]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
MFV ntp-4.2.8p4 (r289715)
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 #ifdef KTRACE
92 #include <sys/ktrace.h>
93 #endif
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_reserv.h>
106
107 #define PFBAK 4
108 #define PFFOR 4
109
110 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
111
112 #define VM_FAULT_READ_BEHIND    8
113 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
114 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
115 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
116 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
117
118 #define VM_FAULT_DONTNEED_MIN   1048576
119
120 struct faultstate {
121         vm_page_t m;
122         vm_object_t object;
123         vm_pindex_t pindex;
124         vm_page_t first_m;
125         vm_object_t     first_object;
126         vm_pindex_t first_pindex;
127         vm_map_t map;
128         vm_map_entry_t entry;
129         int lookup_still_valid;
130         struct vnode *vp;
131 };
132
133 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
134             int ahead);
135 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
136             int faultcount, int reqpage);
137
138 static inline void
139 release_page(struct faultstate *fs)
140 {
141
142         vm_page_xunbusy(fs->m);
143         vm_page_lock(fs->m);
144         vm_page_deactivate(fs->m);
145         vm_page_unlock(fs->m);
146         fs->m = NULL;
147 }
148
149 static inline void
150 unlock_map(struct faultstate *fs)
151 {
152
153         if (fs->lookup_still_valid) {
154                 vm_map_lookup_done(fs->map, fs->entry);
155                 fs->lookup_still_valid = FALSE;
156         }
157 }
158
159 static void
160 unlock_and_deallocate(struct faultstate *fs)
161 {
162
163         vm_object_pip_wakeup(fs->object);
164         VM_OBJECT_WUNLOCK(fs->object);
165         if (fs->object != fs->first_object) {
166                 VM_OBJECT_WLOCK(fs->first_object);
167                 vm_page_lock(fs->first_m);
168                 vm_page_free(fs->first_m);
169                 vm_page_unlock(fs->first_m);
170                 vm_object_pip_wakeup(fs->first_object);
171                 VM_OBJECT_WUNLOCK(fs->first_object);
172                 fs->first_m = NULL;
173         }
174         vm_object_deallocate(fs->first_object);
175         unlock_map(fs); 
176         if (fs->vp != NULL) { 
177                 vput(fs->vp);
178                 fs->vp = NULL;
179         }
180 }
181
182 static void
183 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
184     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
185 {
186         boolean_t need_dirty;
187
188         if (((prot & VM_PROT_WRITE) == 0 &&
189             (fault_flags & VM_FAULT_DIRTY) == 0) ||
190             (m->oflags & VPO_UNMANAGED) != 0)
191                 return;
192
193         VM_OBJECT_ASSERT_LOCKED(m->object);
194
195         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
196             (fault_flags & VM_FAULT_WIRE) == 0) ||
197             (fault_flags & VM_FAULT_DIRTY) != 0;
198
199         if (set_wd)
200                 vm_object_set_writeable_dirty(m->object);
201         else
202                 /*
203                  * If two callers of vm_fault_dirty() with set_wd ==
204                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
205                  * flag set, other with flag clear, race, it is
206                  * possible for the no-NOSYNC thread to see m->dirty
207                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
208                  * around manipulation of VPO_NOSYNC and
209                  * vm_page_dirty() call, to avoid the race and keep
210                  * m->oflags consistent.
211                  */
212                 vm_page_lock(m);
213
214         /*
215          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
216          * if the page is already dirty to prevent data written with
217          * the expectation of being synced from not being synced.
218          * Likewise if this entry does not request NOSYNC then make
219          * sure the page isn't marked NOSYNC.  Applications sharing
220          * data should use the same flags to avoid ping ponging.
221          */
222         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
223                 if (m->dirty == 0) {
224                         m->oflags |= VPO_NOSYNC;
225                 }
226         } else {
227                 m->oflags &= ~VPO_NOSYNC;
228         }
229
230         /*
231          * If the fault is a write, we know that this page is being
232          * written NOW so dirty it explicitly to save on
233          * pmap_is_modified() calls later.
234          *
235          * Also tell the backing pager, if any, that it should remove
236          * any swap backing since the page is now dirty.
237          */
238         if (need_dirty)
239                 vm_page_dirty(m);
240         if (!set_wd)
241                 vm_page_unlock(m);
242         if (need_dirty)
243                 vm_pager_page_unswapped(m);
244 }
245
246 /*
247  *      vm_fault:
248  *
249  *      Handle a page fault occurring at the given address,
250  *      requiring the given permissions, in the map specified.
251  *      If successful, the page is inserted into the
252  *      associated physical map.
253  *
254  *      NOTE: the given address should be truncated to the
255  *      proper page address.
256  *
257  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
258  *      a standard error specifying why the fault is fatal is returned.
259  *
260  *      The map in question must be referenced, and remains so.
261  *      Caller may hold no locks.
262  */
263 int
264 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
265     int fault_flags)
266 {
267         struct thread *td;
268         int result;
269
270         td = curthread;
271         if ((td->td_pflags & TDP_NOFAULTING) != 0)
272                 return (KERN_PROTECTION_FAILURE);
273 #ifdef KTRACE
274         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
275                 ktrfault(vaddr, fault_type);
276 #endif
277         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
278             NULL);
279 #ifdef KTRACE
280         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
281                 ktrfaultend(result);
282 #endif
283         return (result);
284 }
285
286 int
287 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
288     int fault_flags, vm_page_t *m_hold)
289 {
290         vm_prot_t prot;
291         int alloc_req, era, faultcount, nera, reqpage, result;
292         boolean_t growstack, is_first_object_locked, wired;
293         int map_generation;
294         vm_object_t next_object;
295         vm_page_t marray[VM_FAULT_READ_MAX];
296         int hardfault;
297         struct faultstate fs;
298         struct vnode *vp;
299         vm_page_t m;
300         int ahead, behind, cluster_offset, error, locked;
301
302         hardfault = 0;
303         growstack = TRUE;
304         PCPU_INC(cnt.v_vm_faults);
305         fs.vp = NULL;
306         faultcount = reqpage = 0;
307
308 RetryFault:;
309
310         /*
311          * Find the backing store object and offset into it to begin the
312          * search.
313          */
314         fs.map = map;
315         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
316             &fs.first_object, &fs.first_pindex, &prot, &wired);
317         if (result != KERN_SUCCESS) {
318                 if (growstack && result == KERN_INVALID_ADDRESS &&
319                     map != kernel_map) {
320                         result = vm_map_growstack(curproc, vaddr);
321                         if (result != KERN_SUCCESS)
322                                 return (KERN_FAILURE);
323                         growstack = FALSE;
324                         goto RetryFault;
325                 }
326                 return (result);
327         }
328
329         map_generation = fs.map->timestamp;
330
331         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
332                 panic("vm_fault: fault on nofault entry, addr: %lx",
333                     (u_long)vaddr);
334         }
335
336         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
337             fs.entry->wiring_thread != curthread) {
338                 vm_map_unlock_read(fs.map);
339                 vm_map_lock(fs.map);
340                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
341                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
342                         if (fs.vp != NULL) {
343                                 vput(fs.vp);
344                                 fs.vp = NULL;
345                         }
346                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
347                         vm_map_unlock_and_wait(fs.map, 0);
348                 } else
349                         vm_map_unlock(fs.map);
350                 goto RetryFault;
351         }
352
353         if (wired)
354                 fault_type = prot | (fault_type & VM_PROT_COPY);
355         else
356                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
357                     ("!wired && VM_FAULT_WIRE"));
358
359         if (fs.vp == NULL /* avoid locked vnode leak */ &&
360             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
361             /* avoid calling vm_object_set_writeable_dirty() */
362             ((prot & VM_PROT_WRITE) == 0 ||
363             (fs.first_object->type != OBJT_VNODE &&
364             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
365             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
366                 VM_OBJECT_RLOCK(fs.first_object);
367                 if ((prot & VM_PROT_WRITE) != 0 &&
368                     (fs.first_object->type == OBJT_VNODE ||
369                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
370                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
371                         goto fast_failed;
372                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
373                 /* A busy page can be mapped for read|execute access. */
374                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
375                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
376                         goto fast_failed;
377                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
378                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
379                    0), 0);
380                 if (result != KERN_SUCCESS)
381                         goto fast_failed;
382                 if (m_hold != NULL) {
383                         *m_hold = m;
384                         vm_page_lock(m);
385                         vm_page_hold(m);
386                         vm_page_unlock(m);
387                 }
388                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
389                     FALSE);
390                 VM_OBJECT_RUNLOCK(fs.first_object);
391                 if (!wired)
392                         vm_fault_prefault(&fs, vaddr, 0, 0);
393                 vm_map_lookup_done(fs.map, fs.entry);
394                 curthread->td_ru.ru_minflt++;
395                 return (KERN_SUCCESS);
396 fast_failed:
397                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
398                         VM_OBJECT_RUNLOCK(fs.first_object);
399                         VM_OBJECT_WLOCK(fs.first_object);
400                 }
401         } else {
402                 VM_OBJECT_WLOCK(fs.first_object);
403         }
404
405         /*
406          * Make a reference to this object to prevent its disposal while we
407          * are messing with it.  Once we have the reference, the map is free
408          * to be diddled.  Since objects reference their shadows (and copies),
409          * they will stay around as well.
410          *
411          * Bump the paging-in-progress count to prevent size changes (e.g. 
412          * truncation operations) during I/O.  This must be done after
413          * obtaining the vnode lock in order to avoid possible deadlocks.
414          */
415         vm_object_reference_locked(fs.first_object);
416         vm_object_pip_add(fs.first_object, 1);
417
418         fs.lookup_still_valid = TRUE;
419
420         fs.first_m = NULL;
421
422         /*
423          * Search for the page at object/offset.
424          */
425         fs.object = fs.first_object;
426         fs.pindex = fs.first_pindex;
427         while (TRUE) {
428                 /*
429                  * If the object is dead, we stop here
430                  */
431                 if (fs.object->flags & OBJ_DEAD) {
432                         unlock_and_deallocate(&fs);
433                         return (KERN_PROTECTION_FAILURE);
434                 }
435
436                 /*
437                  * See if page is resident
438                  */
439                 fs.m = vm_page_lookup(fs.object, fs.pindex);
440                 if (fs.m != NULL) {
441                         /*
442                          * Wait/Retry if the page is busy.  We have to do this
443                          * if the page is either exclusive or shared busy
444                          * because the vm_pager may be using read busy for
445                          * pageouts (and even pageins if it is the vnode
446                          * pager), and we could end up trying to pagein and
447                          * pageout the same page simultaneously.
448                          *
449                          * We can theoretically allow the busy case on a read
450                          * fault if the page is marked valid, but since such
451                          * pages are typically already pmap'd, putting that
452                          * special case in might be more effort then it is 
453                          * worth.  We cannot under any circumstances mess
454                          * around with a shared busied page except, perhaps,
455                          * to pmap it.
456                          */
457                         if (vm_page_busied(fs.m)) {
458                                 /*
459                                  * Reference the page before unlocking and
460                                  * sleeping so that the page daemon is less
461                                  * likely to reclaim it. 
462                                  */
463                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
464                                 if (fs.object != fs.first_object) {
465                                         if (!VM_OBJECT_TRYWLOCK(
466                                             fs.first_object)) {
467                                                 VM_OBJECT_WUNLOCK(fs.object);
468                                                 VM_OBJECT_WLOCK(fs.first_object);
469                                                 VM_OBJECT_WLOCK(fs.object);
470                                         }
471                                         vm_page_lock(fs.first_m);
472                                         vm_page_free(fs.first_m);
473                                         vm_page_unlock(fs.first_m);
474                                         vm_object_pip_wakeup(fs.first_object);
475                                         VM_OBJECT_WUNLOCK(fs.first_object);
476                                         fs.first_m = NULL;
477                                 }
478                                 unlock_map(&fs);
479                                 if (fs.m == vm_page_lookup(fs.object,
480                                     fs.pindex)) {
481                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
482                                 }
483                                 vm_object_pip_wakeup(fs.object);
484                                 VM_OBJECT_WUNLOCK(fs.object);
485                                 PCPU_INC(cnt.v_intrans);
486                                 vm_object_deallocate(fs.first_object);
487                                 goto RetryFault;
488                         }
489                         vm_page_lock(fs.m);
490                         vm_page_remque(fs.m);
491                         vm_page_unlock(fs.m);
492
493                         /*
494                          * Mark page busy for other processes, and the 
495                          * pagedaemon.  If it still isn't completely valid
496                          * (readable), jump to readrest, else break-out ( we
497                          * found the page ).
498                          */
499                         vm_page_xbusy(fs.m);
500                         if (fs.m->valid != VM_PAGE_BITS_ALL)
501                                 goto readrest;
502                         break;
503                 }
504
505                 /*
506                  * Page is not resident.  If this is the search termination
507                  * or the pager might contain the page, allocate a new page.
508                  * Default objects are zero-fill, there is no real pager.
509                  */
510                 if (fs.object->type != OBJT_DEFAULT ||
511                     fs.object == fs.first_object) {
512                         if (fs.pindex >= fs.object->size) {
513                                 unlock_and_deallocate(&fs);
514                                 return (KERN_PROTECTION_FAILURE);
515                         }
516
517                         /*
518                          * Allocate a new page for this object/offset pair.
519                          *
520                          * Unlocked read of the p_flag is harmless. At
521                          * worst, the P_KILLED might be not observed
522                          * there, and allocation can fail, causing
523                          * restart and new reading of the p_flag.
524                          */
525                         fs.m = NULL;
526                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
527 #if VM_NRESERVLEVEL > 0
528                                 vm_object_color(fs.object, atop(vaddr) -
529                                     fs.pindex);
530 #endif
531                                 alloc_req = P_KILLED(curproc) ?
532                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
533                                 if (fs.object->type != OBJT_VNODE &&
534                                     fs.object->backing_object == NULL)
535                                         alloc_req |= VM_ALLOC_ZERO;
536                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
537                                     alloc_req);
538                         }
539                         if (fs.m == NULL) {
540                                 unlock_and_deallocate(&fs);
541                                 VM_WAITPFAULT;
542                                 goto RetryFault;
543                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
544                                 break;
545                 }
546
547 readrest:
548                 /*
549                  * We have found a valid page or we have allocated a new page.
550                  * The page thus may not be valid or may not be entirely 
551                  * valid.
552                  *
553                  * Attempt to fault-in the page if there is a chance that the
554                  * pager has it, and potentially fault in additional pages
555                  * at the same time.  For default objects simply provide
556                  * zero-filled pages.
557                  */
558                 if (fs.object->type != OBJT_DEFAULT) {
559                         int rv;
560                         u_char behavior = vm_map_entry_behavior(fs.entry);
561
562                         era = fs.entry->read_ahead;
563                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
564                             P_KILLED(curproc)) {
565                                 behind = 0;
566                                 nera = 0;
567                                 ahead = 0;
568                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
569                                 behind = 0;
570                                 nera = VM_FAULT_READ_AHEAD_MAX;
571                                 ahead = nera;
572                                 if (fs.pindex == fs.entry->next_read)
573                                         vm_fault_dontneed(&fs, vaddr, ahead);
574                         } else if (fs.pindex == fs.entry->next_read) {
575                                 /*
576                                  * This is a sequential fault.  Arithmetically
577                                  * increase the requested number of pages in
578                                  * the read-ahead window.  The requested
579                                  * number of pages is "# of sequential faults
580                                  * x (read ahead min + 1) + read ahead min"
581                                  */
582                                 behind = 0;
583                                 nera = VM_FAULT_READ_AHEAD_MIN;
584                                 if (era > 0) {
585                                         nera += era + 1;
586                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
587                                                 nera = VM_FAULT_READ_AHEAD_MAX;
588                                 }
589                                 ahead = nera;
590                                 if (era == VM_FAULT_READ_AHEAD_MAX)
591                                         vm_fault_dontneed(&fs, vaddr, ahead);
592                         } else {
593                                 /*
594                                  * This is a non-sequential fault.  Request a
595                                  * cluster of pages that is aligned to a
596                                  * VM_FAULT_READ_DEFAULT page offset boundary
597                                  * within the object.  Alignment to a page
598                                  * offset boundary is more likely to coincide
599                                  * with the underlying file system block than
600                                  * alignment to a virtual address boundary.
601                                  */
602                                 cluster_offset = fs.pindex %
603                                     VM_FAULT_READ_DEFAULT;
604                                 behind = ulmin(cluster_offset,
605                                     atop(vaddr - fs.entry->start));
606                                 nera = 0;
607                                 ahead = VM_FAULT_READ_DEFAULT - 1 -
608                                     cluster_offset;
609                         }
610                         ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1);
611                         if (era != nera)
612                                 fs.entry->read_ahead = nera;
613
614                         /*
615                          * Call the pager to retrieve the data, if any, after
616                          * releasing the lock on the map.  We hold a ref on
617                          * fs.object and the pages are exclusive busied.
618                          */
619                         unlock_map(&fs);
620
621                         if (fs.object->type == OBJT_VNODE) {
622                                 vp = fs.object->handle;
623                                 if (vp == fs.vp)
624                                         goto vnode_locked;
625                                 else if (fs.vp != NULL) {
626                                         vput(fs.vp);
627                                         fs.vp = NULL;
628                                 }
629                                 locked = VOP_ISLOCKED(vp);
630
631                                 if (locked != LK_EXCLUSIVE)
632                                         locked = LK_SHARED;
633                                 /* Do not sleep for vnode lock while fs.m is busy */
634                                 error = vget(vp, locked | LK_CANRECURSE |
635                                     LK_NOWAIT, curthread);
636                                 if (error != 0) {
637                                         vhold(vp);
638                                         release_page(&fs);
639                                         unlock_and_deallocate(&fs);
640                                         error = vget(vp, locked | LK_RETRY |
641                                             LK_CANRECURSE, curthread);
642                                         vdrop(vp);
643                                         fs.vp = vp;
644                                         KASSERT(error == 0,
645                                             ("vm_fault: vget failed"));
646                                         goto RetryFault;
647                                 }
648                                 fs.vp = vp;
649                         }
650 vnode_locked:
651                         KASSERT(fs.vp == NULL || !fs.map->system_map,
652                             ("vm_fault: vnode-backed object mapped by system map"));
653
654                         /*
655                          * now we find out if any other pages should be paged
656                          * in at this time this routine checks to see if the
657                          * pages surrounding this fault reside in the same
658                          * object as the page for this fault.  If they do,
659                          * then they are faulted in also into the object.  The
660                          * array "marray" returned contains an array of
661                          * vm_page_t structs where one of them is the
662                          * vm_page_t passed to the routine.  The reqpage
663                          * return value is the index into the marray for the
664                          * vm_page_t passed to the routine.
665                          *
666                          * fs.m plus the additional pages are exclusive busied.
667                          */
668                         faultcount = vm_fault_additional_pages(
669                             fs.m, behind, ahead, marray, &reqpage);
670
671                         rv = faultcount ?
672                             vm_pager_get_pages(fs.object, marray, faultcount,
673                                 reqpage) : VM_PAGER_FAIL;
674
675                         if (rv == VM_PAGER_OK) {
676                                 /*
677                                  * Found the page. Leave it busy while we play
678                                  * with it.
679                                  *
680                                  * Pager could have changed the page.  Pager
681                                  * is responsible for disposition of old page
682                                  * if moved.
683                                  */
684                                 fs.m = marray[reqpage];
685                                 hardfault++;
686                                 break; /* break to PAGE HAS BEEN FOUND */
687                         }
688                         /*
689                          * Remove the bogus page (which does not exist at this
690                          * object/offset); before doing so, we must get back
691                          * our object lock to preserve our invariant.
692                          *
693                          * Also wake up any other process that may want to bring
694                          * in this page.
695                          *
696                          * If this is the top-level object, we must leave the
697                          * busy page to prevent another process from rushing
698                          * past us, and inserting the page in that object at
699                          * the same time that we are.
700                          */
701                         if (rv == VM_PAGER_ERROR)
702                                 printf("vm_fault: pager read error, pid %d (%s)\n",
703                                     curproc->p_pid, curproc->p_comm);
704                         /*
705                          * Data outside the range of the pager or an I/O error
706                          */
707                         /*
708                          * XXX - the check for kernel_map is a kludge to work
709                          * around having the machine panic on a kernel space
710                          * fault w/ I/O error.
711                          */
712                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
713                                 (rv == VM_PAGER_BAD)) {
714                                 vm_page_lock(fs.m);
715                                 vm_page_free(fs.m);
716                                 vm_page_unlock(fs.m);
717                                 fs.m = NULL;
718                                 unlock_and_deallocate(&fs);
719                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
720                         }
721                         if (fs.object != fs.first_object) {
722                                 vm_page_lock(fs.m);
723                                 vm_page_free(fs.m);
724                                 vm_page_unlock(fs.m);
725                                 fs.m = NULL;
726                                 /*
727                                  * XXX - we cannot just fall out at this
728                                  * point, m has been freed and is invalid!
729                                  */
730                         }
731                 }
732
733                 /*
734                  * We get here if the object has default pager (or unwiring) 
735                  * or the pager doesn't have the page.
736                  */
737                 if (fs.object == fs.first_object)
738                         fs.first_m = fs.m;
739
740                 /*
741                  * Move on to the next object.  Lock the next object before
742                  * unlocking the current one.
743                  */
744                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
745                 next_object = fs.object->backing_object;
746                 if (next_object == NULL) {
747                         /*
748                          * If there's no object left, fill the page in the top
749                          * object with zeros.
750                          */
751                         if (fs.object != fs.first_object) {
752                                 vm_object_pip_wakeup(fs.object);
753                                 VM_OBJECT_WUNLOCK(fs.object);
754
755                                 fs.object = fs.first_object;
756                                 fs.pindex = fs.first_pindex;
757                                 fs.m = fs.first_m;
758                                 VM_OBJECT_WLOCK(fs.object);
759                         }
760                         fs.first_m = NULL;
761
762                         /*
763                          * Zero the page if necessary and mark it valid.
764                          */
765                         if ((fs.m->flags & PG_ZERO) == 0) {
766                                 pmap_zero_page(fs.m);
767                         } else {
768                                 PCPU_INC(cnt.v_ozfod);
769                         }
770                         PCPU_INC(cnt.v_zfod);
771                         fs.m->valid = VM_PAGE_BITS_ALL;
772                         /* Don't try to prefault neighboring pages. */
773                         faultcount = 1;
774                         break;  /* break to PAGE HAS BEEN FOUND */
775                 } else {
776                         KASSERT(fs.object != next_object,
777                             ("object loop %p", next_object));
778                         VM_OBJECT_WLOCK(next_object);
779                         vm_object_pip_add(next_object, 1);
780                         if (fs.object != fs.first_object)
781                                 vm_object_pip_wakeup(fs.object);
782                         VM_OBJECT_WUNLOCK(fs.object);
783                         fs.object = next_object;
784                 }
785         }
786
787         vm_page_assert_xbusied(fs.m);
788
789         /*
790          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
791          * is held.]
792          */
793
794         /*
795          * If the page is being written, but isn't already owned by the
796          * top-level object, we have to copy it into a new page owned by the
797          * top-level object.
798          */
799         if (fs.object != fs.first_object) {
800                 /*
801                  * We only really need to copy if we want to write it.
802                  */
803                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
804                         /*
805                          * This allows pages to be virtually copied from a 
806                          * backing_object into the first_object, where the 
807                          * backing object has no other refs to it, and cannot
808                          * gain any more refs.  Instead of a bcopy, we just 
809                          * move the page from the backing object to the 
810                          * first object.  Note that we must mark the page 
811                          * dirty in the first object so that it will go out 
812                          * to swap when needed.
813                          */
814                         is_first_object_locked = FALSE;
815                         if (
816                                 /*
817                                  * Only one shadow object
818                                  */
819                                 (fs.object->shadow_count == 1) &&
820                                 /*
821                                  * No COW refs, except us
822                                  */
823                                 (fs.object->ref_count == 1) &&
824                                 /*
825                                  * No one else can look this object up
826                                  */
827                                 (fs.object->handle == NULL) &&
828                                 /*
829                                  * No other ways to look the object up
830                                  */
831                                 ((fs.object->type == OBJT_DEFAULT) ||
832                                  (fs.object->type == OBJT_SWAP)) &&
833                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
834                                 /*
835                                  * We don't chase down the shadow chain
836                                  */
837                             fs.object == fs.first_object->backing_object) {
838                                 /*
839                                  * get rid of the unnecessary page
840                                  */
841                                 vm_page_lock(fs.first_m);
842                                 vm_page_free(fs.first_m);
843                                 vm_page_unlock(fs.first_m);
844                                 /*
845                                  * grab the page and put it into the 
846                                  * process'es object.  The page is 
847                                  * automatically made dirty.
848                                  */
849                                 if (vm_page_rename(fs.m, fs.first_object,
850                                     fs.first_pindex)) {
851                                         unlock_and_deallocate(&fs);
852                                         goto RetryFault;
853                                 }
854 #if VM_NRESERVLEVEL > 0
855                                 /*
856                                  * Rename the reservation.
857                                  */
858                                 vm_reserv_rename(fs.m, fs.first_object,
859                                     fs.object, OFF_TO_IDX(
860                                     fs.first_object->backing_object_offset));
861 #endif
862                                 vm_page_xbusy(fs.m);
863                                 fs.first_m = fs.m;
864                                 fs.m = NULL;
865                                 PCPU_INC(cnt.v_cow_optim);
866                         } else {
867                                 /*
868                                  * Oh, well, lets copy it.
869                                  */
870                                 pmap_copy_page(fs.m, fs.first_m);
871                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
872                                 if (wired && (fault_flags &
873                                     VM_FAULT_WIRE) == 0) {
874                                         vm_page_lock(fs.first_m);
875                                         vm_page_wire(fs.first_m);
876                                         vm_page_unlock(fs.first_m);
877                                         
878                                         vm_page_lock(fs.m);
879                                         vm_page_unwire(fs.m, PQ_INACTIVE);
880                                         vm_page_unlock(fs.m);
881                                 }
882                                 /*
883                                  * We no longer need the old page or object.
884                                  */
885                                 release_page(&fs);
886                         }
887                         /*
888                          * fs.object != fs.first_object due to above 
889                          * conditional
890                          */
891                         vm_object_pip_wakeup(fs.object);
892                         VM_OBJECT_WUNLOCK(fs.object);
893                         /*
894                          * Only use the new page below...
895                          */
896                         fs.object = fs.first_object;
897                         fs.pindex = fs.first_pindex;
898                         fs.m = fs.first_m;
899                         if (!is_first_object_locked)
900                                 VM_OBJECT_WLOCK(fs.object);
901                         PCPU_INC(cnt.v_cow_faults);
902                         curthread->td_cow++;
903                 } else {
904                         prot &= ~VM_PROT_WRITE;
905                 }
906         }
907
908         /*
909          * We must verify that the maps have not changed since our last
910          * lookup.
911          */
912         if (!fs.lookup_still_valid) {
913                 vm_object_t retry_object;
914                 vm_pindex_t retry_pindex;
915                 vm_prot_t retry_prot;
916
917                 if (!vm_map_trylock_read(fs.map)) {
918                         release_page(&fs);
919                         unlock_and_deallocate(&fs);
920                         goto RetryFault;
921                 }
922                 fs.lookup_still_valid = TRUE;
923                 if (fs.map->timestamp != map_generation) {
924                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
925                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
926
927                         /*
928                          * If we don't need the page any longer, put it on the inactive
929                          * list (the easiest thing to do here).  If no one needs it,
930                          * pageout will grab it eventually.
931                          */
932                         if (result != KERN_SUCCESS) {
933                                 release_page(&fs);
934                                 unlock_and_deallocate(&fs);
935
936                                 /*
937                                  * If retry of map lookup would have blocked then
938                                  * retry fault from start.
939                                  */
940                                 if (result == KERN_FAILURE)
941                                         goto RetryFault;
942                                 return (result);
943                         }
944                         if ((retry_object != fs.first_object) ||
945                             (retry_pindex != fs.first_pindex)) {
946                                 release_page(&fs);
947                                 unlock_and_deallocate(&fs);
948                                 goto RetryFault;
949                         }
950
951                         /*
952                          * Check whether the protection has changed or the object has
953                          * been copied while we left the map unlocked. Changing from
954                          * read to write permission is OK - we leave the page
955                          * write-protected, and catch the write fault. Changing from
956                          * write to read permission means that we can't mark the page
957                          * write-enabled after all.
958                          */
959                         prot &= retry_prot;
960                 }
961         }
962         /*
963          * If the page was filled by a pager, update the map entry's
964          * last read offset.  Since the pager does not return the
965          * actual set of pages that it read, this update is based on
966          * the requested set.  Typically, the requested and actual
967          * sets are the same.
968          *
969          * XXX The following assignment modifies the map
970          * without holding a write lock on it.
971          */
972         if (hardfault)
973                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
974
975         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
976         vm_page_assert_xbusied(fs.m);
977
978         /*
979          * Page must be completely valid or it is not fit to
980          * map into user space.  vm_pager_get_pages() ensures this.
981          */
982         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
983             ("vm_fault: page %p partially invalid", fs.m));
984         VM_OBJECT_WUNLOCK(fs.object);
985
986         /*
987          * Put this page into the physical map.  We had to do the unlock above
988          * because pmap_enter() may sleep.  We don't put the page
989          * back on the active queue until later so that the pageout daemon
990          * won't find it (yet).
991          */
992         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
993             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
994         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
995             wired == 0)
996                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
997         VM_OBJECT_WLOCK(fs.object);
998         vm_page_lock(fs.m);
999
1000         /*
1001          * If the page is not wired down, then put it where the pageout daemon
1002          * can find it.
1003          */
1004         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1005                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1006                 vm_page_wire(fs.m);
1007         } else
1008                 vm_page_activate(fs.m);
1009         if (m_hold != NULL) {
1010                 *m_hold = fs.m;
1011                 vm_page_hold(fs.m);
1012         }
1013         vm_page_unlock(fs.m);
1014         vm_page_xunbusy(fs.m);
1015
1016         /*
1017          * Unlock everything, and return
1018          */
1019         unlock_and_deallocate(&fs);
1020         if (hardfault) {
1021                 PCPU_INC(cnt.v_io_faults);
1022                 curthread->td_ru.ru_majflt++;
1023         } else 
1024                 curthread->td_ru.ru_minflt++;
1025
1026         return (KERN_SUCCESS);
1027 }
1028
1029 /*
1030  * Speed up the reclamation of pages that precede the faulting pindex within
1031  * the first object of the shadow chain.  Essentially, perform the equivalent
1032  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1033  * the faulting pindex by the cluster size when the pages read by vm_fault()
1034  * cross a cluster-size boundary.  The cluster size is the greater of the
1035  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1036  *
1037  * When "fs->first_object" is a shadow object, the pages in the backing object
1038  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1039  * function must only be concerned with pages in the first object.
1040  */
1041 static void
1042 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1043 {
1044         vm_map_entry_t entry;
1045         vm_object_t first_object, object;
1046         vm_offset_t end, start;
1047         vm_page_t m, m_next;
1048         vm_pindex_t pend, pstart;
1049         vm_size_t size;
1050
1051         object = fs->object;
1052         VM_OBJECT_ASSERT_WLOCKED(object);
1053         first_object = fs->first_object;
1054         if (first_object != object) {
1055                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1056                         VM_OBJECT_WUNLOCK(object);
1057                         VM_OBJECT_WLOCK(first_object);
1058                         VM_OBJECT_WLOCK(object);
1059                 }
1060         }
1061         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1062         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1063                 size = VM_FAULT_DONTNEED_MIN;
1064                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1065                         size = pagesizes[1];
1066                 end = rounddown2(vaddr, size);
1067                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1068                     (entry = fs->entry)->start < end) {
1069                         if (end - entry->start < size)
1070                                 start = entry->start;
1071                         else
1072                                 start = end - size;
1073                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1074                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1075                             entry->start);
1076                         m_next = vm_page_find_least(first_object, pstart);
1077                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1078                             entry->start);
1079                         while ((m = m_next) != NULL && m->pindex < pend) {
1080                                 m_next = TAILQ_NEXT(m, listq);
1081                                 if (m->valid != VM_PAGE_BITS_ALL ||
1082                                     vm_page_busied(m))
1083                                         continue;
1084
1085                                 /*
1086                                  * Don't clear PGA_REFERENCED, since it would
1087                                  * likely represent a reference by a different
1088                                  * process.
1089                                  *
1090                                  * Typically, at this point, prefetched pages
1091                                  * are still in the inactive queue.  Only
1092                                  * pages that triggered page faults are in the
1093                                  * active queue.
1094                                  */
1095                                 vm_page_lock(m);
1096                                 vm_page_deactivate(m);
1097                                 vm_page_unlock(m);
1098                         }
1099                 }
1100         }
1101         if (first_object != object)
1102                 VM_OBJECT_WUNLOCK(first_object);
1103 }
1104
1105 /*
1106  * vm_fault_prefault provides a quick way of clustering
1107  * pagefaults into a processes address space.  It is a "cousin"
1108  * of vm_map_pmap_enter, except it runs at page fault time instead
1109  * of mmap time.
1110  */
1111 static void
1112 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1113     int faultcount, int reqpage)
1114 {
1115         pmap_t pmap;
1116         vm_map_entry_t entry;
1117         vm_object_t backing_object, lobject;
1118         vm_offset_t addr, starta;
1119         vm_pindex_t pindex;
1120         vm_page_t m;
1121         int backward, forward, i;
1122
1123         pmap = fs->map->pmap;
1124         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1125                 return;
1126
1127         if (faultcount > 0) {
1128                 backward = reqpage;
1129                 forward = faultcount - reqpage - 1;
1130         } else {
1131                 backward = PFBAK;
1132                 forward = PFFOR;
1133         }
1134         entry = fs->entry;
1135
1136         starta = addra - backward * PAGE_SIZE;
1137         if (starta < entry->start) {
1138                 starta = entry->start;
1139         } else if (starta > addra) {
1140                 starta = 0;
1141         }
1142
1143         /*
1144          * Generate the sequence of virtual addresses that are candidates for
1145          * prefaulting in an outward spiral from the faulting virtual address,
1146          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1147          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1148          * If the candidate address doesn't have a backing physical page, then
1149          * the loop immediately terminates.
1150          */
1151         for (i = 0; i < 2 * imax(backward, forward); i++) {
1152                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1153                     PAGE_SIZE);
1154                 if (addr > addra + forward * PAGE_SIZE)
1155                         addr = 0;
1156
1157                 if (addr < starta || addr >= entry->end)
1158                         continue;
1159
1160                 if (!pmap_is_prefaultable(pmap, addr))
1161                         continue;
1162
1163                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1164                 lobject = entry->object.vm_object;
1165                 VM_OBJECT_RLOCK(lobject);
1166                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1167                     lobject->type == OBJT_DEFAULT &&
1168                     (backing_object = lobject->backing_object) != NULL) {
1169                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1170                             0, ("vm_fault_prefault: unaligned object offset"));
1171                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1172                         VM_OBJECT_RLOCK(backing_object);
1173                         VM_OBJECT_RUNLOCK(lobject);
1174                         lobject = backing_object;
1175                 }
1176                 if (m == NULL) {
1177                         VM_OBJECT_RUNLOCK(lobject);
1178                         break;
1179                 }
1180                 if (m->valid == VM_PAGE_BITS_ALL &&
1181                     (m->flags & PG_FICTITIOUS) == 0)
1182                         pmap_enter_quick(pmap, addr, m, entry->protection);
1183                 VM_OBJECT_RUNLOCK(lobject);
1184         }
1185 }
1186
1187 /*
1188  * Hold each of the physical pages that are mapped by the specified range of
1189  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1190  * and allow the specified types of access, "prot".  If all of the implied
1191  * pages are successfully held, then the number of held pages is returned
1192  * together with pointers to those pages in the array "ma".  However, if any
1193  * of the pages cannot be held, -1 is returned.
1194  */
1195 int
1196 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1197     vm_prot_t prot, vm_page_t *ma, int max_count)
1198 {
1199         vm_offset_t end, va;
1200         vm_page_t *mp;
1201         int count;
1202         boolean_t pmap_failed;
1203
1204         if (len == 0)
1205                 return (0);
1206         end = round_page(addr + len);
1207         addr = trunc_page(addr);
1208
1209         /*
1210          * Check for illegal addresses.
1211          */
1212         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1213                 return (-1);
1214
1215         if (atop(end - addr) > max_count)
1216                 panic("vm_fault_quick_hold_pages: count > max_count");
1217         count = atop(end - addr);
1218
1219         /*
1220          * Most likely, the physical pages are resident in the pmap, so it is
1221          * faster to try pmap_extract_and_hold() first.
1222          */
1223         pmap_failed = FALSE;
1224         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1225                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1226                 if (*mp == NULL)
1227                         pmap_failed = TRUE;
1228                 else if ((prot & VM_PROT_WRITE) != 0 &&
1229                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1230                         /*
1231                          * Explicitly dirty the physical page.  Otherwise, the
1232                          * caller's changes may go unnoticed because they are
1233                          * performed through an unmanaged mapping or by a DMA
1234                          * operation.
1235                          *
1236                          * The object lock is not held here.
1237                          * See vm_page_clear_dirty_mask().
1238                          */
1239                         vm_page_dirty(*mp);
1240                 }
1241         }
1242         if (pmap_failed) {
1243                 /*
1244                  * One or more pages could not be held by the pmap.  Either no
1245                  * page was mapped at the specified virtual address or that
1246                  * mapping had insufficient permissions.  Attempt to fault in
1247                  * and hold these pages.
1248                  */
1249                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1250                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1251                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1252                                 goto error;
1253         }
1254         return (count);
1255 error:  
1256         for (mp = ma; mp < ma + count; mp++)
1257                 if (*mp != NULL) {
1258                         vm_page_lock(*mp);
1259                         vm_page_unhold(*mp);
1260                         vm_page_unlock(*mp);
1261                 }
1262         return (-1);
1263 }
1264
1265 /*
1266  *      Routine:
1267  *              vm_fault_copy_entry
1268  *      Function:
1269  *              Create new shadow object backing dst_entry with private copy of
1270  *              all underlying pages. When src_entry is equal to dst_entry,
1271  *              function implements COW for wired-down map entry. Otherwise,
1272  *              it forks wired entry into dst_map.
1273  *
1274  *      In/out conditions:
1275  *              The source and destination maps must be locked for write.
1276  *              The source map entry must be wired down (or be a sharing map
1277  *              entry corresponding to a main map entry that is wired down).
1278  */
1279 void
1280 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1281     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1282     vm_ooffset_t *fork_charge)
1283 {
1284         vm_object_t backing_object, dst_object, object, src_object;
1285         vm_pindex_t dst_pindex, pindex, src_pindex;
1286         vm_prot_t access, prot;
1287         vm_offset_t vaddr;
1288         vm_page_t dst_m;
1289         vm_page_t src_m;
1290         boolean_t upgrade;
1291
1292 #ifdef  lint
1293         src_map++;
1294 #endif  /* lint */
1295
1296         upgrade = src_entry == dst_entry;
1297         access = prot = dst_entry->protection;
1298
1299         src_object = src_entry->object.vm_object;
1300         src_pindex = OFF_TO_IDX(src_entry->offset);
1301
1302         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1303                 dst_object = src_object;
1304                 vm_object_reference(dst_object);
1305         } else {
1306                 /*
1307                  * Create the top-level object for the destination entry. (Doesn't
1308                  * actually shadow anything - we copy the pages directly.)
1309                  */
1310                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1311                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1312 #if VM_NRESERVLEVEL > 0
1313                 dst_object->flags |= OBJ_COLORED;
1314                 dst_object->pg_color = atop(dst_entry->start);
1315 #endif
1316         }
1317
1318         VM_OBJECT_WLOCK(dst_object);
1319         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1320             ("vm_fault_copy_entry: vm_object not NULL"));
1321         if (src_object != dst_object) {
1322                 dst_entry->object.vm_object = dst_object;
1323                 dst_entry->offset = 0;
1324                 dst_object->charge = dst_entry->end - dst_entry->start;
1325         }
1326         if (fork_charge != NULL) {
1327                 KASSERT(dst_entry->cred == NULL,
1328                     ("vm_fault_copy_entry: leaked swp charge"));
1329                 dst_object->cred = curthread->td_ucred;
1330                 crhold(dst_object->cred);
1331                 *fork_charge += dst_object->charge;
1332         } else if (dst_object->cred == NULL) {
1333                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1334                     dst_entry));
1335                 dst_object->cred = dst_entry->cred;
1336                 dst_entry->cred = NULL;
1337         }
1338
1339         /*
1340          * If not an upgrade, then enter the mappings in the pmap as
1341          * read and/or execute accesses.  Otherwise, enter them as
1342          * write accesses.
1343          *
1344          * A writeable large page mapping is only created if all of
1345          * the constituent small page mappings are modified. Marking
1346          * PTEs as modified on inception allows promotion to happen
1347          * without taking potentially large number of soft faults.
1348          */
1349         if (!upgrade)
1350                 access &= ~VM_PROT_WRITE;
1351
1352         /*
1353          * Loop through all of the virtual pages within the entry's
1354          * range, copying each page from the source object to the
1355          * destination object.  Since the source is wired, those pages
1356          * must exist.  In contrast, the destination is pageable.
1357          * Since the destination object does share any backing storage
1358          * with the source object, all of its pages must be dirtied,
1359          * regardless of whether they can be written.
1360          */
1361         for (vaddr = dst_entry->start, dst_pindex = 0;
1362             vaddr < dst_entry->end;
1363             vaddr += PAGE_SIZE, dst_pindex++) {
1364 again:
1365                 /*
1366                  * Find the page in the source object, and copy it in.
1367                  * Because the source is wired down, the page will be
1368                  * in memory.
1369                  */
1370                 if (src_object != dst_object)
1371                         VM_OBJECT_RLOCK(src_object);
1372                 object = src_object;
1373                 pindex = src_pindex + dst_pindex;
1374                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1375                     (backing_object = object->backing_object) != NULL) {
1376                         /*
1377                          * Unless the source mapping is read-only or
1378                          * it is presently being upgraded from
1379                          * read-only, the first object in the shadow
1380                          * chain should provide all of the pages.  In
1381                          * other words, this loop body should never be
1382                          * executed when the source mapping is already
1383                          * read/write.
1384                          */
1385                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1386                             upgrade,
1387                             ("vm_fault_copy_entry: main object missing page"));
1388
1389                         VM_OBJECT_RLOCK(backing_object);
1390                         pindex += OFF_TO_IDX(object->backing_object_offset);
1391                         if (object != dst_object)
1392                                 VM_OBJECT_RUNLOCK(object);
1393                         object = backing_object;
1394                 }
1395                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1396
1397                 if (object != dst_object) {
1398                         /*
1399                          * Allocate a page in the destination object.
1400                          */
1401                         dst_m = vm_page_alloc(dst_object, (src_object ==
1402                             dst_object ? src_pindex : 0) + dst_pindex,
1403                             VM_ALLOC_NORMAL);
1404                         if (dst_m == NULL) {
1405                                 VM_OBJECT_WUNLOCK(dst_object);
1406                                 VM_OBJECT_RUNLOCK(object);
1407                                 VM_WAIT;
1408                                 VM_OBJECT_WLOCK(dst_object);
1409                                 goto again;
1410                         }
1411                         pmap_copy_page(src_m, dst_m);
1412                         VM_OBJECT_RUNLOCK(object);
1413                         dst_m->valid = VM_PAGE_BITS_ALL;
1414                         dst_m->dirty = VM_PAGE_BITS_ALL;
1415                 } else {
1416                         dst_m = src_m;
1417                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1418                                 goto again;
1419                         vm_page_xbusy(dst_m);
1420                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1421                             ("invalid dst page %p", dst_m));
1422                 }
1423                 VM_OBJECT_WUNLOCK(dst_object);
1424
1425                 /*
1426                  * Enter it in the pmap. If a wired, copy-on-write
1427                  * mapping is being replaced by a write-enabled
1428                  * mapping, then wire that new mapping.
1429                  */
1430                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1431                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1432
1433                 /*
1434                  * Mark it no longer busy, and put it on the active list.
1435                  */
1436                 VM_OBJECT_WLOCK(dst_object);
1437                 
1438                 if (upgrade) {
1439                         if (src_m != dst_m) {
1440                                 vm_page_lock(src_m);
1441                                 vm_page_unwire(src_m, PQ_INACTIVE);
1442                                 vm_page_unlock(src_m);
1443                                 vm_page_lock(dst_m);
1444                                 vm_page_wire(dst_m);
1445                                 vm_page_unlock(dst_m);
1446                         } else {
1447                                 KASSERT(dst_m->wire_count > 0,
1448                                     ("dst_m %p is not wired", dst_m));
1449                         }
1450                 } else {
1451                         vm_page_lock(dst_m);
1452                         vm_page_activate(dst_m);
1453                         vm_page_unlock(dst_m);
1454                 }
1455                 vm_page_xunbusy(dst_m);
1456         }
1457         VM_OBJECT_WUNLOCK(dst_object);
1458         if (upgrade) {
1459                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1460                 vm_object_deallocate(src_object);
1461         }
1462 }
1463
1464
1465 /*
1466  * This routine checks around the requested page for other pages that
1467  * might be able to be faulted in.  This routine brackets the viable
1468  * pages for the pages to be paged in.
1469  *
1470  * Inputs:
1471  *      m, rbehind, rahead
1472  *
1473  * Outputs:
1474  *  marray (array of vm_page_t), reqpage (index of requested page)
1475  *
1476  * Return value:
1477  *  number of pages in marray
1478  */
1479 static int
1480 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1481         vm_page_t m;
1482         int rbehind;
1483         int rahead;
1484         vm_page_t *marray;
1485         int *reqpage;
1486 {
1487         int i,j;
1488         vm_object_t object;
1489         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1490         vm_page_t rtm;
1491         int cbehind, cahead;
1492
1493         VM_OBJECT_ASSERT_WLOCKED(m->object);
1494
1495         object = m->object;
1496         pindex = m->pindex;
1497         cbehind = cahead = 0;
1498
1499         /*
1500          * if the requested page is not available, then give up now
1501          */
1502         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1503                 return 0;
1504         }
1505
1506         if ((cbehind == 0) && (cahead == 0)) {
1507                 *reqpage = 0;
1508                 marray[0] = m;
1509                 return 1;
1510         }
1511
1512         if (rahead > cahead) {
1513                 rahead = cahead;
1514         }
1515
1516         if (rbehind > cbehind) {
1517                 rbehind = cbehind;
1518         }
1519
1520         /*
1521          * scan backward for the read behind pages -- in memory 
1522          */
1523         if (pindex > 0) {
1524                 if (rbehind > pindex) {
1525                         rbehind = pindex;
1526                         startpindex = 0;
1527                 } else {
1528                         startpindex = pindex - rbehind;
1529                 }
1530
1531                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1532                     rtm->pindex >= startpindex)
1533                         startpindex = rtm->pindex + 1;
1534
1535                 /* tpindex is unsigned; beware of numeric underflow. */
1536                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1537                     tpindex < pindex; i++, tpindex--) {
1538
1539                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1540                             VM_ALLOC_IFNOTCACHED);
1541                         if (rtm == NULL) {
1542                                 /*
1543                                  * Shift the allocated pages to the
1544                                  * beginning of the array.
1545                                  */
1546                                 for (j = 0; j < i; j++) {
1547                                         marray[j] = marray[j + tpindex + 1 -
1548                                             startpindex];
1549                                 }
1550                                 break;
1551                         }
1552
1553                         marray[tpindex - startpindex] = rtm;
1554                 }
1555         } else {
1556                 startpindex = 0;
1557                 i = 0;
1558         }
1559
1560         marray[i] = m;
1561         /* page offset of the required page */
1562         *reqpage = i;
1563
1564         tpindex = pindex + 1;
1565         i++;
1566
1567         /*
1568          * scan forward for the read ahead pages
1569          */
1570         endpindex = tpindex + rahead;
1571         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1572                 endpindex = rtm->pindex;
1573         if (endpindex > object->size)
1574                 endpindex = object->size;
1575
1576         for (; tpindex < endpindex; i++, tpindex++) {
1577
1578                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1579                     VM_ALLOC_IFNOTCACHED);
1580                 if (rtm == NULL) {
1581                         break;
1582                 }
1583
1584                 marray[i] = rtm;
1585         }
1586
1587         /* return number of pages */
1588         return i;
1589 }
1590
1591 /*
1592  * Block entry into the machine-independent layer's page fault handler by
1593  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1594  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1595  * spurious page faults. 
1596  */
1597 int
1598 vm_fault_disable_pagefaults(void)
1599 {
1600
1601         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1602 }
1603
1604 void
1605 vm_fault_enable_pagefaults(int save)
1606 {
1607
1608         curthread_pflags_restore(save);
1609 }