]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
This commit was generated by cvs2svn to compensate for changes in r84493,
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD$
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/proc.h>
82 #include <sys/resourcevar.h>
83 #include <sys/sysctl.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vnode_pager.h>
97 #include <vm/vm_extern.h>
98
99 static int vm_fault_additional_pages __P((vm_page_t, int,
100                                           int, vm_page_t *, int *));
101
102 #define VM_FAULT_READ_AHEAD 8
103 #define VM_FAULT_READ_BEHIND 7
104 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
105
106 struct faultstate {
107         vm_page_t m;
108         vm_object_t object;
109         vm_pindex_t pindex;
110         vm_page_t first_m;
111         vm_object_t     first_object;
112         vm_pindex_t first_pindex;
113         vm_map_t map;
114         vm_map_entry_t entry;
115         int lookup_still_valid;
116         struct vnode *vp;
117 };
118
119 static __inline void
120 release_page(struct faultstate *fs)
121 {
122         vm_page_wakeup(fs->m);
123         vm_page_deactivate(fs->m);
124         fs->m = NULL;
125 }
126
127 static __inline void
128 unlock_map(struct faultstate *fs)
129 {
130         if (fs->lookup_still_valid) {
131                 vm_map_lookup_done(fs->map, fs->entry);
132                 fs->lookup_still_valid = FALSE;
133         }
134 }
135
136 static void
137 _unlock_things(struct faultstate *fs, int dealloc)
138 {
139         GIANT_REQUIRED;
140         vm_object_pip_wakeup(fs->object);
141         if (fs->object != fs->first_object) {
142                 vm_page_free(fs->first_m);
143                 vm_object_pip_wakeup(fs->first_object);
144                 fs->first_m = NULL;
145         }
146         if (dealloc) {
147                 vm_object_deallocate(fs->first_object);
148         }
149         unlock_map(fs); 
150         if (fs->vp != NULL) { 
151                 vput(fs->vp);
152                 fs->vp = NULL;
153         }
154 }
155
156 #define unlock_things(fs) _unlock_things(fs, 0)
157 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
158
159 /*
160  * TRYPAGER - used by vm_fault to calculate whether the pager for the
161  *            current object *might* contain the page.
162  *
163  *            default objects are zero-fill, there is no real pager.
164  */
165
166 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
167                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
168
169 /*
170  *      vm_fault:
171  *
172  *      Handle a page fault occurring at the given address,
173  *      requiring the given permissions, in the map specified.
174  *      If successful, the page is inserted into the
175  *      associated physical map.
176  *
177  *      NOTE: the given address should be truncated to the
178  *      proper page address.
179  *
180  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
181  *      a standard error specifying why the fault is fatal is returned.
182  *
183  *
184  *      The map in question must be referenced, and remains so.
185  *      Caller may hold no locks.
186  */
187 static int vm_fault1 __P((vm_map_t, vm_offset_t, vm_prot_t, int));
188
189 int
190 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
191          int fault_flags)
192 {
193         int ret;
194
195         mtx_lock(&Giant);
196         /* GIANT_REQUIRED */
197
198         ret = vm_fault1(map, vaddr, fault_type, fault_flags);
199         mtx_unlock(&Giant);
200         return (ret);
201 }
202
203 static int
204 vm_fault1(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205           int fault_flags)
206 {
207         vm_prot_t prot;
208         int result;
209         boolean_t wired;
210         int map_generation;
211         vm_object_t next_object;
212         vm_page_t marray[VM_FAULT_READ];
213         int hardfault;
214         int faultcount;
215         struct faultstate fs;
216
217         GIANT_REQUIRED;
218
219         cnt.v_vm_faults++;
220         hardfault = 0;
221
222 RetryFault:;
223
224         /*
225          * Find the backing store object and offset into it to begin the
226          * search.
227          */
228         fs.map = map;
229         if ((result = vm_map_lookup(&fs.map, vaddr,
230                 fault_type, &fs.entry, &fs.first_object,
231                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
232                 if ((result != KERN_PROTECTION_FAILURE) ||
233                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
234                         return result;
235                 }
236
237                 /*
238                  * If we are user-wiring a r/w segment, and it is COW, then
239                  * we need to do the COW operation.  Note that we don't COW
240                  * currently RO sections now, because it is NOT desirable
241                  * to COW .text.  We simply keep .text from ever being COW'ed
242                  * and take the heat that one cannot debug wired .text sections.
243                  */
244                 result = vm_map_lookup(&fs.map, vaddr,
245                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
246                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
247                 if (result != KERN_SUCCESS) {
248                         return result;
249                 }
250
251                 /*
252                  * If we don't COW now, on a user wire, the user will never
253                  * be able to write to the mapping.  If we don't make this
254                  * restriction, the bookkeeping would be nearly impossible.
255                  */
256                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
257                         fs.entry->max_protection &= ~VM_PROT_WRITE;
258         }
259
260         map_generation = fs.map->timestamp;
261
262         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
263                 panic("vm_fault: fault on nofault entry, addr: %lx",
264                     (u_long)vaddr);
265         }
266
267         /*
268          * Make a reference to this object to prevent its disposal while we
269          * are messing with it.  Once we have the reference, the map is free
270          * to be diddled.  Since objects reference their shadows (and copies),
271          * they will stay around as well.
272          */
273         vm_object_reference(fs.first_object);
274         vm_object_pip_add(fs.first_object, 1);
275
276         fs.vp = vnode_pager_lock(fs.first_object);
277         if ((fault_type & VM_PROT_WRITE) &&
278                 (fs.first_object->type == OBJT_VNODE)) {
279                 vm_freeze_copyopts(fs.first_object,
280                         fs.first_pindex, fs.first_pindex + 1);
281         }
282
283         fs.lookup_still_valid = TRUE;
284
285         if (wired)
286                 fault_type = prot;
287
288         fs.first_m = NULL;
289
290         /*
291          * Search for the page at object/offset.
292          */
293
294         fs.object = fs.first_object;
295         fs.pindex = fs.first_pindex;
296
297         while (TRUE) {
298                 /*
299                  * If the object is dead, we stop here
300                  */
301
302                 if (fs.object->flags & OBJ_DEAD) {
303                         unlock_and_deallocate(&fs);
304                         return (KERN_PROTECTION_FAILURE);
305                 }
306
307                 /*
308                  * See if page is resident
309                  */
310                         
311                 fs.m = vm_page_lookup(fs.object, fs.pindex);
312                 if (fs.m != NULL) {
313                         int queue, s;
314                         /*
315                          * Wait/Retry if the page is busy.  We have to do this
316                          * if the page is busy via either PG_BUSY or 
317                          * vm_page_t->busy because the vm_pager may be using
318                          * vm_page_t->busy for pageouts ( and even pageins if
319                          * it is the vnode pager ), and we could end up trying
320                          * to pagein and pageout the same page simultaneously.
321                          *
322                          * We can theoretically allow the busy case on a read
323                          * fault if the page is marked valid, but since such
324                          * pages are typically already pmap'd, putting that
325                          * special case in might be more effort then it is 
326                          * worth.  We cannot under any circumstances mess
327                          * around with a vm_page_t->busy page except, perhaps,
328                          * to pmap it.
329                          */
330                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
331                                 unlock_things(&fs);
332                                 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
333                                 cnt.v_intrans++;
334                                 vm_object_deallocate(fs.first_object);
335                                 goto RetryFault;
336                         }
337
338                         queue = fs.m->queue;
339                         s = splvm();
340                         vm_pageq_remove_nowakeup(fs.m);
341                         splx(s);
342
343                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
344                                 vm_page_activate(fs.m);
345                                 unlock_and_deallocate(&fs);
346                                 VM_WAIT;
347                                 goto RetryFault;
348                         }
349
350                         /*
351                          * Mark page busy for other processes, and the 
352                          * pagedaemon.  If it still isn't completely valid
353                          * (readable), jump to readrest, else break-out ( we
354                          * found the page ).
355                          */
356
357                         vm_page_busy(fs.m);
358                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
359                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
360                                 goto readrest;
361                         }
362
363                         break;
364                 }
365
366                 /*
367                  * Page is not resident, If this is the search termination
368                  * or the pager might contain the page, allocate a new page.
369                  */
370
371                 if (TRYPAGER || fs.object == fs.first_object) {
372                         if (fs.pindex >= fs.object->size) {
373                                 unlock_and_deallocate(&fs);
374                                 return (KERN_PROTECTION_FAILURE);
375                         }
376
377                         /*
378                          * Allocate a new page for this object/offset pair.
379                          */
380                         fs.m = NULL;
381                         if (!vm_page_count_severe()) {
382                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
383                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
384                         }
385                         if (fs.m == NULL) {
386                                 unlock_and_deallocate(&fs);
387                                 VM_WAIT;
388                                 goto RetryFault;
389                         }
390                 }
391
392 readrest:
393                 /*
394                  * We have found a valid page or we have allocated a new page.
395                  * The page thus may not be valid or may not be entirely 
396                  * valid.
397                  *
398                  * Attempt to fault-in the page if there is a chance that the
399                  * pager has it, and potentially fault in additional pages
400                  * at the same time.
401                  */
402
403                 if (TRYPAGER) {
404                         int rv;
405                         int reqpage;
406                         int ahead, behind;
407                         u_char behavior = vm_map_entry_behavior(fs.entry);
408
409                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
410                                 ahead = 0;
411                                 behind = 0;
412                         } else {
413                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
414                                 if (behind > VM_FAULT_READ_BEHIND)
415                                         behind = VM_FAULT_READ_BEHIND;
416
417                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
418                                 if (ahead > VM_FAULT_READ_AHEAD)
419                                         ahead = VM_FAULT_READ_AHEAD;
420                         }
421
422                         if ((fs.first_object->type != OBJT_DEVICE) &&
423                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
424                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
425                                 fs.pindex >= fs.entry->lastr &&
426                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
427                         ) {
428                                 vm_pindex_t firstpindex, tmppindex;
429
430                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
431                                         firstpindex = 0;
432                                 else
433                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
434
435                                 /*
436                                  * note: partially valid pages cannot be 
437                                  * included in the lookahead - NFS piecemeal
438                                  * writes will barf on it badly.
439                                  */
440
441                                 for(tmppindex = fs.first_pindex - 1;
442                                         tmppindex >= firstpindex;
443                                         --tmppindex) {
444                                         vm_page_t mt;
445                                         mt = vm_page_lookup( fs.first_object, tmppindex);
446                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
447                                                 break;
448                                         if (mt->busy ||
449                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
450                                                 mt->hold_count ||
451                                                 mt->wire_count) 
452                                                 continue;
453                                         if (mt->dirty == 0)
454                                                 vm_page_test_dirty(mt);
455                                         if (mt->dirty) {
456                                                 vm_page_protect(mt, VM_PROT_NONE);
457                                                 vm_page_deactivate(mt);
458                                         } else {
459                                                 vm_page_cache(mt);
460                                         }
461                                 }
462
463                                 ahead += behind;
464                                 behind = 0;
465                         }
466
467                         /*
468                          * now we find out if any other pages should be paged
469                          * in at this time this routine checks to see if the
470                          * pages surrounding this fault reside in the same
471                          * object as the page for this fault.  If they do,
472                          * then they are faulted in also into the object.  The
473                          * array "marray" returned contains an array of
474                          * vm_page_t structs where one of them is the
475                          * vm_page_t passed to the routine.  The reqpage
476                          * return value is the index into the marray for the
477                          * vm_page_t passed to the routine.
478                          *
479                          * fs.m plus the additional pages are PG_BUSY'd.
480                          */
481                         faultcount = vm_fault_additional_pages(
482                             fs.m, behind, ahead, marray, &reqpage);
483
484                         /*
485                          * update lastr imperfectly (we do not know how much
486                          * getpages will actually read), but good enough.
487                          */
488                         fs.entry->lastr = fs.pindex + faultcount - behind;
489
490                         /*
491                          * Call the pager to retrieve the data, if any, after
492                          * releasing the lock on the map.  We hold a ref on
493                          * fs.object and the pages are PG_BUSY'd.
494                          */
495                         unlock_map(&fs);
496
497                         rv = faultcount ?
498                             vm_pager_get_pages(fs.object, marray, faultcount,
499                                 reqpage) : VM_PAGER_FAIL;
500
501                         if (rv == VM_PAGER_OK) {
502                                 /*
503                                  * Found the page. Leave it busy while we play
504                                  * with it.
505                                  */
506
507                                 /*
508                                  * Relookup in case pager changed page. Pager
509                                  * is responsible for disposition of old page
510                                  * if moved.
511                                  */
512                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
513                                 if(!fs.m) {
514                                         unlock_and_deallocate(&fs);
515                                         goto RetryFault;
516                                 }
517
518                                 hardfault++;
519                                 break; /* break to PAGE HAS BEEN FOUND */
520                         }
521                         /*
522                          * Remove the bogus page (which does not exist at this
523                          * object/offset); before doing so, we must get back
524                          * our object lock to preserve our invariant.
525                          *
526                          * Also wake up any other process that may want to bring
527                          * in this page.
528                          *
529                          * If this is the top-level object, we must leave the
530                          * busy page to prevent another process from rushing
531                          * past us, and inserting the page in that object at
532                          * the same time that we are.
533                          */
534
535                         if (rv == VM_PAGER_ERROR)
536                                 printf("vm_fault: pager read error, pid %d (%s)\n",
537                                     curproc->p_pid, curproc->p_comm);
538                         /*
539                          * Data outside the range of the pager or an I/O error
540                          */
541                         /*
542                          * XXX - the check for kernel_map is a kludge to work
543                          * around having the machine panic on a kernel space
544                          * fault w/ I/O error.
545                          */
546                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
547                                 (rv == VM_PAGER_BAD)) {
548                                 vm_page_free(fs.m);
549                                 fs.m = NULL;
550                                 unlock_and_deallocate(&fs);
551                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
552                         }
553                         if (fs.object != fs.first_object) {
554                                 vm_page_free(fs.m);
555                                 fs.m = NULL;
556                                 /*
557                                  * XXX - we cannot just fall out at this
558                                  * point, m has been freed and is invalid!
559                                  */
560                         }
561                 }
562
563                 /*
564                  * We get here if the object has default pager (or unwiring) 
565                  * or the pager doesn't have the page.
566                  */
567                 if (fs.object == fs.first_object)
568                         fs.first_m = fs.m;
569
570                 /*
571                  * Move on to the next object.  Lock the next object before
572                  * unlocking the current one.
573                  */
574
575                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
576                 next_object = fs.object->backing_object;
577                 if (next_object == NULL) {
578                         /*
579                          * If there's no object left, fill the page in the top
580                          * object with zeros.
581                          */
582                         if (fs.object != fs.first_object) {
583                                 vm_object_pip_wakeup(fs.object);
584
585                                 fs.object = fs.first_object;
586                                 fs.pindex = fs.first_pindex;
587                                 fs.m = fs.first_m;
588                         }
589                         fs.first_m = NULL;
590
591                         /*
592                          * Zero the page if necessary and mark it valid.
593                          */
594                         if ((fs.m->flags & PG_ZERO) == 0) {
595                                 vm_page_zero_fill(fs.m);
596                         } else {
597                                 cnt.v_ozfod++;
598                         }
599                         cnt.v_zfod++;
600                         fs.m->valid = VM_PAGE_BITS_ALL;
601                         break;  /* break to PAGE HAS BEEN FOUND */
602                 } else {
603                         if (fs.object != fs.first_object) {
604                                 vm_object_pip_wakeup(fs.object);
605                         }
606                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
607                         fs.object = next_object;
608                         vm_object_pip_add(fs.object, 1);
609                 }
610         }
611
612         KASSERT((fs.m->flags & PG_BUSY) != 0,
613             ("vm_fault: not busy after main loop"));
614
615         /*
616          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
617          * is held.]
618          */
619
620         /*
621          * If the page is being written, but isn't already owned by the
622          * top-level object, we have to copy it into a new page owned by the
623          * top-level object.
624          */
625
626         if (fs.object != fs.first_object) {
627                 /*
628                  * We only really need to copy if we want to write it.
629                  */
630
631                 if (fault_type & VM_PROT_WRITE) {
632                         /*
633                          * This allows pages to be virtually copied from a 
634                          * backing_object into the first_object, where the 
635                          * backing object has no other refs to it, and cannot
636                          * gain any more refs.  Instead of a bcopy, we just 
637                          * move the page from the backing object to the 
638                          * first object.  Note that we must mark the page 
639                          * dirty in the first object so that it will go out 
640                          * to swap when needed.
641                          */
642                         if (map_generation == fs.map->timestamp &&
643                                 /*
644                                  * Only one shadow object
645                                  */
646                                 (fs.object->shadow_count == 1) &&
647                                 /*
648                                  * No COW refs, except us
649                                  */
650                                 (fs.object->ref_count == 1) &&
651                                 /*
652                                  * No one else can look this object up
653                                  */
654                                 (fs.object->handle == NULL) &&
655                                 /*
656                                  * No other ways to look the object up
657                                  */
658                                 ((fs.object->type == OBJT_DEFAULT) ||
659                                  (fs.object->type == OBJT_SWAP)) &&
660                                 /*
661                                  * We don't chase down the shadow chain
662                                  */
663                                 (fs.object == fs.first_object->backing_object) &&
664
665                                 /*
666                                  * grab the lock if we need to
667                                  */
668                                 (fs.lookup_still_valid ||
669                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curthread) == 0)
670                             ) {
671                                 
672                                 fs.lookup_still_valid = 1;
673                                 /*
674                                  * get rid of the unnecessary page
675                                  */
676                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
677                                 vm_page_free(fs.first_m);
678                                 fs.first_m = NULL;
679
680                                 /*
681                                  * grab the page and put it into the 
682                                  * process'es object.  The page is 
683                                  * automatically made dirty.
684                                  */
685                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
686                                 fs.first_m = fs.m;
687                                 vm_page_busy(fs.first_m);
688                                 fs.m = NULL;
689                                 cnt.v_cow_optim++;
690                         } else {
691                                 /*
692                                  * Oh, well, lets copy it.
693                                  */
694                                 vm_page_copy(fs.m, fs.first_m);
695                         }
696
697                         if (fs.m) {
698                                 /*
699                                  * We no longer need the old page or object.
700                                  */
701                                 release_page(&fs);
702                         }
703
704                         /*
705                          * fs.object != fs.first_object due to above 
706                          * conditional
707                          */
708
709                         vm_object_pip_wakeup(fs.object);
710
711                         /*
712                          * Only use the new page below...
713                          */
714
715                         cnt.v_cow_faults++;
716                         fs.m = fs.first_m;
717                         fs.object = fs.first_object;
718                         fs.pindex = fs.first_pindex;
719
720                 } else {
721                         prot &= ~VM_PROT_WRITE;
722                 }
723         }
724
725         /*
726          * We must verify that the maps have not changed since our last
727          * lookup.
728          */
729
730         if (!fs.lookup_still_valid &&
731                 (fs.map->timestamp != map_generation)) {
732                 vm_object_t retry_object;
733                 vm_pindex_t retry_pindex;
734                 vm_prot_t retry_prot;
735
736                 /*
737                  * Since map entries may be pageable, make sure we can take a
738                  * page fault on them.
739                  */
740
741                 /*
742                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
743                  * avoid a deadlock between the inode and exec_map that can
744                  * occur due to locks being obtained in different orders.
745                  */
746
747                 if (fs.vp != NULL) {
748                         vput(fs.vp);
749                         fs.vp = NULL;
750                 }
751                 
752                 if (fs.map->infork) {
753                         release_page(&fs);
754                         unlock_and_deallocate(&fs);
755                         goto RetryFault;
756                 }
757
758                 /*
759                  * To avoid trying to write_lock the map while another process
760                  * has it read_locked (in vm_map_pageable), we do not try for
761                  * write permission.  If the page is still writable, we will
762                  * get write permission.  If it is not, or has been marked
763                  * needs_copy, we enter the mapping without write permission,
764                  * and will merely take another fault.
765                  */
766                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
767                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
768                 map_generation = fs.map->timestamp;
769
770                 /*
771                  * If we don't need the page any longer, put it on the active
772                  * list (the easiest thing to do here).  If no one needs it,
773                  * pageout will grab it eventually.
774                  */
775
776                 if (result != KERN_SUCCESS) {
777                         release_page(&fs);
778                         unlock_and_deallocate(&fs);
779                         return (result);
780                 }
781                 fs.lookup_still_valid = TRUE;
782
783                 if ((retry_object != fs.first_object) ||
784                     (retry_pindex != fs.first_pindex)) {
785                         release_page(&fs);
786                         unlock_and_deallocate(&fs);
787                         goto RetryFault;
788                 }
789                 /*
790                  * Check whether the protection has changed or the object has
791                  * been copied while we left the map unlocked. Changing from
792                  * read to write permission is OK - we leave the page
793                  * write-protected, and catch the write fault. Changing from
794                  * write to read permission means that we can't mark the page
795                  * write-enabled after all.
796                  */
797                 prot &= retry_prot;
798         }
799
800         /*
801          * Put this page into the physical map. We had to do the unlock above
802          * because pmap_enter may cause other faults.   We don't put the page
803          * back on the active queue until later so that the page-out daemon
804          * won't find us (yet).
805          */
806
807         if (prot & VM_PROT_WRITE) {
808                 vm_page_flag_set(fs.m, PG_WRITEABLE);
809                 vm_object_set_flag(fs.m->object,
810                                    OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
811
812                 /*
813                  * If the fault is a write, we know that this page is being
814                  * written NOW so dirty it explicitly to save on 
815                  * pmap_is_modified() calls later.
816                  *
817                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
818                  * if the page is already dirty to prevent data written with
819                  * the expectation of being synced from not being synced.
820                  * Likewise if this entry does not request NOSYNC then make
821                  * sure the page isn't marked NOSYNC.  Applications sharing
822                  * data should use the same flags to avoid ping ponging.
823                  *
824                  * Also tell the backing pager, if any, that it should remove
825                  * any swap backing since the page is now dirty.
826                  */
827                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
828                         if (fs.m->dirty == 0)
829                                 vm_page_flag_set(fs.m, PG_NOSYNC);
830                 } else {
831                         vm_page_flag_clear(fs.m, PG_NOSYNC);
832                 }
833                 if (fault_flags & VM_FAULT_DIRTY) {
834                         int s;
835                         vm_page_dirty(fs.m);
836                         s = splvm();
837                         vm_pager_page_unswapped(fs.m);
838                         splx(s);
839                 }
840         }
841
842         /*
843          * Page had better still be busy
844          */
845
846         KASSERT(fs.m->flags & PG_BUSY,
847                 ("vm_fault: page %p not busy!", fs.m));
848
849         unlock_things(&fs);
850
851         /*
852          * Sanity check: page must be completely valid or it is not fit to
853          * map into user space.  vm_pager_get_pages() ensures this.
854          */
855
856         if (fs.m->valid != VM_PAGE_BITS_ALL) {
857                 vm_page_zero_invalid(fs.m, TRUE);
858                 printf("Warning: page %p partially invalid on fault\n", fs.m);
859         }
860
861         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
862
863         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
864                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
865         }
866
867         vm_page_flag_clear(fs.m, PG_ZERO);
868         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
869         if (fault_flags & VM_FAULT_HOLD)
870                 vm_page_hold(fs.m);
871
872         /*
873          * If the page is not wired down, then put it where the pageout daemon
874          * can find it.
875          */
876
877         if (fault_flags & VM_FAULT_WIRE_MASK) {
878                 if (wired)
879                         vm_page_wire(fs.m);
880                 else
881                         vm_page_unwire(fs.m, 1);
882         } else {
883                 vm_page_activate(fs.m);
884         }
885
886         mtx_lock_spin(&sched_lock);
887         if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
888                 if (hardfault) {
889                         curproc->p_stats->p_ru.ru_majflt++;
890                 } else {
891                         curproc->p_stats->p_ru.ru_minflt++;
892                 }
893         }
894         mtx_unlock_spin(&sched_lock);
895
896         /*
897          * Unlock everything, and return
898          */
899
900         vm_page_wakeup(fs.m);
901         vm_object_deallocate(fs.first_object);
902
903         return (KERN_SUCCESS);
904
905 }
906
907 /*
908  *      vm_fault_wire:
909  *
910  *      Wire down a range of virtual addresses in a map.
911  */
912 int
913 vm_fault_wire(map, start, end)
914         vm_map_t map;
915         vm_offset_t start, end;
916 {
917
918         vm_offset_t va;
919         pmap_t pmap;
920         int rv;
921
922         pmap = vm_map_pmap(map);
923
924         /*
925          * Inform the physical mapping system that the range of addresses may
926          * not fault, so that page tables and such can be locked down as well.
927          */
928
929         pmap_pageable(pmap, start, end, FALSE);
930
931         /*
932          * We simulate a fault to get the page and enter it in the physical
933          * map.
934          */
935
936         for (va = start; va < end; va += PAGE_SIZE) {
937                 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
938                         VM_FAULT_CHANGE_WIRING);
939                 if (rv) {
940                         if (va != start)
941                                 vm_fault_unwire(map, start, va);
942                         return (rv);
943                 }
944         }
945         return (KERN_SUCCESS);
946 }
947
948 /*
949  *      vm_fault_user_wire:
950  *
951  *      Wire down a range of virtual addresses in a map.  This
952  *      is for user mode though, so we only ask for read access
953  *      on currently read only sections.
954  */
955 int
956 vm_fault_user_wire(map, start, end)
957         vm_map_t map;
958         vm_offset_t start, end;
959 {
960
961         vm_offset_t va;
962         pmap_t pmap;
963         int rv;
964
965         GIANT_REQUIRED;
966
967         pmap = vm_map_pmap(map);
968
969         /*
970          * Inform the physical mapping system that the range of addresses may
971          * not fault, so that page tables and such can be locked down as well.
972          */
973
974         pmap_pageable(pmap, start, end, FALSE);
975
976         /*
977          * We simulate a fault to get the page and enter it in the physical
978          * map.
979          */
980         for (va = start; va < end; va += PAGE_SIZE) {
981                 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
982                 if (rv) {
983                         if (va != start)
984                                 vm_fault_unwire(map, start, va);
985                         return (rv);
986                 }
987         }
988         return (KERN_SUCCESS);
989 }
990
991
992 /*
993  *      vm_fault_unwire:
994  *
995  *      Unwire a range of virtual addresses in a map.
996  */
997 void
998 vm_fault_unwire(map, start, end)
999         vm_map_t map;
1000         vm_offset_t start, end;
1001 {
1002
1003         vm_offset_t va, pa;
1004         pmap_t pmap;
1005
1006         pmap = vm_map_pmap(map);
1007
1008         /*
1009          * Since the pages are wired down, we must be able to get their
1010          * mappings from the physical map system.
1011          */
1012
1013         for (va = start; va < end; va += PAGE_SIZE) {
1014                 pa = pmap_extract(pmap, va);
1015                 if (pa != (vm_offset_t) 0) {
1016                         pmap_change_wiring(pmap, va, FALSE);
1017                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1018                 }
1019         }
1020
1021         /*
1022          * Inform the physical mapping system that the range of addresses may
1023          * fault, so that page tables and such may be unwired themselves.
1024          */
1025
1026         pmap_pageable(pmap, start, end, TRUE);
1027
1028 }
1029
1030 /*
1031  *      Routine:
1032  *              vm_fault_copy_entry
1033  *      Function:
1034  *              Copy all of the pages from a wired-down map entry to another.
1035  *
1036  *      In/out conditions:
1037  *              The source and destination maps must be locked for write.
1038  *              The source map entry must be wired down (or be a sharing map
1039  *              entry corresponding to a main map entry that is wired down).
1040  */
1041
1042 void
1043 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1044         vm_map_t dst_map;
1045         vm_map_t src_map;
1046         vm_map_entry_t dst_entry;
1047         vm_map_entry_t src_entry;
1048 {
1049         vm_object_t dst_object;
1050         vm_object_t src_object;
1051         vm_ooffset_t dst_offset;
1052         vm_ooffset_t src_offset;
1053         vm_prot_t prot;
1054         vm_offset_t vaddr;
1055         vm_page_t dst_m;
1056         vm_page_t src_m;
1057
1058 #ifdef  lint
1059         src_map++;
1060 #endif  /* lint */
1061
1062         src_object = src_entry->object.vm_object;
1063         src_offset = src_entry->offset;
1064
1065         /*
1066          * Create the top-level object for the destination entry. (Doesn't
1067          * actually shadow anything - we copy the pages directly.)
1068          */
1069         dst_object = vm_object_allocate(OBJT_DEFAULT,
1070             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1071
1072         dst_entry->object.vm_object = dst_object;
1073         dst_entry->offset = 0;
1074
1075         prot = dst_entry->max_protection;
1076
1077         /*
1078          * Loop through all of the pages in the entry's range, copying each
1079          * one from the source object (it should be there) to the destination
1080          * object.
1081          */
1082         for (vaddr = dst_entry->start, dst_offset = 0;
1083             vaddr < dst_entry->end;
1084             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1085
1086                 /*
1087                  * Allocate a page in the destination object
1088                  */
1089                 do {
1090                         dst_m = vm_page_alloc(dst_object,
1091                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1092                         if (dst_m == NULL) {
1093                                 VM_WAIT;
1094                         }
1095                 } while (dst_m == NULL);
1096
1097                 /*
1098                  * Find the page in the source object, and copy it in.
1099                  * (Because the source is wired down, the page will be in
1100                  * memory.)
1101                  */
1102                 src_m = vm_page_lookup(src_object,
1103                         OFF_TO_IDX(dst_offset + src_offset));
1104                 if (src_m == NULL)
1105                         panic("vm_fault_copy_wired: page missing");
1106
1107                 vm_page_copy(src_m, dst_m);
1108
1109                 /*
1110                  * Enter it in the pmap...
1111                  */
1112
1113                 vm_page_flag_clear(dst_m, PG_ZERO);
1114                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1115                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1116
1117                 /*
1118                  * Mark it no longer busy, and put it on the active list.
1119                  */
1120                 vm_page_activate(dst_m);
1121                 vm_page_wakeup(dst_m);
1122         }
1123 }
1124
1125
1126 /*
1127  * This routine checks around the requested page for other pages that
1128  * might be able to be faulted in.  This routine brackets the viable
1129  * pages for the pages to be paged in.
1130  *
1131  * Inputs:
1132  *      m, rbehind, rahead
1133  *
1134  * Outputs:
1135  *  marray (array of vm_page_t), reqpage (index of requested page)
1136  *
1137  * Return value:
1138  *  number of pages in marray
1139  *
1140  * This routine can't block.
1141  */
1142 static int
1143 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1144         vm_page_t m;
1145         int rbehind;
1146         int rahead;
1147         vm_page_t *marray;
1148         int *reqpage;
1149 {
1150         int i,j;
1151         vm_object_t object;
1152         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1153         vm_page_t rtm;
1154         int cbehind, cahead;
1155
1156         GIANT_REQUIRED;
1157
1158         object = m->object;
1159         pindex = m->pindex;
1160
1161         /*
1162          * we don't fault-ahead for device pager
1163          */
1164         if (object->type == OBJT_DEVICE) {
1165                 *reqpage = 0;
1166                 marray[0] = m;
1167                 return 1;
1168         }
1169
1170         /*
1171          * if the requested page is not available, then give up now
1172          */
1173
1174         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1175                 return 0;
1176         }
1177
1178         if ((cbehind == 0) && (cahead == 0)) {
1179                 *reqpage = 0;
1180                 marray[0] = m;
1181                 return 1;
1182         }
1183
1184         if (rahead > cahead) {
1185                 rahead = cahead;
1186         }
1187
1188         if (rbehind > cbehind) {
1189                 rbehind = cbehind;
1190         }
1191
1192         /*
1193          * try to do any readahead that we might have free pages for.
1194          */
1195         if ((rahead + rbehind) >
1196                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1197                 pagedaemon_wakeup();
1198                 marray[0] = m;
1199                 *reqpage = 0;
1200                 return 1;
1201         }
1202
1203         /*
1204          * scan backward for the read behind pages -- in memory 
1205          */
1206         if (pindex > 0) {
1207                 if (rbehind > pindex) {
1208                         rbehind = pindex;
1209                         startpindex = 0;
1210                 } else {
1211                         startpindex = pindex - rbehind;
1212                 }
1213
1214                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1215                         if (vm_page_lookup( object, tpindex)) {
1216                                 startpindex = tpindex + 1;
1217                                 break;
1218                         }
1219                         if (tpindex == 0)
1220                                 break;
1221                 }
1222
1223                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1224
1225                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1226                         if (rtm == NULL) {
1227                                 for (j = 0; j < i; j++) {
1228                                         vm_page_free(marray[j]);
1229                                 }
1230                                 marray[0] = m;
1231                                 *reqpage = 0;
1232                                 return 1;
1233                         }
1234
1235                         marray[i] = rtm;
1236                 }
1237         } else {
1238                 startpindex = 0;
1239                 i = 0;
1240         }
1241
1242         marray[i] = m;
1243         /* page offset of the required page */
1244         *reqpage = i;
1245
1246         tpindex = pindex + 1;
1247         i++;
1248
1249         /*
1250          * scan forward for the read ahead pages
1251          */
1252         endpindex = tpindex + rahead;
1253         if (endpindex > object->size)
1254                 endpindex = object->size;
1255
1256         for( ; tpindex < endpindex; i++, tpindex++) {
1257
1258                 if (vm_page_lookup(object, tpindex)) {
1259                         break;
1260                 }
1261
1262                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1263                 if (rtm == NULL) {
1264                         break;
1265                 }
1266
1267                 marray[i] = rtm;
1268         }
1269
1270         /* return number of bytes of pages */
1271         return i;
1272 }