]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Import device-tree files from Linux 6.8
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 #include "opt_ktrace.h"
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/lock.h>
82 #include <sys/mman.h>
83 #include <sys/mutex.h>
84 #include <sys/pctrie.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/refcount.h>
88 #include <sys/resourcevar.h>
89 #include <sys/rwlock.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_reserv.h>
110
111 #define PFBAK 4
112 #define PFFOR 4
113
114 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
115
116 #define VM_FAULT_DONTNEED_MIN   1048576
117
118 struct faultstate {
119         /* Fault parameters. */
120         vm_offset_t     vaddr;
121         vm_page_t       *m_hold;
122         vm_prot_t       fault_type;
123         vm_prot_t       prot;
124         int             fault_flags;
125         boolean_t       wired;
126
127         /* Control state. */
128         struct timeval  oom_start_time;
129         bool            oom_started;
130         int             nera;
131         bool            can_read_lock;
132
133         /* Page reference for cow. */
134         vm_page_t m_cow;
135
136         /* Current object. */
137         vm_object_t     object;
138         vm_pindex_t     pindex;
139         vm_page_t       m;
140
141         /* Top-level map object. */
142         vm_object_t     first_object;
143         vm_pindex_t     first_pindex;
144         vm_page_t       first_m;
145
146         /* Map state. */
147         vm_map_t        map;
148         vm_map_entry_t  entry;
149         int             map_generation;
150         bool            lookup_still_valid;
151
152         /* Vnode if locked. */
153         struct vnode    *vp;
154 };
155
156 /*
157  * Return codes for internal fault routines.
158  */
159 enum fault_status {
160         FAULT_SUCCESS = 10000,  /* Return success to user. */
161         FAULT_FAILURE,          /* Return failure to user. */
162         FAULT_CONTINUE,         /* Continue faulting. */
163         FAULT_RESTART,          /* Restart fault. */
164         FAULT_OUT_OF_BOUNDS,    /* Invalid address for pager. */
165         FAULT_HARD,             /* Performed I/O. */
166         FAULT_SOFT,             /* Found valid page. */
167         FAULT_PROTECTION_FAILURE, /* Invalid access. */
168 };
169
170 enum fault_next_status {
171         FAULT_NEXT_GOTOBJ = 1,
172         FAULT_NEXT_NOOBJ,
173         FAULT_NEXT_RESTART,
174 };
175
176 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
177             int ahead);
178 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
179             int backward, int forward, bool obj_locked);
180
181 static int vm_pfault_oom_attempts = 3;
182 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
183     &vm_pfault_oom_attempts, 0,
184     "Number of page allocation attempts in page fault handler before it "
185     "triggers OOM handling");
186
187 static int vm_pfault_oom_wait = 10;
188 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
189     &vm_pfault_oom_wait, 0,
190     "Number of seconds to wait for free pages before retrying "
191     "the page fault handler");
192
193 static inline void
194 vm_fault_page_release(vm_page_t *mp)
195 {
196         vm_page_t m;
197
198         m = *mp;
199         if (m != NULL) {
200                 /*
201                  * We are likely to loop around again and attempt to busy
202                  * this page.  Deactivating it leaves it available for
203                  * pageout while optimizing fault restarts.
204                  */
205                 vm_page_deactivate(m);
206                 vm_page_xunbusy(m);
207                 *mp = NULL;
208         }
209 }
210
211 static inline void
212 vm_fault_page_free(vm_page_t *mp)
213 {
214         vm_page_t m;
215
216         m = *mp;
217         if (m != NULL) {
218                 VM_OBJECT_ASSERT_WLOCKED(m->object);
219                 if (!vm_page_wired(m))
220                         vm_page_free(m);
221                 else
222                         vm_page_xunbusy(m);
223                 *mp = NULL;
224         }
225 }
226
227 /*
228  * Return true if a vm_pager_get_pages() call is needed in order to check
229  * whether the pager might have a particular page, false if it can be determined
230  * immediately that the pager can not have a copy.  For swap objects, this can
231  * be checked quickly.
232  */
233 static inline bool
234 vm_fault_object_needs_getpages(vm_object_t object)
235 {
236         VM_OBJECT_ASSERT_LOCKED(object);
237
238         return ((object->flags & OBJ_SWAP) == 0 ||
239             !pctrie_is_empty(&object->un_pager.swp.swp_blks));
240 }
241
242 static inline void
243 vm_fault_unlock_map(struct faultstate *fs)
244 {
245
246         if (fs->lookup_still_valid) {
247                 vm_map_lookup_done(fs->map, fs->entry);
248                 fs->lookup_still_valid = false;
249         }
250 }
251
252 static void
253 vm_fault_unlock_vp(struct faultstate *fs)
254 {
255
256         if (fs->vp != NULL) {
257                 vput(fs->vp);
258                 fs->vp = NULL;
259         }
260 }
261
262 static void
263 vm_fault_deallocate(struct faultstate *fs)
264 {
265
266         vm_fault_page_release(&fs->m_cow);
267         vm_fault_page_release(&fs->m);
268         vm_object_pip_wakeup(fs->object);
269         if (fs->object != fs->first_object) {
270                 VM_OBJECT_WLOCK(fs->first_object);
271                 vm_fault_page_free(&fs->first_m);
272                 VM_OBJECT_WUNLOCK(fs->first_object);
273                 vm_object_pip_wakeup(fs->first_object);
274         }
275         vm_object_deallocate(fs->first_object);
276         vm_fault_unlock_map(fs);
277         vm_fault_unlock_vp(fs);
278 }
279
280 static void
281 vm_fault_unlock_and_deallocate(struct faultstate *fs)
282 {
283
284         VM_OBJECT_UNLOCK(fs->object);
285         vm_fault_deallocate(fs);
286 }
287
288 static void
289 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
290 {
291         bool need_dirty;
292
293         if (((fs->prot & VM_PROT_WRITE) == 0 &&
294             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
295             (m->oflags & VPO_UNMANAGED) != 0)
296                 return;
297
298         VM_PAGE_OBJECT_BUSY_ASSERT(m);
299
300         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
301             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
302             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
303
304         vm_object_set_writeable_dirty(m->object);
305
306         /*
307          * If the fault is a write, we know that this page is being
308          * written NOW so dirty it explicitly to save on
309          * pmap_is_modified() calls later.
310          *
311          * Also, since the page is now dirty, we can possibly tell
312          * the pager to release any swap backing the page.
313          */
314         if (need_dirty && vm_page_set_dirty(m) == 0) {
315                 /*
316                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
317                  * if the page is already dirty to prevent data written with
318                  * the expectation of being synced from not being synced.
319                  * Likewise if this entry does not request NOSYNC then make
320                  * sure the page isn't marked NOSYNC.  Applications sharing
321                  * data should use the same flags to avoid ping ponging.
322                  */
323                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
324                         vm_page_aflag_set(m, PGA_NOSYNC);
325                 else
326                         vm_page_aflag_clear(m, PGA_NOSYNC);
327         }
328
329 }
330
331 /*
332  * Unlocks fs.first_object and fs.map on success.
333  */
334 static enum fault_status
335 vm_fault_soft_fast(struct faultstate *fs)
336 {
337         vm_page_t m, m_map;
338 #if VM_NRESERVLEVEL > 0
339         vm_page_t m_super;
340         int flags;
341 #endif
342         int psind;
343         vm_offset_t vaddr;
344
345         MPASS(fs->vp == NULL);
346
347         /*
348          * If we fail, vast majority of the time it is because the page is not
349          * there to begin with. Opportunistically perform the lookup and
350          * subsequent checks without the object lock, revalidate later.
351          *
352          * Note: a busy page can be mapped for read|execute access.
353          */
354         m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
355         if (m == NULL || !vm_page_all_valid(m) ||
356             ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
357                 VM_OBJECT_WLOCK(fs->first_object);
358                 return (FAULT_FAILURE);
359         }
360
361         vaddr = fs->vaddr;
362
363         VM_OBJECT_RLOCK(fs->first_object);
364
365         /*
366          * Now that we stabilized the state, revalidate the page is in the shape
367          * we encountered above.
368          */
369
370         if (m->object != fs->first_object || m->pindex != fs->first_pindex)
371                 goto fail;
372
373         vm_object_busy(fs->first_object);
374
375         if (!vm_page_all_valid(m) ||
376             ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
377                 goto fail_busy;
378
379         m_map = m;
380         psind = 0;
381 #if VM_NRESERVLEVEL > 0
382         if ((m->flags & PG_FICTITIOUS) == 0 &&
383             (m_super = vm_reserv_to_superpage(m)) != NULL &&
384             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
385             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
386             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
387             (pagesizes[m_super->psind] - 1)) &&
388             pmap_ps_enabled(fs->map->pmap)) {
389                 flags = PS_ALL_VALID;
390                 if ((fs->prot & VM_PROT_WRITE) != 0) {
391                         /*
392                          * Create a superpage mapping allowing write access
393                          * only if none of the constituent pages are busy and
394                          * all of them are already dirty (except possibly for
395                          * the page that was faulted on).
396                          */
397                         flags |= PS_NONE_BUSY;
398                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
399                                 flags |= PS_ALL_DIRTY;
400                 }
401                 if (vm_page_ps_test(m_super, flags, m)) {
402                         m_map = m_super;
403                         psind = m_super->psind;
404                         vaddr = rounddown2(vaddr, pagesizes[psind]);
405                         /* Preset the modified bit for dirty superpages. */
406                         if ((flags & PS_ALL_DIRTY) != 0)
407                                 fs->fault_type |= VM_PROT_WRITE;
408                 }
409         }
410 #endif
411         if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
412             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
413             KERN_SUCCESS)
414                 goto fail_busy;
415         if (fs->m_hold != NULL) {
416                 (*fs->m_hold) = m;
417                 vm_page_wire(m);
418         }
419         if (psind == 0 && !fs->wired)
420                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
421         VM_OBJECT_RUNLOCK(fs->first_object);
422         vm_fault_dirty(fs, m);
423         vm_object_unbusy(fs->first_object);
424         vm_map_lookup_done(fs->map, fs->entry);
425         curthread->td_ru.ru_minflt++;
426         return (FAULT_SUCCESS);
427 fail_busy:
428         vm_object_unbusy(fs->first_object);
429 fail:
430         if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
431                 VM_OBJECT_RUNLOCK(fs->first_object);
432                 VM_OBJECT_WLOCK(fs->first_object);
433         }
434         return (FAULT_FAILURE);
435 }
436
437 static void
438 vm_fault_restore_map_lock(struct faultstate *fs)
439 {
440
441         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
442         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
443
444         if (!vm_map_trylock_read(fs->map)) {
445                 VM_OBJECT_WUNLOCK(fs->first_object);
446                 vm_map_lock_read(fs->map);
447                 VM_OBJECT_WLOCK(fs->first_object);
448         }
449         fs->lookup_still_valid = true;
450 }
451
452 static void
453 vm_fault_populate_check_page(vm_page_t m)
454 {
455
456         /*
457          * Check each page to ensure that the pager is obeying the
458          * interface: the page must be installed in the object, fully
459          * valid, and exclusively busied.
460          */
461         MPASS(m != NULL);
462         MPASS(vm_page_all_valid(m));
463         MPASS(vm_page_xbusied(m));
464 }
465
466 static void
467 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
468     vm_pindex_t last)
469 {
470         vm_page_t m;
471         vm_pindex_t pidx;
472
473         VM_OBJECT_ASSERT_WLOCKED(object);
474         MPASS(first <= last);
475         for (pidx = first, m = vm_page_lookup(object, pidx);
476             pidx <= last; pidx++, m = vm_page_next(m)) {
477                 vm_fault_populate_check_page(m);
478                 vm_page_deactivate(m);
479                 vm_page_xunbusy(m);
480         }
481 }
482
483 static enum fault_status
484 vm_fault_populate(struct faultstate *fs)
485 {
486         vm_offset_t vaddr;
487         vm_page_t m;
488         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
489         int bdry_idx, i, npages, psind, rv;
490         enum fault_status res;
491
492         MPASS(fs->object == fs->first_object);
493         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
494         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
495         MPASS(fs->first_object->backing_object == NULL);
496         MPASS(fs->lookup_still_valid);
497
498         pager_first = OFF_TO_IDX(fs->entry->offset);
499         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
500         vm_fault_unlock_map(fs);
501         vm_fault_unlock_vp(fs);
502
503         res = FAULT_SUCCESS;
504
505         /*
506          * Call the pager (driver) populate() method.
507          *
508          * There is no guarantee that the method will be called again
509          * if the current fault is for read, and a future fault is
510          * for write.  Report the entry's maximum allowed protection
511          * to the driver.
512          */
513         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
514             fs->fault_type, fs->entry->max_protection, &pager_first,
515             &pager_last);
516
517         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
518         if (rv == VM_PAGER_BAD) {
519                 /*
520                  * VM_PAGER_BAD is the backdoor for a pager to request
521                  * normal fault handling.
522                  */
523                 vm_fault_restore_map_lock(fs);
524                 if (fs->map->timestamp != fs->map_generation)
525                         return (FAULT_RESTART);
526                 return (FAULT_CONTINUE);
527         }
528         if (rv != VM_PAGER_OK)
529                 return (FAULT_FAILURE); /* AKA SIGSEGV */
530
531         /* Ensure that the driver is obeying the interface. */
532         MPASS(pager_first <= pager_last);
533         MPASS(fs->first_pindex <= pager_last);
534         MPASS(fs->first_pindex >= pager_first);
535         MPASS(pager_last < fs->first_object->size);
536
537         vm_fault_restore_map_lock(fs);
538         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
539         if (fs->map->timestamp != fs->map_generation) {
540                 if (bdry_idx == 0) {
541                         vm_fault_populate_cleanup(fs->first_object, pager_first,
542                             pager_last);
543                 } else {
544                         m = vm_page_lookup(fs->first_object, pager_first);
545                         if (m != fs->m)
546                                 vm_page_xunbusy(m);
547                 }
548                 return (FAULT_RESTART);
549         }
550
551         /*
552          * The map is unchanged after our last unlock.  Process the fault.
553          *
554          * First, the special case of largepage mappings, where
555          * populate only busies the first page in superpage run.
556          */
557         if (bdry_idx != 0) {
558                 KASSERT(PMAP_HAS_LARGEPAGES,
559                     ("missing pmap support for large pages"));
560                 m = vm_page_lookup(fs->first_object, pager_first);
561                 vm_fault_populate_check_page(m);
562                 VM_OBJECT_WUNLOCK(fs->first_object);
563                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
564                     fs->entry->offset;
565                 /* assert alignment for entry */
566                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
567     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
568                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
569                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
570                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
571                     ("unaligned superpage m %p %#jx", m,
572                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
573                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
574                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
575                     PMAP_ENTER_LARGEPAGE, bdry_idx);
576                 VM_OBJECT_WLOCK(fs->first_object);
577                 vm_page_xunbusy(m);
578                 if (rv != KERN_SUCCESS) {
579                         res = FAULT_FAILURE;
580                         goto out;
581                 }
582                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
583                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
584                                 vm_page_wire(m + i);
585                 }
586                 if (fs->m_hold != NULL) {
587                         *fs->m_hold = m + (fs->first_pindex - pager_first);
588                         vm_page_wire(*fs->m_hold);
589                 }
590                 goto out;
591         }
592
593         /*
594          * The range [pager_first, pager_last] that is given to the
595          * pager is only a hint.  The pager may populate any range
596          * within the object that includes the requested page index.
597          * In case the pager expanded the range, clip it to fit into
598          * the map entry.
599          */
600         map_first = OFF_TO_IDX(fs->entry->offset);
601         if (map_first > pager_first) {
602                 vm_fault_populate_cleanup(fs->first_object, pager_first,
603                     map_first - 1);
604                 pager_first = map_first;
605         }
606         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
607         if (map_last < pager_last) {
608                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
609                     pager_last);
610                 pager_last = map_last;
611         }
612         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
613             pidx <= pager_last;
614             pidx += npages, m = vm_page_next(&m[npages - 1])) {
615                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
616
617                 psind = m->psind;
618                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
619                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
620                     !pmap_ps_enabled(fs->map->pmap)))
621                         psind = 0;
622
623                 npages = atop(pagesizes[psind]);
624                 for (i = 0; i < npages; i++) {
625                         vm_fault_populate_check_page(&m[i]);
626                         vm_fault_dirty(fs, &m[i]);
627                 }
628                 VM_OBJECT_WUNLOCK(fs->first_object);
629                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
630                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
631
632                 /*
633                  * pmap_enter() may fail for a superpage mapping if additional
634                  * protection policies prevent the full mapping.
635                  * For example, this will happen on amd64 if the entire
636                  * address range does not share the same userspace protection
637                  * key.  Revert to single-page mappings if this happens.
638                  */
639                 MPASS(rv == KERN_SUCCESS ||
640                     (psind > 0 && rv == KERN_PROTECTION_FAILURE));
641                 if (__predict_false(psind > 0 &&
642                     rv == KERN_PROTECTION_FAILURE)) {
643                         MPASS(!fs->wired);
644                         for (i = 0; i < npages; i++) {
645                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
646                                     &m[i], fs->prot, fs->fault_type, 0);
647                                 MPASS(rv == KERN_SUCCESS);
648                         }
649                 }
650
651                 VM_OBJECT_WLOCK(fs->first_object);
652                 for (i = 0; i < npages; i++) {
653                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
654                             m[i].pindex == fs->first_pindex)
655                                 vm_page_wire(&m[i]);
656                         else
657                                 vm_page_activate(&m[i]);
658                         if (fs->m_hold != NULL &&
659                             m[i].pindex == fs->first_pindex) {
660                                 (*fs->m_hold) = &m[i];
661                                 vm_page_wire(&m[i]);
662                         }
663                         vm_page_xunbusy(&m[i]);
664                 }
665         }
666 out:
667         curthread->td_ru.ru_majflt++;
668         return (res);
669 }
670
671 static int prot_fault_translation;
672 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
673     &prot_fault_translation, 0,
674     "Control signal to deliver on protection fault");
675
676 /* compat definition to keep common code for signal translation */
677 #define UCODE_PAGEFLT   12
678 #ifdef T_PAGEFLT
679 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
680 #endif
681
682 /*
683  *      vm_fault_trap:
684  *
685  *      Handle a page fault occurring at the given address,
686  *      requiring the given permissions, in the map specified.
687  *      If successful, the page is inserted into the
688  *      associated physical map.
689  *
690  *      NOTE: the given address should be truncated to the
691  *      proper page address.
692  *
693  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
694  *      a standard error specifying why the fault is fatal is returned.
695  *
696  *      The map in question must be referenced, and remains so.
697  *      Caller may hold no locks.
698  */
699 int
700 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
701     int fault_flags, int *signo, int *ucode)
702 {
703         int result;
704
705         MPASS(signo == NULL || ucode != NULL);
706 #ifdef KTRACE
707         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
708                 ktrfault(vaddr, fault_type);
709 #endif
710         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
711             NULL);
712         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
713             result == KERN_INVALID_ADDRESS ||
714             result == KERN_RESOURCE_SHORTAGE ||
715             result == KERN_PROTECTION_FAILURE ||
716             result == KERN_OUT_OF_BOUNDS,
717             ("Unexpected Mach error %d from vm_fault()", result));
718 #ifdef KTRACE
719         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
720                 ktrfaultend(result);
721 #endif
722         if (result != KERN_SUCCESS && signo != NULL) {
723                 switch (result) {
724                 case KERN_FAILURE:
725                 case KERN_INVALID_ADDRESS:
726                         *signo = SIGSEGV;
727                         *ucode = SEGV_MAPERR;
728                         break;
729                 case KERN_RESOURCE_SHORTAGE:
730                         *signo = SIGBUS;
731                         *ucode = BUS_OOMERR;
732                         break;
733                 case KERN_OUT_OF_BOUNDS:
734                         *signo = SIGBUS;
735                         *ucode = BUS_OBJERR;
736                         break;
737                 case KERN_PROTECTION_FAILURE:
738                         if (prot_fault_translation == 0) {
739                                 /*
740                                  * Autodetect.  This check also covers
741                                  * the images without the ABI-tag ELF
742                                  * note.
743                                  */
744                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
745                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
746                                         *signo = SIGSEGV;
747                                         *ucode = SEGV_ACCERR;
748                                 } else {
749                                         *signo = SIGBUS;
750                                         *ucode = UCODE_PAGEFLT;
751                                 }
752                         } else if (prot_fault_translation == 1) {
753                                 /* Always compat mode. */
754                                 *signo = SIGBUS;
755                                 *ucode = UCODE_PAGEFLT;
756                         } else {
757                                 /* Always SIGSEGV mode. */
758                                 *signo = SIGSEGV;
759                                 *ucode = SEGV_ACCERR;
760                         }
761                         break;
762                 default:
763                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
764                             result));
765                         break;
766                 }
767         }
768         return (result);
769 }
770
771 static bool
772 vm_fault_object_ensure_wlocked(struct faultstate *fs)
773 {
774         if (fs->object == fs->first_object)
775                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
776
777         if (!fs->can_read_lock)  {
778                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
779                 return (true);
780         }
781
782         if (VM_OBJECT_WOWNED(fs->object))
783                 return (true);
784
785         if (VM_OBJECT_TRYUPGRADE(fs->object))
786                 return (true);
787
788         return (false);
789 }
790
791 static enum fault_status
792 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
793 {
794         struct vnode *vp;
795         int error, locked;
796
797         if (fs->object->type != OBJT_VNODE)
798                 return (FAULT_CONTINUE);
799         vp = fs->object->handle;
800         if (vp == fs->vp) {
801                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
802                 return (FAULT_CONTINUE);
803         }
804
805         /*
806          * Perform an unlock in case the desired vnode changed while
807          * the map was unlocked during a retry.
808          */
809         vm_fault_unlock_vp(fs);
810
811         locked = VOP_ISLOCKED(vp);
812         if (locked != LK_EXCLUSIVE)
813                 locked = LK_SHARED;
814
815         /*
816          * We must not sleep acquiring the vnode lock while we have
817          * the page exclusive busied or the object's
818          * paging-in-progress count incremented.  Otherwise, we could
819          * deadlock.
820          */
821         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
822         if (error == 0) {
823                 fs->vp = vp;
824                 return (FAULT_CONTINUE);
825         }
826
827         vhold(vp);
828         if (objlocked)
829                 vm_fault_unlock_and_deallocate(fs);
830         else
831                 vm_fault_deallocate(fs);
832         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
833         vdrop(vp);
834         fs->vp = vp;
835         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
836         return (FAULT_RESTART);
837 }
838
839 /*
840  * Calculate the desired readahead.  Handle drop-behind.
841  *
842  * Returns the number of readahead blocks to pass to the pager.
843  */
844 static int
845 vm_fault_readahead(struct faultstate *fs)
846 {
847         int era, nera;
848         u_char behavior;
849
850         KASSERT(fs->lookup_still_valid, ("map unlocked"));
851         era = fs->entry->read_ahead;
852         behavior = vm_map_entry_behavior(fs->entry);
853         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
854                 nera = 0;
855         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
856                 nera = VM_FAULT_READ_AHEAD_MAX;
857                 if (fs->vaddr == fs->entry->next_read)
858                         vm_fault_dontneed(fs, fs->vaddr, nera);
859         } else if (fs->vaddr == fs->entry->next_read) {
860                 /*
861                  * This is a sequential fault.  Arithmetically
862                  * increase the requested number of pages in
863                  * the read-ahead window.  The requested
864                  * number of pages is "# of sequential faults
865                  * x (read ahead min + 1) + read ahead min"
866                  */
867                 nera = VM_FAULT_READ_AHEAD_MIN;
868                 if (era > 0) {
869                         nera += era + 1;
870                         if (nera > VM_FAULT_READ_AHEAD_MAX)
871                                 nera = VM_FAULT_READ_AHEAD_MAX;
872                 }
873                 if (era == VM_FAULT_READ_AHEAD_MAX)
874                         vm_fault_dontneed(fs, fs->vaddr, nera);
875         } else {
876                 /*
877                  * This is a non-sequential fault.
878                  */
879                 nera = 0;
880         }
881         if (era != nera) {
882                 /*
883                  * A read lock on the map suffices to update
884                  * the read ahead count safely.
885                  */
886                 fs->entry->read_ahead = nera;
887         }
888
889         return (nera);
890 }
891
892 static int
893 vm_fault_lookup(struct faultstate *fs)
894 {
895         int result;
896
897         KASSERT(!fs->lookup_still_valid,
898            ("vm_fault_lookup: Map already locked."));
899         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
900             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
901             &fs->first_pindex, &fs->prot, &fs->wired);
902         if (result != KERN_SUCCESS) {
903                 vm_fault_unlock_vp(fs);
904                 return (result);
905         }
906
907         fs->map_generation = fs->map->timestamp;
908
909         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
910                 panic("%s: fault on nofault entry, addr: %#lx",
911                     __func__, (u_long)fs->vaddr);
912         }
913
914         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
915             fs->entry->wiring_thread != curthread) {
916                 vm_map_unlock_read(fs->map);
917                 vm_map_lock(fs->map);
918                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
919                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
920                         vm_fault_unlock_vp(fs);
921                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
922                         vm_map_unlock_and_wait(fs->map, 0);
923                 } else
924                         vm_map_unlock(fs->map);
925                 return (KERN_RESOURCE_SHORTAGE);
926         }
927
928         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
929
930         if (fs->wired)
931                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
932         else
933                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
934                     ("!fs->wired && VM_FAULT_WIRE"));
935         fs->lookup_still_valid = true;
936
937         return (KERN_SUCCESS);
938 }
939
940 static int
941 vm_fault_relookup(struct faultstate *fs)
942 {
943         vm_object_t retry_object;
944         vm_pindex_t retry_pindex;
945         vm_prot_t retry_prot;
946         int result;
947
948         if (!vm_map_trylock_read(fs->map))
949                 return (KERN_RESTART);
950
951         fs->lookup_still_valid = true;
952         if (fs->map->timestamp == fs->map_generation)
953                 return (KERN_SUCCESS);
954
955         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
956             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
957             &fs->wired);
958         if (result != KERN_SUCCESS) {
959                 /*
960                  * If retry of map lookup would have blocked then
961                  * retry fault from start.
962                  */
963                 if (result == KERN_FAILURE)
964                         return (KERN_RESTART);
965                 return (result);
966         }
967         if (retry_object != fs->first_object ||
968             retry_pindex != fs->first_pindex)
969                 return (KERN_RESTART);
970
971         /*
972          * Check whether the protection has changed or the object has
973          * been copied while we left the map unlocked. Changing from
974          * read to write permission is OK - we leave the page
975          * write-protected, and catch the write fault. Changing from
976          * write to read permission means that we can't mark the page
977          * write-enabled after all.
978          */
979         fs->prot &= retry_prot;
980         fs->fault_type &= retry_prot;
981         if (fs->prot == 0)
982                 return (KERN_RESTART);
983
984         /* Reassert because wired may have changed. */
985         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
986             ("!wired && VM_FAULT_WIRE"));
987
988         return (KERN_SUCCESS);
989 }
990
991 static void
992 vm_fault_cow(struct faultstate *fs)
993 {
994         bool is_first_object_locked;
995
996         KASSERT(fs->object != fs->first_object,
997             ("source and target COW objects are identical"));
998
999         /*
1000          * This allows pages to be virtually copied from a backing_object
1001          * into the first_object, where the backing object has no other
1002          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1003          * we just move the page from the backing object to the first
1004          * object.  Note that we must mark the page dirty in the first
1005          * object so that it will go out to swap when needed.
1006          */
1007         is_first_object_locked = false;
1008         if (
1009             /*
1010              * Only one shadow object and no other refs.
1011              */
1012             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1013             /*
1014              * No other ways to look the object up
1015              */
1016             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1017             /*
1018              * We don't chase down the shadow chain and we can acquire locks.
1019              */
1020             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1021             fs->object == fs->first_object->backing_object &&
1022             VM_OBJECT_TRYWLOCK(fs->object)) {
1023                 /*
1024                  * Remove but keep xbusy for replace.  fs->m is moved into
1025                  * fs->first_object and left busy while fs->first_m is
1026                  * conditionally freed.
1027                  */
1028                 vm_page_remove_xbusy(fs->m);
1029                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1030                     fs->first_m);
1031                 vm_page_dirty(fs->m);
1032 #if VM_NRESERVLEVEL > 0
1033                 /*
1034                  * Rename the reservation.
1035                  */
1036                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1037                     OFF_TO_IDX(fs->first_object->backing_object_offset));
1038 #endif
1039                 VM_OBJECT_WUNLOCK(fs->object);
1040                 VM_OBJECT_WUNLOCK(fs->first_object);
1041                 fs->first_m = fs->m;
1042                 fs->m = NULL;
1043                 VM_CNT_INC(v_cow_optim);
1044         } else {
1045                 if (is_first_object_locked)
1046                         VM_OBJECT_WUNLOCK(fs->first_object);
1047                 /*
1048                  * Oh, well, lets copy it.
1049                  */
1050                 pmap_copy_page(fs->m, fs->first_m);
1051                 vm_page_valid(fs->first_m);
1052                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1053                         vm_page_wire(fs->first_m);
1054                         vm_page_unwire(fs->m, PQ_INACTIVE);
1055                 }
1056                 /*
1057                  * Save the cow page to be released after
1058                  * pmap_enter is complete.
1059                  */
1060                 fs->m_cow = fs->m;
1061                 fs->m = NULL;
1062
1063                 /*
1064                  * Typically, the shadow object is either private to this
1065                  * address space (OBJ_ONEMAPPING) or its pages are read only.
1066                  * In the highly unusual case where the pages of a shadow object
1067                  * are read/write shared between this and other address spaces,
1068                  * we need to ensure that any pmap-level mappings to the
1069                  * original, copy-on-write page from the backing object are
1070                  * removed from those other address spaces.
1071                  *
1072                  * The flag check is racy, but this is tolerable: if
1073                  * OBJ_ONEMAPPING is cleared after the check, the busy state
1074                  * ensures that new mappings of m_cow can't be created.
1075                  * pmap_enter() will replace an existing mapping in the current
1076                  * address space.  If OBJ_ONEMAPPING is set after the check,
1077                  * removing mappings will at worse trigger some unnecessary page
1078                  * faults.
1079                  */
1080                 vm_page_assert_xbusied(fs->m_cow);
1081                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1082                         pmap_remove_all(fs->m_cow);
1083         }
1084
1085         vm_object_pip_wakeup(fs->object);
1086
1087         /*
1088          * Only use the new page below...
1089          */
1090         fs->object = fs->first_object;
1091         fs->pindex = fs->first_pindex;
1092         fs->m = fs->first_m;
1093         VM_CNT_INC(v_cow_faults);
1094         curthread->td_cow++;
1095 }
1096
1097 static enum fault_next_status
1098 vm_fault_next(struct faultstate *fs)
1099 {
1100         vm_object_t next_object;
1101
1102         if (fs->object == fs->first_object || !fs->can_read_lock)
1103                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1104         else
1105                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1106
1107         /*
1108          * The requested page does not exist at this object/
1109          * offset.  Remove the invalid page from the object,
1110          * waking up anyone waiting for it, and continue on to
1111          * the next object.  However, if this is the top-level
1112          * object, we must leave the busy page in place to
1113          * prevent another process from rushing past us, and
1114          * inserting the page in that object at the same time
1115          * that we are.
1116          */
1117         if (fs->object == fs->first_object) {
1118                 fs->first_m = fs->m;
1119                 fs->m = NULL;
1120         } else if (fs->m != NULL) {
1121                 if (!vm_fault_object_ensure_wlocked(fs)) {
1122                         fs->can_read_lock = false;
1123                         vm_fault_unlock_and_deallocate(fs);
1124                         return (FAULT_NEXT_RESTART);
1125                 }
1126                 vm_fault_page_free(&fs->m);
1127         }
1128
1129         /*
1130          * Move on to the next object.  Lock the next object before
1131          * unlocking the current one.
1132          */
1133         next_object = fs->object->backing_object;
1134         if (next_object == NULL)
1135                 return (FAULT_NEXT_NOOBJ);
1136         MPASS(fs->first_m != NULL);
1137         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1138         if (fs->can_read_lock)
1139                 VM_OBJECT_RLOCK(next_object);
1140         else
1141                 VM_OBJECT_WLOCK(next_object);
1142         vm_object_pip_add(next_object, 1);
1143         if (fs->object != fs->first_object)
1144                 vm_object_pip_wakeup(fs->object);
1145         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1146         VM_OBJECT_UNLOCK(fs->object);
1147         fs->object = next_object;
1148
1149         return (FAULT_NEXT_GOTOBJ);
1150 }
1151
1152 static void
1153 vm_fault_zerofill(struct faultstate *fs)
1154 {
1155
1156         /*
1157          * If there's no object left, fill the page in the top
1158          * object with zeros.
1159          */
1160         if (fs->object != fs->first_object) {
1161                 vm_object_pip_wakeup(fs->object);
1162                 fs->object = fs->first_object;
1163                 fs->pindex = fs->first_pindex;
1164         }
1165         MPASS(fs->first_m != NULL);
1166         MPASS(fs->m == NULL);
1167         fs->m = fs->first_m;
1168         fs->first_m = NULL;
1169
1170         /*
1171          * Zero the page if necessary and mark it valid.
1172          */
1173         if ((fs->m->flags & PG_ZERO) == 0) {
1174                 pmap_zero_page(fs->m);
1175         } else {
1176                 VM_CNT_INC(v_ozfod);
1177         }
1178         VM_CNT_INC(v_zfod);
1179         vm_page_valid(fs->m);
1180 }
1181
1182 /*
1183  * Initiate page fault after timeout.  Returns true if caller should
1184  * do vm_waitpfault() after the call.
1185  */
1186 static bool
1187 vm_fault_allocate_oom(struct faultstate *fs)
1188 {
1189         struct timeval now;
1190
1191         vm_fault_unlock_and_deallocate(fs);
1192         if (vm_pfault_oom_attempts < 0)
1193                 return (true);
1194         if (!fs->oom_started) {
1195                 fs->oom_started = true;
1196                 getmicrotime(&fs->oom_start_time);
1197                 return (true);
1198         }
1199
1200         getmicrotime(&now);
1201         timevalsub(&now, &fs->oom_start_time);
1202         if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1203                 return (true);
1204
1205         if (bootverbose)
1206                 printf(
1207             "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1208                     curproc->p_pid, curproc->p_comm);
1209         vm_pageout_oom(VM_OOM_MEM_PF);
1210         fs->oom_started = false;
1211         return (false);
1212 }
1213
1214 /*
1215  * Allocate a page directly or via the object populate method.
1216  */
1217 static enum fault_status
1218 vm_fault_allocate(struct faultstate *fs)
1219 {
1220         struct domainset *dset;
1221         enum fault_status res;
1222
1223         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1224                 res = vm_fault_lock_vnode(fs, true);
1225                 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1226                 if (res == FAULT_RESTART)
1227                         return (res);
1228         }
1229
1230         if (fs->pindex >= fs->object->size) {
1231                 vm_fault_unlock_and_deallocate(fs);
1232                 return (FAULT_OUT_OF_BOUNDS);
1233         }
1234
1235         if (fs->object == fs->first_object &&
1236             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1237             fs->first_object->shadow_count == 0) {
1238                 res = vm_fault_populate(fs);
1239                 switch (res) {
1240                 case FAULT_SUCCESS:
1241                 case FAULT_FAILURE:
1242                 case FAULT_RESTART:
1243                         vm_fault_unlock_and_deallocate(fs);
1244                         return (res);
1245                 case FAULT_CONTINUE:
1246                         /*
1247                          * Pager's populate() method
1248                          * returned VM_PAGER_BAD.
1249                          */
1250                         break;
1251                 default:
1252                         panic("inconsistent return codes");
1253                 }
1254         }
1255
1256         /*
1257          * Allocate a new page for this object/offset pair.
1258          *
1259          * If the process has a fatal signal pending, prioritize the allocation
1260          * with the expectation that the process will exit shortly and free some
1261          * pages.  In particular, the signal may have been posted by the page
1262          * daemon in an attempt to resolve an out-of-memory condition.
1263          *
1264          * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1265          * might be not observed here, and allocation fails, causing a restart
1266          * and new reading of the p_flag.
1267          */
1268         dset = fs->object->domain.dr_policy;
1269         if (dset == NULL)
1270                 dset = curthread->td_domain.dr_policy;
1271         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1272 #if VM_NRESERVLEVEL > 0
1273                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1274 #endif
1275                 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1276                         vm_fault_unlock_and_deallocate(fs);
1277                         return (FAULT_FAILURE);
1278                 }
1279                 fs->m = vm_page_alloc(fs->object, fs->pindex,
1280                     P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1281         }
1282         if (fs->m == NULL) {
1283                 if (vm_fault_allocate_oom(fs))
1284                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1285                 return (FAULT_RESTART);
1286         }
1287         fs->oom_started = false;
1288
1289         return (FAULT_CONTINUE);
1290 }
1291
1292 /*
1293  * Call the pager to retrieve the page if there is a chance
1294  * that the pager has it, and potentially retrieve additional
1295  * pages at the same time.
1296  */
1297 static enum fault_status
1298 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1299 {
1300         vm_offset_t e_end, e_start;
1301         int ahead, behind, cluster_offset, rv;
1302         enum fault_status status;
1303         u_char behavior;
1304
1305         /*
1306          * Prepare for unlocking the map.  Save the map
1307          * entry's start and end addresses, which are used to
1308          * optimize the size of the pager operation below.
1309          * Even if the map entry's addresses change after
1310          * unlocking the map, using the saved addresses is
1311          * safe.
1312          */
1313         e_start = fs->entry->start;
1314         e_end = fs->entry->end;
1315         behavior = vm_map_entry_behavior(fs->entry);
1316
1317         /*
1318          * If the pager for the current object might have
1319          * the page, then determine the number of additional
1320          * pages to read and potentially reprioritize
1321          * previously read pages for earlier reclamation.
1322          * These operations should only be performed once per
1323          * page fault.  Even if the current pager doesn't
1324          * have the page, the number of additional pages to
1325          * read will apply to subsequent objects in the
1326          * shadow chain.
1327          */
1328         if (fs->nera == -1 && !P_KILLED(curproc))
1329                 fs->nera = vm_fault_readahead(fs);
1330
1331         /*
1332          * Release the map lock before locking the vnode or
1333          * sleeping in the pager.  (If the current object has
1334          * a shadow, then an earlier iteration of this loop
1335          * may have already unlocked the map.)
1336          */
1337         vm_fault_unlock_map(fs);
1338
1339         status = vm_fault_lock_vnode(fs, false);
1340         MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1341         if (status == FAULT_RESTART)
1342                 return (status);
1343         KASSERT(fs->vp == NULL || !fs->map->system_map,
1344             ("vm_fault: vnode-backed object mapped by system map"));
1345
1346         /*
1347          * Page in the requested page and hint the pager,
1348          * that it may bring up surrounding pages.
1349          */
1350         if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1351             P_KILLED(curproc)) {
1352                 behind = 0;
1353                 ahead = 0;
1354         } else {
1355                 /* Is this a sequential fault? */
1356                 if (fs->nera > 0) {
1357                         behind = 0;
1358                         ahead = fs->nera;
1359                 } else {
1360                         /*
1361                          * Request a cluster of pages that is
1362                          * aligned to a VM_FAULT_READ_DEFAULT
1363                          * page offset boundary within the
1364                          * object.  Alignment to a page offset
1365                          * boundary is more likely to coincide
1366                          * with the underlying file system
1367                          * block than alignment to a virtual
1368                          * address boundary.
1369                          */
1370                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1371                         behind = ulmin(cluster_offset,
1372                             atop(fs->vaddr - e_start));
1373                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1374                 }
1375                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1376         }
1377         *behindp = behind;
1378         *aheadp = ahead;
1379         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1380         if (rv == VM_PAGER_OK)
1381                 return (FAULT_HARD);
1382         if (rv == VM_PAGER_ERROR)
1383                 printf("vm_fault: pager read error, pid %d (%s)\n",
1384                     curproc->p_pid, curproc->p_comm);
1385         /*
1386          * If an I/O error occurred or the requested page was
1387          * outside the range of the pager, clean up and return
1388          * an error.
1389          */
1390         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1391                 VM_OBJECT_WLOCK(fs->object);
1392                 vm_fault_page_free(&fs->m);
1393                 vm_fault_unlock_and_deallocate(fs);
1394                 return (FAULT_OUT_OF_BOUNDS);
1395         }
1396         KASSERT(rv == VM_PAGER_FAIL,
1397             ("%s: unexpected pager error %d", __func__, rv));
1398         return (FAULT_CONTINUE);
1399 }
1400
1401 /*
1402  * Wait/Retry if the page is busy.  We have to do this if the page is
1403  * either exclusive or shared busy because the vm_pager may be using
1404  * read busy for pageouts (and even pageins if it is the vnode pager),
1405  * and we could end up trying to pagein and pageout the same page
1406  * simultaneously.
1407  *
1408  * We can theoretically allow the busy case on a read fault if the page
1409  * is marked valid, but since such pages are typically already pmap'd,
1410  * putting that special case in might be more effort then it is worth.
1411  * We cannot under any circumstances mess around with a shared busied
1412  * page except, perhaps, to pmap it.
1413  */
1414 static void
1415 vm_fault_busy_sleep(struct faultstate *fs)
1416 {
1417         /*
1418          * Reference the page before unlocking and
1419          * sleeping so that the page daemon is less
1420          * likely to reclaim it.
1421          */
1422         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1423         if (fs->object != fs->first_object) {
1424                 vm_fault_page_release(&fs->first_m);
1425                 vm_object_pip_wakeup(fs->first_object);
1426         }
1427         vm_object_pip_wakeup(fs->object);
1428         vm_fault_unlock_map(fs);
1429         if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1430             !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1431                 VM_OBJECT_UNLOCK(fs->object);
1432         VM_CNT_INC(v_intrans);
1433         vm_object_deallocate(fs->first_object);
1434 }
1435
1436 /*
1437  * Handle page lookup, populate, allocate, page-in for the current
1438  * object.
1439  *
1440  * The object is locked on entry and will remain locked with a return
1441  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1442  * Otherwise, the object will be unlocked upon return.
1443  */
1444 static enum fault_status
1445 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1446 {
1447         enum fault_status res;
1448         bool dead;
1449
1450         if (fs->object == fs->first_object || !fs->can_read_lock)
1451                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1452         else
1453                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1454
1455         /*
1456          * If the object is marked for imminent termination, we retry
1457          * here, since the collapse pass has raced with us.  Otherwise,
1458          * if we see terminally dead object, return fail.
1459          */
1460         if ((fs->object->flags & OBJ_DEAD) != 0) {
1461                 dead = fs->object->type == OBJT_DEAD;
1462                 vm_fault_unlock_and_deallocate(fs);
1463                 if (dead)
1464                         return (FAULT_PROTECTION_FAILURE);
1465                 pause("vmf_de", 1);
1466                 return (FAULT_RESTART);
1467         }
1468
1469         /*
1470          * See if the page is resident.
1471          */
1472         fs->m = vm_page_lookup(fs->object, fs->pindex);
1473         if (fs->m != NULL) {
1474                 if (!vm_page_tryxbusy(fs->m)) {
1475                         vm_fault_busy_sleep(fs);
1476                         return (FAULT_RESTART);
1477                 }
1478
1479                 /*
1480                  * The page is marked busy for other processes and the
1481                  * pagedaemon.  If it is still completely valid we are
1482                  * done.
1483                  */
1484                 if (vm_page_all_valid(fs->m)) {
1485                         VM_OBJECT_UNLOCK(fs->object);
1486                         return (FAULT_SOFT);
1487                 }
1488         }
1489
1490         /*
1491          * Page is not resident.  If the pager might contain the page
1492          * or this is the beginning of the search, allocate a new
1493          * page.
1494          */
1495         if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1496             fs->object == fs->first_object)) {
1497                 if (!vm_fault_object_ensure_wlocked(fs)) {
1498                         fs->can_read_lock = false;
1499                         vm_fault_unlock_and_deallocate(fs);
1500                         return (FAULT_RESTART);
1501                 }
1502                 res = vm_fault_allocate(fs);
1503                 if (res != FAULT_CONTINUE)
1504                         return (res);
1505         }
1506
1507         /*
1508          * Check to see if the pager can possibly satisfy this fault.
1509          * If not, skip to the next object without dropping the lock to
1510          * preserve atomicity of shadow faults.
1511          */
1512         if (vm_fault_object_needs_getpages(fs->object)) {
1513                 /*
1514                  * At this point, we have either allocated a new page
1515                  * or found an existing page that is only partially
1516                  * valid.
1517                  *
1518                  * We hold a reference on the current object and the
1519                  * page is exclusive busied.  The exclusive busy
1520                  * prevents simultaneous faults and collapses while
1521                  * the object lock is dropped.
1522                  */
1523                 VM_OBJECT_UNLOCK(fs->object);
1524                 res = vm_fault_getpages(fs, behindp, aheadp);
1525                 if (res == FAULT_CONTINUE)
1526                         VM_OBJECT_WLOCK(fs->object);
1527         } else {
1528                 res = FAULT_CONTINUE;
1529         }
1530         return (res);
1531 }
1532
1533 int
1534 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1535     int fault_flags, vm_page_t *m_hold)
1536 {
1537         struct faultstate fs;
1538         int ahead, behind, faultcount, rv;
1539         enum fault_status res;
1540         enum fault_next_status res_next;
1541         bool hardfault;
1542
1543         VM_CNT_INC(v_vm_faults);
1544
1545         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1546                 return (KERN_PROTECTION_FAILURE);
1547
1548         fs.vp = NULL;
1549         fs.vaddr = vaddr;
1550         fs.m_hold = m_hold;
1551         fs.fault_flags = fault_flags;
1552         fs.map = map;
1553         fs.lookup_still_valid = false;
1554         fs.oom_started = false;
1555         fs.nera = -1;
1556         fs.can_read_lock = true;
1557         faultcount = 0;
1558         hardfault = false;
1559
1560 RetryFault:
1561         fs.fault_type = fault_type;
1562
1563         /*
1564          * Find the backing store object and offset into it to begin the
1565          * search.
1566          */
1567         rv = vm_fault_lookup(&fs);
1568         if (rv != KERN_SUCCESS) {
1569                 if (rv == KERN_RESOURCE_SHORTAGE)
1570                         goto RetryFault;
1571                 return (rv);
1572         }
1573
1574         /*
1575          * Try to avoid lock contention on the top-level object through
1576          * special-case handling of some types of page faults, specifically,
1577          * those that are mapping an existing page from the top-level object.
1578          * Under this condition, a read lock on the object suffices, allowing
1579          * multiple page faults of a similar type to run in parallel.
1580          */
1581         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1582             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1583             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1584                 res = vm_fault_soft_fast(&fs);
1585                 if (res == FAULT_SUCCESS) {
1586                         VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1587                         return (KERN_SUCCESS);
1588                 }
1589                 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1590         } else {
1591                 VM_OBJECT_WLOCK(fs.first_object);
1592         }
1593
1594         /*
1595          * Make a reference to this object to prevent its disposal while we
1596          * are messing with it.  Once we have the reference, the map is free
1597          * to be diddled.  Since objects reference their shadows (and copies),
1598          * they will stay around as well.
1599          *
1600          * Bump the paging-in-progress count to prevent size changes (e.g. 
1601          * truncation operations) during I/O.
1602          */
1603         vm_object_reference_locked(fs.first_object);
1604         vm_object_pip_add(fs.first_object, 1);
1605
1606         fs.m_cow = fs.m = fs.first_m = NULL;
1607
1608         /*
1609          * Search for the page at object/offset.
1610          */
1611         fs.object = fs.first_object;
1612         fs.pindex = fs.first_pindex;
1613
1614         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1615                 res = vm_fault_allocate(&fs);
1616                 switch (res) {
1617                 case FAULT_RESTART:
1618                         goto RetryFault;
1619                 case FAULT_SUCCESS:
1620                         return (KERN_SUCCESS);
1621                 case FAULT_FAILURE:
1622                         return (KERN_FAILURE);
1623                 case FAULT_OUT_OF_BOUNDS:
1624                         return (KERN_OUT_OF_BOUNDS);
1625                 case FAULT_CONTINUE:
1626                         break;
1627                 default:
1628                         panic("vm_fault: Unhandled status %d", res);
1629                 }
1630         }
1631
1632         while (TRUE) {
1633                 KASSERT(fs.m == NULL,
1634                     ("page still set %p at loop start", fs.m));
1635
1636                 res = vm_fault_object(&fs, &behind, &ahead);
1637                 switch (res) {
1638                 case FAULT_SOFT:
1639                         goto found;
1640                 case FAULT_HARD:
1641                         faultcount = behind + 1 + ahead;
1642                         hardfault = true;
1643                         goto found;
1644                 case FAULT_RESTART:
1645                         goto RetryFault;
1646                 case FAULT_SUCCESS:
1647                         return (KERN_SUCCESS);
1648                 case FAULT_FAILURE:
1649                         return (KERN_FAILURE);
1650                 case FAULT_OUT_OF_BOUNDS:
1651                         return (KERN_OUT_OF_BOUNDS);
1652                 case FAULT_PROTECTION_FAILURE:
1653                         return (KERN_PROTECTION_FAILURE);
1654                 case FAULT_CONTINUE:
1655                         break;
1656                 default:
1657                         panic("vm_fault: Unhandled status %d", res);
1658                 }
1659
1660                 /*
1661                  * The page was not found in the current object.  Try to
1662                  * traverse into a backing object or zero fill if none is
1663                  * found.
1664                  */
1665                 res_next = vm_fault_next(&fs);
1666                 if (res_next == FAULT_NEXT_RESTART)
1667                         goto RetryFault;
1668                 else if (res_next == FAULT_NEXT_GOTOBJ)
1669                         continue;
1670                 MPASS(res_next == FAULT_NEXT_NOOBJ);
1671                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1672                         if (fs.first_object == fs.object)
1673                                 vm_fault_page_free(&fs.first_m);
1674                         vm_fault_unlock_and_deallocate(&fs);
1675                         return (KERN_OUT_OF_BOUNDS);
1676                 }
1677                 VM_OBJECT_UNLOCK(fs.object);
1678                 vm_fault_zerofill(&fs);
1679                 /* Don't try to prefault neighboring pages. */
1680                 faultcount = 1;
1681                 break;
1682         }
1683
1684 found:
1685         /*
1686          * A valid page has been found and exclusively busied.  The
1687          * object lock must no longer be held.
1688          */
1689         vm_page_assert_xbusied(fs.m);
1690         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1691
1692         /*
1693          * If the page is being written, but isn't already owned by the
1694          * top-level object, we have to copy it into a new page owned by the
1695          * top-level object.
1696          */
1697         if (fs.object != fs.first_object) {
1698                 /*
1699                  * We only really need to copy if we want to write it.
1700                  */
1701                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1702                         vm_fault_cow(&fs);
1703                         /*
1704                          * We only try to prefault read-only mappings to the
1705                          * neighboring pages when this copy-on-write fault is
1706                          * a hard fault.  In other cases, trying to prefault
1707                          * is typically wasted effort.
1708                          */
1709                         if (faultcount == 0)
1710                                 faultcount = 1;
1711
1712                 } else {
1713                         fs.prot &= ~VM_PROT_WRITE;
1714                 }
1715         }
1716
1717         /*
1718          * We must verify that the maps have not changed since our last
1719          * lookup.
1720          */
1721         if (!fs.lookup_still_valid) {
1722                 rv = vm_fault_relookup(&fs);
1723                 if (rv != KERN_SUCCESS) {
1724                         vm_fault_deallocate(&fs);
1725                         if (rv == KERN_RESTART)
1726                                 goto RetryFault;
1727                         return (rv);
1728                 }
1729         }
1730         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1731
1732         /*
1733          * If the page was filled by a pager, save the virtual address that
1734          * should be faulted on next under a sequential access pattern to the
1735          * map entry.  A read lock on the map suffices to update this address
1736          * safely.
1737          */
1738         if (hardfault)
1739                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1740
1741         /*
1742          * Page must be completely valid or it is not fit to
1743          * map into user space.  vm_pager_get_pages() ensures this.
1744          */
1745         vm_page_assert_xbusied(fs.m);
1746         KASSERT(vm_page_all_valid(fs.m),
1747             ("vm_fault: page %p partially invalid", fs.m));
1748
1749         vm_fault_dirty(&fs, fs.m);
1750
1751         /*
1752          * Put this page into the physical map.  We had to do the unlock above
1753          * because pmap_enter() may sleep.  We don't put the page
1754          * back on the active queue until later so that the pageout daemon
1755          * won't find it (yet).
1756          */
1757         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1758             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1759         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1760             fs.wired == 0)
1761                 vm_fault_prefault(&fs, vaddr,
1762                     faultcount > 0 ? behind : PFBAK,
1763                     faultcount > 0 ? ahead : PFFOR, false);
1764
1765         /*
1766          * If the page is not wired down, then put it where the pageout daemon
1767          * can find it.
1768          */
1769         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1770                 vm_page_wire(fs.m);
1771         else
1772                 vm_page_activate(fs.m);
1773         if (fs.m_hold != NULL) {
1774                 (*fs.m_hold) = fs.m;
1775                 vm_page_wire(fs.m);
1776         }
1777         vm_page_xunbusy(fs.m);
1778         fs.m = NULL;
1779
1780         /*
1781          * Unlock everything, and return
1782          */
1783         vm_fault_deallocate(&fs);
1784         if (hardfault) {
1785                 VM_CNT_INC(v_io_faults);
1786                 curthread->td_ru.ru_majflt++;
1787 #ifdef RACCT
1788                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1789                         PROC_LOCK(curproc);
1790                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1791                                 racct_add_force(curproc, RACCT_WRITEBPS,
1792                                     PAGE_SIZE + behind * PAGE_SIZE);
1793                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1794                         } else {
1795                                 racct_add_force(curproc, RACCT_READBPS,
1796                                     PAGE_SIZE + ahead * PAGE_SIZE);
1797                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1798                         }
1799                         PROC_UNLOCK(curproc);
1800                 }
1801 #endif
1802         } else 
1803                 curthread->td_ru.ru_minflt++;
1804
1805         return (KERN_SUCCESS);
1806 }
1807
1808 /*
1809  * Speed up the reclamation of pages that precede the faulting pindex within
1810  * the first object of the shadow chain.  Essentially, perform the equivalent
1811  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1812  * the faulting pindex by the cluster size when the pages read by vm_fault()
1813  * cross a cluster-size boundary.  The cluster size is the greater of the
1814  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1815  *
1816  * When "fs->first_object" is a shadow object, the pages in the backing object
1817  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1818  * function must only be concerned with pages in the first object.
1819  */
1820 static void
1821 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1822 {
1823         vm_map_entry_t entry;
1824         vm_object_t first_object;
1825         vm_offset_t end, start;
1826         vm_page_t m, m_next;
1827         vm_pindex_t pend, pstart;
1828         vm_size_t size;
1829
1830         VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1831         first_object = fs->first_object;
1832         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1833         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1834                 VM_OBJECT_RLOCK(first_object);
1835                 size = VM_FAULT_DONTNEED_MIN;
1836                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1837                         size = pagesizes[1];
1838                 end = rounddown2(vaddr, size);
1839                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1840                     (entry = fs->entry)->start < end) {
1841                         if (end - entry->start < size)
1842                                 start = entry->start;
1843                         else
1844                                 start = end - size;
1845                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1846                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1847                             entry->start);
1848                         m_next = vm_page_find_least(first_object, pstart);
1849                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1850                             entry->start);
1851                         while ((m = m_next) != NULL && m->pindex < pend) {
1852                                 m_next = TAILQ_NEXT(m, listq);
1853                                 if (!vm_page_all_valid(m) ||
1854                                     vm_page_busied(m))
1855                                         continue;
1856
1857                                 /*
1858                                  * Don't clear PGA_REFERENCED, since it would
1859                                  * likely represent a reference by a different
1860                                  * process.
1861                                  *
1862                                  * Typically, at this point, prefetched pages
1863                                  * are still in the inactive queue.  Only
1864                                  * pages that triggered page faults are in the
1865                                  * active queue.  The test for whether the page
1866                                  * is in the inactive queue is racy; in the
1867                                  * worst case we will requeue the page
1868                                  * unnecessarily.
1869                                  */
1870                                 if (!vm_page_inactive(m))
1871                                         vm_page_deactivate(m);
1872                         }
1873                 }
1874                 VM_OBJECT_RUNLOCK(first_object);
1875         }
1876 }
1877
1878 /*
1879  * vm_fault_prefault provides a quick way of clustering
1880  * pagefaults into a processes address space.  It is a "cousin"
1881  * of vm_map_pmap_enter, except it runs at page fault time instead
1882  * of mmap time.
1883  */
1884 static void
1885 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1886     int backward, int forward, bool obj_locked)
1887 {
1888         pmap_t pmap;
1889         vm_map_entry_t entry;
1890         vm_object_t backing_object, lobject;
1891         vm_offset_t addr, starta;
1892         vm_pindex_t pindex;
1893         vm_page_t m;
1894         int i;
1895
1896         pmap = fs->map->pmap;
1897         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1898                 return;
1899
1900         entry = fs->entry;
1901
1902         if (addra < backward * PAGE_SIZE) {
1903                 starta = entry->start;
1904         } else {
1905                 starta = addra - backward * PAGE_SIZE;
1906                 if (starta < entry->start)
1907                         starta = entry->start;
1908         }
1909
1910         /*
1911          * Generate the sequence of virtual addresses that are candidates for
1912          * prefaulting in an outward spiral from the faulting virtual address,
1913          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1914          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1915          * If the candidate address doesn't have a backing physical page, then
1916          * the loop immediately terminates.
1917          */
1918         for (i = 0; i < 2 * imax(backward, forward); i++) {
1919                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1920                     PAGE_SIZE);
1921                 if (addr > addra + forward * PAGE_SIZE)
1922                         addr = 0;
1923
1924                 if (addr < starta || addr >= entry->end)
1925                         continue;
1926
1927                 if (!pmap_is_prefaultable(pmap, addr))
1928                         continue;
1929
1930                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1931                 lobject = entry->object.vm_object;
1932                 if (!obj_locked)
1933                         VM_OBJECT_RLOCK(lobject);
1934                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1935                     !vm_fault_object_needs_getpages(lobject) &&
1936                     (backing_object = lobject->backing_object) != NULL) {
1937                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1938                             0, ("vm_fault_prefault: unaligned object offset"));
1939                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1940                         VM_OBJECT_RLOCK(backing_object);
1941                         if (!obj_locked || lobject != entry->object.vm_object)
1942                                 VM_OBJECT_RUNLOCK(lobject);
1943                         lobject = backing_object;
1944                 }
1945                 if (m == NULL) {
1946                         if (!obj_locked || lobject != entry->object.vm_object)
1947                                 VM_OBJECT_RUNLOCK(lobject);
1948                         break;
1949                 }
1950                 if (vm_page_all_valid(m) &&
1951                     (m->flags & PG_FICTITIOUS) == 0)
1952                         pmap_enter_quick(pmap, addr, m, entry->protection);
1953                 if (!obj_locked || lobject != entry->object.vm_object)
1954                         VM_OBJECT_RUNLOCK(lobject);
1955         }
1956 }
1957
1958 /*
1959  * Hold each of the physical pages that are mapped by the specified range of
1960  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1961  * and allow the specified types of access, "prot".  If all of the implied
1962  * pages are successfully held, then the number of held pages is returned
1963  * together with pointers to those pages in the array "ma".  However, if any
1964  * of the pages cannot be held, -1 is returned.
1965  */
1966 int
1967 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1968     vm_prot_t prot, vm_page_t *ma, int max_count)
1969 {
1970         vm_offset_t end, va;
1971         vm_page_t *mp;
1972         int count;
1973         boolean_t pmap_failed;
1974
1975         if (len == 0)
1976                 return (0);
1977         end = round_page(addr + len);
1978         addr = trunc_page(addr);
1979
1980         if (!vm_map_range_valid(map, addr, end))
1981                 return (-1);
1982
1983         if (atop(end - addr) > max_count)
1984                 panic("vm_fault_quick_hold_pages: count > max_count");
1985         count = atop(end - addr);
1986
1987         /*
1988          * Most likely, the physical pages are resident in the pmap, so it is
1989          * faster to try pmap_extract_and_hold() first.
1990          */
1991         pmap_failed = FALSE;
1992         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1993                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1994                 if (*mp == NULL)
1995                         pmap_failed = TRUE;
1996                 else if ((prot & VM_PROT_WRITE) != 0 &&
1997                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1998                         /*
1999                          * Explicitly dirty the physical page.  Otherwise, the
2000                          * caller's changes may go unnoticed because they are
2001                          * performed through an unmanaged mapping or by a DMA
2002                          * operation.
2003                          *
2004                          * The object lock is not held here.
2005                          * See vm_page_clear_dirty_mask().
2006                          */
2007                         vm_page_dirty(*mp);
2008                 }
2009         }
2010         if (pmap_failed) {
2011                 /*
2012                  * One or more pages could not be held by the pmap.  Either no
2013                  * page was mapped at the specified virtual address or that
2014                  * mapping had insufficient permissions.  Attempt to fault in
2015                  * and hold these pages.
2016                  *
2017                  * If vm_fault_disable_pagefaults() was called,
2018                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
2019                  * acquire MD VM locks, which means we must not call
2020                  * vm_fault().  Some (out of tree) callers mark
2021                  * too wide a code area with vm_fault_disable_pagefaults()
2022                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
2023                  * the proper behaviour explicitly.
2024                  */
2025                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2026                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
2027                         goto error;
2028                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2029                         if (*mp == NULL && vm_fault(map, va, prot,
2030                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2031                                 goto error;
2032         }
2033         return (count);
2034 error:  
2035         for (mp = ma; mp < ma + count; mp++)
2036                 if (*mp != NULL)
2037                         vm_page_unwire(*mp, PQ_INACTIVE);
2038         return (-1);
2039 }
2040
2041 /*
2042  *      Routine:
2043  *              vm_fault_copy_entry
2044  *      Function:
2045  *              Create new object backing dst_entry with private copy of all
2046  *              underlying pages. When src_entry is equal to dst_entry, function
2047  *              implements COW for wired-down map entry. Otherwise, it forks
2048  *              wired entry into dst_map.
2049  *
2050  *      In/out conditions:
2051  *              The source and destination maps must be locked for write.
2052  *              The source map entry must be wired down (or be a sharing map
2053  *              entry corresponding to a main map entry that is wired down).
2054  */
2055 void
2056 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2057     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2058     vm_ooffset_t *fork_charge)
2059 {
2060         vm_object_t backing_object, dst_object, object, src_object;
2061         vm_pindex_t dst_pindex, pindex, src_pindex;
2062         vm_prot_t access, prot;
2063         vm_offset_t vaddr;
2064         vm_page_t dst_m;
2065         vm_page_t src_m;
2066         bool upgrade;
2067
2068         upgrade = src_entry == dst_entry;
2069         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2070             ("vm_fault_copy_entry: vm_object not NULL"));
2071
2072         /*
2073          * If not an upgrade, then enter the mappings in the pmap as
2074          * read and/or execute accesses.  Otherwise, enter them as
2075          * write accesses.
2076          *
2077          * A writeable large page mapping is only created if all of
2078          * the constituent small page mappings are modified. Marking
2079          * PTEs as modified on inception allows promotion to happen
2080          * without taking potentially large number of soft faults.
2081          */
2082         access = prot = dst_entry->protection;
2083         if (!upgrade)
2084                 access &= ~VM_PROT_WRITE;
2085
2086         src_object = src_entry->object.vm_object;
2087         src_pindex = OFF_TO_IDX(src_entry->offset);
2088
2089         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2090                 dst_object = src_object;
2091                 vm_object_reference(dst_object);
2092         } else {
2093                 /*
2094                  * Create the top-level object for the destination entry.
2095                  * Doesn't actually shadow anything - we copy the pages
2096                  * directly.
2097                  */
2098                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2099                     dst_entry->start), NULL, NULL, 0);
2100 #if VM_NRESERVLEVEL > 0
2101                 dst_object->flags |= OBJ_COLORED;
2102                 dst_object->pg_color = atop(dst_entry->start);
2103 #endif
2104                 dst_object->domain = src_object->domain;
2105                 dst_object->charge = dst_entry->end - dst_entry->start;
2106
2107                 dst_entry->object.vm_object = dst_object;
2108                 dst_entry->offset = 0;
2109                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2110         }
2111
2112         VM_OBJECT_WLOCK(dst_object);
2113         if (fork_charge != NULL) {
2114                 KASSERT(dst_entry->cred == NULL,
2115                     ("vm_fault_copy_entry: leaked swp charge"));
2116                 dst_object->cred = curthread->td_ucred;
2117                 crhold(dst_object->cred);
2118                 *fork_charge += dst_object->charge;
2119         } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2120             dst_object->cred == NULL) {
2121                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2122                     dst_entry));
2123                 dst_object->cred = dst_entry->cred;
2124                 dst_entry->cred = NULL;
2125         }
2126
2127         /*
2128          * Loop through all of the virtual pages within the entry's
2129          * range, copying each page from the source object to the
2130          * destination object.  Since the source is wired, those pages
2131          * must exist.  In contrast, the destination is pageable.
2132          * Since the destination object doesn't share any backing storage
2133          * with the source object, all of its pages must be dirtied,
2134          * regardless of whether they can be written.
2135          */
2136         for (vaddr = dst_entry->start, dst_pindex = 0;
2137             vaddr < dst_entry->end;
2138             vaddr += PAGE_SIZE, dst_pindex++) {
2139 again:
2140                 /*
2141                  * Find the page in the source object, and copy it in.
2142                  * Because the source is wired down, the page will be
2143                  * in memory.
2144                  */
2145                 if (src_object != dst_object)
2146                         VM_OBJECT_RLOCK(src_object);
2147                 object = src_object;
2148                 pindex = src_pindex + dst_pindex;
2149                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2150                     (backing_object = object->backing_object) != NULL) {
2151                         /*
2152                          * Unless the source mapping is read-only or
2153                          * it is presently being upgraded from
2154                          * read-only, the first object in the shadow
2155                          * chain should provide all of the pages.  In
2156                          * other words, this loop body should never be
2157                          * executed when the source mapping is already
2158                          * read/write.
2159                          */
2160                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2161                             upgrade,
2162                             ("vm_fault_copy_entry: main object missing page"));
2163
2164                         VM_OBJECT_RLOCK(backing_object);
2165                         pindex += OFF_TO_IDX(object->backing_object_offset);
2166                         if (object != dst_object)
2167                                 VM_OBJECT_RUNLOCK(object);
2168                         object = backing_object;
2169                 }
2170                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2171
2172                 if (object != dst_object) {
2173                         /*
2174                          * Allocate a page in the destination object.
2175                          */
2176                         dst_m = vm_page_alloc(dst_object, (src_object ==
2177                             dst_object ? src_pindex : 0) + dst_pindex,
2178                             VM_ALLOC_NORMAL);
2179                         if (dst_m == NULL) {
2180                                 VM_OBJECT_WUNLOCK(dst_object);
2181                                 VM_OBJECT_RUNLOCK(object);
2182                                 vm_wait(dst_object);
2183                                 VM_OBJECT_WLOCK(dst_object);
2184                                 goto again;
2185                         }
2186
2187                         /*
2188                          * See the comment in vm_fault_cow().
2189                          */
2190                         if (src_object == dst_object &&
2191                             (object->flags & OBJ_ONEMAPPING) == 0)
2192                                 pmap_remove_all(src_m);
2193                         pmap_copy_page(src_m, dst_m);
2194
2195                         /*
2196                          * The object lock does not guarantee that "src_m" will
2197                          * transition from invalid to valid, but it does ensure
2198                          * that "src_m" will not transition from valid to
2199                          * invalid.
2200                          */
2201                         dst_m->dirty = dst_m->valid = src_m->valid;
2202                         VM_OBJECT_RUNLOCK(object);
2203                 } else {
2204                         dst_m = src_m;
2205                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2206                                 goto again;
2207                         if (dst_m->pindex >= dst_object->size) {
2208                                 /*
2209                                  * We are upgrading.  Index can occur
2210                                  * out of bounds if the object type is
2211                                  * vnode and the file was truncated.
2212                                  */
2213                                 vm_page_xunbusy(dst_m);
2214                                 break;
2215                         }
2216                 }
2217
2218                 /*
2219                  * Enter it in the pmap. If a wired, copy-on-write
2220                  * mapping is being replaced by a write-enabled
2221                  * mapping, then wire that new mapping.
2222                  *
2223                  * The page can be invalid if the user called
2224                  * msync(MS_INVALIDATE) or truncated the backing vnode
2225                  * or shared memory object.  In this case, do not
2226                  * insert it into pmap, but still do the copy so that
2227                  * all copies of the wired map entry have similar
2228                  * backing pages.
2229                  */
2230                 if (vm_page_all_valid(dst_m)) {
2231                         VM_OBJECT_WUNLOCK(dst_object);
2232                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2233                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2234                         VM_OBJECT_WLOCK(dst_object);
2235                 }
2236
2237                 /*
2238                  * Mark it no longer busy, and put it on the active list.
2239                  */
2240                 if (upgrade) {
2241                         if (src_m != dst_m) {
2242                                 vm_page_unwire(src_m, PQ_INACTIVE);
2243                                 vm_page_wire(dst_m);
2244                         } else {
2245                                 KASSERT(vm_page_wired(dst_m),
2246                                     ("dst_m %p is not wired", dst_m));
2247                         }
2248                 } else {
2249                         vm_page_activate(dst_m);
2250                 }
2251                 vm_page_xunbusy(dst_m);
2252         }
2253         VM_OBJECT_WUNLOCK(dst_object);
2254         if (upgrade) {
2255                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2256                 vm_object_deallocate(src_object);
2257         }
2258 }
2259
2260 /*
2261  * Block entry into the machine-independent layer's page fault handler by
2262  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2263  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2264  * spurious page faults. 
2265  */
2266 int
2267 vm_fault_disable_pagefaults(void)
2268 {
2269
2270         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2271 }
2272
2273 void
2274 vm_fault_enable_pagefaults(int save)
2275 {
2276
2277         curthread_pflags_restore(save);
2278 }