]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Merge in changes from ^/vendor/NetBSD/tests/dist@r313245
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107
108 #define PFBAK 4
109 #define PFFOR 4
110
111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113
114 #define VM_FAULT_DONTNEED_MIN   1048576
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         int map_generation;
126         bool lookup_still_valid;
127         struct vnode *vp;
128 };
129
130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
131             int ahead);
132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133             int backward, int forward);
134
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138
139         vm_page_xunbusy(fs->m);
140         vm_page_lock(fs->m);
141         vm_page_deactivate(fs->m);
142         vm_page_unlock(fs->m);
143         fs->m = NULL;
144 }
145
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149
150         if (fs->lookup_still_valid) {
151                 vm_map_lookup_done(fs->map, fs->entry);
152                 fs->lookup_still_valid = false;
153         }
154 }
155
156 static void
157 unlock_vp(struct faultstate *fs)
158 {
159
160         if (fs->vp != NULL) {
161                 vput(fs->vp);
162                 fs->vp = NULL;
163         }
164 }
165
166 static void
167 unlock_and_deallocate(struct faultstate *fs)
168 {
169
170         vm_object_pip_wakeup(fs->object);
171         VM_OBJECT_WUNLOCK(fs->object);
172         if (fs->object != fs->first_object) {
173                 VM_OBJECT_WLOCK(fs->first_object);
174                 vm_page_lock(fs->first_m);
175                 vm_page_free(fs->first_m);
176                 vm_page_unlock(fs->first_m);
177                 vm_object_pip_wakeup(fs->first_object);
178                 VM_OBJECT_WUNLOCK(fs->first_object);
179                 fs->first_m = NULL;
180         }
181         vm_object_deallocate(fs->first_object);
182         unlock_map(fs);
183         unlock_vp(fs);
184 }
185
186 static void
187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188     vm_prot_t fault_type, int fault_flags, bool set_wd)
189 {
190         bool need_dirty;
191
192         if (((prot & VM_PROT_WRITE) == 0 &&
193             (fault_flags & VM_FAULT_DIRTY) == 0) ||
194             (m->oflags & VPO_UNMANAGED) != 0)
195                 return;
196
197         VM_OBJECT_ASSERT_LOCKED(m->object);
198
199         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200             (fault_flags & VM_FAULT_WIRE) == 0) ||
201             (fault_flags & VM_FAULT_DIRTY) != 0;
202
203         if (set_wd)
204                 vm_object_set_writeable_dirty(m->object);
205         else
206                 /*
207                  * If two callers of vm_fault_dirty() with set_wd ==
208                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209                  * flag set, other with flag clear, race, it is
210                  * possible for the no-NOSYNC thread to see m->dirty
211                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212                  * around manipulation of VPO_NOSYNC and
213                  * vm_page_dirty() call, to avoid the race and keep
214                  * m->oflags consistent.
215                  */
216                 vm_page_lock(m);
217
218         /*
219          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220          * if the page is already dirty to prevent data written with
221          * the expectation of being synced from not being synced.
222          * Likewise if this entry does not request NOSYNC then make
223          * sure the page isn't marked NOSYNC.  Applications sharing
224          * data should use the same flags to avoid ping ponging.
225          */
226         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227                 if (m->dirty == 0) {
228                         m->oflags |= VPO_NOSYNC;
229                 }
230         } else {
231                 m->oflags &= ~VPO_NOSYNC;
232         }
233
234         /*
235          * If the fault is a write, we know that this page is being
236          * written NOW so dirty it explicitly to save on
237          * pmap_is_modified() calls later.
238          *
239          * Also tell the backing pager, if any, that it should remove
240          * any swap backing since the page is now dirty.
241          */
242         if (need_dirty)
243                 vm_page_dirty(m);
244         if (!set_wd)
245                 vm_page_unlock(m);
246         if (need_dirty)
247                 vm_pager_page_unswapped(m);
248 }
249
250 static void
251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252 {
253
254         if (m_hold != NULL) {
255                 *m_hold = m;
256                 vm_page_lock(m);
257                 vm_page_hold(m);
258                 vm_page_unlock(m);
259         }
260 }
261
262 /*
263  * Unlocks fs.first_object and fs.map on success.
264  */
265 static int
266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268 {
269         vm_page_t m;
270         int rv;
271
272         MPASS(fs->vp == NULL);
273         m = vm_page_lookup(fs->first_object, fs->first_pindex);
274         /* A busy page can be mapped for read|execute access. */
275         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
276             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
277                 return (KERN_FAILURE);
278         rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
279             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
280         if (rv != KERN_SUCCESS)
281                 return (rv);
282         vm_fault_fill_hold(m_hold, m);
283         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
284         VM_OBJECT_RUNLOCK(fs->first_object);
285         if (!wired)
286                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
287         vm_map_lookup_done(fs->map, fs->entry);
288         curthread->td_ru.ru_minflt++;
289         return (KERN_SUCCESS);
290 }
291
292 static void
293 vm_fault_restore_map_lock(struct faultstate *fs)
294 {
295
296         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
297         MPASS(fs->first_object->paging_in_progress > 0);
298
299         if (!vm_map_trylock_read(fs->map)) {
300                 VM_OBJECT_WUNLOCK(fs->first_object);
301                 vm_map_lock_read(fs->map);
302                 VM_OBJECT_WLOCK(fs->first_object);
303         }
304         fs->lookup_still_valid = true;
305 }
306
307 static void
308 vm_fault_populate_check_page(vm_page_t m)
309 {
310
311         /*
312          * Check each page to ensure that the pager is obeying the
313          * interface: the page must be installed in the object, fully
314          * valid, and exclusively busied.
315          */
316         MPASS(m != NULL);
317         MPASS(m->valid == VM_PAGE_BITS_ALL);
318         MPASS(vm_page_xbusied(m));
319 }
320
321 static void
322 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
323     vm_pindex_t last)
324 {
325         vm_page_t m;
326         vm_pindex_t pidx;
327
328         VM_OBJECT_ASSERT_WLOCKED(object);
329         MPASS(first <= last);
330         for (pidx = first, m = vm_page_lookup(object, pidx);
331             pidx <= last; pidx++, m = vm_page_next(m)) {
332                 vm_fault_populate_check_page(m);
333                 vm_page_lock(m);
334                 vm_page_deactivate(m);
335                 vm_page_unlock(m);
336                 vm_page_xunbusy(m);
337         }
338 }
339
340 static int
341 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
342     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
343 {
344         vm_page_t m;
345         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
346         int rv;
347
348         MPASS(fs->object == fs->first_object);
349         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
350         MPASS(fs->first_object->paging_in_progress > 0);
351         MPASS(fs->first_object->backing_object == NULL);
352         MPASS(fs->lookup_still_valid);
353
354         pager_first = OFF_TO_IDX(fs->entry->offset);
355         pager_last = OFF_TO_IDX(fs->entry->offset + fs->entry->end -
356             fs->entry->start) - 1;
357         unlock_map(fs);
358         unlock_vp(fs);
359
360         /*
361          * Call the pager (driver) populate() method.
362          *
363          * There is no guarantee that the method will be called again
364          * if the current fault is for read, and a future fault is
365          * for write.  Report the entry's maximum allowed protection
366          * to the driver.
367          */
368         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
369             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
370
371         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
372         if (rv == VM_PAGER_BAD) {
373                 /*
374                  * VM_PAGER_BAD is the backdoor for a pager to request
375                  * normal fault handling.
376                  */
377                 vm_fault_restore_map_lock(fs);
378                 if (fs->map->timestamp != fs->map_generation)
379                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
380                 return (KERN_NOT_RECEIVER);
381         }
382         if (rv != VM_PAGER_OK)
383                 return (KERN_FAILURE); /* AKA SIGSEGV */
384
385         /* Ensure that the driver is obeying the interface. */
386         MPASS(pager_first <= pager_last);
387         MPASS(fs->first_pindex <= pager_last);
388         MPASS(fs->first_pindex >= pager_first);
389         MPASS(pager_last < fs->first_object->size);
390
391         vm_fault_restore_map_lock(fs);
392         if (fs->map->timestamp != fs->map_generation) {
393                 vm_fault_populate_cleanup(fs->first_object, pager_first,
394                     pager_last);
395                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
396         }
397
398         /*
399          * The map is unchanged after our last unlock.  Process the fault.
400          *
401          * The range [pager_first, pager_last] that is given to the
402          * pager is only a hint.  The pager may populate any range
403          * within the object that includes the requested page index.
404          * In case the pager expanded the range, clip it to fit into
405          * the map entry.
406          */
407         map_first = MAX(OFF_TO_IDX(fs->entry->offset), pager_first);
408         if (map_first > pager_first)
409                 vm_fault_populate_cleanup(fs->first_object, pager_first,
410                     map_first - 1);
411         map_last = MIN(OFF_TO_IDX(fs->entry->end - fs->entry->start +
412             fs->entry->offset), pager_last);
413         if (map_last < pager_last)
414                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
415                     pager_last);
416
417         for (pidx = map_first, m = vm_page_lookup(fs->first_object, pidx);
418             pidx <= map_last; pidx++, m = vm_page_next(m)) {
419                 vm_fault_populate_check_page(m);
420                 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
421                     true);
422                 VM_OBJECT_WUNLOCK(fs->first_object);
423                 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
424                     fs->entry->offset, m, prot, fault_type | (wired ?
425                     PMAP_ENTER_WIRED : 0), 0);
426                 VM_OBJECT_WLOCK(fs->first_object);
427                 if (pidx == fs->first_pindex)
428                         vm_fault_fill_hold(m_hold, m);
429                 vm_page_lock(m);
430                 if ((fault_flags & VM_FAULT_WIRE) != 0) {
431                         KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
432                         vm_page_wire(m);
433                 } else {
434                         vm_page_activate(m);
435                 }
436                 vm_page_unlock(m);
437                 vm_page_xunbusy(m);
438         }
439         curthread->td_ru.ru_majflt++;
440         return (KERN_SUCCESS);
441 }
442
443 /*
444  *      vm_fault:
445  *
446  *      Handle a page fault occurring at the given address,
447  *      requiring the given permissions, in the map specified.
448  *      If successful, the page is inserted into the
449  *      associated physical map.
450  *
451  *      NOTE: the given address should be truncated to the
452  *      proper page address.
453  *
454  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
455  *      a standard error specifying why the fault is fatal is returned.
456  *
457  *      The map in question must be referenced, and remains so.
458  *      Caller may hold no locks.
459  */
460 int
461 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
462     int fault_flags)
463 {
464         struct thread *td;
465         int result;
466
467         td = curthread;
468         if ((td->td_pflags & TDP_NOFAULTING) != 0)
469                 return (KERN_PROTECTION_FAILURE);
470 #ifdef KTRACE
471         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
472                 ktrfault(vaddr, fault_type);
473 #endif
474         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
475             NULL);
476 #ifdef KTRACE
477         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
478                 ktrfaultend(result);
479 #endif
480         return (result);
481 }
482
483 int
484 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
485     int fault_flags, vm_page_t *m_hold)
486 {
487         struct faultstate fs;
488         struct vnode *vp;
489         vm_object_t next_object, retry_object;
490         vm_offset_t e_end, e_start;
491         vm_pindex_t retry_pindex;
492         vm_prot_t prot, retry_prot;
493         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
494         int locked, nera, result, rv;
495         u_char behavior;
496         boolean_t wired;        /* Passed by reference. */
497         bool dead, growstack, hardfault, is_first_object_locked;
498
499         PCPU_INC(cnt.v_vm_faults);
500         fs.vp = NULL;
501         faultcount = 0;
502         nera = -1;
503         growstack = true;
504         hardfault = false;
505
506 RetryFault:;
507
508         /*
509          * Find the backing store object and offset into it to begin the
510          * search.
511          */
512         fs.map = map;
513         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
514             &fs.first_object, &fs.first_pindex, &prot, &wired);
515         if (result != KERN_SUCCESS) {
516                 if (growstack && result == KERN_INVALID_ADDRESS &&
517                     map != kernel_map) {
518                         result = vm_map_growstack(curproc, vaddr);
519                         if (result != KERN_SUCCESS)
520                                 return (KERN_FAILURE);
521                         growstack = false;
522                         goto RetryFault;
523                 }
524                 unlock_vp(&fs);
525                 return (result);
526         }
527
528         fs.map_generation = fs.map->timestamp;
529
530         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
531                 panic("vm_fault: fault on nofault entry, addr: %lx",
532                     (u_long)vaddr);
533         }
534
535         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
536             fs.entry->wiring_thread != curthread) {
537                 vm_map_unlock_read(fs.map);
538                 vm_map_lock(fs.map);
539                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
540                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
541                         unlock_vp(&fs);
542                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
543                         vm_map_unlock_and_wait(fs.map, 0);
544                 } else
545                         vm_map_unlock(fs.map);
546                 goto RetryFault;
547         }
548
549         if (wired)
550                 fault_type = prot | (fault_type & VM_PROT_COPY);
551         else
552                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
553                     ("!wired && VM_FAULT_WIRE"));
554
555         /*
556          * Try to avoid lock contention on the top-level object through
557          * special-case handling of some types of page faults, specifically,
558          * those that are both (1) mapping an existing page from the top-
559          * level object and (2) not having to mark that object as containing
560          * dirty pages.  Under these conditions, a read lock on the top-level
561          * object suffices, allowing multiple page faults of a similar type to
562          * run in parallel on the same top-level object.
563          */
564         if (fs.vp == NULL /* avoid locked vnode leak */ &&
565             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
566             /* avoid calling vm_object_set_writeable_dirty() */
567             ((prot & VM_PROT_WRITE) == 0 ||
568             (fs.first_object->type != OBJT_VNODE &&
569             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
570             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
571                 VM_OBJECT_RLOCK(fs.first_object);
572                 if ((prot & VM_PROT_WRITE) == 0 ||
573                     (fs.first_object->type != OBJT_VNODE &&
574                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
575                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
576                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
577                             fault_flags, wired, m_hold);
578                         if (rv == KERN_SUCCESS)
579                                 return (rv);
580                 }
581                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
582                         VM_OBJECT_RUNLOCK(fs.first_object);
583                         VM_OBJECT_WLOCK(fs.first_object);
584                 }
585         } else {
586                 VM_OBJECT_WLOCK(fs.first_object);
587         }
588
589         /*
590          * Make a reference to this object to prevent its disposal while we
591          * are messing with it.  Once we have the reference, the map is free
592          * to be diddled.  Since objects reference their shadows (and copies),
593          * they will stay around as well.
594          *
595          * Bump the paging-in-progress count to prevent size changes (e.g. 
596          * truncation operations) during I/O.
597          */
598         vm_object_reference_locked(fs.first_object);
599         vm_object_pip_add(fs.first_object, 1);
600
601         fs.lookup_still_valid = true;
602
603         fs.first_m = NULL;
604
605         /*
606          * Search for the page at object/offset.
607          */
608         fs.object = fs.first_object;
609         fs.pindex = fs.first_pindex;
610         while (TRUE) {
611                 /*
612                  * If the object is marked for imminent termination,
613                  * we retry here, since the collapse pass has raced
614                  * with us.  Otherwise, if we see terminally dead
615                  * object, return fail.
616                  */
617                 if ((fs.object->flags & OBJ_DEAD) != 0) {
618                         dead = fs.object->type == OBJT_DEAD;
619                         unlock_and_deallocate(&fs);
620                         if (dead)
621                                 return (KERN_PROTECTION_FAILURE);
622                         pause("vmf_de", 1);
623                         goto RetryFault;
624                 }
625
626                 /*
627                  * See if page is resident
628                  */
629                 fs.m = vm_page_lookup(fs.object, fs.pindex);
630                 if (fs.m != NULL) {
631                         /*
632                          * Wait/Retry if the page is busy.  We have to do this
633                          * if the page is either exclusive or shared busy
634                          * because the vm_pager may be using read busy for
635                          * pageouts (and even pageins if it is the vnode
636                          * pager), and we could end up trying to pagein and
637                          * pageout the same page simultaneously.
638                          *
639                          * We can theoretically allow the busy case on a read
640                          * fault if the page is marked valid, but since such
641                          * pages are typically already pmap'd, putting that
642                          * special case in might be more effort then it is 
643                          * worth.  We cannot under any circumstances mess
644                          * around with a shared busied page except, perhaps,
645                          * to pmap it.
646                          */
647                         if (vm_page_busied(fs.m)) {
648                                 /*
649                                  * Reference the page before unlocking and
650                                  * sleeping so that the page daemon is less
651                                  * likely to reclaim it. 
652                                  */
653                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
654                                 if (fs.object != fs.first_object) {
655                                         if (!VM_OBJECT_TRYWLOCK(
656                                             fs.first_object)) {
657                                                 VM_OBJECT_WUNLOCK(fs.object);
658                                                 VM_OBJECT_WLOCK(fs.first_object);
659                                                 VM_OBJECT_WLOCK(fs.object);
660                                         }
661                                         vm_page_lock(fs.first_m);
662                                         vm_page_free(fs.first_m);
663                                         vm_page_unlock(fs.first_m);
664                                         vm_object_pip_wakeup(fs.first_object);
665                                         VM_OBJECT_WUNLOCK(fs.first_object);
666                                         fs.first_m = NULL;
667                                 }
668                                 unlock_map(&fs);
669                                 if (fs.m == vm_page_lookup(fs.object,
670                                     fs.pindex)) {
671                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
672                                 }
673                                 vm_object_pip_wakeup(fs.object);
674                                 VM_OBJECT_WUNLOCK(fs.object);
675                                 PCPU_INC(cnt.v_intrans);
676                                 vm_object_deallocate(fs.first_object);
677                                 goto RetryFault;
678                         }
679                         vm_page_lock(fs.m);
680                         vm_page_remque(fs.m);
681                         vm_page_unlock(fs.m);
682
683                         /*
684                          * Mark page busy for other processes, and the 
685                          * pagedaemon.  If it still isn't completely valid
686                          * (readable), jump to readrest, else break-out ( we
687                          * found the page ).
688                          */
689                         vm_page_xbusy(fs.m);
690                         if (fs.m->valid != VM_PAGE_BITS_ALL)
691                                 goto readrest;
692                         break;
693                 }
694                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
695
696                 /*
697                  * Page is not resident.  If the pager might contain the page
698                  * or this is the beginning of the search, allocate a new
699                  * page.  (Default objects are zero-fill, so there is no real
700                  * pager for them.)
701                  */
702                 if (fs.object->type != OBJT_DEFAULT ||
703                     fs.object == fs.first_object) {
704                         if (fs.pindex >= fs.object->size) {
705                                 unlock_and_deallocate(&fs);
706                                 return (KERN_PROTECTION_FAILURE);
707                         }
708
709                         if (fs.object == fs.first_object &&
710                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
711                             fs.first_object->shadow_count == 0) {
712                                 rv = vm_fault_populate(&fs, vaddr, prot,
713                                     fault_type, fault_flags, wired, m_hold);
714                                 switch (rv) {
715                                 case KERN_SUCCESS:
716                                 case KERN_FAILURE:
717                                         unlock_and_deallocate(&fs);
718                                         return (rv);
719                                 case KERN_RESOURCE_SHORTAGE:
720                                         unlock_and_deallocate(&fs);
721                                         goto RetryFault;
722                                 case KERN_NOT_RECEIVER:
723                                         /*
724                                          * Pager's populate() method
725                                          * returned VM_PAGER_BAD.
726                                          */
727                                         break;
728                                 default:
729                                         panic("inconsistent return codes");
730                                 }
731                         }
732
733                         /*
734                          * Allocate a new page for this object/offset pair.
735                          *
736                          * Unlocked read of the p_flag is harmless. At
737                          * worst, the P_KILLED might be not observed
738                          * there, and allocation can fail, causing
739                          * restart and new reading of the p_flag.
740                          */
741                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
742 #if VM_NRESERVLEVEL > 0
743                                 vm_object_color(fs.object, atop(vaddr) -
744                                     fs.pindex);
745 #endif
746                                 alloc_req = P_KILLED(curproc) ?
747                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
748                                 if (fs.object->type != OBJT_VNODE &&
749                                     fs.object->backing_object == NULL)
750                                         alloc_req |= VM_ALLOC_ZERO;
751                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
752                                     alloc_req);
753                         }
754                         if (fs.m == NULL) {
755                                 unlock_and_deallocate(&fs);
756                                 VM_WAITPFAULT;
757                                 goto RetryFault;
758                         }
759                 }
760
761 readrest:
762                 /*
763                  * At this point, we have either allocated a new page or found
764                  * an existing page that is only partially valid.
765                  *
766                  * We hold a reference on the current object and the page is
767                  * exclusive busied.
768                  */
769
770                 /*
771                  * If the pager for the current object might have the page,
772                  * then determine the number of additional pages to read and
773                  * potentially reprioritize previously read pages for earlier
774                  * reclamation.  These operations should only be performed
775                  * once per page fault.  Even if the current pager doesn't
776                  * have the page, the number of additional pages to read will
777                  * apply to subsequent objects in the shadow chain.
778                  */
779                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
780                     !P_KILLED(curproc)) {
781                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
782                         era = fs.entry->read_ahead;
783                         behavior = vm_map_entry_behavior(fs.entry);
784                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
785                                 nera = 0;
786                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
787                                 nera = VM_FAULT_READ_AHEAD_MAX;
788                                 if (vaddr == fs.entry->next_read)
789                                         vm_fault_dontneed(&fs, vaddr, nera);
790                         } else if (vaddr == fs.entry->next_read) {
791                                 /*
792                                  * This is a sequential fault.  Arithmetically
793                                  * increase the requested number of pages in
794                                  * the read-ahead window.  The requested
795                                  * number of pages is "# of sequential faults
796                                  * x (read ahead min + 1) + read ahead min"
797                                  */
798                                 nera = VM_FAULT_READ_AHEAD_MIN;
799                                 if (era > 0) {
800                                         nera += era + 1;
801                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
802                                                 nera = VM_FAULT_READ_AHEAD_MAX;
803                                 }
804                                 if (era == VM_FAULT_READ_AHEAD_MAX)
805                                         vm_fault_dontneed(&fs, vaddr, nera);
806                         } else {
807                                 /*
808                                  * This is a non-sequential fault.
809                                  */
810                                 nera = 0;
811                         }
812                         if (era != nera) {
813                                 /*
814                                  * A read lock on the map suffices to update
815                                  * the read ahead count safely.
816                                  */
817                                 fs.entry->read_ahead = nera;
818                         }
819
820                         /*
821                          * Prepare for unlocking the map.  Save the map
822                          * entry's start and end addresses, which are used to
823                          * optimize the size of the pager operation below.
824                          * Even if the map entry's addresses change after
825                          * unlocking the map, using the saved addresses is
826                          * safe.
827                          */
828                         e_start = fs.entry->start;
829                         e_end = fs.entry->end;
830                 }
831
832                 /*
833                  * Call the pager to retrieve the page if there is a chance
834                  * that the pager has it, and potentially retrieve additional
835                  * pages at the same time.
836                  */
837                 if (fs.object->type != OBJT_DEFAULT) {
838                         /*
839                          * Release the map lock before locking the vnode or
840                          * sleeping in the pager.  (If the current object has
841                          * a shadow, then an earlier iteration of this loop
842                          * may have already unlocked the map.)
843                          */
844                         unlock_map(&fs);
845
846                         if (fs.object->type == OBJT_VNODE &&
847                             (vp = fs.object->handle) != fs.vp) {
848                                 /*
849                                  * Perform an unlock in case the desired vnode
850                                  * changed while the map was unlocked during a
851                                  * retry.
852                                  */
853                                 unlock_vp(&fs);
854
855                                 locked = VOP_ISLOCKED(vp);
856                                 if (locked != LK_EXCLUSIVE)
857                                         locked = LK_SHARED;
858
859                                 /*
860                                  * We must not sleep acquiring the vnode lock
861                                  * while we have the page exclusive busied or
862                                  * the object's paging-in-progress count
863                                  * incremented.  Otherwise, we could deadlock.
864                                  */
865                                 error = vget(vp, locked | LK_CANRECURSE |
866                                     LK_NOWAIT, curthread);
867                                 if (error != 0) {
868                                         vhold(vp);
869                                         release_page(&fs);
870                                         unlock_and_deallocate(&fs);
871                                         error = vget(vp, locked | LK_RETRY |
872                                             LK_CANRECURSE, curthread);
873                                         vdrop(vp);
874                                         fs.vp = vp;
875                                         KASSERT(error == 0,
876                                             ("vm_fault: vget failed"));
877                                         goto RetryFault;
878                                 }
879                                 fs.vp = vp;
880                         }
881                         KASSERT(fs.vp == NULL || !fs.map->system_map,
882                             ("vm_fault: vnode-backed object mapped by system map"));
883
884                         /*
885                          * Page in the requested page and hint the pager,
886                          * that it may bring up surrounding pages.
887                          */
888                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
889                             P_KILLED(curproc)) {
890                                 behind = 0;
891                                 ahead = 0;
892                         } else {
893                                 /* Is this a sequential fault? */
894                                 if (nera > 0) {
895                                         behind = 0;
896                                         ahead = nera;
897                                 } else {
898                                         /*
899                                          * Request a cluster of pages that is
900                                          * aligned to a VM_FAULT_READ_DEFAULT
901                                          * page offset boundary within the
902                                          * object.  Alignment to a page offset
903                                          * boundary is more likely to coincide
904                                          * with the underlying file system
905                                          * block than alignment to a virtual
906                                          * address boundary.
907                                          */
908                                         cluster_offset = fs.pindex %
909                                             VM_FAULT_READ_DEFAULT;
910                                         behind = ulmin(cluster_offset,
911                                             atop(vaddr - e_start));
912                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
913                                             cluster_offset;
914                                 }
915                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
916                         }
917                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
918                             &behind, &ahead);
919                         if (rv == VM_PAGER_OK) {
920                                 faultcount = behind + 1 + ahead;
921                                 hardfault = true;
922                                 break; /* break to PAGE HAS BEEN FOUND */
923                         }
924                         if (rv == VM_PAGER_ERROR)
925                                 printf("vm_fault: pager read error, pid %d (%s)\n",
926                                     curproc->p_pid, curproc->p_comm);
927
928                         /*
929                          * If an I/O error occurred or the requested page was
930                          * outside the range of the pager, clean up and return
931                          * an error.
932                          */
933                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
934                                 vm_page_lock(fs.m);
935                                 if (fs.m->wire_count == 0)
936                                         vm_page_free(fs.m);
937                                 else
938                                         vm_page_xunbusy_maybelocked(fs.m);
939                                 vm_page_unlock(fs.m);
940                                 fs.m = NULL;
941                                 unlock_and_deallocate(&fs);
942                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
943                                     KERN_PROTECTION_FAILURE);
944                         }
945
946                         /*
947                          * The requested page does not exist at this object/
948                          * offset.  Remove the invalid page from the object,
949                          * waking up anyone waiting for it, and continue on to
950                          * the next object.  However, if this is the top-level
951                          * object, we must leave the busy page in place to
952                          * prevent another process from rushing past us, and
953                          * inserting the page in that object at the same time
954                          * that we are.
955                          */
956                         if (fs.object != fs.first_object) {
957                                 vm_page_lock(fs.m);
958                                 if (fs.m->wire_count == 0)
959                                         vm_page_free(fs.m);
960                                 else
961                                         vm_page_xunbusy_maybelocked(fs.m);
962                                 vm_page_unlock(fs.m);
963                                 fs.m = NULL;
964                         }
965                 }
966
967                 /*
968                  * We get here if the object has default pager (or unwiring) 
969                  * or the pager doesn't have the page.
970                  */
971                 if (fs.object == fs.first_object)
972                         fs.first_m = fs.m;
973
974                 /*
975                  * Move on to the next object.  Lock the next object before
976                  * unlocking the current one.
977                  */
978                 next_object = fs.object->backing_object;
979                 if (next_object == NULL) {
980                         /*
981                          * If there's no object left, fill the page in the top
982                          * object with zeros.
983                          */
984                         if (fs.object != fs.first_object) {
985                                 vm_object_pip_wakeup(fs.object);
986                                 VM_OBJECT_WUNLOCK(fs.object);
987
988                                 fs.object = fs.first_object;
989                                 fs.pindex = fs.first_pindex;
990                                 fs.m = fs.first_m;
991                                 VM_OBJECT_WLOCK(fs.object);
992                         }
993                         fs.first_m = NULL;
994
995                         /*
996                          * Zero the page if necessary and mark it valid.
997                          */
998                         if ((fs.m->flags & PG_ZERO) == 0) {
999                                 pmap_zero_page(fs.m);
1000                         } else {
1001                                 PCPU_INC(cnt.v_ozfod);
1002                         }
1003                         PCPU_INC(cnt.v_zfod);
1004                         fs.m->valid = VM_PAGE_BITS_ALL;
1005                         /* Don't try to prefault neighboring pages. */
1006                         faultcount = 1;
1007                         break;  /* break to PAGE HAS BEEN FOUND */
1008                 } else {
1009                         KASSERT(fs.object != next_object,
1010                             ("object loop %p", next_object));
1011                         VM_OBJECT_WLOCK(next_object);
1012                         vm_object_pip_add(next_object, 1);
1013                         if (fs.object != fs.first_object)
1014                                 vm_object_pip_wakeup(fs.object);
1015                         fs.pindex +=
1016                             OFF_TO_IDX(fs.object->backing_object_offset);
1017                         VM_OBJECT_WUNLOCK(fs.object);
1018                         fs.object = next_object;
1019                 }
1020         }
1021
1022         vm_page_assert_xbusied(fs.m);
1023
1024         /*
1025          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1026          * is held.]
1027          */
1028
1029         /*
1030          * If the page is being written, but isn't already owned by the
1031          * top-level object, we have to copy it into a new page owned by the
1032          * top-level object.
1033          */
1034         if (fs.object != fs.first_object) {
1035                 /*
1036                  * We only really need to copy if we want to write it.
1037                  */
1038                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1039                         /*
1040                          * This allows pages to be virtually copied from a 
1041                          * backing_object into the first_object, where the 
1042                          * backing object has no other refs to it, and cannot
1043                          * gain any more refs.  Instead of a bcopy, we just 
1044                          * move the page from the backing object to the 
1045                          * first object.  Note that we must mark the page 
1046                          * dirty in the first object so that it will go out 
1047                          * to swap when needed.
1048                          */
1049                         is_first_object_locked = false;
1050                         if (
1051                                 /*
1052                                  * Only one shadow object
1053                                  */
1054                                 (fs.object->shadow_count == 1) &&
1055                                 /*
1056                                  * No COW refs, except us
1057                                  */
1058                                 (fs.object->ref_count == 1) &&
1059                                 /*
1060                                  * No one else can look this object up
1061                                  */
1062                                 (fs.object->handle == NULL) &&
1063                                 /*
1064                                  * No other ways to look the object up
1065                                  */
1066                                 ((fs.object->type == OBJT_DEFAULT) ||
1067                                  (fs.object->type == OBJT_SWAP)) &&
1068                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1069                                 /*
1070                                  * We don't chase down the shadow chain
1071                                  */
1072                             fs.object == fs.first_object->backing_object) {
1073                                 vm_page_lock(fs.m);
1074                                 vm_page_remove(fs.m);
1075                                 vm_page_unlock(fs.m);
1076                                 vm_page_lock(fs.first_m);
1077                                 vm_page_replace_checked(fs.m, fs.first_object,
1078                                     fs.first_pindex, fs.first_m);
1079                                 vm_page_free(fs.first_m);
1080                                 vm_page_unlock(fs.first_m);
1081                                 vm_page_dirty(fs.m);
1082 #if VM_NRESERVLEVEL > 0
1083                                 /*
1084                                  * Rename the reservation.
1085                                  */
1086                                 vm_reserv_rename(fs.m, fs.first_object,
1087                                     fs.object, OFF_TO_IDX(
1088                                     fs.first_object->backing_object_offset));
1089 #endif
1090                                 /*
1091                                  * Removing the page from the backing object
1092                                  * unbusied it.
1093                                  */
1094                                 vm_page_xbusy(fs.m);
1095                                 fs.first_m = fs.m;
1096                                 fs.m = NULL;
1097                                 PCPU_INC(cnt.v_cow_optim);
1098                         } else {
1099                                 /*
1100                                  * Oh, well, lets copy it.
1101                                  */
1102                                 pmap_copy_page(fs.m, fs.first_m);
1103                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
1104                                 if (wired && (fault_flags &
1105                                     VM_FAULT_WIRE) == 0) {
1106                                         vm_page_lock(fs.first_m);
1107                                         vm_page_wire(fs.first_m);
1108                                         vm_page_unlock(fs.first_m);
1109                                         
1110                                         vm_page_lock(fs.m);
1111                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1112                                         vm_page_unlock(fs.m);
1113                                 }
1114                                 /*
1115                                  * We no longer need the old page or object.
1116                                  */
1117                                 release_page(&fs);
1118                         }
1119                         /*
1120                          * fs.object != fs.first_object due to above 
1121                          * conditional
1122                          */
1123                         vm_object_pip_wakeup(fs.object);
1124                         VM_OBJECT_WUNLOCK(fs.object);
1125                         /*
1126                          * Only use the new page below...
1127                          */
1128                         fs.object = fs.first_object;
1129                         fs.pindex = fs.first_pindex;
1130                         fs.m = fs.first_m;
1131                         if (!is_first_object_locked)
1132                                 VM_OBJECT_WLOCK(fs.object);
1133                         PCPU_INC(cnt.v_cow_faults);
1134                         curthread->td_cow++;
1135                 } else {
1136                         prot &= ~VM_PROT_WRITE;
1137                 }
1138         }
1139
1140         /*
1141          * We must verify that the maps have not changed since our last
1142          * lookup.
1143          */
1144         if (!fs.lookup_still_valid) {
1145                 if (!vm_map_trylock_read(fs.map)) {
1146                         release_page(&fs);
1147                         unlock_and_deallocate(&fs);
1148                         goto RetryFault;
1149                 }
1150                 fs.lookup_still_valid = true;
1151                 if (fs.map->timestamp != fs.map_generation) {
1152                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1153                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1154
1155                         /*
1156                          * If we don't need the page any longer, put it on the inactive
1157                          * list (the easiest thing to do here).  If no one needs it,
1158                          * pageout will grab it eventually.
1159                          */
1160                         if (result != KERN_SUCCESS) {
1161                                 release_page(&fs);
1162                                 unlock_and_deallocate(&fs);
1163
1164                                 /*
1165                                  * If retry of map lookup would have blocked then
1166                                  * retry fault from start.
1167                                  */
1168                                 if (result == KERN_FAILURE)
1169                                         goto RetryFault;
1170                                 return (result);
1171                         }
1172                         if ((retry_object != fs.first_object) ||
1173                             (retry_pindex != fs.first_pindex)) {
1174                                 release_page(&fs);
1175                                 unlock_and_deallocate(&fs);
1176                                 goto RetryFault;
1177                         }
1178
1179                         /*
1180                          * Check whether the protection has changed or the object has
1181                          * been copied while we left the map unlocked. Changing from
1182                          * read to write permission is OK - we leave the page
1183                          * write-protected, and catch the write fault. Changing from
1184                          * write to read permission means that we can't mark the page
1185                          * write-enabled after all.
1186                          */
1187                         prot &= retry_prot;
1188                 }
1189         }
1190
1191         /*
1192          * If the page was filled by a pager, save the virtual address that
1193          * should be faulted on next under a sequential access pattern to the
1194          * map entry.  A read lock on the map suffices to update this address
1195          * safely.
1196          */
1197         if (hardfault)
1198                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1199
1200         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1201         vm_page_assert_xbusied(fs.m);
1202
1203         /*
1204          * Page must be completely valid or it is not fit to
1205          * map into user space.  vm_pager_get_pages() ensures this.
1206          */
1207         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1208             ("vm_fault: page %p partially invalid", fs.m));
1209         VM_OBJECT_WUNLOCK(fs.object);
1210
1211         /*
1212          * Put this page into the physical map.  We had to do the unlock above
1213          * because pmap_enter() may sleep.  We don't put the page
1214          * back on the active queue until later so that the pageout daemon
1215          * won't find it (yet).
1216          */
1217         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1218             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1219         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1220             wired == 0)
1221                 vm_fault_prefault(&fs, vaddr,
1222                     faultcount > 0 ? behind : PFBAK,
1223                     faultcount > 0 ? ahead : PFFOR);
1224         VM_OBJECT_WLOCK(fs.object);
1225         vm_page_lock(fs.m);
1226
1227         /*
1228          * If the page is not wired down, then put it where the pageout daemon
1229          * can find it.
1230          */
1231         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1232                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1233                 vm_page_wire(fs.m);
1234         } else
1235                 vm_page_activate(fs.m);
1236         if (m_hold != NULL) {
1237                 *m_hold = fs.m;
1238                 vm_page_hold(fs.m);
1239         }
1240         vm_page_unlock(fs.m);
1241         vm_page_xunbusy(fs.m);
1242
1243         /*
1244          * Unlock everything, and return
1245          */
1246         unlock_and_deallocate(&fs);
1247         if (hardfault) {
1248                 PCPU_INC(cnt.v_io_faults);
1249                 curthread->td_ru.ru_majflt++;
1250 #ifdef RACCT
1251                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1252                         PROC_LOCK(curproc);
1253                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1254                                 racct_add_force(curproc, RACCT_WRITEBPS,
1255                                     PAGE_SIZE + behind * PAGE_SIZE);
1256                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1257                         } else {
1258                                 racct_add_force(curproc, RACCT_READBPS,
1259                                     PAGE_SIZE + ahead * PAGE_SIZE);
1260                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1261                         }
1262                         PROC_UNLOCK(curproc);
1263                 }
1264 #endif
1265         } else 
1266                 curthread->td_ru.ru_minflt++;
1267
1268         return (KERN_SUCCESS);
1269 }
1270
1271 /*
1272  * Speed up the reclamation of pages that precede the faulting pindex within
1273  * the first object of the shadow chain.  Essentially, perform the equivalent
1274  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1275  * the faulting pindex by the cluster size when the pages read by vm_fault()
1276  * cross a cluster-size boundary.  The cluster size is the greater of the
1277  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1278  *
1279  * When "fs->first_object" is a shadow object, the pages in the backing object
1280  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1281  * function must only be concerned with pages in the first object.
1282  */
1283 static void
1284 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1285 {
1286         vm_map_entry_t entry;
1287         vm_object_t first_object, object;
1288         vm_offset_t end, start;
1289         vm_page_t m, m_next;
1290         vm_pindex_t pend, pstart;
1291         vm_size_t size;
1292
1293         object = fs->object;
1294         VM_OBJECT_ASSERT_WLOCKED(object);
1295         first_object = fs->first_object;
1296         if (first_object != object) {
1297                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1298                         VM_OBJECT_WUNLOCK(object);
1299                         VM_OBJECT_WLOCK(first_object);
1300                         VM_OBJECT_WLOCK(object);
1301                 }
1302         }
1303         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1304         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1305                 size = VM_FAULT_DONTNEED_MIN;
1306                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1307                         size = pagesizes[1];
1308                 end = rounddown2(vaddr, size);
1309                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1310                     (entry = fs->entry)->start < end) {
1311                         if (end - entry->start < size)
1312                                 start = entry->start;
1313                         else
1314                                 start = end - size;
1315                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1316                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1317                             entry->start);
1318                         m_next = vm_page_find_least(first_object, pstart);
1319                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1320                             entry->start);
1321                         while ((m = m_next) != NULL && m->pindex < pend) {
1322                                 m_next = TAILQ_NEXT(m, listq);
1323                                 if (m->valid != VM_PAGE_BITS_ALL ||
1324                                     vm_page_busied(m))
1325                                         continue;
1326
1327                                 /*
1328                                  * Don't clear PGA_REFERENCED, since it would
1329                                  * likely represent a reference by a different
1330                                  * process.
1331                                  *
1332                                  * Typically, at this point, prefetched pages
1333                                  * are still in the inactive queue.  Only
1334                                  * pages that triggered page faults are in the
1335                                  * active queue.
1336                                  */
1337                                 vm_page_lock(m);
1338                                 vm_page_deactivate(m);
1339                                 vm_page_unlock(m);
1340                         }
1341                 }
1342         }
1343         if (first_object != object)
1344                 VM_OBJECT_WUNLOCK(first_object);
1345 }
1346
1347 /*
1348  * vm_fault_prefault provides a quick way of clustering
1349  * pagefaults into a processes address space.  It is a "cousin"
1350  * of vm_map_pmap_enter, except it runs at page fault time instead
1351  * of mmap time.
1352  */
1353 static void
1354 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1355     int backward, int forward)
1356 {
1357         pmap_t pmap;
1358         vm_map_entry_t entry;
1359         vm_object_t backing_object, lobject;
1360         vm_offset_t addr, starta;
1361         vm_pindex_t pindex;
1362         vm_page_t m;
1363         int i;
1364
1365         pmap = fs->map->pmap;
1366         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1367                 return;
1368
1369         entry = fs->entry;
1370
1371         starta = addra - backward * PAGE_SIZE;
1372         if (starta < entry->start) {
1373                 starta = entry->start;
1374         } else if (starta > addra) {
1375                 starta = 0;
1376         }
1377
1378         /*
1379          * Generate the sequence of virtual addresses that are candidates for
1380          * prefaulting in an outward spiral from the faulting virtual address,
1381          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1382          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1383          * If the candidate address doesn't have a backing physical page, then
1384          * the loop immediately terminates.
1385          */
1386         for (i = 0; i < 2 * imax(backward, forward); i++) {
1387                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1388                     PAGE_SIZE);
1389                 if (addr > addra + forward * PAGE_SIZE)
1390                         addr = 0;
1391
1392                 if (addr < starta || addr >= entry->end)
1393                         continue;
1394
1395                 if (!pmap_is_prefaultable(pmap, addr))
1396                         continue;
1397
1398                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1399                 lobject = entry->object.vm_object;
1400                 VM_OBJECT_RLOCK(lobject);
1401                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1402                     lobject->type == OBJT_DEFAULT &&
1403                     (backing_object = lobject->backing_object) != NULL) {
1404                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1405                             0, ("vm_fault_prefault: unaligned object offset"));
1406                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1407                         VM_OBJECT_RLOCK(backing_object);
1408                         VM_OBJECT_RUNLOCK(lobject);
1409                         lobject = backing_object;
1410                 }
1411                 if (m == NULL) {
1412                         VM_OBJECT_RUNLOCK(lobject);
1413                         break;
1414                 }
1415                 if (m->valid == VM_PAGE_BITS_ALL &&
1416                     (m->flags & PG_FICTITIOUS) == 0)
1417                         pmap_enter_quick(pmap, addr, m, entry->protection);
1418                 VM_OBJECT_RUNLOCK(lobject);
1419         }
1420 }
1421
1422 /*
1423  * Hold each of the physical pages that are mapped by the specified range of
1424  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1425  * and allow the specified types of access, "prot".  If all of the implied
1426  * pages are successfully held, then the number of held pages is returned
1427  * together with pointers to those pages in the array "ma".  However, if any
1428  * of the pages cannot be held, -1 is returned.
1429  */
1430 int
1431 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1432     vm_prot_t prot, vm_page_t *ma, int max_count)
1433 {
1434         vm_offset_t end, va;
1435         vm_page_t *mp;
1436         int count;
1437         boolean_t pmap_failed;
1438
1439         if (len == 0)
1440                 return (0);
1441         end = round_page(addr + len);
1442         addr = trunc_page(addr);
1443
1444         /*
1445          * Check for illegal addresses.
1446          */
1447         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1448                 return (-1);
1449
1450         if (atop(end - addr) > max_count)
1451                 panic("vm_fault_quick_hold_pages: count > max_count");
1452         count = atop(end - addr);
1453
1454         /*
1455          * Most likely, the physical pages are resident in the pmap, so it is
1456          * faster to try pmap_extract_and_hold() first.
1457          */
1458         pmap_failed = FALSE;
1459         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1460                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1461                 if (*mp == NULL)
1462                         pmap_failed = TRUE;
1463                 else if ((prot & VM_PROT_WRITE) != 0 &&
1464                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1465                         /*
1466                          * Explicitly dirty the physical page.  Otherwise, the
1467                          * caller's changes may go unnoticed because they are
1468                          * performed through an unmanaged mapping or by a DMA
1469                          * operation.
1470                          *
1471                          * The object lock is not held here.
1472                          * See vm_page_clear_dirty_mask().
1473                          */
1474                         vm_page_dirty(*mp);
1475                 }
1476         }
1477         if (pmap_failed) {
1478                 /*
1479                  * One or more pages could not be held by the pmap.  Either no
1480                  * page was mapped at the specified virtual address or that
1481                  * mapping had insufficient permissions.  Attempt to fault in
1482                  * and hold these pages.
1483                  */
1484                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1485                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1486                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1487                                 goto error;
1488         }
1489         return (count);
1490 error:  
1491         for (mp = ma; mp < ma + count; mp++)
1492                 if (*mp != NULL) {
1493                         vm_page_lock(*mp);
1494                         vm_page_unhold(*mp);
1495                         vm_page_unlock(*mp);
1496                 }
1497         return (-1);
1498 }
1499
1500 /*
1501  *      Routine:
1502  *              vm_fault_copy_entry
1503  *      Function:
1504  *              Create new shadow object backing dst_entry with private copy of
1505  *              all underlying pages. When src_entry is equal to dst_entry,
1506  *              function implements COW for wired-down map entry. Otherwise,
1507  *              it forks wired entry into dst_map.
1508  *
1509  *      In/out conditions:
1510  *              The source and destination maps must be locked for write.
1511  *              The source map entry must be wired down (or be a sharing map
1512  *              entry corresponding to a main map entry that is wired down).
1513  */
1514 void
1515 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1516     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1517     vm_ooffset_t *fork_charge)
1518 {
1519         vm_object_t backing_object, dst_object, object, src_object;
1520         vm_pindex_t dst_pindex, pindex, src_pindex;
1521         vm_prot_t access, prot;
1522         vm_offset_t vaddr;
1523         vm_page_t dst_m;
1524         vm_page_t src_m;
1525         boolean_t upgrade;
1526
1527 #ifdef  lint
1528         src_map++;
1529 #endif  /* lint */
1530
1531         upgrade = src_entry == dst_entry;
1532         access = prot = dst_entry->protection;
1533
1534         src_object = src_entry->object.vm_object;
1535         src_pindex = OFF_TO_IDX(src_entry->offset);
1536
1537         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1538                 dst_object = src_object;
1539                 vm_object_reference(dst_object);
1540         } else {
1541                 /*
1542                  * Create the top-level object for the destination entry. (Doesn't
1543                  * actually shadow anything - we copy the pages directly.)
1544                  */
1545                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1546                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1547 #if VM_NRESERVLEVEL > 0
1548                 dst_object->flags |= OBJ_COLORED;
1549                 dst_object->pg_color = atop(dst_entry->start);
1550 #endif
1551         }
1552
1553         VM_OBJECT_WLOCK(dst_object);
1554         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1555             ("vm_fault_copy_entry: vm_object not NULL"));
1556         if (src_object != dst_object) {
1557                 dst_entry->object.vm_object = dst_object;
1558                 dst_entry->offset = 0;
1559                 dst_object->charge = dst_entry->end - dst_entry->start;
1560         }
1561         if (fork_charge != NULL) {
1562                 KASSERT(dst_entry->cred == NULL,
1563                     ("vm_fault_copy_entry: leaked swp charge"));
1564                 dst_object->cred = curthread->td_ucred;
1565                 crhold(dst_object->cred);
1566                 *fork_charge += dst_object->charge;
1567         } else if (dst_object->cred == NULL) {
1568                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1569                     dst_entry));
1570                 dst_object->cred = dst_entry->cred;
1571                 dst_entry->cred = NULL;
1572         }
1573
1574         /*
1575          * If not an upgrade, then enter the mappings in the pmap as
1576          * read and/or execute accesses.  Otherwise, enter them as
1577          * write accesses.
1578          *
1579          * A writeable large page mapping is only created if all of
1580          * the constituent small page mappings are modified. Marking
1581          * PTEs as modified on inception allows promotion to happen
1582          * without taking potentially large number of soft faults.
1583          */
1584         if (!upgrade)
1585                 access &= ~VM_PROT_WRITE;
1586
1587         /*
1588          * Loop through all of the virtual pages within the entry's
1589          * range, copying each page from the source object to the
1590          * destination object.  Since the source is wired, those pages
1591          * must exist.  In contrast, the destination is pageable.
1592          * Since the destination object does share any backing storage
1593          * with the source object, all of its pages must be dirtied,
1594          * regardless of whether they can be written.
1595          */
1596         for (vaddr = dst_entry->start, dst_pindex = 0;
1597             vaddr < dst_entry->end;
1598             vaddr += PAGE_SIZE, dst_pindex++) {
1599 again:
1600                 /*
1601                  * Find the page in the source object, and copy it in.
1602                  * Because the source is wired down, the page will be
1603                  * in memory.
1604                  */
1605                 if (src_object != dst_object)
1606                         VM_OBJECT_RLOCK(src_object);
1607                 object = src_object;
1608                 pindex = src_pindex + dst_pindex;
1609                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1610                     (backing_object = object->backing_object) != NULL) {
1611                         /*
1612                          * Unless the source mapping is read-only or
1613                          * it is presently being upgraded from
1614                          * read-only, the first object in the shadow
1615                          * chain should provide all of the pages.  In
1616                          * other words, this loop body should never be
1617                          * executed when the source mapping is already
1618                          * read/write.
1619                          */
1620                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1621                             upgrade,
1622                             ("vm_fault_copy_entry: main object missing page"));
1623
1624                         VM_OBJECT_RLOCK(backing_object);
1625                         pindex += OFF_TO_IDX(object->backing_object_offset);
1626                         if (object != dst_object)
1627                                 VM_OBJECT_RUNLOCK(object);
1628                         object = backing_object;
1629                 }
1630                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1631
1632                 if (object != dst_object) {
1633                         /*
1634                          * Allocate a page in the destination object.
1635                          */
1636                         dst_m = vm_page_alloc(dst_object, (src_object ==
1637                             dst_object ? src_pindex : 0) + dst_pindex,
1638                             VM_ALLOC_NORMAL);
1639                         if (dst_m == NULL) {
1640                                 VM_OBJECT_WUNLOCK(dst_object);
1641                                 VM_OBJECT_RUNLOCK(object);
1642                                 VM_WAIT;
1643                                 VM_OBJECT_WLOCK(dst_object);
1644                                 goto again;
1645                         }
1646                         pmap_copy_page(src_m, dst_m);
1647                         VM_OBJECT_RUNLOCK(object);
1648                         dst_m->valid = VM_PAGE_BITS_ALL;
1649                         dst_m->dirty = VM_PAGE_BITS_ALL;
1650                 } else {
1651                         dst_m = src_m;
1652                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1653                                 goto again;
1654                         vm_page_xbusy(dst_m);
1655                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1656                             ("invalid dst page %p", dst_m));
1657                 }
1658                 VM_OBJECT_WUNLOCK(dst_object);
1659
1660                 /*
1661                  * Enter it in the pmap. If a wired, copy-on-write
1662                  * mapping is being replaced by a write-enabled
1663                  * mapping, then wire that new mapping.
1664                  */
1665                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1666                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1667
1668                 /*
1669                  * Mark it no longer busy, and put it on the active list.
1670                  */
1671                 VM_OBJECT_WLOCK(dst_object);
1672                 
1673                 if (upgrade) {
1674                         if (src_m != dst_m) {
1675                                 vm_page_lock(src_m);
1676                                 vm_page_unwire(src_m, PQ_INACTIVE);
1677                                 vm_page_unlock(src_m);
1678                                 vm_page_lock(dst_m);
1679                                 vm_page_wire(dst_m);
1680                                 vm_page_unlock(dst_m);
1681                         } else {
1682                                 KASSERT(dst_m->wire_count > 0,
1683                                     ("dst_m %p is not wired", dst_m));
1684                         }
1685                 } else {
1686                         vm_page_lock(dst_m);
1687                         vm_page_activate(dst_m);
1688                         vm_page_unlock(dst_m);
1689                 }
1690                 vm_page_xunbusy(dst_m);
1691         }
1692         VM_OBJECT_WUNLOCK(dst_object);
1693         if (upgrade) {
1694                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1695                 vm_object_deallocate(src_object);
1696         }
1697 }
1698
1699 /*
1700  * Block entry into the machine-independent layer's page fault handler by
1701  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1702  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1703  * spurious page faults. 
1704  */
1705 int
1706 vm_fault_disable_pagefaults(void)
1707 {
1708
1709         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1710 }
1711
1712 void
1713 vm_fault_enable_pagefaults(int save)
1714 {
1715
1716         curthread_pflags_restore(save);
1717 }