]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Store the bottom of the shadow chain in OBJ_ANON object->handle member.
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int map_generation;
132         bool lookup_still_valid;
133         struct vnode *vp;
134 };
135
136 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
137             int ahead);
138 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
139             int backward, int forward, bool obj_locked);
140
141 static int vm_pfault_oom_attempts = 3;
142 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
143     &vm_pfault_oom_attempts, 0,
144     "Number of page allocation attempts in page fault handler before it "
145     "triggers OOM handling");
146
147 static int vm_pfault_oom_wait = 10;
148 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
149     &vm_pfault_oom_wait, 0,
150     "Number of seconds to wait for free pages before retrying "
151     "the page fault handler");
152
153 static inline void
154 release_page(struct faultstate *fs)
155 {
156
157         if (fs->m != NULL) {
158                 /*
159                  * fs->m's object lock might not be held, so the page must be
160                  * kept busy until we are done with it.
161                  */
162                 vm_page_lock(fs->m);
163                 vm_page_deactivate(fs->m);
164                 vm_page_unlock(fs->m);
165                 vm_page_xunbusy(fs->m);
166                 fs->m = NULL;
167         }
168 }
169
170 static inline void
171 unlock_map(struct faultstate *fs)
172 {
173
174         if (fs->lookup_still_valid) {
175                 vm_map_lookup_done(fs->map, fs->entry);
176                 fs->lookup_still_valid = false;
177         }
178 }
179
180 static void
181 unlock_vp(struct faultstate *fs)
182 {
183
184         if (fs->vp != NULL) {
185                 vput(fs->vp);
186                 fs->vp = NULL;
187         }
188 }
189
190 static void
191 fault_deallocate(struct faultstate *fs)
192 {
193
194         vm_object_pip_wakeup(fs->object);
195         if (fs->object != fs->first_object) {
196                 VM_OBJECT_WLOCK(fs->first_object);
197                 vm_page_free(fs->first_m);
198                 vm_object_pip_wakeup(fs->first_object);
199                 VM_OBJECT_WUNLOCK(fs->first_object);
200                 fs->first_m = NULL;
201         }
202         vm_object_deallocate(fs->first_object);
203         unlock_map(fs);
204         unlock_vp(fs);
205 }
206
207 static void
208 unlock_and_deallocate(struct faultstate *fs)
209 {
210
211         VM_OBJECT_WUNLOCK(fs->object);
212         fault_deallocate(fs);
213 }
214
215 static void
216 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
217     vm_prot_t fault_type, int fault_flags, bool excl)
218 {
219         bool need_dirty;
220
221         if (((prot & VM_PROT_WRITE) == 0 &&
222             (fault_flags & VM_FAULT_DIRTY) == 0) ||
223             (m->oflags & VPO_UNMANAGED) != 0)
224                 return;
225
226         VM_OBJECT_ASSERT_LOCKED(m->object);
227         VM_PAGE_OBJECT_BUSY_ASSERT(m);
228
229         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
230             (fault_flags & VM_FAULT_WIRE) == 0) ||
231             (fault_flags & VM_FAULT_DIRTY) != 0;
232
233         vm_object_set_writeable_dirty(m->object);
234
235         if (!excl)
236                 /*
237                  * If two callers of vm_fault_dirty() with excl ==
238                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
239                  * flag set, other with flag clear, race, it is
240                  * possible for the no-NOSYNC thread to see m->dirty
241                  * != 0 and not clear PGA_NOSYNC.  Take vm_page lock
242                  * around manipulation of PGA_NOSYNC and
243                  * vm_page_dirty() call to avoid the race.
244                  */
245                 vm_page_lock(m);
246
247         /*
248          * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
249          * if the page is already dirty to prevent data written with
250          * the expectation of being synced from not being synced.
251          * Likewise if this entry does not request NOSYNC then make
252          * sure the page isn't marked NOSYNC.  Applications sharing
253          * data should use the same flags to avoid ping ponging.
254          */
255         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
256                 if (m->dirty == 0) {
257                         vm_page_aflag_set(m, PGA_NOSYNC);
258                 }
259         } else {
260                 vm_page_aflag_clear(m, PGA_NOSYNC);
261         }
262
263         /*
264          * If the fault is a write, we know that this page is being
265          * written NOW so dirty it explicitly to save on
266          * pmap_is_modified() calls later.
267          *
268          * Also, since the page is now dirty, we can possibly tell
269          * the pager to release any swap backing the page.  Calling
270          * the pager requires a write lock on the object.
271          */
272         if (need_dirty)
273                 vm_page_dirty(m);
274         if (!excl)
275                 vm_page_unlock(m);
276         else if (need_dirty)
277                 vm_pager_page_unswapped(m);
278 }
279
280 /*
281  * Unlocks fs.first_object and fs.map on success.
282  */
283 static int
284 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
285     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
286 {
287         vm_page_t m, m_map;
288 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
289     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
290     VM_NRESERVLEVEL > 0
291         vm_page_t m_super;
292         int flags;
293 #endif
294         int psind, rv;
295
296         MPASS(fs->vp == NULL);
297         vm_object_busy(fs->first_object);
298         m = vm_page_lookup(fs->first_object, fs->first_pindex);
299         /* A busy page can be mapped for read|execute access. */
300         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
301             vm_page_busied(m)) || !vm_page_all_valid(m)) {
302                 rv = KERN_FAILURE;
303                 goto out;
304         }
305         m_map = m;
306         psind = 0;
307 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
308     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
309     VM_NRESERVLEVEL > 0
310         if ((m->flags & PG_FICTITIOUS) == 0 &&
311             (m_super = vm_reserv_to_superpage(m)) != NULL &&
312             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
313             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
314             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
315             (pagesizes[m_super->psind] - 1)) && !wired &&
316             pmap_ps_enabled(fs->map->pmap)) {
317                 flags = PS_ALL_VALID;
318                 if ((prot & VM_PROT_WRITE) != 0) {
319                         /*
320                          * Create a superpage mapping allowing write access
321                          * only if none of the constituent pages are busy and
322                          * all of them are already dirty (except possibly for
323                          * the page that was faulted on).
324                          */
325                         flags |= PS_NONE_BUSY;
326                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
327                                 flags |= PS_ALL_DIRTY;
328                 }
329                 if (vm_page_ps_test(m_super, flags, m)) {
330                         m_map = m_super;
331                         psind = m_super->psind;
332                         vaddr = rounddown2(vaddr, pagesizes[psind]);
333                         /* Preset the modified bit for dirty superpages. */
334                         if ((flags & PS_ALL_DIRTY) != 0)
335                                 fault_type |= VM_PROT_WRITE;
336                 }
337         }
338 #endif
339         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
340             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
341         if (rv != KERN_SUCCESS)
342                 goto out;
343         if (m_hold != NULL) {
344                 *m_hold = m;
345                 vm_page_wire(m);
346         }
347         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
348         if (psind == 0 && !wired)
349                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
350         VM_OBJECT_RUNLOCK(fs->first_object);
351         vm_map_lookup_done(fs->map, fs->entry);
352         curthread->td_ru.ru_minflt++;
353
354 out:
355         vm_object_unbusy(fs->first_object);
356         return (rv);
357 }
358
359 static void
360 vm_fault_restore_map_lock(struct faultstate *fs)
361 {
362
363         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
364         MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
365
366         if (!vm_map_trylock_read(fs->map)) {
367                 VM_OBJECT_WUNLOCK(fs->first_object);
368                 vm_map_lock_read(fs->map);
369                 VM_OBJECT_WLOCK(fs->first_object);
370         }
371         fs->lookup_still_valid = true;
372 }
373
374 static void
375 vm_fault_populate_check_page(vm_page_t m)
376 {
377
378         /*
379          * Check each page to ensure that the pager is obeying the
380          * interface: the page must be installed in the object, fully
381          * valid, and exclusively busied.
382          */
383         MPASS(m != NULL);
384         MPASS(vm_page_all_valid(m));
385         MPASS(vm_page_xbusied(m));
386 }
387
388 static void
389 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
390     vm_pindex_t last)
391 {
392         vm_page_t m;
393         vm_pindex_t pidx;
394
395         VM_OBJECT_ASSERT_WLOCKED(object);
396         MPASS(first <= last);
397         for (pidx = first, m = vm_page_lookup(object, pidx);
398             pidx <= last; pidx++, m = vm_page_next(m)) {
399                 vm_fault_populate_check_page(m);
400                 vm_page_lock(m);
401                 vm_page_deactivate(m);
402                 vm_page_unlock(m);
403                 vm_page_xunbusy(m);
404         }
405 }
406
407 static int
408 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
409     int fault_flags, boolean_t wired, vm_page_t *m_hold)
410 {
411         struct mtx *m_mtx;
412         vm_offset_t vaddr;
413         vm_page_t m;
414         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
415         int i, npages, psind, rv;
416
417         MPASS(fs->object == fs->first_object);
418         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
419         MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
420         MPASS(fs->first_object->backing_object == NULL);
421         MPASS(fs->lookup_still_valid);
422
423         pager_first = OFF_TO_IDX(fs->entry->offset);
424         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
425         unlock_map(fs);
426         unlock_vp(fs);
427
428         /*
429          * Call the pager (driver) populate() method.
430          *
431          * There is no guarantee that the method will be called again
432          * if the current fault is for read, and a future fault is
433          * for write.  Report the entry's maximum allowed protection
434          * to the driver.
435          */
436         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
437             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
438
439         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
440         if (rv == VM_PAGER_BAD) {
441                 /*
442                  * VM_PAGER_BAD is the backdoor for a pager to request
443                  * normal fault handling.
444                  */
445                 vm_fault_restore_map_lock(fs);
446                 if (fs->map->timestamp != fs->map_generation)
447                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
448                 return (KERN_NOT_RECEIVER);
449         }
450         if (rv != VM_PAGER_OK)
451                 return (KERN_FAILURE); /* AKA SIGSEGV */
452
453         /* Ensure that the driver is obeying the interface. */
454         MPASS(pager_first <= pager_last);
455         MPASS(fs->first_pindex <= pager_last);
456         MPASS(fs->first_pindex >= pager_first);
457         MPASS(pager_last < fs->first_object->size);
458
459         vm_fault_restore_map_lock(fs);
460         if (fs->map->timestamp != fs->map_generation) {
461                 vm_fault_populate_cleanup(fs->first_object, pager_first,
462                     pager_last);
463                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
464         }
465
466         /*
467          * The map is unchanged after our last unlock.  Process the fault.
468          *
469          * The range [pager_first, pager_last] that is given to the
470          * pager is only a hint.  The pager may populate any range
471          * within the object that includes the requested page index.
472          * In case the pager expanded the range, clip it to fit into
473          * the map entry.
474          */
475         map_first = OFF_TO_IDX(fs->entry->offset);
476         if (map_first > pager_first) {
477                 vm_fault_populate_cleanup(fs->first_object, pager_first,
478                     map_first - 1);
479                 pager_first = map_first;
480         }
481         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
482         if (map_last < pager_last) {
483                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
484                     pager_last);
485                 pager_last = map_last;
486         }
487         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
488             pidx <= pager_last;
489             pidx += npages, m = vm_page_next(&m[npages - 1])) {
490                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
491 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
492     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
493                 psind = m->psind;
494                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
495                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
496                     !pmap_ps_enabled(fs->map->pmap) || wired))
497                         psind = 0;
498 #else
499                 psind = 0;
500 #endif          
501                 npages = atop(pagesizes[psind]);
502                 for (i = 0; i < npages; i++) {
503                         vm_fault_populate_check_page(&m[i]);
504                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
505                             fault_flags, true);
506                 }
507                 VM_OBJECT_WUNLOCK(fs->first_object);
508                 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
509                     (wired ? PMAP_ENTER_WIRED : 0), psind);
510 #if defined(__amd64__)
511                 if (psind > 0 && rv == KERN_FAILURE) {
512                         for (i = 0; i < npages; i++) {
513                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
514                                     &m[i], prot, fault_type |
515                                     (wired ? PMAP_ENTER_WIRED : 0), 0);
516                                 MPASS(rv == KERN_SUCCESS);
517                         }
518                 }
519 #else
520                 MPASS(rv == KERN_SUCCESS);
521 #endif
522                 VM_OBJECT_WLOCK(fs->first_object);
523                 m_mtx = NULL;
524                 for (i = 0; i < npages; i++) {
525                         if ((fault_flags & VM_FAULT_WIRE) != 0) {
526                                 vm_page_wire(&m[i]);
527                         } else {
528                                 vm_page_change_lock(&m[i], &m_mtx);
529                                 vm_page_activate(&m[i]);
530                         }
531                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
532                                 *m_hold = &m[i];
533                                 vm_page_wire(&m[i]);
534                         }
535                         vm_page_xunbusy(&m[i]);
536                 }
537                 if (m_mtx != NULL)
538                         mtx_unlock(m_mtx);
539         }
540         curthread->td_ru.ru_majflt++;
541         return (KERN_SUCCESS);
542 }
543
544 static int prot_fault_translation;
545 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
546     &prot_fault_translation, 0,
547     "Control signal to deliver on protection fault");
548
549 /* compat definition to keep common code for signal translation */
550 #define UCODE_PAGEFLT   12
551 #ifdef T_PAGEFLT
552 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
553 #endif
554
555 /*
556  *      vm_fault_trap:
557  *
558  *      Handle a page fault occurring at the given address,
559  *      requiring the given permissions, in the map specified.
560  *      If successful, the page is inserted into the
561  *      associated physical map.
562  *
563  *      NOTE: the given address should be truncated to the
564  *      proper page address.
565  *
566  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
567  *      a standard error specifying why the fault is fatal is returned.
568  *
569  *      The map in question must be referenced, and remains so.
570  *      Caller may hold no locks.
571  */
572 int
573 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
574     int fault_flags, int *signo, int *ucode)
575 {
576         int result;
577
578         MPASS(signo == NULL || ucode != NULL);
579 #ifdef KTRACE
580         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
581                 ktrfault(vaddr, fault_type);
582 #endif
583         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
584             NULL);
585         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
586             result == KERN_INVALID_ADDRESS ||
587             result == KERN_RESOURCE_SHORTAGE ||
588             result == KERN_PROTECTION_FAILURE ||
589             result == KERN_OUT_OF_BOUNDS,
590             ("Unexpected Mach error %d from vm_fault()", result));
591 #ifdef KTRACE
592         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
593                 ktrfaultend(result);
594 #endif
595         if (result != KERN_SUCCESS && signo != NULL) {
596                 switch (result) {
597                 case KERN_FAILURE:
598                 case KERN_INVALID_ADDRESS:
599                         *signo = SIGSEGV;
600                         *ucode = SEGV_MAPERR;
601                         break;
602                 case KERN_RESOURCE_SHORTAGE:
603                         *signo = SIGBUS;
604                         *ucode = BUS_OOMERR;
605                         break;
606                 case KERN_OUT_OF_BOUNDS:
607                         *signo = SIGBUS;
608                         *ucode = BUS_OBJERR;
609                         break;
610                 case KERN_PROTECTION_FAILURE:
611                         if (prot_fault_translation == 0) {
612                                 /*
613                                  * Autodetect.  This check also covers
614                                  * the images without the ABI-tag ELF
615                                  * note.
616                                  */
617                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
618                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
619                                         *signo = SIGSEGV;
620                                         *ucode = SEGV_ACCERR;
621                                 } else {
622                                         *signo = SIGBUS;
623                                         *ucode = UCODE_PAGEFLT;
624                                 }
625                         } else if (prot_fault_translation == 1) {
626                                 /* Always compat mode. */
627                                 *signo = SIGBUS;
628                                 *ucode = UCODE_PAGEFLT;
629                         } else {
630                                 /* Always SIGSEGV mode. */
631                                 *signo = SIGSEGV;
632                                 *ucode = SEGV_ACCERR;
633                         }
634                         break;
635                 default:
636                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
637                             result));
638                         break;
639                 }
640         }
641         return (result);
642 }
643
644 static int
645 vm_fault_lock_vnode(struct faultstate *fs)
646 {
647         struct vnode *vp;
648         int error, locked;
649
650         if (fs->object->type != OBJT_VNODE)
651                 return (KERN_SUCCESS);
652         vp = fs->object->handle;
653         if (vp == fs->vp) {
654                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
655                 return (KERN_SUCCESS);
656         }
657
658         /*
659          * Perform an unlock in case the desired vnode changed while
660          * the map was unlocked during a retry.
661          */
662         unlock_vp(fs);
663
664         locked = VOP_ISLOCKED(vp);
665         if (locked != LK_EXCLUSIVE)
666                 locked = LK_SHARED;
667
668         /*
669          * We must not sleep acquiring the vnode lock while we have
670          * the page exclusive busied or the object's
671          * paging-in-progress count incremented.  Otherwise, we could
672          * deadlock.
673          */
674         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread);
675         if (error == 0) {
676                 fs->vp = vp;
677                 return (KERN_SUCCESS);
678         }
679
680         vhold(vp);
681         release_page(fs);
682         unlock_and_deallocate(fs);
683         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread);
684         vdrop(vp);
685         fs->vp = vp;
686         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
687         return (KERN_RESOURCE_SHORTAGE);
688 }
689
690 int
691 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
692     int fault_flags, vm_page_t *m_hold)
693 {
694         struct faultstate fs;
695         struct domainset *dset;
696         vm_object_t next_object, retry_object;
697         vm_offset_t e_end, e_start;
698         vm_pindex_t retry_pindex;
699         vm_prot_t prot, retry_prot;
700         int ahead, alloc_req, behind, cluster_offset, era, faultcount;
701         int nera, oom, result, rv;
702         u_char behavior;
703         boolean_t wired;        /* Passed by reference. */
704         bool dead, hardfault, is_first_object_locked;
705
706         VM_CNT_INC(v_vm_faults);
707
708         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
709                 return (KERN_PROTECTION_FAILURE);
710
711         fs.vp = NULL;
712         faultcount = 0;
713         nera = -1;
714         hardfault = false;
715
716 RetryFault:
717         oom = 0;
718 RetryFault_oom:
719
720         /*
721          * Find the backing store object and offset into it to begin the
722          * search.
723          */
724         fs.map = map;
725         result = vm_map_lookup(&fs.map, vaddr, fault_type |
726             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
727             &fs.first_pindex, &prot, &wired);
728         if (result != KERN_SUCCESS) {
729                 unlock_vp(&fs);
730                 return (result);
731         }
732
733         fs.map_generation = fs.map->timestamp;
734
735         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
736                 panic("%s: fault on nofault entry, addr: %#lx",
737                     __func__, (u_long)vaddr);
738         }
739
740         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
741             fs.entry->wiring_thread != curthread) {
742                 vm_map_unlock_read(fs.map);
743                 vm_map_lock(fs.map);
744                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
745                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
746                         unlock_vp(&fs);
747                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
748                         vm_map_unlock_and_wait(fs.map, 0);
749                 } else
750                         vm_map_unlock(fs.map);
751                 goto RetryFault;
752         }
753
754         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
755
756         if (wired)
757                 fault_type = prot | (fault_type & VM_PROT_COPY);
758         else
759                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
760                     ("!wired && VM_FAULT_WIRE"));
761
762         /*
763          * Try to avoid lock contention on the top-level object through
764          * special-case handling of some types of page faults, specifically,
765          * those that are mapping an existing page from the top-level object.
766          * Under this condition, a read lock on the object suffices, allowing
767          * multiple page faults of a similar type to run in parallel.
768          */
769         if (fs.vp == NULL /* avoid locked vnode leak */ &&
770             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
771                 VM_OBJECT_RLOCK(fs.first_object);
772                 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
773                     fault_flags, wired, m_hold);
774                 if (rv == KERN_SUCCESS)
775                         return (rv);
776                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
777                         VM_OBJECT_RUNLOCK(fs.first_object);
778                         VM_OBJECT_WLOCK(fs.first_object);
779                 }
780         } else {
781                 VM_OBJECT_WLOCK(fs.first_object);
782         }
783
784         /*
785          * Make a reference to this object to prevent its disposal while we
786          * are messing with it.  Once we have the reference, the map is free
787          * to be diddled.  Since objects reference their shadows (and copies),
788          * they will stay around as well.
789          *
790          * Bump the paging-in-progress count to prevent size changes (e.g. 
791          * truncation operations) during I/O.
792          */
793         vm_object_reference_locked(fs.first_object);
794         vm_object_pip_add(fs.first_object, 1);
795
796         fs.lookup_still_valid = true;
797
798         fs.first_m = NULL;
799
800         /*
801          * Search for the page at object/offset.
802          */
803         fs.object = fs.first_object;
804         fs.pindex = fs.first_pindex;
805         while (TRUE) {
806                 /*
807                  * If the object is marked for imminent termination,
808                  * we retry here, since the collapse pass has raced
809                  * with us.  Otherwise, if we see terminally dead
810                  * object, return fail.
811                  */
812                 if ((fs.object->flags & OBJ_DEAD) != 0) {
813                         dead = fs.object->type == OBJT_DEAD;
814                         unlock_and_deallocate(&fs);
815                         if (dead)
816                                 return (KERN_PROTECTION_FAILURE);
817                         pause("vmf_de", 1);
818                         goto RetryFault;
819                 }
820
821                 /*
822                  * See if page is resident
823                  */
824                 fs.m = vm_page_lookup(fs.object, fs.pindex);
825                 if (fs.m != NULL) {
826                         /*
827                          * Wait/Retry if the page is busy.  We have to do this
828                          * if the page is either exclusive or shared busy
829                          * because the vm_pager may be using read busy for
830                          * pageouts (and even pageins if it is the vnode
831                          * pager), and we could end up trying to pagein and
832                          * pageout the same page simultaneously.
833                          *
834                          * We can theoretically allow the busy case on a read
835                          * fault if the page is marked valid, but since such
836                          * pages are typically already pmap'd, putting that
837                          * special case in might be more effort then it is 
838                          * worth.  We cannot under any circumstances mess
839                          * around with a shared busied page except, perhaps,
840                          * to pmap it.
841                          */
842                         if (vm_page_tryxbusy(fs.m) == 0) {
843                                 /*
844                                  * Reference the page before unlocking and
845                                  * sleeping so that the page daemon is less
846                                  * likely to reclaim it.
847                                  */
848                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
849                                 if (fs.object != fs.first_object) {
850                                         if (!VM_OBJECT_TRYWLOCK(
851                                             fs.first_object)) {
852                                                 VM_OBJECT_WUNLOCK(fs.object);
853                                                 VM_OBJECT_WLOCK(fs.first_object);
854                                                 VM_OBJECT_WLOCK(fs.object);
855                                         }
856                                         vm_page_free(fs.first_m);
857                                         vm_object_pip_wakeup(fs.first_object);
858                                         VM_OBJECT_WUNLOCK(fs.first_object);
859                                         fs.first_m = NULL;
860                                 }
861                                 unlock_map(&fs);
862                                 if (fs.m == vm_page_lookup(fs.object,
863                                     fs.pindex)) {
864                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
865                                 }
866                                 vm_object_pip_wakeup(fs.object);
867                                 VM_OBJECT_WUNLOCK(fs.object);
868                                 VM_CNT_INC(v_intrans);
869                                 vm_object_deallocate(fs.first_object);
870                                 goto RetryFault;
871                         }
872
873                         /*
874                          * The page is marked busy for other processes and the
875                          * pagedaemon.  If it still isn't completely valid
876                          * (readable), jump to readrest, else break-out ( we
877                          * found the page ).
878                          */
879                         if (!vm_page_all_valid(fs.m))
880                                 goto readrest;
881                         break; /* break to PAGE HAS BEEN FOUND */
882                 }
883                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
884
885                 /*
886                  * Page is not resident.  If the pager might contain the page
887                  * or this is the beginning of the search, allocate a new
888                  * page.  (Default objects are zero-fill, so there is no real
889                  * pager for them.)
890                  */
891                 if (fs.object->type != OBJT_DEFAULT ||
892                     fs.object == fs.first_object) {
893                         if ((fs.object->flags & OBJ_SIZEVNLOCK) != 0) {
894                                 rv = vm_fault_lock_vnode(&fs);
895                                 MPASS(rv == KERN_SUCCESS ||
896                                     rv == KERN_RESOURCE_SHORTAGE);
897                                 if (rv == KERN_RESOURCE_SHORTAGE)
898                                         goto RetryFault;
899                         }
900                         if (fs.pindex >= fs.object->size) {
901                                 unlock_and_deallocate(&fs);
902                                 return (KERN_OUT_OF_BOUNDS);
903                         }
904
905                         if (fs.object == fs.first_object &&
906                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
907                             fs.first_object->shadow_count == 0) {
908                                 rv = vm_fault_populate(&fs, prot, fault_type,
909                                     fault_flags, wired, m_hold);
910                                 switch (rv) {
911                                 case KERN_SUCCESS:
912                                 case KERN_FAILURE:
913                                         unlock_and_deallocate(&fs);
914                                         return (rv);
915                                 case KERN_RESOURCE_SHORTAGE:
916                                         unlock_and_deallocate(&fs);
917                                         goto RetryFault;
918                                 case KERN_NOT_RECEIVER:
919                                         /*
920                                          * Pager's populate() method
921                                          * returned VM_PAGER_BAD.
922                                          */
923                                         break;
924                                 default:
925                                         panic("inconsistent return codes");
926                                 }
927                         }
928
929                         /*
930                          * Allocate a new page for this object/offset pair.
931                          *
932                          * Unlocked read of the p_flag is harmless. At
933                          * worst, the P_KILLED might be not observed
934                          * there, and allocation can fail, causing
935                          * restart and new reading of the p_flag.
936                          */
937                         dset = fs.object->domain.dr_policy;
938                         if (dset == NULL)
939                                 dset = curthread->td_domain.dr_policy;
940                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
941                             P_KILLED(curproc)) {
942 #if VM_NRESERVLEVEL > 0
943                                 vm_object_color(fs.object, atop(vaddr) -
944                                     fs.pindex);
945 #endif
946                                 alloc_req = P_KILLED(curproc) ?
947                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
948                                 if (fs.object->type != OBJT_VNODE &&
949                                     fs.object->backing_object == NULL)
950                                         alloc_req |= VM_ALLOC_ZERO;
951                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
952                                     alloc_req);
953                         }
954                         if (fs.m == NULL) {
955                                 unlock_and_deallocate(&fs);
956                                 if (vm_pfault_oom_attempts < 0 ||
957                                     oom < vm_pfault_oom_attempts) {
958                                         oom++;
959                                         vm_waitpfault(dset,
960                                             vm_pfault_oom_wait * hz);
961                                         goto RetryFault_oom;
962                                 }
963                                 if (bootverbose)
964                                         printf(
965         "proc %d (%s) failed to alloc page on fault, starting OOM\n",
966                                             curproc->p_pid, curproc->p_comm);
967                                 vm_pageout_oom(VM_OOM_MEM_PF);
968                                 goto RetryFault;
969                         }
970                 }
971
972 readrest:
973                 /*
974                  * At this point, we have either allocated a new page or found
975                  * an existing page that is only partially valid.
976                  *
977                  * We hold a reference on the current object and the page is
978                  * exclusive busied.
979                  */
980
981                 /*
982                  * If the pager for the current object might have the page,
983                  * then determine the number of additional pages to read and
984                  * potentially reprioritize previously read pages for earlier
985                  * reclamation.  These operations should only be performed
986                  * once per page fault.  Even if the current pager doesn't
987                  * have the page, the number of additional pages to read will
988                  * apply to subsequent objects in the shadow chain.
989                  */
990                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
991                     !P_KILLED(curproc)) {
992                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
993                         era = fs.entry->read_ahead;
994                         behavior = vm_map_entry_behavior(fs.entry);
995                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
996                                 nera = 0;
997                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
998                                 nera = VM_FAULT_READ_AHEAD_MAX;
999                                 if (vaddr == fs.entry->next_read)
1000                                         vm_fault_dontneed(&fs, vaddr, nera);
1001                         } else if (vaddr == fs.entry->next_read) {
1002                                 /*
1003                                  * This is a sequential fault.  Arithmetically
1004                                  * increase the requested number of pages in
1005                                  * the read-ahead window.  The requested
1006                                  * number of pages is "# of sequential faults
1007                                  * x (read ahead min + 1) + read ahead min"
1008                                  */
1009                                 nera = VM_FAULT_READ_AHEAD_MIN;
1010                                 if (era > 0) {
1011                                         nera += era + 1;
1012                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
1013                                                 nera = VM_FAULT_READ_AHEAD_MAX;
1014                                 }
1015                                 if (era == VM_FAULT_READ_AHEAD_MAX)
1016                                         vm_fault_dontneed(&fs, vaddr, nera);
1017                         } else {
1018                                 /*
1019                                  * This is a non-sequential fault.
1020                                  */
1021                                 nera = 0;
1022                         }
1023                         if (era != nera) {
1024                                 /*
1025                                  * A read lock on the map suffices to update
1026                                  * the read ahead count safely.
1027                                  */
1028                                 fs.entry->read_ahead = nera;
1029                         }
1030
1031                         /*
1032                          * Prepare for unlocking the map.  Save the map
1033                          * entry's start and end addresses, which are used to
1034                          * optimize the size of the pager operation below.
1035                          * Even if the map entry's addresses change after
1036                          * unlocking the map, using the saved addresses is
1037                          * safe.
1038                          */
1039                         e_start = fs.entry->start;
1040                         e_end = fs.entry->end;
1041                 }
1042
1043                 /*
1044                  * Call the pager to retrieve the page if there is a chance
1045                  * that the pager has it, and potentially retrieve additional
1046                  * pages at the same time.
1047                  */
1048                 if (fs.object->type != OBJT_DEFAULT) {
1049                         /*
1050                          * Release the map lock before locking the vnode or
1051                          * sleeping in the pager.  (If the current object has
1052                          * a shadow, then an earlier iteration of this loop
1053                          * may have already unlocked the map.)
1054                          */
1055                         unlock_map(&fs);
1056
1057                         rv = vm_fault_lock_vnode(&fs);
1058                         MPASS(rv == KERN_SUCCESS ||
1059                             rv == KERN_RESOURCE_SHORTAGE);
1060                         if (rv == KERN_RESOURCE_SHORTAGE)
1061                                 goto RetryFault;
1062                         KASSERT(fs.vp == NULL || !fs.map->system_map,
1063                             ("vm_fault: vnode-backed object mapped by system map"));
1064
1065                         /*
1066                          * Page in the requested page and hint the pager,
1067                          * that it may bring up surrounding pages.
1068                          */
1069                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1070                             P_KILLED(curproc)) {
1071                                 behind = 0;
1072                                 ahead = 0;
1073                         } else {
1074                                 /* Is this a sequential fault? */
1075                                 if (nera > 0) {
1076                                         behind = 0;
1077                                         ahead = nera;
1078                                 } else {
1079                                         /*
1080                                          * Request a cluster of pages that is
1081                                          * aligned to a VM_FAULT_READ_DEFAULT
1082                                          * page offset boundary within the
1083                                          * object.  Alignment to a page offset
1084                                          * boundary is more likely to coincide
1085                                          * with the underlying file system
1086                                          * block than alignment to a virtual
1087                                          * address boundary.
1088                                          */
1089                                         cluster_offset = fs.pindex %
1090                                             VM_FAULT_READ_DEFAULT;
1091                                         behind = ulmin(cluster_offset,
1092                                             atop(vaddr - e_start));
1093                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
1094                                             cluster_offset;
1095                                 }
1096                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
1097                         }
1098                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
1099                             &behind, &ahead);
1100                         if (rv == VM_PAGER_OK) {
1101                                 faultcount = behind + 1 + ahead;
1102                                 hardfault = true;
1103                                 break; /* break to PAGE HAS BEEN FOUND */
1104                         }
1105                         if (rv == VM_PAGER_ERROR)
1106                                 printf("vm_fault: pager read error, pid %d (%s)\n",
1107                                     curproc->p_pid, curproc->p_comm);
1108
1109                         /*
1110                          * If an I/O error occurred or the requested page was
1111                          * outside the range of the pager, clean up and return
1112                          * an error.
1113                          */
1114                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1115                                 if (!vm_page_wired(fs.m))
1116                                         vm_page_free(fs.m);
1117                                 else
1118                                         vm_page_xunbusy(fs.m);
1119                                 fs.m = NULL;
1120                                 unlock_and_deallocate(&fs);
1121                                 return (KERN_OUT_OF_BOUNDS);
1122                         }
1123
1124                         /*
1125                          * The requested page does not exist at this object/
1126                          * offset.  Remove the invalid page from the object,
1127                          * waking up anyone waiting for it, and continue on to
1128                          * the next object.  However, if this is the top-level
1129                          * object, we must leave the busy page in place to
1130                          * prevent another process from rushing past us, and
1131                          * inserting the page in that object at the same time
1132                          * that we are.
1133                          */
1134                         if (fs.object != fs.first_object) {
1135                                 if (!vm_page_wired(fs.m))
1136                                         vm_page_free(fs.m);
1137                                 else
1138                                         vm_page_xunbusy(fs.m);
1139                                 fs.m = NULL;
1140                         }
1141                 }
1142
1143                 /*
1144                  * We get here if the object has default pager (or unwiring) 
1145                  * or the pager doesn't have the page.
1146                  */
1147                 if (fs.object == fs.first_object)
1148                         fs.first_m = fs.m;
1149
1150                 /*
1151                  * Move on to the next object.  Lock the next object before
1152                  * unlocking the current one.
1153                  */
1154                 next_object = fs.object->backing_object;
1155                 if (next_object == NULL) {
1156                         /*
1157                          * If there's no object left, fill the page in the top
1158                          * object with zeros.
1159                          */
1160                         if (fs.object != fs.first_object) {
1161                                 vm_object_pip_wakeup(fs.object);
1162                                 VM_OBJECT_WUNLOCK(fs.object);
1163
1164                                 fs.object = fs.first_object;
1165                                 fs.pindex = fs.first_pindex;
1166                                 fs.m = fs.first_m;
1167                                 VM_OBJECT_WLOCK(fs.object);
1168                         }
1169                         fs.first_m = NULL;
1170
1171                         /*
1172                          * Zero the page if necessary and mark it valid.
1173                          */
1174                         if ((fs.m->flags & PG_ZERO) == 0) {
1175                                 pmap_zero_page(fs.m);
1176                         } else {
1177                                 VM_CNT_INC(v_ozfod);
1178                         }
1179                         VM_CNT_INC(v_zfod);
1180                         vm_page_valid(fs.m);
1181                         /* Don't try to prefault neighboring pages. */
1182                         faultcount = 1;
1183                         break;  /* break to PAGE HAS BEEN FOUND */
1184                 } else {
1185                         KASSERT(fs.object != next_object,
1186                             ("object loop %p", next_object));
1187                         VM_OBJECT_WLOCK(next_object);
1188                         vm_object_pip_add(next_object, 1);
1189                         if (fs.object != fs.first_object)
1190                                 vm_object_pip_wakeup(fs.object);
1191                         fs.pindex +=
1192                             OFF_TO_IDX(fs.object->backing_object_offset);
1193                         VM_OBJECT_WUNLOCK(fs.object);
1194                         fs.object = next_object;
1195                 }
1196         }
1197
1198         vm_page_assert_xbusied(fs.m);
1199
1200         /*
1201          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1202          * is held.]
1203          */
1204
1205         /*
1206          * If the page is being written, but isn't already owned by the
1207          * top-level object, we have to copy it into a new page owned by the
1208          * top-level object.
1209          */
1210         if (fs.object != fs.first_object) {
1211                 /*
1212                  * We only really need to copy if we want to write it.
1213                  */
1214                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1215                         /*
1216                          * This allows pages to be virtually copied from a 
1217                          * backing_object into the first_object, where the 
1218                          * backing object has no other refs to it, and cannot
1219                          * gain any more refs.  Instead of a bcopy, we just 
1220                          * move the page from the backing object to the 
1221                          * first object.  Note that we must mark the page 
1222                          * dirty in the first object so that it will go out 
1223                          * to swap when needed.
1224                          */
1225                         is_first_object_locked = false;
1226                         if (
1227                                 /*
1228                                  * Only one shadow object
1229                                  */
1230                                 (fs.object->shadow_count == 1) &&
1231                                 /*
1232                                  * No COW refs, except us
1233                                  */
1234                                 (fs.object->ref_count == 1) &&
1235                                 /*
1236                                  * No one else can look this object up
1237                                  */
1238                                 (fs.object->handle == NULL) &&
1239                                 /*
1240                                  * No other ways to look the object up
1241                                  */
1242                                 ((fs.object->flags & OBJ_ANON) != 0) &&
1243                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1244                                 /*
1245                                  * We don't chase down the shadow chain
1246                                  */
1247                             fs.object == fs.first_object->backing_object) {
1248
1249                                 (void)vm_page_remove(fs.m);
1250                                 vm_page_replace_checked(fs.m, fs.first_object,
1251                                     fs.first_pindex, fs.first_m);
1252                                 vm_page_free(fs.first_m);
1253                                 vm_page_dirty(fs.m);
1254 #if VM_NRESERVLEVEL > 0
1255                                 /*
1256                                  * Rename the reservation.
1257                                  */
1258                                 vm_reserv_rename(fs.m, fs.first_object,
1259                                     fs.object, OFF_TO_IDX(
1260                                     fs.first_object->backing_object_offset));
1261 #endif
1262                                 VM_OBJECT_WUNLOCK(fs.object);
1263                                 fs.first_m = fs.m;
1264                                 fs.m = NULL;
1265                                 VM_CNT_INC(v_cow_optim);
1266                         } else {
1267                                 VM_OBJECT_WUNLOCK(fs.object);
1268                                 /*
1269                                  * Oh, well, lets copy it.
1270                                  */
1271                                 pmap_copy_page(fs.m, fs.first_m);
1272                                 vm_page_valid(fs.first_m);
1273                                 if (wired && (fault_flags &
1274                                     VM_FAULT_WIRE) == 0) {
1275                                         vm_page_wire(fs.first_m);
1276                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1277                                 }
1278                                 /*
1279                                  * We no longer need the old page or object.
1280                                  */
1281                                 release_page(&fs);
1282                         }
1283                         /*
1284                          * fs.object != fs.first_object due to above 
1285                          * conditional
1286                          */
1287                         vm_object_pip_wakeup(fs.object);
1288
1289                         /*
1290                          * We only try to prefault read-only mappings to the
1291                          * neighboring pages when this copy-on-write fault is
1292                          * a hard fault.  In other cases, trying to prefault
1293                          * is typically wasted effort.
1294                          */
1295                         if (faultcount == 0)
1296                                 faultcount = 1;
1297
1298                         /*
1299                          * Only use the new page below...
1300                          */
1301                         fs.object = fs.first_object;
1302                         fs.pindex = fs.first_pindex;
1303                         fs.m = fs.first_m;
1304                         if (!is_first_object_locked)
1305                                 VM_OBJECT_WLOCK(fs.object);
1306                         VM_CNT_INC(v_cow_faults);
1307                         curthread->td_cow++;
1308                 } else {
1309                         prot &= ~VM_PROT_WRITE;
1310                 }
1311         }
1312
1313         /*
1314          * We must verify that the maps have not changed since our last
1315          * lookup.
1316          */
1317         if (!fs.lookup_still_valid) {
1318                 if (!vm_map_trylock_read(fs.map)) {
1319                         release_page(&fs);
1320                         unlock_and_deallocate(&fs);
1321                         goto RetryFault;
1322                 }
1323                 fs.lookup_still_valid = true;
1324                 if (fs.map->timestamp != fs.map_generation) {
1325                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1326                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1327
1328                         /*
1329                          * If we don't need the page any longer, put it on the inactive
1330                          * list (the easiest thing to do here).  If no one needs it,
1331                          * pageout will grab it eventually.
1332                          */
1333                         if (result != KERN_SUCCESS) {
1334                                 release_page(&fs);
1335                                 unlock_and_deallocate(&fs);
1336
1337                                 /*
1338                                  * If retry of map lookup would have blocked then
1339                                  * retry fault from start.
1340                                  */
1341                                 if (result == KERN_FAILURE)
1342                                         goto RetryFault;
1343                                 return (result);
1344                         }
1345                         if ((retry_object != fs.first_object) ||
1346                             (retry_pindex != fs.first_pindex)) {
1347                                 release_page(&fs);
1348                                 unlock_and_deallocate(&fs);
1349                                 goto RetryFault;
1350                         }
1351
1352                         /*
1353                          * Check whether the protection has changed or the object has
1354                          * been copied while we left the map unlocked. Changing from
1355                          * read to write permission is OK - we leave the page
1356                          * write-protected, and catch the write fault. Changing from
1357                          * write to read permission means that we can't mark the page
1358                          * write-enabled after all.
1359                          */
1360                         prot &= retry_prot;
1361                         fault_type &= retry_prot;
1362                         if (prot == 0) {
1363                                 release_page(&fs);
1364                                 unlock_and_deallocate(&fs);
1365                                 goto RetryFault;
1366                         }
1367
1368                         /* Reassert because wired may have changed. */
1369                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1370                             ("!wired && VM_FAULT_WIRE"));
1371                 }
1372         }
1373
1374         /*
1375          * If the page was filled by a pager, save the virtual address that
1376          * should be faulted on next under a sequential access pattern to the
1377          * map entry.  A read lock on the map suffices to update this address
1378          * safely.
1379          */
1380         if (hardfault)
1381                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1382
1383         vm_page_assert_xbusied(fs.m);
1384         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1385
1386         /*
1387          * Page must be completely valid or it is not fit to
1388          * map into user space.  vm_pager_get_pages() ensures this.
1389          */
1390         KASSERT(vm_page_all_valid(fs.m),
1391             ("vm_fault: page %p partially invalid", fs.m));
1392         VM_OBJECT_WUNLOCK(fs.object);
1393
1394         /*
1395          * Put this page into the physical map.  We had to do the unlock above
1396          * because pmap_enter() may sleep.  We don't put the page
1397          * back on the active queue until later so that the pageout daemon
1398          * won't find it (yet).
1399          */
1400         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1401             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1402         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1403             wired == 0)
1404                 vm_fault_prefault(&fs, vaddr,
1405                     faultcount > 0 ? behind : PFBAK,
1406                     faultcount > 0 ? ahead : PFFOR, false);
1407
1408         /*
1409          * If the page is not wired down, then put it where the pageout daemon
1410          * can find it.
1411          */
1412         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1413                 vm_page_wire(fs.m);
1414         } else {
1415                 vm_page_lock(fs.m);
1416                 vm_page_activate(fs.m);
1417                 vm_page_unlock(fs.m);
1418         }
1419         if (m_hold != NULL) {
1420                 *m_hold = fs.m;
1421                 vm_page_wire(fs.m);
1422         }
1423         vm_page_xunbusy(fs.m);
1424
1425         /*
1426          * Unlock everything, and return
1427          */
1428         fault_deallocate(&fs);
1429         if (hardfault) {
1430                 VM_CNT_INC(v_io_faults);
1431                 curthread->td_ru.ru_majflt++;
1432 #ifdef RACCT
1433                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1434                         PROC_LOCK(curproc);
1435                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1436                                 racct_add_force(curproc, RACCT_WRITEBPS,
1437                                     PAGE_SIZE + behind * PAGE_SIZE);
1438                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1439                         } else {
1440                                 racct_add_force(curproc, RACCT_READBPS,
1441                                     PAGE_SIZE + ahead * PAGE_SIZE);
1442                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1443                         }
1444                         PROC_UNLOCK(curproc);
1445                 }
1446 #endif
1447         } else 
1448                 curthread->td_ru.ru_minflt++;
1449
1450         return (KERN_SUCCESS);
1451 }
1452
1453 /*
1454  * Speed up the reclamation of pages that precede the faulting pindex within
1455  * the first object of the shadow chain.  Essentially, perform the equivalent
1456  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1457  * the faulting pindex by the cluster size when the pages read by vm_fault()
1458  * cross a cluster-size boundary.  The cluster size is the greater of the
1459  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1460  *
1461  * When "fs->first_object" is a shadow object, the pages in the backing object
1462  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1463  * function must only be concerned with pages in the first object.
1464  */
1465 static void
1466 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1467 {
1468         vm_map_entry_t entry;
1469         vm_object_t first_object, object;
1470         vm_offset_t end, start;
1471         vm_page_t m, m_next;
1472         vm_pindex_t pend, pstart;
1473         vm_size_t size;
1474
1475         object = fs->object;
1476         VM_OBJECT_ASSERT_WLOCKED(object);
1477         first_object = fs->first_object;
1478         if (first_object != object) {
1479                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1480                         VM_OBJECT_WUNLOCK(object);
1481                         VM_OBJECT_WLOCK(first_object);
1482                         VM_OBJECT_WLOCK(object);
1483                 }
1484         }
1485         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1486         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1487                 size = VM_FAULT_DONTNEED_MIN;
1488                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1489                         size = pagesizes[1];
1490                 end = rounddown2(vaddr, size);
1491                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1492                     (entry = fs->entry)->start < end) {
1493                         if (end - entry->start < size)
1494                                 start = entry->start;
1495                         else
1496                                 start = end - size;
1497                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1498                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1499                             entry->start);
1500                         m_next = vm_page_find_least(first_object, pstart);
1501                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1502                             entry->start);
1503                         while ((m = m_next) != NULL && m->pindex < pend) {
1504                                 m_next = TAILQ_NEXT(m, listq);
1505                                 if (!vm_page_all_valid(m) ||
1506                                     vm_page_busied(m))
1507                                         continue;
1508
1509                                 /*
1510                                  * Don't clear PGA_REFERENCED, since it would
1511                                  * likely represent a reference by a different
1512                                  * process.
1513                                  *
1514                                  * Typically, at this point, prefetched pages
1515                                  * are still in the inactive queue.  Only
1516                                  * pages that triggered page faults are in the
1517                                  * active queue.
1518                                  */
1519                                 vm_page_lock(m);
1520                                 if (!vm_page_inactive(m))
1521                                         vm_page_deactivate(m);
1522                                 vm_page_unlock(m);
1523                         }
1524                 }
1525         }
1526         if (first_object != object)
1527                 VM_OBJECT_WUNLOCK(first_object);
1528 }
1529
1530 /*
1531  * vm_fault_prefault provides a quick way of clustering
1532  * pagefaults into a processes address space.  It is a "cousin"
1533  * of vm_map_pmap_enter, except it runs at page fault time instead
1534  * of mmap time.
1535  */
1536 static void
1537 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1538     int backward, int forward, bool obj_locked)
1539 {
1540         pmap_t pmap;
1541         vm_map_entry_t entry;
1542         vm_object_t backing_object, lobject;
1543         vm_offset_t addr, starta;
1544         vm_pindex_t pindex;
1545         vm_page_t m;
1546         int i;
1547
1548         pmap = fs->map->pmap;
1549         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1550                 return;
1551
1552         entry = fs->entry;
1553
1554         if (addra < backward * PAGE_SIZE) {
1555                 starta = entry->start;
1556         } else {
1557                 starta = addra - backward * PAGE_SIZE;
1558                 if (starta < entry->start)
1559                         starta = entry->start;
1560         }
1561
1562         /*
1563          * Generate the sequence of virtual addresses that are candidates for
1564          * prefaulting in an outward spiral from the faulting virtual address,
1565          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1566          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1567          * If the candidate address doesn't have a backing physical page, then
1568          * the loop immediately terminates.
1569          */
1570         for (i = 0; i < 2 * imax(backward, forward); i++) {
1571                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1572                     PAGE_SIZE);
1573                 if (addr > addra + forward * PAGE_SIZE)
1574                         addr = 0;
1575
1576                 if (addr < starta || addr >= entry->end)
1577                         continue;
1578
1579                 if (!pmap_is_prefaultable(pmap, addr))
1580                         continue;
1581
1582                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1583                 lobject = entry->object.vm_object;
1584                 if (!obj_locked)
1585                         VM_OBJECT_RLOCK(lobject);
1586                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1587                     lobject->type == OBJT_DEFAULT &&
1588                     (backing_object = lobject->backing_object) != NULL) {
1589                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1590                             0, ("vm_fault_prefault: unaligned object offset"));
1591                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1592                         VM_OBJECT_RLOCK(backing_object);
1593                         if (!obj_locked || lobject != entry->object.vm_object)
1594                                 VM_OBJECT_RUNLOCK(lobject);
1595                         lobject = backing_object;
1596                 }
1597                 if (m == NULL) {
1598                         if (!obj_locked || lobject != entry->object.vm_object)
1599                                 VM_OBJECT_RUNLOCK(lobject);
1600                         break;
1601                 }
1602                 if (vm_page_all_valid(m) &&
1603                     (m->flags & PG_FICTITIOUS) == 0)
1604                         pmap_enter_quick(pmap, addr, m, entry->protection);
1605                 if (!obj_locked || lobject != entry->object.vm_object)
1606                         VM_OBJECT_RUNLOCK(lobject);
1607         }
1608 }
1609
1610 /*
1611  * Hold each of the physical pages that are mapped by the specified range of
1612  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1613  * and allow the specified types of access, "prot".  If all of the implied
1614  * pages are successfully held, then the number of held pages is returned
1615  * together with pointers to those pages in the array "ma".  However, if any
1616  * of the pages cannot be held, -1 is returned.
1617  */
1618 int
1619 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1620     vm_prot_t prot, vm_page_t *ma, int max_count)
1621 {
1622         vm_offset_t end, va;
1623         vm_page_t *mp;
1624         int count;
1625         boolean_t pmap_failed;
1626
1627         if (len == 0)
1628                 return (0);
1629         end = round_page(addr + len);
1630         addr = trunc_page(addr);
1631
1632         /*
1633          * Check for illegal addresses.
1634          */
1635         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1636                 return (-1);
1637
1638         if (atop(end - addr) > max_count)
1639                 panic("vm_fault_quick_hold_pages: count > max_count");
1640         count = atop(end - addr);
1641
1642         /*
1643          * Most likely, the physical pages are resident in the pmap, so it is
1644          * faster to try pmap_extract_and_hold() first.
1645          */
1646         pmap_failed = FALSE;
1647         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1648                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1649                 if (*mp == NULL)
1650                         pmap_failed = TRUE;
1651                 else if ((prot & VM_PROT_WRITE) != 0 &&
1652                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1653                         /*
1654                          * Explicitly dirty the physical page.  Otherwise, the
1655                          * caller's changes may go unnoticed because they are
1656                          * performed through an unmanaged mapping or by a DMA
1657                          * operation.
1658                          *
1659                          * The object lock is not held here.
1660                          * See vm_page_clear_dirty_mask().
1661                          */
1662                         vm_page_dirty(*mp);
1663                 }
1664         }
1665         if (pmap_failed) {
1666                 /*
1667                  * One or more pages could not be held by the pmap.  Either no
1668                  * page was mapped at the specified virtual address or that
1669                  * mapping had insufficient permissions.  Attempt to fault in
1670                  * and hold these pages.
1671                  *
1672                  * If vm_fault_disable_pagefaults() was called,
1673                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1674                  * acquire MD VM locks, which means we must not call
1675                  * vm_fault().  Some (out of tree) callers mark
1676                  * too wide a code area with vm_fault_disable_pagefaults()
1677                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1678                  * the proper behaviour explicitly.
1679                  */
1680                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1681                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1682                         goto error;
1683                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1684                         if (*mp == NULL && vm_fault(map, va, prot,
1685                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1686                                 goto error;
1687         }
1688         return (count);
1689 error:  
1690         for (mp = ma; mp < ma + count; mp++)
1691                 if (*mp != NULL)
1692                         vm_page_unwire(*mp, PQ_INACTIVE);
1693         return (-1);
1694 }
1695
1696 /*
1697  *      Routine:
1698  *              vm_fault_copy_entry
1699  *      Function:
1700  *              Create new shadow object backing dst_entry with private copy of
1701  *              all underlying pages. When src_entry is equal to dst_entry,
1702  *              function implements COW for wired-down map entry. Otherwise,
1703  *              it forks wired entry into dst_map.
1704  *
1705  *      In/out conditions:
1706  *              The source and destination maps must be locked for write.
1707  *              The source map entry must be wired down (or be a sharing map
1708  *              entry corresponding to a main map entry that is wired down).
1709  */
1710 void
1711 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1712     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1713     vm_ooffset_t *fork_charge)
1714 {
1715         vm_object_t backing_object, dst_object, object, src_object;
1716         vm_pindex_t dst_pindex, pindex, src_pindex;
1717         vm_prot_t access, prot;
1718         vm_offset_t vaddr;
1719         vm_page_t dst_m;
1720         vm_page_t src_m;
1721         boolean_t upgrade;
1722
1723 #ifdef  lint
1724         src_map++;
1725 #endif  /* lint */
1726
1727         upgrade = src_entry == dst_entry;
1728         access = prot = dst_entry->protection;
1729
1730         src_object = src_entry->object.vm_object;
1731         src_pindex = OFF_TO_IDX(src_entry->offset);
1732
1733         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1734                 dst_object = src_object;
1735                 vm_object_reference(dst_object);
1736         } else {
1737                 /*
1738                  * Create the top-level object for the destination entry.
1739                  * Doesn't actually shadow anything - we copy the pages
1740                  * directly.
1741                  */
1742                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1743                     dst_entry->start), NULL, NULL, 0);
1744 #if VM_NRESERVLEVEL > 0
1745                 dst_object->flags |= OBJ_COLORED;
1746                 dst_object->pg_color = atop(dst_entry->start);
1747 #endif
1748                 dst_object->domain = src_object->domain;
1749                 dst_object->charge = dst_entry->end - dst_entry->start;
1750         }
1751
1752         VM_OBJECT_WLOCK(dst_object);
1753         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1754             ("vm_fault_copy_entry: vm_object not NULL"));
1755         if (src_object != dst_object) {
1756                 dst_entry->object.vm_object = dst_object;
1757                 dst_entry->offset = 0;
1758                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1759         }
1760         if (fork_charge != NULL) {
1761                 KASSERT(dst_entry->cred == NULL,
1762                     ("vm_fault_copy_entry: leaked swp charge"));
1763                 dst_object->cred = curthread->td_ucred;
1764                 crhold(dst_object->cred);
1765                 *fork_charge += dst_object->charge;
1766         } else if ((dst_object->type == OBJT_DEFAULT ||
1767             dst_object->type == OBJT_SWAP) &&
1768             dst_object->cred == NULL) {
1769                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1770                     dst_entry));
1771                 dst_object->cred = dst_entry->cred;
1772                 dst_entry->cred = NULL;
1773         }
1774
1775         /*
1776          * If not an upgrade, then enter the mappings in the pmap as
1777          * read and/or execute accesses.  Otherwise, enter them as
1778          * write accesses.
1779          *
1780          * A writeable large page mapping is only created if all of
1781          * the constituent small page mappings are modified. Marking
1782          * PTEs as modified on inception allows promotion to happen
1783          * without taking potentially large number of soft faults.
1784          */
1785         if (!upgrade)
1786                 access &= ~VM_PROT_WRITE;
1787
1788         /*
1789          * Loop through all of the virtual pages within the entry's
1790          * range, copying each page from the source object to the
1791          * destination object.  Since the source is wired, those pages
1792          * must exist.  In contrast, the destination is pageable.
1793          * Since the destination object doesn't share any backing storage
1794          * with the source object, all of its pages must be dirtied,
1795          * regardless of whether they can be written.
1796          */
1797         for (vaddr = dst_entry->start, dst_pindex = 0;
1798             vaddr < dst_entry->end;
1799             vaddr += PAGE_SIZE, dst_pindex++) {
1800 again:
1801                 /*
1802                  * Find the page in the source object, and copy it in.
1803                  * Because the source is wired down, the page will be
1804                  * in memory.
1805                  */
1806                 if (src_object != dst_object)
1807                         VM_OBJECT_RLOCK(src_object);
1808                 object = src_object;
1809                 pindex = src_pindex + dst_pindex;
1810                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1811                     (backing_object = object->backing_object) != NULL) {
1812                         /*
1813                          * Unless the source mapping is read-only or
1814                          * it is presently being upgraded from
1815                          * read-only, the first object in the shadow
1816                          * chain should provide all of the pages.  In
1817                          * other words, this loop body should never be
1818                          * executed when the source mapping is already
1819                          * read/write.
1820                          */
1821                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1822                             upgrade,
1823                             ("vm_fault_copy_entry: main object missing page"));
1824
1825                         VM_OBJECT_RLOCK(backing_object);
1826                         pindex += OFF_TO_IDX(object->backing_object_offset);
1827                         if (object != dst_object)
1828                                 VM_OBJECT_RUNLOCK(object);
1829                         object = backing_object;
1830                 }
1831                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1832
1833                 if (object != dst_object) {
1834                         /*
1835                          * Allocate a page in the destination object.
1836                          */
1837                         dst_m = vm_page_alloc(dst_object, (src_object ==
1838                             dst_object ? src_pindex : 0) + dst_pindex,
1839                             VM_ALLOC_NORMAL);
1840                         if (dst_m == NULL) {
1841                                 VM_OBJECT_WUNLOCK(dst_object);
1842                                 VM_OBJECT_RUNLOCK(object);
1843                                 vm_wait(dst_object);
1844                                 VM_OBJECT_WLOCK(dst_object);
1845                                 goto again;
1846                         }
1847                         pmap_copy_page(src_m, dst_m);
1848                         VM_OBJECT_RUNLOCK(object);
1849                         dst_m->dirty = dst_m->valid = src_m->valid;
1850                 } else {
1851                         dst_m = src_m;
1852                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
1853                                 goto again;
1854                         if (dst_m->pindex >= dst_object->size) {
1855                                 /*
1856                                  * We are upgrading.  Index can occur
1857                                  * out of bounds if the object type is
1858                                  * vnode and the file was truncated.
1859                                  */
1860                                 vm_page_xunbusy(dst_m);
1861                                 break;
1862                         }
1863                 }
1864                 VM_OBJECT_WUNLOCK(dst_object);
1865
1866                 /*
1867                  * Enter it in the pmap. If a wired, copy-on-write
1868                  * mapping is being replaced by a write-enabled
1869                  * mapping, then wire that new mapping.
1870                  *
1871                  * The page can be invalid if the user called
1872                  * msync(MS_INVALIDATE) or truncated the backing vnode
1873                  * or shared memory object.  In this case, do not
1874                  * insert it into pmap, but still do the copy so that
1875                  * all copies of the wired map entry have similar
1876                  * backing pages.
1877                  */
1878                 if (vm_page_all_valid(dst_m)) {
1879                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1880                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1881                 }
1882
1883                 /*
1884                  * Mark it no longer busy, and put it on the active list.
1885                  */
1886                 VM_OBJECT_WLOCK(dst_object);
1887                 
1888                 if (upgrade) {
1889                         if (src_m != dst_m) {
1890                                 vm_page_unwire(src_m, PQ_INACTIVE);
1891                                 vm_page_wire(dst_m);
1892                         } else {
1893                                 KASSERT(vm_page_wired(dst_m),
1894                                     ("dst_m %p is not wired", dst_m));
1895                         }
1896                 } else {
1897                         vm_page_lock(dst_m);
1898                         vm_page_activate(dst_m);
1899                         vm_page_unlock(dst_m);
1900                 }
1901                 vm_page_xunbusy(dst_m);
1902         }
1903         VM_OBJECT_WUNLOCK(dst_object);
1904         if (upgrade) {
1905                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1906                 vm_object_deallocate(src_object);
1907         }
1908 }
1909
1910 /*
1911  * Block entry into the machine-independent layer's page fault handler by
1912  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1913  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1914  * spurious page faults. 
1915  */
1916 int
1917 vm_fault_disable_pagefaults(void)
1918 {
1919
1920         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1921 }
1922
1923 void
1924 vm_fault_enable_pagefaults(int save)
1925 {
1926
1927         curthread_pflags_restore(save);
1928 }