * pageout while optimizing fault restarts.
208                  */
209                 vm_page_deactivate(m);
210                 vm_page_xunbusy(m);
211                 *mp = NULL;
212         }
213 }
214
215 static inline void
216 vm_fault_page_free(vm_page_t *mp)
217 {
218         vm_page_t m;
219
220         m = *mp;
221         if (m != NULL) {
222                 VM_OBJECT_ASSERT_WLOCKED(m->object);
223                 if (!vm_page_wired(m))
224                         vm_page_free(m);
225                 else
226                         vm_page_xunbusy(m);
227                 *mp = NULL;
228         }
229 }
230
231 /*
232  * Return true if a vm_pager_get_pages() call is needed in order to check
233  * whether the pager might have a particular page, false if it can be determined
234  * immediately that the pager can not have a copy.  For swap objects, this can
235  * be checked quickly.
236  */
237 static inline bool
238 vm_fault_object_needs_getpages(vm_object_t object)
239 {
240         VM_OBJECT_ASSERT_LOCKED(object);
241
242         return ((object->flags & OBJ_SWAP) == 0 ||
243             !pctrie_is_empty(&object->un_pager.swp.swp_blks));
244 }
245
246 static inline void
247 vm_fault_unlock_map(struct faultstate *fs)
248 {
249
250         if (fs->lookup_still_valid) {
251                 vm_map_lookup_done(fs->map, fs->entry);
252                 fs->lookup_still_valid = false;
253         }
254 }
255
256 static void
257 vm_fault_unlock_vp(struct faultstate *fs)
258 {
259
260         if (fs->vp != NULL) {
261                 vput(fs->vp);
262                 fs->vp = NULL;
263         }
264 }
265
266 static void
267 vm_fault_deallocate(struct faultstate *fs)
268 {
269
270         vm_fault_page_release(&fs->m_cow);
271         vm_fault_page_release(&fs->m);
272         vm_object_pip_wakeup(fs->object);
273         if (fs->object != fs->first_object) {
274                 VM_OBJECT_WLOCK(fs->first_object);
275                 vm_fault_page_free(&fs->first_m);
276                 VM_OBJECT_WUNLOCK(fs->first_object);
277                 vm_object_pip_wakeup(fs->first_object);
278         }
279         vm_object_deallocate(fs->first_object);
280         vm_fault_unlock_map(fs);
281         vm_fault_unlock_vp(fs);
282 }
283
284 static void
285 vm_fault_unlock_and_deallocate(struct faultstate *fs)
286 {
287
288         VM_OBJECT_UNLOCK(fs->object);
289         vm_fault_deallocate(fs);
290 }
291
292 static void
293 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
294 {
295         bool need_dirty;
296
297         if (((fs->prot & VM_PROT_WRITE) == 0 &&
298             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
299             (m->oflags & VPO_UNMANAGED) != 0)
300                 return;
301
302         VM_PAGE_OBJECT_BUSY_ASSERT(m);
303
304         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
305             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
306             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
307
308         vm_object_set_writeable_dirty(m->object);
309
310         /*
311          * If the fault is a write, we know that this page is being
312          * written NOW so dirty it explicitly to save on
313          * pmap_is_modified() calls later.
314          *
315          * Also, since the page is now dirty, we can possibly tell
316          * the pager to release any swap backing the page.
317          */
318         if (need_dirty && vm_page_set_dirty(m) == 0) {
319                 /*
320                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
321                  * if the page is already dirty to prevent data written with
322                  * the expectation of being synced from not being synced.
323                  * Likewise if this entry does not request NOSYNC then make
324                  * sure the page isn't marked NOSYNC.  Applications sharing
325                  * data should use the same flags to avoid ping ponging.
326                  */
327                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
328                         vm_page_aflag_set(m, PGA_NOSYNC);
329                 else
330                         vm_page_aflag_clear(m, PGA_NOSYNC);
331         }
332
333 }
334
335 /*
336  * Unlocks fs.first_object and fs.map on success.
337  */
338 static enum fault_status
339 vm_fault_soft_fast(struct faultstate *fs)
340 {
341         vm_page_t m, m_map;
342 #if VM_NRESERVLEVEL > 0
343         vm_page_t m_super;
344         int flags;
345 #endif
346         int psind;
347         vm_offset_t vaddr;
348
349         MPASS(fs->vp == NULL);
350
351         vaddr = fs->vaddr;
352         vm_object_busy(fs->first_object);
353         m = vm_page_lookup(fs->first_object, fs->first_pindex);
354         /* A busy page can be mapped for read|execute access. */
355         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
356             vm_page_busied(m)) || !vm_page_all_valid(m))
357                 goto fail;
358         m_map = m;
359         psind = 0;
360 #if VM_NRESERVLEVEL > 0
361         if ((m->flags & PG_FICTITIOUS) == 0 &&
362             (m_super = vm_reserv_to_superpage(m)) != NULL &&
363             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
364             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
365             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
366             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
367             pmap_ps_enabled(fs->map->pmap)) {
368                 flags = PS_ALL_VALID;
369                 if ((fs->prot & VM_PROT_WRITE) != 0) {
370                         /*
371                          * Create a superpage mapping allowing write access
372                          * only if none of the constituent pages are busy and
373                          * all of them are already dirty (except possibly for
374                          * the page that was faulted on).
375                          */
376                         flags |= PS_NONE_BUSY;
377                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
378                                 flags |= PS_ALL_DIRTY;
379                 }
380                 if (vm_page_ps_test(m_super, flags, m)) {
381                         m_map = m_super;
382                         psind = m_super->psind;
383                         vaddr = rounddown2(vaddr, pagesizes[psind]);
384                         /* Preset the modified bit for dirty superpages. */
385                         if ((flags & PS_ALL_DIRTY) != 0)
386                                 fs->fault_type |= VM_PROT_WRITE;
387                 }
388         }
389 #endif
390         if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
391             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
392             KERN_SUCCESS)
393                 goto fail;
394         if (fs->m_hold != NULL) {
395                 (*fs->m_hold) = m;
396                 vm_page_wire(m);
397         }
398         if (psind == 0 && !fs->wired)
399                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
400         VM_OBJECT_RUNLOCK(fs->first_object);
401         vm_fault_dirty(fs, m);
402         vm_object_unbusy(fs->first_object);
403         vm_map_lookup_done(fs->map, fs->entry);
404         curthread->td_ru.ru_minflt++;
405         return (FAULT_SUCCESS);
406 fail:
407         vm_object_unbusy(fs->first_object);
408         return (FAULT_FAILURE);
409 }
410
411 static void
412 vm_fault_restore_map_lock(struct faultstate *fs)
413 {
414
415         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
416         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
417
418         if (!vm_map_trylock_read(fs->map)) {
419                 VM_OBJECT_WUNLOCK(fs->first_object);
420                 vm_map_lock_read(fs->map);
421                 VM_OBJECT_WLOCK(fs->first_object);
422         }
423         fs->lookup_still_valid = true;
424 }
425
426 static void
427 vm_fault_populate_check_page(vm_page_t m)
428 {
429
430         /*
431          * Check each page to ensure that the pager is obeying the
432          * interface: the page must be installed in the object, fully
433          * valid, and exclusively busied.
434          */
435         MPASS(m != NULL);
436         MPASS(vm_page_all_valid(m));
437         MPASS(vm_page_xbusied(m));
438 }
439
440 static void
441 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
442     vm_pindex_t last)
443 {
444         vm_page_t m;
445         vm_pindex_t pidx;
446
447         VM_OBJECT_ASSERT_WLOCKED(object);
448         MPASS(first <= last);
449         for (pidx = first, m = vm_page_lookup(object, pidx);
450             pidx <= last; pidx++, m = vm_page_next(m)) {
451                 vm_fault_populate_check_page(m);
452                 vm_page_deactivate(m);
453                 vm_page_xunbusy(m);
454         }
455 }
456
457 static enum fault_status
458 vm_fault_populate(struct faultstate *fs)
459 {
460         vm_offset_t vaddr;
461         vm_page_t m;
462         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
463         int bdry_idx, i, npages, psind, rv;
464         enum fault_status res;
465
466         MPASS(fs->object == fs->first_object);
467         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
468         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
469         MPASS(fs->first_object->backing_object == NULL);
470         MPASS(fs->lookup_still_valid);
471
472         pager_first = OFF_TO_IDX(fs->entry->offset);
473         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
474         vm_fault_unlock_map(fs);
475         vm_fault_unlock_vp(fs);
476
477         res = FAULT_SUCCESS;
478
479         /*
480          * Call the pager (driver) populate() method.
481          *
482          * There is no guarantee that the method will be called again
483          * if the current fault is for read, and a future fault is
484          * for write.  Report the entry's maximum allowed protection
485          * to the driver.
486          */
487         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
488             fs->fault_type, fs->entry->max_protection, &pager_first,
489             &pager_last);
490
491         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
492         if (rv == VM_PAGER_BAD) {
493                 /*
494                  * VM_PAGER_BAD is the backdoor for a pager to request
495                  * normal fault handling.
496                  */
497                 vm_fault_restore_map_lock(fs);
498                 if (fs->map->timestamp != fs->map_generation)
499                         return (FAULT_RESTART);
500                 return (FAULT_CONTINUE);
501         }
502         if (rv != VM_PAGER_OK)
503                 return (FAULT_FAILURE); /* AKA SIGSEGV */
504
505         /* Ensure that the driver is obeying the interface. */
506         MPASS(pager_first <= pager_last);
507         MPASS(fs->first_pindex <= pager_last);
508         MPASS(fs->first_pindex >= pager_first);
509         MPASS(pager_last < fs->first_object->size);
510
511         vm_fault_restore_map_lock(fs);
512         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
513             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
514         if (fs->map->timestamp != fs->map_generation) {
515                 if (bdry_idx == 0) {
516                         vm_fault_populate_cleanup(fs->first_object, pager_first,
517                             pager_last);
518                 } else {
519                         m = vm_page_lookup(fs->first_object, pager_first);
520                         if (m != fs->m)
521                                 vm_page_xunbusy(m);
522                 }
523                 return (FAULT_RESTART);
524         }
525
526         /*
527          * The map is unchanged after our last unlock.  Process the fault.
528          *
529          * First, the special case of largepage mappings, where
530          * populate only busies the first page in superpage run.
531          */
532         if (bdry_idx != 0) {
533                 KASSERT(PMAP_HAS_LARGEPAGES,
534                     ("missing pmap support for large pages"));
535                 m = vm_page_lookup(fs->first_object, pager_first);
536                 vm_fault_populate_check_page(m);
537                 VM_OBJECT_WUNLOCK(fs->first_object);
538                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
539                     fs->entry->offset;
540                 /* assert alignment for entry */
541                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
542     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
543                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
544                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
545                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
546                     ("unaligned superpage m %p %#jx", m,
547                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
548                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
549                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
550                     PMAP_ENTER_LARGEPAGE, bdry_idx);
551                 VM_OBJECT_WLOCK(fs->first_object);
552                 vm_page_xunbusy(m);
553                 if (rv != KERN_SUCCESS) {
554                         res = FAULT_FAILURE;
555                         goto out;
556                 }
557                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
558                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
559                                 vm_page_wire(m + i);
560                 }
561                 if (fs->m_hold != NULL) {
562                         *fs->m_hold = m + (fs->first_pindex - pager_first);
563                         vm_page_wire(*fs->m_hold);
564                 }
565                 goto out;
566         }
567
568         /*
569          * The range [pager_first, pager_last] that is given to the
570          * pager is only a hint.  The pager may populate any range
571          * within the object that includes the requested page index.
572          * In case the pager expanded the range, clip it to fit into
573          * the map entry.
574          */
575         map_first = OFF_TO_IDX(fs->entry->offset);
576         if (map_first > pager_first) {
577                 vm_fault_populate_cleanup(fs->first_object, pager_first,
578                     map_first - 1);
579                 pager_first = map_first;
580         }
581         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
582         if (map_last < pager_last) {
583                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
584                     pager_last);
585                 pager_last = map_last;
586         }
587         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
588             pidx <= pager_last;
589             pidx += npages, m = vm_page_next(&m[npages - 1])) {
590                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
591
592                 psind = m->psind;
593                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
594                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
595                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
596                         psind = 0;
597
598                 npages = atop(pagesizes[psind]);
599                 for (i = 0; i < npages; i++) {
600                         vm_fault_populate_check_page(&m[i]);
601                         vm_fault_dirty(fs, &m[i]);
602                 }
603                 VM_OBJECT_WUNLOCK(fs->first_object);
604                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
605                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
606
607                 /*
608                  * pmap_enter() may fail for a superpage mapping if additional
609                  * protection policies prevent the full mapping.
610                  * For example, this will happen on amd64 if the entire
611                  * address range does not share the same userspace protection
612                  * key.  Revert to single-page mappings if this happens.
613                  */
614                 MPASS(rv == KERN_SUCCESS ||
615                     (psind > 0 && rv == KERN_PROTECTION_FAILURE));
616                 if (__predict_false(psind > 0 &&
617                     rv == KERN_PROTECTION_FAILURE)) {
618                         MPASS(!fs->wired);
619                         for (i = 0; i < npages; i++) {
620                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
621                                     &m[i], fs->prot, fs->fault_type, 0);
622                                 MPASS(rv == KERN_SUCCESS);
623                         }
624                 }
625
626                 VM_OBJECT_WLOCK(fs->first_object);
627                 for (i = 0; i < npages; i++) {
628                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
629                             m[i].pindex == fs->first_pindex)
630                                 vm_page_wire(&m[i]);
631                         else
632                                 vm_page_activate(&m[i]);
633                         if (fs->m_hold != NULL &&
634                             m[i].pindex == fs->first_pindex) {
635                                 (*fs->m_hold) = &m[i];
636                                 vm_page_wire(&m[i]);
637                         }
638                         vm_page_xunbusy(&m[i]);
639                 }
640         }
641 out:
642         curthread->td_ru.ru_majflt++;
643         return (res);
644 }
645
646 static int prot_fault_translation;
647 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
648     &prot_fault_translation, 0,
649     "Control signal to deliver on protection fault");
650
651 /* compat definition to keep common code for signal translation */
652 #define UCODE_PAGEFLT   12
653 #ifdef T_PAGEFLT
654 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
655 #endif
656
657 /*
658  *      vm_fault_trap:
659  *
660  *      Handle a page fault occurring at the given address,
661  *      requiring the given permissions, in the map specified.
662  *      If successful, the page is inserted into the
663  *      associated physical map.
664  *
665  *      NOTE: the given address should be truncated to the
666  *      proper page address.
667  *
668  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
669  *      a standard error specifying why the fault is fatal is returned.
670  *
671  *      The map in question must be referenced, and remains so.
672  *      Caller may hold no locks.
673  */
674 int
675 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
676     int fault_flags, int *signo, int *ucode)
677 {
678         int result;
679
680         MPASS(signo == NULL || ucode != NULL);
681 #ifdef KTRACE
682         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
683                 ktrfault(vaddr, fault_type);
684 #endif
685         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
686             NULL);
687         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
688             result == KERN_INVALID_ADDRESS ||
689             result == KERN_RESOURCE_SHORTAGE ||
690             result == KERN_PROTECTION_FAILURE ||
691             result == KERN_OUT_OF_BOUNDS,
692             ("Unexpected Mach error %d from vm_fault()", result));
693 #ifdef KTRACE
694         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
695                 ktrfaultend(result);
696 #endif
697         if (result != KERN_SUCCESS && signo != NULL) {
698                 switch (result) {
699                 case KERN_FAILURE:
700                 case KERN_INVALID_ADDRESS:
701                         *signo = SIGSEGV;
702                         *ucode = SEGV_MAPERR;
703                         break;
704                 case KERN_RESOURCE_SHORTAGE:
705                         *signo = SIGBUS;
706                         *ucode = BUS_OOMERR;
707                         break;
708                 case KERN_OUT_OF_BOUNDS:
709                         *signo = SIGBUS;
710                         *ucode = BUS_OBJERR;
711                         break;
712                 case KERN_PROTECTION_FAILURE:
713                         if (prot_fault_translation == 0) {
714                                 /*
715                                  * Autodetect.  This check also covers
716                                  * the images without the ABI-tag ELF
717                                  * note.
718                                  */
719                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
720                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
721                                         *signo = SIGSEGV;
722                                         *ucode = SEGV_ACCERR;
723                                 } else {
724                                         *signo = SIGBUS;
725                                         *ucode = UCODE_PAGEFLT;
726                                 }
727                         } else if (prot_fault_translation == 1) {
728                                 /* Always compat mode. */
729                                 *signo = SIGBUS;
730                                 *ucode = UCODE_PAGEFLT;
731                         } else {
732                                 /* Always SIGSEGV mode. */
733                                 *signo = SIGSEGV;
734                                 *ucode = SEGV_ACCERR;
735                         }
736                         break;
737                 default:
738                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
739                             result));
740                         break;
741                 }
742         }
743         return (result);
744 }
745
746 static bool
747 vm_fault_object_ensure_wlocked(struct faultstate *fs)
748 {
749         if (fs->object == fs->first_object)
750                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
751
752         if (!fs->can_read_lock)  {
753                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
754                 return (true);
755         }
756
757         if (VM_OBJECT_WOWNED(fs->object))
758                 return (true);
759
760         if (VM_OBJECT_TRYUPGRADE(fs->object))
761                 return (true);
762
763         return (false);
764 }
765
766 static enum fault_status
767 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
768 {
769         struct vnode *vp;
770         int error, locked;
771
772         if (fs->object->type != OBJT_VNODE)
773                 return (FAULT_CONTINUE);
774         vp = fs->object->handle;
775         if (vp == fs->vp) {
776                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
777                 return (FAULT_CONTINUE);
778         }
779
780         /*
781          * Perform an unlock in case the desired vnode changed while
782          * the map was unlocked during a retry.
783          */
784         vm_fault_unlock_vp(fs);
785
786         locked = VOP_ISLOCKED(vp);
787         if (locked != LK_EXCLUSIVE)
788                 locked = LK_SHARED;
789
790         /*
791          * We must not sleep acquiring the vnode lock while we have
792          * the page exclusive busied or the object's
793          * paging-in-progress count incremented.  Otherwise, we could
794          * deadlock.
795          */
796         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
797         if (error == 0) {
798                 fs->vp = vp;
799                 return (FAULT_CONTINUE);
800         }
801
802         vhold(vp);
803         if (objlocked)
804                 vm_fault_unlock_and_deallocate(fs);
805         else
806                 vm_fault_deallocate(fs);
807         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
808         vdrop(vp);
809         fs->vp = vp;
810         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
811         return (FAULT_RESTART);
812 }
813
814 /*
815  * Calculate the desired readahead.  Handle drop-behind.
816  *
817  * Returns the number of readahead blocks to pass to the pager.
818  */
819 static int
820 vm_fault_readahead(struct faultstate *fs)
821 {
822         int era, nera;
823         u_char behavior;
824
825         KASSERT(fs->lookup_still_valid, ("map unlocked"));
826         era = fs->entry->read_ahead;
827         behavior = vm_map_entry_behavior(fs->entry);
828         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
829                 nera = 0;
830         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
831                 nera = VM_FAULT_READ_AHEAD_MAX;
832                 if (fs->vaddr == fs->entry->next_read)
833                         vm_fault_dontneed(fs, fs->vaddr, nera);
834         } else if (fs->vaddr == fs->entry->next_read) {
835                 /*
836                  * This is a sequential fault.  Arithmetically
837                  * increase the requested number of pages in
838                  * the read-ahead window.  The requested
839                  * number of pages is "# of sequential faults
840                  * x (read ahead min + 1) + read ahead min"
841                  */
842                 nera = VM_FAULT_READ_AHEAD_MIN;
843                 if (era > 0) {
844                         nera += era + 1;
845                         if (nera > VM_FAULT_READ_AHEAD_MAX)
846                                 nera = VM_FAULT_READ_AHEAD_MAX;
847                 }
848                 if (era == VM_FAULT_READ_AHEAD_MAX)
849                         vm_fault_dontneed(fs, fs->vaddr, nera);
850         } else {
851                 /*
852                  * This is a non-sequential fault.
853                  */
854                 nera = 0;
855         }
856         if (era != nera) {
857                 /*
858                  * A read lock on the map suffices to update
859                  * the read ahead count safely.
860                  */
861                 fs->entry->read_ahead = nera;
862         }
863
864         return (nera);
865 }
866
867 static int
868 vm_fault_lookup(struct faultstate *fs)
869 {
870         int result;
871
872         KASSERT(!fs->lookup_still_valid,
873            ("vm_fault_lookup: Map already locked."));
874         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
875             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
876             &fs->first_pindex, &fs->prot, &fs->wired);
877         if (result != KERN_SUCCESS) {
878                 vm_fault_unlock_vp(fs);
879                 return (result);
880         }
881
882         fs->map_generation = fs->map->timestamp;
883
884         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
885                 panic("%s: fault on nofault entry, addr: %#lx",
886                     __func__, (u_long)fs->vaddr);
887         }
888
889         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
890             fs->entry->wiring_thread != curthread) {
891                 vm_map_unlock_read(fs->map);
892                 vm_map_lock(fs->map);
893                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
894                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
895                         vm_fault_unlock_vp(fs);
896                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
897                         vm_map_unlock_and_wait(fs->map, 0);
898                 } else
899                         vm_map_unlock(fs->map);
900                 return (KERN_RESOURCE_SHORTAGE);
901         }
902
903         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
904
905         if (fs->wired)
906                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
907         else
908                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
909                     ("!fs->wired && VM_FAULT_WIRE"));
910         fs->lookup_still_valid = true;
911
912         return (KERN_SUCCESS);
913 }
914
915 static int
916 vm_fault_relookup(struct faultstate *fs)
917 {
918         vm_object_t retry_object;
919         vm_pindex_t retry_pindex;
920         vm_prot_t retry_prot;
921         int result;
922
923         if (!vm_map_trylock_read(fs->map))
924                 return (KERN_RESTART);
925
926         fs->lookup_still_valid = true;
927         if (fs->map->timestamp == fs->map_generation)
928                 return (KERN_SUCCESS);
929
930         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
931             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
932             &fs->wired);
933         if (result != KERN_SUCCESS) {
934                 /*
935                  * If retry of map lookup would have blocked then
936                  * retry fault from start.
937                  */
938                 if (result == KERN_FAILURE)
939                         return (KERN_RESTART);
940                 return (result);
941         }
942         if (retry_object != fs->first_object ||
943             retry_pindex != fs->first_pindex)
944                 return (KERN_RESTART);
945
946         /*
947          * Check whether the protection has changed or the object has
948          * been copied while we left the map unlocked. Changing from
949          * read to write permission is OK - we leave the page
950          * write-protected, and catch the write fault. Changing from
951          * write to read permission means that we can't mark the page
952          * write-enabled after all.
953          */
954         fs->prot &= retry_prot;
955         fs->fault_type &= retry_prot;
956         if (fs->prot == 0)
957                 return (KERN_RESTART);
958
959         /* Reassert because wired may have changed. */
960         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
961             ("!wired && VM_FAULT_WIRE"));
962
963         return (KERN_SUCCESS);
964 }
965
966 static void
967 vm_fault_cow(struct faultstate *fs)
968 {
969         bool is_first_object_locked;
970
971         KASSERT(fs->object != fs->first_object,
972             ("source and target COW objects are identical"));
973
974         /*
975          * This allows pages to be virtually copied from a backing_object
976          * into the first_object, where the backing object has no other
977          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
978          * we just move the page from the backing object to the first
979          * object.  Note that we must mark the page dirty in the first
980          * object so that it will go out to swap when needed.
981          */
982         is_first_object_locked = false;
983         if (
984             /*
985              * Only one shadow object and no other refs.
986              */
987             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
988             /*
989              * No other ways to look the object up
990              */
991             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
992             /*
993              * We don't chase down the shadow chain and we can acquire locks.
994              */
995             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
996             fs->object == fs->first_object->backing_object &&
997             VM_OBJECT_TRYWLOCK(fs->object)) {
998                 /*
999                  * Remove but keep xbusy for replace.  fs->m is moved into
1000                  * fs->first_object and left busy while fs->first_m is
1001                  * conditionally freed.
1002                  */
1003                 vm_page_remove_xbusy(fs->m);
1004                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1005                     fs->first_m);
1006                 vm_page_dirty(fs->m);
1007 #if VM_NRESERVLEVEL > 0
1008                 /*
1009                  * Rename the reservation.
1010                  */
1011                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1012                     OFF_TO_IDX(fs->first_object->backing_object_offset));
1013 #endif
1014                 VM_OBJECT_WUNLOCK(fs->object);
1015                 VM_OBJECT_WUNLOCK(fs->first_object);
1016                 fs->first_m = fs->m;
1017                 fs->m = NULL;
1018                 VM_CNT_INC(v_cow_optim);
1019         } else {
1020                 if (is_first_object_locked)
1021                         VM_OBJECT_WUNLOCK(fs->first_object);
1022                 /*
1023                  * Oh, well, lets copy it.
1024                  */
1025                 pmap_copy_page(fs->m, fs->first_m);
1026                 vm_page_valid(fs->first_m);
1027                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1028                         vm_page_wire(fs->first_m);
1029                         vm_page_unwire(fs->m, PQ_INACTIVE);
1030                 }
1031                 /*
1032                  * Save the cow page to be released after
1033                  * pmap_enter is complete.
1034                  */
1035                 fs->m_cow = fs->m;
1036                 fs->m = NULL;
1037
1038                 /*
1039                  * Typically, the shadow object is either private to this
1040                  * address space (OBJ_ONEMAPPING) or its pages are read only.
1041                  * In the highly unusual case where the pages of a shadow object
1042                  * are read/write shared between this and other address spaces,
1043                  * we need to ensure that any pmap-level mappings to the
1044                  * original, copy-on-write page from the backing object are
1045                  * removed from those other address spaces.
1046                  *
1047                  * The flag check is racy, but this is tolerable: if
1048                  * OBJ_ONEMAPPING is cleared after the check, the busy state
1049                  * ensures that new mappings of m_cow can't be created.
1050                  * pmap_enter() will replace an existing mapping in the current
1051                  * address space.  If OBJ_ONEMAPPING is set after the check,
1052                  * removing mappings will at worse trigger some unnecessary page
1053                  * faults.
1054                  */
1055                 vm_page_assert_xbusied(fs->m_cow);
1056                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1057                         pmap_remove_all(fs->m_cow);
1058         }
1059
1060         vm_object_pip_wakeup(fs->object);
1061
1062         /*
1063          * Only use the new page below...
1064          */
1065         fs->object = fs->first_object;
1066         fs->pindex = fs->first_pindex;
1067         fs->m = fs->first_m;
1068         VM_CNT_INC(v_cow_faults);
1069         curthread->td_cow++;
1070 }
1071
1072 static enum fault_next_status
1073 vm_fault_next(struct faultstate *fs)
1074 {
1075         vm_object_t next_object;
1076
1077         if (fs->object == fs->first_object || !fs->can_read_lock)
1078                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1079         else
1080                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1081
1082         /*
1083          * The requested page does not exist at this object/
1084          * offset.  Remove the invalid page from the object,
1085          * waking up anyone waiting for it, and continue on to
1086          * the next object.  However, if this is the top-level
1087          * object, we must leave the busy page in place to
1088          * prevent another process from rushing past us, and
1089          * inserting the page in that object at the same time
1090          * that we are.
1091          */
1092         if (fs->object == fs->first_object) {
1093                 fs->first_m = fs->m;
1094                 fs->m = NULL;
1095         } else if (fs->m != NULL) {
1096                 if (!vm_fault_object_ensure_wlocked(fs)) {
1097                         fs->can_read_lock = false;
1098                         vm_fault_unlock_and_deallocate(fs);
1099                         return (FAULT_NEXT_RESTART);
1100                 }
1101                 vm_fault_page_free(&fs->m);
1102         }
1103
1104         /*
1105          * Move on to the next object.  Lock the next object before
1106          * unlocking the current one.
1107          */
1108         next_object = fs->object->backing_object;
1109         if (next_object == NULL)
1110                 return (FAULT_NEXT_NOOBJ);
1111         MPASS(fs->first_m != NULL);
1112         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1113         if (fs->can_read_lock)
1114                 VM_OBJECT_RLOCK(next_object);
1115         else
1116                 VM_OBJECT_WLOCK(next_object);
1117         vm_object_pip_add(next_object, 1);
1118         if (fs->object != fs->first_object)
1119                 vm_object_pip_wakeup(fs->object);
1120         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1121         VM_OBJECT_UNLOCK(fs->object);
1122         fs->object = next_object;
1123
1124         return (FAULT_NEXT_GOTOBJ);
1125 }
1126
1127 static void
1128 vm_fault_zerofill(struct faultstate *fs)
1129 {
1130
1131         /*
1132          * If there's no object left, fill the page in the top
1133          * object with zeros.
1134          */
1135         if (fs->object != fs->first_object) {
1136                 vm_object_pip_wakeup(fs->object);
1137                 fs->object = fs->first_object;
1138                 fs->pindex = fs->first_pindex;
1139         }
1140         MPASS(fs->first_m != NULL);
1141         MPASS(fs->m == NULL);
1142         fs->m = fs->first_m;
1143         fs->first_m = NULL;
1144
1145         /*
1146          * Zero the page if necessary and mark it valid.
1147          */
1148         if ((fs->m->flags & PG_ZERO) == 0) {
1149                 pmap_zero_page(fs->m);
1150         } else {
1151                 VM_CNT_INC(v_ozfod);
1152         }
1153         VM_CNT_INC(v_zfod);
1154         vm_page_valid(fs->m);
1155 }
1156
1157 /*
1158  * Initiate page fault after timeout.  Returns true if caller should
1159  * do vm_waitpfault() after the call.
1160  */
1161 static bool
1162 vm_fault_allocate_oom(struct faultstate *fs)
1163 {
1164         struct timeval now;
1165
1166         vm_fault_unlock_and_deallocate(fs);
1167         if (vm_pfault_oom_attempts < 0)
1168                 return (true);
1169         if (!fs->oom_started) {
1170                 fs->oom_started = true;
1171                 getmicrotime(&fs->oom_start_time);
1172                 return (true);
1173         }
1174
1175         getmicrotime(&now);
1176         timevalsub(&now, &fs->oom_start_time);
1177         if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1178                 return (true);
1179
1180         if (bootverbose)
1181                 printf(
1182             "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1183                     curproc->p_pid, curproc->p_comm);
1184         vm_pageout_oom(VM_OOM_MEM_PF);
1185         fs->oom_started = false;
1186         return (false);
1187 }
1188
1189 /*
1190  * Allocate a page directly or via the object populate method.
1191  */
1192 static enum fault_status
1193 vm_fault_allocate(struct faultstate *fs)
1194 {
1195         struct domainset *dset;
1196         enum fault_status res;
1197
1198         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1199                 res = vm_fault_lock_vnode(fs, true);
1200                 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1201                 if (res == FAULT_RESTART)
1202                         return (res);
1203         }
1204
1205         if (fs->pindex >= fs->object->size) {
1206                 vm_fault_unlock_and_deallocate(fs);
1207                 return (FAULT_OUT_OF_BOUNDS);
1208         }
1209
1210         if (fs->object == fs->first_object &&
1211             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1212             fs->first_object->shadow_count == 0) {
1213                 res = vm_fault_populate(fs);
1214                 switch (res) {
1215                 case FAULT_SUCCESS:
1216                 case FAULT_FAILURE:
1217                 case FAULT_RESTART:
1218                         vm_fault_unlock_and_deallocate(fs);
1219                         return (res);
1220                 case FAULT_CONTINUE:
1221                         /*
1222                          * Pager's populate() method
1223                          * returned VM_PAGER_BAD.
1224                          */
1225                         break;
1226                 default:
1227                         panic("inconsistent return codes");
1228                 }
1229         }
1230
1231         /*
1232          * Allocate a new page for this object/offset pair.
1233          *
1234          * If the process has a fatal signal pending, prioritize the allocation
1235          * with the expectation that the process will exit shortly and free some
1236          * pages.  In particular, the signal may have been posted by the page
1237          * daemon in an attempt to resolve an out-of-memory condition.
1238          *
1239          * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1240          * might be not observed here, and allocation fails, causing a restart
1241          * and new reading of the p_flag.
1242          */
1243         dset = fs->object->domain.dr_policy;
1244         if (dset == NULL)
1245                 dset = curthread->td_domain.dr_policy;
1246         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1247 #if VM_NRESERVLEVEL > 0
1248                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1249 #endif
1250                 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1251                         vm_fault_unlock_and_deallocate(fs);
1252                         return (FAULT_FAILURE);
1253                 }
1254                 fs->m = vm_page_alloc(fs->object, fs->pindex,
1255                     P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1256         }
1257         if (fs->m == NULL) {
1258                 if (vm_fault_allocate_oom(fs))
1259                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1260                 return (FAULT_RESTART);
1261         }
1262         fs->oom_started = false;
1263
1264         return (FAULT_CONTINUE);
1265 }
1266
1267 /*
1268  * Call the pager to retrieve the page if there is a chance
1269  * that the pager has it, and potentially retrieve additional
1270  * pages at the same time.
1271  */
1272 static enum fault_status
1273 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1274 {
1275         vm_offset_t e_end, e_start;
1276         int ahead, behind, cluster_offset, rv;
1277         enum fault_status status;
1278         u_char behavior;
1279
1280         /*
1281          * Prepare for unlocking the map.  Save the map
1282          * entry's start and end addresses, which are used to
1283          * optimize the size of the pager operation below.
1284          * Even if the map entry's addresses change after
1285          * unlocking the map, using the saved addresses is
1286          * safe.
1287          */
1288         e_start = fs->entry->start;
1289         e_end = fs->entry->end;
1290         behavior = vm_map_entry_behavior(fs->entry);
1291
1292         /*
1293          * If the pager for the current object might have
1294          * the page, then determine the number of additional
1295          * pages to read and potentially reprioritize
1296          * previously read pages for earlier reclamation.
1297          * These operations should only be performed once per
1298          * page fault.  Even if the current pager doesn't
1299          * have the page, the number of additional pages to
1300          * read will apply to subsequent objects in the
1301          * shadow chain.
1302          */
1303         if (fs->nera == -1 && !P_KILLED(curproc))
1304                 fs->nera = vm_fault_readahead(fs);
1305
1306         /*
1307          * Release the map lock before locking the vnode or
1308          * sleeping in the pager.  (If the current object has
1309          * a shadow, then an earlier iteration of this loop
1310          * may have already unlocked the map.)
1311          */
1312         vm_fault_unlock_map(fs);
1313
1314         status = vm_fault_lock_vnode(fs, false);
1315         MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1316         if (status == FAULT_RESTART)
1317                 return (status);
1318         KASSERT(fs->vp == NULL || !fs->map->system_map,
1319             ("vm_fault: vnode-backed object mapped by system map"));
1320
1321         /*
1322          * Page in the requested page and hint the pager,
1323          * that it may bring up surrounding pages.
1324          */
1325         if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1326             P_KILLED(curproc)) {
1327                 behind = 0;
1328                 ahead = 0;
1329         } else {
1330                 /* Is this a sequential fault? */
1331                 if (fs->nera > 0) {
1332                         behind = 0;
1333                         ahead = fs->nera;
1334                 } else {
1335                         /*
1336                          * Request a cluster of pages that is
1337                          * aligned to a VM_FAULT_READ_DEFAULT
1338                          * page offset boundary within the
1339                          * object.  Alignment to a page offset
1340                          * boundary is more likely to coincide
1341                          * with the underlying file system
1342                          * block than alignment to a virtual
1343                          * address boundary.
1344                          */
1345                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1346                         behind = ulmin(cluster_offset,
1347                             atop(fs->vaddr - e_start));
1348                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1349                 }
1350                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1351         }
1352         *behindp = behind;
1353         *aheadp = ahead;
1354         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1355         if (rv == VM_PAGER_OK)
1356                 return (FAULT_HARD);
1357         if (rv == VM_PAGER_ERROR)
1358                 printf("vm_fault: pager read error, pid %d (%s)\n",
1359                     curproc->p_pid, curproc->p_comm);
1360         /*
1361          * If an I/O error occurred or the requested page was
1362          * outside the range of the pager, clean up and return
1363          * an error.
1364          */
1365         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1366                 VM_OBJECT_WLOCK(fs->object);
1367                 vm_fault_page_free(&fs->m);
1368                 vm_fault_unlock_and_deallocate(fs);
1369                 return (FAULT_OUT_OF_BOUNDS);
1370         }
1371         KASSERT(rv == VM_PAGER_FAIL,
1372             ("%s: unexpected pager error %d", __func__, rv));
1373         return (FAULT_CONTINUE);
1374 }
1375
1376 /*
1377  * Wait/Retry if the page is busy.  We have to do this if the page is
1378  * either exclusive or shared busy because the vm_pager may be using
1379  * read busy for pageouts (and even pageins if it is the vnode pager),
1380  * and we could end up trying to pagein and pageout the same page
1381  * simultaneously.
1382  *
1383  * We can theoretically allow the busy case on a read fault if the page
1384  * is marked valid, but since such pages are typically already pmap'd,
1385  * putting that special case in might be more effort then it is worth.
1386  * We cannot under any circumstances mess around with a shared busied
1387  * page except, perhaps, to pmap it.
1388  */
1389 static void
1390 vm_fault_busy_sleep(struct faultstate *fs)
1391 {
1392         /*
1393          * Reference the page before unlocking and
1394          * sleeping so that the page daemon is less
1395          * likely to reclaim it.
1396          */
1397         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1398         if (fs->object != fs->first_object) {
1399                 vm_fault_page_release(&fs->first_m);
1400                 vm_object_pip_wakeup(fs->first_object);
1401         }
1402         vm_object_pip_wakeup(fs->object);
1403         vm_fault_unlock_map(fs);
1404         if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1405             !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1406                 VM_OBJECT_UNLOCK(fs->object);
1407         VM_CNT_INC(v_intrans);
1408         vm_object_deallocate(fs->first_object);
1409 }
1410
1411 /*
1412  * Handle page lookup, populate, allocate, page-in for the current
1413  * object.
1414  *
1415  * The object is locked on entry and will remain locked with a return
1416  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1417  * Otherwise, the object will be unlocked upon return.
1418  */
1419 static enum fault_status
1420 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1421 {
1422         enum fault_status res;
1423         bool dead;
1424
1425         if (fs->object == fs->first_object || !fs->can_read_lock)
1426                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1427         else
1428                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1429
1430         /*
1431          * If the object is marked for imminent termination, we retry
1432          * here, since the collapse pass has raced with us.  Otherwise,
1433          * if we see terminally dead object, return fail.
1434          */
1435         if ((fs->object->flags & OBJ_DEAD) != 0) {
1436                 dead = fs->object->type == OBJT_DEAD;
1437                 vm_fault_unlock_and_deallocate(fs);
1438                 if (dead)
1439                         return (FAULT_PROTECTION_FAILURE);
1440                 pause("vmf_de", 1);
1441                 return (FAULT_RESTART);
1442         }
1443
1444         /*
1445          * See if the page is resident.
1446          */
1447         fs->m = vm_page_lookup(fs->object, fs->pindex);
1448         if (fs->m != NULL) {
1449                 if (!vm_page_tryxbusy(fs->m)) {
1450                         vm_fault_busy_sleep(fs);
1451                         return (FAULT_RESTART);
1452                 }
1453
1454                 /*
1455                  * The page is marked busy for other processes and the
1456                  * pagedaemon.  If it is still completely valid we are
1457                  * done.
1458                  */
1459                 if (vm_page_all_valid(fs->m)) {
1460                         VM_OBJECT_UNLOCK(fs->object);
1461                         return (FAULT_SOFT);
1462                 }
1463         }
1464
1465         /*
1466          * Page is not resident.  If the pager might contain the page
1467          * or this is the beginning of the search, allocate a new
1468          * page.
1469          */
1470         if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1471             fs->object == fs->first_object)) {
1472                 if (!vm_fault_object_ensure_wlocked(fs)) {
1473                         fs->can_read_lock = false;
1474                         vm_fault_unlock_and_deallocate(fs);
1475                         return (FAULT_RESTART);
1476                 }
1477                 res = vm_fault_allocate(fs);
1478                 if (res != FAULT_CONTINUE)
1479                         return (res);
1480         }
1481
1482         /*
1483          * Check to see if the pager can possibly satisfy this fault.
1484          * If not, skip to the next object without dropping the lock to
1485          * preserve atomicity of shadow faults.
1486          */
1487         if (vm_fault_object_needs_getpages(fs->object)) {
1488                 /*
1489                  * At this point, we have either allocated a new page
1490                  * or found an existing page that is only partially
1491                  * valid.
1492                  *
1493                  * We hold a reference on the current object and the
1494                  * page is exclusive busied.  The exclusive busy
1495                  * prevents simultaneous faults and collapses while
1496                  * the object lock is dropped.
1497                  */
1498                 VM_OBJECT_UNLOCK(fs->object);
1499                 res = vm_fault_getpages(fs, behindp, aheadp);
1500                 if (res == FAULT_CONTINUE)
1501                         VM_OBJECT_WLOCK(fs->object);
1502         } else {
1503                 res = FAULT_CONTINUE;
1504         }
1505         return (res);
1506 }
1507
1508 int
1509 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1510     int fault_flags, vm_page_t *m_hold)
1511 {
1512         struct faultstate fs;
1513         int ahead, behind, faultcount, rv;
1514         enum fault_status res;
1515         enum fault_next_status res_next;
1516         bool hardfault;
1517
1518         VM_CNT_INC(v_vm_faults);
1519
1520         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1521                 return (KERN_PROTECTION_FAILURE);
1522
1523         fs.vp = NULL;
1524         fs.vaddr = vaddr;
1525         fs.m_hold = m_hold;
1526         fs.fault_flags = fault_flags;
1527         fs.map = map;
1528         fs.lookup_still_valid = false;
1529         fs.oom_started = false;
1530         fs.nera = -1;
1531         fs.can_read_lock = true;
1532         faultcount = 0;
1533         hardfault = false;
1534
1535 RetryFault:
1536         fs.fault_type = fault_type;
1537
1538         /*
1539          * Find the backing store object and offset into it to begin the
1540          * search.
1541          */
1542         rv = vm_fault_lookup(&fs);
1543         if (rv != KERN_SUCCESS) {
1544                 if (rv == KERN_RESOURCE_SHORTAGE)
1545                         goto RetryFault;
1546                 return (rv);
1547         }
1548
1549         /*
1550          * Try to avoid lock contention on the top-level object through
1551          * special-case handling of some types of page faults, specifically,
1552          * those that are mapping an existing page from the top-level object.
1553          * Under this condition, a read lock on the object suffices, allowing
1554          * multiple page faults of a similar type to run in parallel.
1555          */
1556         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1557             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1558             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1559                 VM_OBJECT_RLOCK(fs.first_object);
1560                 res = vm_fault_soft_fast(&fs);
1561                 if (res == FAULT_SUCCESS)
1562                         return (KERN_SUCCESS);
1563                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1564                         VM_OBJECT_RUNLOCK(fs.first_object);
1565                         VM_OBJECT_WLOCK(fs.first_object);
1566                 }
1567         } else {
1568                 VM_OBJECT_WLOCK(fs.first_object);
1569         }
1570
1571         /*
1572          * Make a reference to this object to prevent its disposal while we
1573          * are messing with it.  Once we have the reference, the map is free
1574          * to be diddled.  Since objects reference their shadows (and copies),
1575          * they will stay around as well.
1576          *
1577          * Bump the paging-in-progress count to prevent size changes (e.g. 
1578          * truncation operations) during I/O.
1579          */
1580         vm_object_reference_locked(fs.first_object);
1581         vm_object_pip_add(fs.first_object, 1);
1582
1583         fs.m_cow = fs.m = fs.first_m = NULL;
1584
1585         /*
1586          * Search for the page at object/offset.
1587          */
1588         fs.object = fs.first_object;
1589         fs.pindex = fs.first_pindex;
1590
1591         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1592                 res = vm_fault_allocate(&fs);
1593                 switch (res) {
1594                 case FAULT_RESTART:
1595                         goto RetryFault;
1596                 case FAULT_SUCCESS:
1597                         return (KERN_SUCCESS);
1598                 case FAULT_FAILURE:
1599                         return (KERN_FAILURE);
1600                 case FAULT_OUT_OF_BOUNDS:
1601                         return (KERN_OUT_OF_BOUNDS);
1602                 case FAULT_CONTINUE:
1603                         break;
1604                 default:
1605                         panic("vm_fault: Unhandled status %d", res);
1606                 }
1607         }
1608
1609         while (TRUE) {
1610                 KASSERT(fs.m == NULL,
1611                     ("page still set %p at loop start", fs.m));
1612
1613                 res = vm_fault_object(&fs, &behind, &ahead);
1614                 switch (res) {
1615                 case FAULT_SOFT:
1616                         goto found;
1617                 case FAULT_HARD:
1618                         faultcount = behind + 1 + ahead;
1619                         hardfault = true;
1620                         goto found;
1621                 case FAULT_RESTART:
1622                         goto RetryFault;
1623                 case FAULT_SUCCESS:
1624                         return (KERN_SUCCESS);
1625                 case FAULT_FAILURE:
1626                         return (KERN_FAILURE);
1627                 case FAULT_OUT_OF_BOUNDS:
1628                         return (KERN_OUT_OF_BOUNDS);
1629                 case FAULT_PROTECTION_FAILURE:
1630                         return (KERN_PROTECTION_FAILURE);
1631                 case FAULT_CONTINUE:
1632                         break;
1633                 default:
1634                         panic("vm_fault: Unhandled status %d", res);
1635                 }
1636
1637                 /*
1638                  * The page was not found in the current object.  Try to
1639                  * traverse into a backing object or zero fill if none is
1640                  * found.
1641                  */
1642                 res_next = vm_fault_next(&fs);
1643                 if (res_next == FAULT_NEXT_RESTART)
1644                         goto RetryFault;
1645                 else if (res_next == FAULT_NEXT_GOTOBJ)
1646                         continue;
1647                 MPASS(res_next == FAULT_NEXT_NOOBJ);
1648                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1649                         if (fs.first_object == fs.object)
1650                                 vm_fault_page_free(&fs.first_m);
1651                         vm_fault_unlock_and_deallocate(&fs);
1652                         return (KERN_OUT_OF_BOUNDS);
1653                 }
1654                 VM_OBJECT_UNLOCK(fs.object);
1655                 vm_fault_zerofill(&fs);
1656                 /* Don't try to prefault neighboring pages. */
1657                 faultcount = 1;
1658                 break;
1659         }
1660
1661 found:
1662         /*
1663          * A valid page has been found and exclusively busied.  The
1664          * object lock must no longer be held.
1665          */
1666         vm_page_assert_xbusied(fs.m);
1667         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1668
1669         /*
1670          * If the page is being written, but isn't already owned by the
1671          * top-level object, we have to copy it into a new page owned by the
1672          * top-level object.
1673          */
1674         if (fs.object != fs.first_object) {
1675                 /*
1676                  * We only really need to copy if we want to write it.
1677                  */
1678                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1679                         vm_fault_cow(&fs);
1680                         /*
1681                          * We only try to prefault read-only mappings to the
1682                          * neighboring pages when this copy-on-write fault is
1683                          * a hard fault.  In other cases, trying to prefault
1684                          * is typically wasted effort.
1685                          */
1686                         if (faultcount == 0)
1687                                 faultcount = 1;
1688
1689                 } else {
1690                         fs.prot &= ~VM_PROT_WRITE;
1691                 }
1692         }
1693
1694         /*
1695          * We must verify that the maps have not changed since our last
1696          * lookup.
1697          */
1698         if (!fs.lookup_still_valid) {
1699                 rv = vm_fault_relookup(&fs);
1700                 if (rv != KERN_SUCCESS) {
1701                         vm_fault_deallocate(&fs);
1702                         if (rv == KERN_RESTART)
1703                                 goto RetryFault;
1704                         return (rv);
1705                 }
1706         }
1707         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1708
1709         /*
1710          * If the page was filled by a pager, save the virtual address that
1711          * should be faulted on next under a sequential access pattern to the
1712          * map entry.  A read lock on the map suffices to update this address
1713          * safely.
1714          */
1715         if (hardfault)
1716                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1717
1718         /*
1719          * Page must be completely valid or it is not fit to
1720          * map into user space.  vm_pager_get_pages() ensures this.
1721          */
1722         vm_page_assert_xbusied(fs.m);
1723         KASSERT(vm_page_all_valid(fs.m),
1724             ("vm_fault: page %p partially invalid", fs.m));
1725
1726         vm_fault_dirty(&fs, fs.m);
1727
1728         /*
1729          * Put this page into the physical map.  We had to do the unlock above
1730          * because pmap_enter() may sleep.  We don't put the page
1731          * back on the active queue until later so that the pageout daemon
1732          * won't find it (yet).
1733          */
1734         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1735             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1736         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1737             fs.wired == 0)
1738                 vm_fault_prefault(&fs, vaddr,
1739                     faultcount > 0 ? behind : PFBAK,
1740                     faultcount > 0 ? ahead : PFFOR, false);
1741
1742         /*
1743          * If the page is not wired down, then put it where the pageout daemon
1744          * can find it.
1745          */
1746         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1747                 vm_page_wire(fs.m);
1748         else
1749                 vm_page_activate(fs.m);
1750         if (fs.m_hold != NULL) {
1751                 (*fs.m_hold) = fs.m;
1752                 vm_page_wire(fs.m);
1753         }
1754         vm_page_xunbusy(fs.m);
1755         fs.m = NULL;
1756
1757         /*
1758          * Unlock everything, and return
1759          */
1760         vm_fault_deallocate(&fs);
1761         if (hardfault) {
1762                 VM_CNT_INC(v_io_faults);
1763                 curthread->td_ru.ru_majflt++;
1764 #ifdef RACCT
1765                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1766                         PROC_LOCK(curproc);
1767                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1768                                 racct_add_force(curproc, RACCT_WRITEBPS,
1769                                     PAGE_SIZE + behind * PAGE_SIZE);
1770                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1771                         } else {
1772                                 racct_add_force(curproc, RACCT_READBPS,
1773                                     PAGE_SIZE + ahead * PAGE_SIZE);
1774                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1775                         }
1776                         PROC_UNLOCK(curproc);
1777                 }
1778 #endif
1779         } else 
1780                 curthread->td_ru.ru_minflt++;
1781
1782         return (KERN_SUCCESS);
1783 }
1784
1785 /*
1786  * Speed up the reclamation of pages that precede the faulting pindex within
1787  * the first object of the shadow chain.  Essentially, perform the equivalent
1788  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1789  * the faulting pindex by the cluster size when the pages read by vm_fault()
1790  * cross a cluster-size boundary.  The cluster size is the greater of the
1791  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1792  *
1793  * When "fs->first_object" is a shadow object, the pages in the backing object
1794  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1795  * function must only be concerned with pages in the first object.
1796  */
1797 static void
1798 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1799 {
1800         vm_map_entry_t entry;
1801         vm_object_t first_object;
1802         vm_offset_t end, start;
1803         vm_page_t m, m_next;
1804         vm_pindex_t pend, pstart;
1805         vm_size_t size;
1806
1807         VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1808         first_object = fs->first_object;
1809         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1810         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1811                 VM_OBJECT_RLOCK(first_object);
1812                 size = VM_FAULT_DONTNEED_MIN;
1813                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1814                         size = pagesizes[1];
1815                 end = rounddown2(vaddr, size);
1816                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1817                     (entry = fs->entry)->start < end) {
1818                         if (end - entry->start < size)
1819                                 start = entry->start;
1820                         else
1821                                 start = end - size;
1822                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1823                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1824                             entry->start);
1825                         m_next = vm_page_find_least(first_object, pstart);
1826                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1827                             entry->start);
1828                         while ((m = m_next) != NULL && m->pindex < pend) {
1829                                 m_next = TAILQ_NEXT(m, listq);
1830                                 if (!vm_page_all_valid(m) ||
1831                                     vm_page_busied(m))
1832                                         continue;
1833
1834                                 /*
1835                                  * Don't clear PGA_REFERENCED, since it would
1836                                  * likely represent a reference by a different
1837                                  * process.
1838                                  *
1839                                  * Typically, at this point, prefetched pages
1840                                  * are still in the inactive queue.  Only
1841                                  * pages that triggered page faults are in the
1842                                  * active queue.  The test for whether the page
1843                                  * is in the inactive queue is racy; in the
1844                                  * worst case we will requeue the page
1845                                  * unnecessarily.
1846                                  */
1847                                 if (!vm_page_inactive(m))
1848                                         vm_page_deactivate(m);
1849                         }
1850                 }
1851                 VM_OBJECT_RUNLOCK(first_object);
1852         }
1853 }
1854
1855 /*
1856  * vm_fault_prefault provides a quick way of clustering
1857  * pagefaults into a processes address space.  It is a "cousin"
1858  * of vm_map_pmap_enter, except it runs at page fault time instead
1859  * of mmap time.
1860  */
1861 static void
1862 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1863     int backward, int forward, bool obj_locked)
1864 {
1865         pmap_t pmap;
1866         vm_map_entry_t entry;
1867         vm_object_t backing_object, lobject;
1868         vm_offset_t addr, starta;
1869         vm_pindex_t pindex;
1870         vm_page_t m;
1871         int i;
1872
1873         pmap = fs->map->pmap;
1874         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1875                 return;
1876
1877         entry = fs->entry;
1878
1879         if (addra < backward * PAGE_SIZE) {
1880                 starta = entry->start;
1881         } else {
1882                 starta = addra - backward * PAGE_SIZE;
1883                 if (starta < entry->start)
1884                         starta = entry->start;
1885         }
1886
1887         /*
1888          * Generate the sequence of virtual addresses that are candidates for
1889          * prefaulting in an outward spiral from the faulting virtual address,
1890          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1891          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1892          * If the candidate address doesn't have a backing physical page, then
1893          * the loop immediately terminates.
1894          */
1895         for (i = 0; i < 2 * imax(backward, forward); i++) {
1896                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1897                     PAGE_SIZE);
1898                 if (addr > addra + forward * PAGE_SIZE)
1899                         addr = 0;
1900
1901                 if (addr < starta || addr >= entry->end)
1902                         continue;
1903
1904                 if (!pmap_is_prefaultable(pmap, addr))
1905                         continue;
1906
1907                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1908                 lobject = entry->object.vm_object;
1909                 if (!obj_locked)
1910                         VM_OBJECT_RLOCK(lobject);
1911                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1912                     !vm_fault_object_needs_getpages(lobject) &&
1913                     (backing_object = lobject->backing_object) != NULL) {
1914                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1915                             0, ("vm_fault_prefault: unaligned object offset"));
1916                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1917                         VM_OBJECT_RLOCK(backing_object);
1918                         if (!obj_locked || lobject != entry->object.vm_object)
1919                                 VM_OBJECT_RUNLOCK(lobject);
1920                         lobject = backing_object;
1921                 }
1922                 if (m == NULL) {
1923                         if (!obj_locked || lobject != entry->object.vm_object)
1924                                 VM_OBJECT_RUNLOCK(lobject);
1925                         break;
1926                 }
1927                 if (vm_page_all_valid(m) &&
1928                     (m->flags & PG_FICTITIOUS) == 0)
1929                         pmap_enter_quick(pmap, addr, m, entry->protection);
1930                 if (!obj_locked || lobject != entry->object.vm_object)
1931                         VM_OBJECT_RUNLOCK(lobject);
1932         }
1933 }
1934
1935 /*
1936  * Hold each of the physical pages that are mapped by the specified range of
1937  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1938  * and allow the specified types of access, "prot".  If all of the implied
1939  * pages are successfully held, then the number of held pages is returned
1940  * together with pointers to those pages in the array "ma".  However, if any
1941  * of the pages cannot be held, -1 is returned.
1942  */
1943 int
1944 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1945     vm_prot_t prot, vm_page_t *ma, int max_count)
1946 {
1947         vm_offset_t end, va;
1948         vm_page_t *mp;
1949         int count;
1950         boolean_t pmap_failed;
1951
1952         if (len == 0)
1953                 return (0);
1954         end = round_page(addr + len);
1955         addr = trunc_page(addr);
1956
1957         if (!vm_map_range_valid(map, addr, end))
1958                 return (-1);
1959
1960         if (atop(end - addr) > max_count)
1961                 panic("vm_fault_quick_hold_pages: count > max_count");
1962         count = atop(end - addr);
1963
1964         /*
1965          * Most likely, the physical pages are resident in the pmap, so it is
1966          * faster to try pmap_extract_and_hold() first.
1967          */
1968         pmap_failed = FALSE;
1969         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1970                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1971                 if (*mp == NULL)
1972                         pmap_failed = TRUE;
1973                 else if ((prot & VM_PROT_WRITE) != 0 &&
1974                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1975                         /*
1976                          * Explicitly dirty the physical page.  Otherwise, the
1977                          * caller's changes may go unnoticed because they are
1978                          * performed through an unmanaged mapping or by a DMA
1979                          * operation.
1980                          *
1981                          * The object lock is not held here.
1982                          * See vm_page_clear_dirty_mask().
1983                          */
1984                         vm_page_dirty(*mp);
1985                 }
1986         }
1987         if (pmap_failed) {
1988                 /*
1989                  * One or more pages could not be held by the pmap.  Either no
1990                  * page was mapped at the specified virtual address or that
1991                  * mapping had insufficient permissions.  Attempt to fault in
1992                  * and hold these pages.
1993                  *
1994                  * If vm_fault_disable_pagefaults() was called,
1995                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1996                  * acquire MD VM locks, which means we must not call
1997                  * vm_fault().  Some (out of tree) callers mark
1998                  * too wide a code area with vm_fault_disable_pagefaults()
1999                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
2000                  * the proper behaviour explicitly.
2001                  */
2002                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2003                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
2004                         goto error;
2005                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2006                         if (*mp == NULL && vm_fault(map, va, prot,
2007                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2008                                 goto error;
2009         }
2010         return (count);
2011 error:  
2012         for (mp = ma; mp < ma + count; mp++)
2013                 if (*mp != NULL)
2014                         vm_page_unwire(*mp, PQ_INACTIVE);
2015         return (-1);
2016 }
2017
2018 /*
2019  *      Routine:
2020  *              vm_fault_copy_entry
2021  *      Function:
2022  *              Create new object backing dst_entry with private copy of all
2023  *              underlying pages. When src_entry is equal to dst_entry, function
2024  *              implements COW for wired-down map entry. Otherwise, it forks
2025  *              wired entry into dst_map.
2026  *
2027  *      In/out conditions:
2028  *              The source and destination maps must be locked for write.
2029  *              The source map entry must be wired down (or be a sharing map
2030  *              entry corresponding to a main map entry that is wired down).
2031  */
2032 void
2033 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2034     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2035     vm_ooffset_t *fork_charge)
2036 {
2037         vm_object_t backing_object, dst_object, object, src_object;
2038         vm_pindex_t dst_pindex, pindex, src_pindex;
2039         vm_prot_t access, prot;
2040         vm_offset_t vaddr;
2041         vm_page_t dst_m;
2042         vm_page_t src_m;
2043         bool upgrade;
2044
2045         upgrade = src_entry == dst_entry;
2046         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2047             ("vm_fault_copy_entry: vm_object not NULL"));
2048
2049         /*
2050          * If not an upgrade, then enter the mappings in the pmap as
2051          * read and/or execute accesses.  Otherwise, enter them as
2052          * write accesses.
2053          *
2054          * A writeable large page mapping is only created if all of
2055          * the constituent small page mappings are modified. Marking
2056          * PTEs as modified on inception allows promotion to happen
2057          * without taking potentially large number of soft faults.
2058          */
2059         access = prot = dst_entry->protection;
2060         if (!upgrade)
2061                 access &= ~VM_PROT_WRITE;
2062
2063         src_object = src_entry->object.vm_object;
2064         src_pindex = OFF_TO_IDX(src_entry->offset);
2065
2066         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2067                 dst_object = src_object;
2068                 vm_object_reference(dst_object);
2069         } else {
2070                 /*
2071                  * Create the top-level object for the destination entry.
2072                  * Doesn't actually shadow anything - we copy the pages
2073                  * directly.
2074                  */
2075                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2076                     dst_entry->start), NULL, NULL, 0);
2077 #if VM_NRESERVLEVEL > 0
2078                 dst_object->flags |= OBJ_COLORED;
2079                 dst_object->pg_color = atop(dst_entry->start);
2080 #endif
2081                 dst_object->domain = src_object->domain;
2082                 dst_object->charge = dst_entry->end - dst_entry->start;
2083
2084                 dst_entry->object.vm_object = dst_object;
2085                 dst_entry->offset = 0;
2086                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2087         }
2088
2089         VM_OBJECT_WLOCK(dst_object);
2090         if (fork_charge != NULL) {
2091                 KASSERT(dst_entry->cred == NULL,
2092                     ("vm_fault_copy_entry: leaked swp charge"));
2093                 dst_object->cred = curthread->td_ucred;
2094                 crhold(dst_object->cred);
2095                 *fork_charge += dst_object->charge;
2096         } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2097             dst_object->cred == NULL) {
2098                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2099                     dst_entry));
2100                 dst_object->cred = dst_entry->cred;
2101                 dst_entry->cred = NULL;
2102         }
2103
2104         /*
2105          * Loop through all of the virtual pages within the entry's
2106          * range, copying each page from the source object to the
2107          * destination object.  Since the source is wired, those pages
2108          * must exist.  In contrast, the destination is pageable.
2109          * Since the destination object doesn't share any backing storage
2110          * with the source object, all of its pages must be dirtied,
2111          * regardless of whether they can be written.
2112          */
2113         for (vaddr = dst_entry->start, dst_pindex = 0;
2114             vaddr < dst_entry->end;
2115             vaddr += PAGE_SIZE, dst_pindex++) {
2116 again:
2117                 /*
2118                  * Find the page in the source object, and copy it in.
2119                  * Because the source is wired down, the page will be
2120                  * in memory.
2121                  */
2122                 if (src_object != dst_object)
2123                         VM_OBJECT_RLOCK(src_object);
2124                 object = src_object;
2125                 pindex = src_pindex + dst_pindex;
2126                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2127                     (backing_object = object->backing_object) != NULL) {
2128                         /*
2129                          * Unless the source mapping is read-only or
2130                          * it is presently being upgraded from
2131                          * read-only, the first object in the shadow
2132                          * chain should provide all of the pages.  In
2133                          * other words, this loop body should never be
2134                          * executed when the source mapping is already
2135                          * read/write.
2136                          */
2137                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2138                             upgrade,
2139                             ("vm_fault_copy_entry: main object missing page"));
2140
2141                         VM_OBJECT_RLOCK(backing_object);
2142                         pindex += OFF_TO_IDX(object->backing_object_offset);
2143                         if (object != dst_object)
2144                                 VM_OBJECT_RUNLOCK(object);
2145                         object = backing_object;
2146                 }
2147                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2148
2149                 if (object != dst_object) {
2150                         /*
2151                          * Allocate a page in the destination object.
2152                          */
2153                         dst_m = vm_page_alloc(dst_object, (src_object ==
2154                             dst_object ? src_pindex : 0) + dst_pindex,
2155                             VM_ALLOC_NORMAL);
2156                         if (dst_m == NULL) {
2157                                 VM_OBJECT_WUNLOCK(dst_object);
2158                                 VM_OBJECT_RUNLOCK(object);
2159                                 vm_wait(dst_object);
2160                                 VM_OBJECT_WLOCK(dst_object);
2161                                 goto again;
2162                         }
2163
2164                         /*
2165                          * See the comment in vm_fault_cow().
2166                          */
2167                         if (src_object == dst_object &&
2168                             (object->flags & OBJ_ONEMAPPING) == 0)
2169                                 pmap_remove_all(src_m);
2170                         pmap_copy_page(src_m, dst_m);
2171
2172                         /*
2173                          * The object lock does not guarantee that "src_m" will
2174                          * transition from invalid to valid, but it does ensure
2175                          * that "src_m" will not transition from valid to
2176                          * invalid.
2177                          */
2178                         dst_m->dirty = dst_m->valid = src_m->valid;
2179                         VM_OBJECT_RUNLOCK(object);
2180                 } else {
2181                         dst_m = src_m;
2182                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2183                                 goto again;
2184                         if (dst_m->pindex >= dst_object->size) {
2185                                 /*
2186                                  * We are upgrading.  Index can occur
2187                                  * out of bounds if the object type is
2188                                  * vnode and the file was truncated.
2189                                  */
2190                                 vm_page_xunbusy(dst_m);
2191                                 break;
2192                         }
2193                 }
2194
2195                 /*
2196                  * Enter it in the pmap. If a wired, copy-on-write
2197                  * mapping is being replaced by a write-enabled
2198                  * mapping, then wire that new mapping.
2199                  *
2200                  * The page can be invalid if the user called
2201                  * msync(MS_INVALIDATE) or truncated the backing vnode
2202                  * or shared memory object.  In this case, do not
2203                  * insert it into pmap, but still do the copy so that
2204                  * all copies of the wired map entry have similar
2205                  * backing pages.
2206                  */
2207                 if (vm_page_all_valid(dst_m)) {
2208                         VM_OBJECT_WUNLOCK(dst_object);
2209                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2210                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2211                         VM_OBJECT_WLOCK(dst_object);
2212                 }
2213
2214                 /*
2215                  * Mark it no longer busy, and put it on the active list.
2216                  */
2217                 if (upgrade) {
2218                         if (src_m != dst_m) {
2219                                 vm_page_unwire(src_m, PQ_INACTIVE);
2220                                 vm_page_wire(dst_m);
2221                         } else {
2222                                 KASSERT(vm_page_wired(dst_m),
2223                                     ("dst_m %p is not wired", dst_m));
2224                         }
2225                 } else {
2226                         vm_page_activate(dst_m);
2227                 }
2228                 vm_page_xunbusy(dst_m);
2229         }
2230         VM_OBJECT_WUNLOCK(dst_object);
2231         if (upgrade) {
2232                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2233                 vm_object_deallocate(src_object);
2234         }
2235 }
2236
2237 /*
2238  * Block entry into the machine-independent layer's page fault handler by
2239  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2240  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2241  * spurious page faults. 
2242  */
2243 int
2244 vm_fault_disable_pagefaults(void)
2245 {
2246
2247         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2248 }
2249
2250 void
2251 vm_fault_enable_pagefaults(int save)
2252 {
2253
2254         curthread_pflags_restore(save);
2255 }