]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
MFV r309587:
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107
108 #define PFBAK 4
109 #define PFFOR 4
110
111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113
114 #define VM_FAULT_DONTNEED_MIN   1048576
115
116 struct faultstate {
117         vm_page_t m;
118         vm_object_t object;
119         vm_pindex_t pindex;
120         vm_page_t first_m;
121         vm_object_t     first_object;
122         vm_pindex_t first_pindex;
123         vm_map_t map;
124         vm_map_entry_t entry;
125         bool lookup_still_valid;
126         struct vnode *vp;
127 };
128
129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130             int ahead);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int backward, int forward);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = false;
152         }
153 }
154
155 static void
156 unlock_vp(struct faultstate *fs)
157 {
158
159         if (fs->vp != NULL) {
160                 vput(fs->vp);
161                 fs->vp = NULL;
162         }
163 }
164
165 static void
166 unlock_and_deallocate(struct faultstate *fs)
167 {
168
169         vm_object_pip_wakeup(fs->object);
170         VM_OBJECT_WUNLOCK(fs->object);
171         if (fs->object != fs->first_object) {
172                 VM_OBJECT_WLOCK(fs->first_object);
173                 vm_page_lock(fs->first_m);
174                 vm_page_free(fs->first_m);
175                 vm_page_unlock(fs->first_m);
176                 vm_object_pip_wakeup(fs->first_object);
177                 VM_OBJECT_WUNLOCK(fs->first_object);
178                 fs->first_m = NULL;
179         }
180         vm_object_deallocate(fs->first_object);
181         unlock_map(fs);
182         unlock_vp(fs);
183 }
184
185 static void
186 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
187     vm_prot_t fault_type, int fault_flags, bool set_wd)
188 {
189         bool need_dirty;
190
191         if (((prot & VM_PROT_WRITE) == 0 &&
192             (fault_flags & VM_FAULT_DIRTY) == 0) ||
193             (m->oflags & VPO_UNMANAGED) != 0)
194                 return;
195
196         VM_OBJECT_ASSERT_LOCKED(m->object);
197
198         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
199             (fault_flags & VM_FAULT_WIRE) == 0) ||
200             (fault_flags & VM_FAULT_DIRTY) != 0;
201
202         if (set_wd)
203                 vm_object_set_writeable_dirty(m->object);
204         else
205                 /*
206                  * If two callers of vm_fault_dirty() with set_wd ==
207                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
208                  * flag set, other with flag clear, race, it is
209                  * possible for the no-NOSYNC thread to see m->dirty
210                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
211                  * around manipulation of VPO_NOSYNC and
212                  * vm_page_dirty() call, to avoid the race and keep
213                  * m->oflags consistent.
214                  */
215                 vm_page_lock(m);
216
217         /*
218          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
219          * if the page is already dirty to prevent data written with
220          * the expectation of being synced from not being synced.
221          * Likewise if this entry does not request NOSYNC then make
222          * sure the page isn't marked NOSYNC.  Applications sharing
223          * data should use the same flags to avoid ping ponging.
224          */
225         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
226                 if (m->dirty == 0) {
227                         m->oflags |= VPO_NOSYNC;
228                 }
229         } else {
230                 m->oflags &= ~VPO_NOSYNC;
231         }
232
233         /*
234          * If the fault is a write, we know that this page is being
235          * written NOW so dirty it explicitly to save on
236          * pmap_is_modified() calls later.
237          *
238          * Also tell the backing pager, if any, that it should remove
239          * any swap backing since the page is now dirty.
240          */
241         if (need_dirty)
242                 vm_page_dirty(m);
243         if (!set_wd)
244                 vm_page_unlock(m);
245         if (need_dirty)
246                 vm_pager_page_unswapped(m);
247 }
248
249 static void
250 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
251 {
252
253         if (m_hold != NULL) {
254                 *m_hold = m;
255                 vm_page_lock(m);
256                 vm_page_hold(m);
257                 vm_page_unlock(m);
258         }
259 }
260
261 /*
262  * Unlocks fs.first_object and fs.map on success.
263  */
264 static int
265 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
266     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
267 {
268         vm_page_t m;
269         int rv;
270
271         MPASS(fs->vp == NULL);
272         m = vm_page_lookup(fs->first_object, fs->first_pindex);
273         /* A busy page can be mapped for read|execute access. */
274         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
275             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
276                 return (KERN_FAILURE);
277         rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
278             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
279         if (rv != KERN_SUCCESS)
280                 return (rv);
281         vm_fault_fill_hold(m_hold, m);
282         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
283         VM_OBJECT_RUNLOCK(fs->first_object);
284         if (!wired)
285                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
286         vm_map_lookup_done(fs->map, fs->entry);
287         curthread->td_ru.ru_minflt++;
288         return (KERN_SUCCESS);
289 }
290
291 /*
292  *      vm_fault:
293  *
294  *      Handle a page fault occurring at the given address,
295  *      requiring the given permissions, in the map specified.
296  *      If successful, the page is inserted into the
297  *      associated physical map.
298  *
299  *      NOTE: the given address should be truncated to the
300  *      proper page address.
301  *
302  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
303  *      a standard error specifying why the fault is fatal is returned.
304  *
305  *      The map in question must be referenced, and remains so.
306  *      Caller may hold no locks.
307  */
308 int
309 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
310     int fault_flags)
311 {
312         struct thread *td;
313         int result;
314
315         td = curthread;
316         if ((td->td_pflags & TDP_NOFAULTING) != 0)
317                 return (KERN_PROTECTION_FAILURE);
318 #ifdef KTRACE
319         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
320                 ktrfault(vaddr, fault_type);
321 #endif
322         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
323             NULL);
324 #ifdef KTRACE
325         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
326                 ktrfaultend(result);
327 #endif
328         return (result);
329 }
330
331 int
332 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
333     int fault_flags, vm_page_t *m_hold)
334 {
335         struct faultstate fs;
336         struct vnode *vp;
337         vm_object_t next_object, retry_object;
338         vm_offset_t e_end, e_start;
339         vm_pindex_t retry_pindex;
340         vm_prot_t prot, retry_prot;
341         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
342         int locked, map_generation, nera, result, rv;
343         u_char behavior;
344         boolean_t wired;        /* Passed by reference. */
345         bool dead, growstack, hardfault, is_first_object_locked;
346
347         PCPU_INC(cnt.v_vm_faults);
348         fs.vp = NULL;
349         faultcount = 0;
350         nera = -1;
351         growstack = true;
352         hardfault = false;
353
354 RetryFault:;
355
356         /*
357          * Find the backing store object and offset into it to begin the
358          * search.
359          */
360         fs.map = map;
361         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
362             &fs.first_object, &fs.first_pindex, &prot, &wired);
363         if (result != KERN_SUCCESS) {
364                 if (growstack && result == KERN_INVALID_ADDRESS &&
365                     map != kernel_map) {
366                         result = vm_map_growstack(curproc, vaddr);
367                         if (result != KERN_SUCCESS)
368                                 return (KERN_FAILURE);
369                         growstack = false;
370                         goto RetryFault;
371                 }
372                 unlock_vp(&fs);
373                 return (result);
374         }
375
376         map_generation = fs.map->timestamp;
377
378         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
379                 panic("vm_fault: fault on nofault entry, addr: %lx",
380                     (u_long)vaddr);
381         }
382
383         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
384             fs.entry->wiring_thread != curthread) {
385                 vm_map_unlock_read(fs.map);
386                 vm_map_lock(fs.map);
387                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
388                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
389                         unlock_vp(&fs);
390                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
391                         vm_map_unlock_and_wait(fs.map, 0);
392                 } else
393                         vm_map_unlock(fs.map);
394                 goto RetryFault;
395         }
396
397         if (wired)
398                 fault_type = prot | (fault_type & VM_PROT_COPY);
399         else
400                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
401                     ("!wired && VM_FAULT_WIRE"));
402
403         /*
404          * Try to avoid lock contention on the top-level object through
405          * special-case handling of some types of page faults, specifically,
406          * those that are both (1) mapping an existing page from the top-
407          * level object and (2) not having to mark that object as containing
408          * dirty pages.  Under these conditions, a read lock on the top-level
409          * object suffices, allowing multiple page faults of a similar type to
410          * run in parallel on the same top-level object.
411          */
412         if (fs.vp == NULL /* avoid locked vnode leak */ &&
413             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
414             /* avoid calling vm_object_set_writeable_dirty() */
415             ((prot & VM_PROT_WRITE) == 0 ||
416             (fs.first_object->type != OBJT_VNODE &&
417             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
418             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
419                 VM_OBJECT_RLOCK(fs.first_object);
420                 if ((prot & VM_PROT_WRITE) == 0 ||
421                     (fs.first_object->type != OBJT_VNODE &&
422                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
423                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
424                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
425                             fault_flags, wired, m_hold);
426                         if (rv == KERN_SUCCESS)
427                                 return (rv);
428                 }
429                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
430                         VM_OBJECT_RUNLOCK(fs.first_object);
431                         VM_OBJECT_WLOCK(fs.first_object);
432                 }
433         } else {
434                 VM_OBJECT_WLOCK(fs.first_object);
435         }
436
437         /*
438          * Make a reference to this object to prevent its disposal while we
439          * are messing with it.  Once we have the reference, the map is free
440          * to be diddled.  Since objects reference their shadows (and copies),
441          * they will stay around as well.
442          *
443          * Bump the paging-in-progress count to prevent size changes (e.g. 
444          * truncation operations) during I/O.
445          */
446         vm_object_reference_locked(fs.first_object);
447         vm_object_pip_add(fs.first_object, 1);
448
449         fs.lookup_still_valid = true;
450
451         fs.first_m = NULL;
452
453         /*
454          * Search for the page at object/offset.
455          */
456         fs.object = fs.first_object;
457         fs.pindex = fs.first_pindex;
458         while (TRUE) {
459                 /*
460                  * If the object is marked for imminent termination,
461                  * we retry here, since the collapse pass has raced
462                  * with us.  Otherwise, if we see terminally dead
463                  * object, return fail.
464                  */
465                 if ((fs.object->flags & OBJ_DEAD) != 0) {
466                         dead = fs.object->type == OBJT_DEAD;
467                         unlock_and_deallocate(&fs);
468                         if (dead)
469                                 return (KERN_PROTECTION_FAILURE);
470                         pause("vmf_de", 1);
471                         goto RetryFault;
472                 }
473
474                 /*
475                  * See if page is resident
476                  */
477                 fs.m = vm_page_lookup(fs.object, fs.pindex);
478                 if (fs.m != NULL) {
479                         /*
480                          * Wait/Retry if the page is busy.  We have to do this
481                          * if the page is either exclusive or shared busy
482                          * because the vm_pager may be using read busy for
483                          * pageouts (and even pageins if it is the vnode
484                          * pager), and we could end up trying to pagein and
485                          * pageout the same page simultaneously.
486                          *
487                          * We can theoretically allow the busy case on a read
488                          * fault if the page is marked valid, but since such
489                          * pages are typically already pmap'd, putting that
490                          * special case in might be more effort then it is 
491                          * worth.  We cannot under any circumstances mess
492                          * around with a shared busied page except, perhaps,
493                          * to pmap it.
494                          */
495                         if (vm_page_busied(fs.m)) {
496                                 /*
497                                  * Reference the page before unlocking and
498                                  * sleeping so that the page daemon is less
499                                  * likely to reclaim it. 
500                                  */
501                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
502                                 if (fs.object != fs.first_object) {
503                                         if (!VM_OBJECT_TRYWLOCK(
504                                             fs.first_object)) {
505                                                 VM_OBJECT_WUNLOCK(fs.object);
506                                                 VM_OBJECT_WLOCK(fs.first_object);
507                                                 VM_OBJECT_WLOCK(fs.object);
508                                         }
509                                         vm_page_lock(fs.first_m);
510                                         vm_page_free(fs.first_m);
511                                         vm_page_unlock(fs.first_m);
512                                         vm_object_pip_wakeup(fs.first_object);
513                                         VM_OBJECT_WUNLOCK(fs.first_object);
514                                         fs.first_m = NULL;
515                                 }
516                                 unlock_map(&fs);
517                                 if (fs.m == vm_page_lookup(fs.object,
518                                     fs.pindex)) {
519                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
520                                 }
521                                 vm_object_pip_wakeup(fs.object);
522                                 VM_OBJECT_WUNLOCK(fs.object);
523                                 PCPU_INC(cnt.v_intrans);
524                                 vm_object_deallocate(fs.first_object);
525                                 goto RetryFault;
526                         }
527                         vm_page_lock(fs.m);
528                         vm_page_remque(fs.m);
529                         vm_page_unlock(fs.m);
530
531                         /*
532                          * Mark page busy for other processes, and the 
533                          * pagedaemon.  If it still isn't completely valid
534                          * (readable), jump to readrest, else break-out ( we
535                          * found the page ).
536                          */
537                         vm_page_xbusy(fs.m);
538                         if (fs.m->valid != VM_PAGE_BITS_ALL)
539                                 goto readrest;
540                         break;
541                 }
542                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
543
544                 /*
545                  * Page is not resident.  If the pager might contain the page
546                  * or this is the beginning of the search, allocate a new
547                  * page.  (Default objects are zero-fill, so there is no real
548                  * pager for them.)
549                  */
550                 if (fs.object->type != OBJT_DEFAULT ||
551                     fs.object == fs.first_object) {
552                         if (fs.pindex >= fs.object->size) {
553                                 unlock_and_deallocate(&fs);
554                                 return (KERN_PROTECTION_FAILURE);
555                         }
556
557                         /*
558                          * Allocate a new page for this object/offset pair.
559                          *
560                          * Unlocked read of the p_flag is harmless. At
561                          * worst, the P_KILLED might be not observed
562                          * there, and allocation can fail, causing
563                          * restart and new reading of the p_flag.
564                          */
565                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
566 #if VM_NRESERVLEVEL > 0
567                                 vm_object_color(fs.object, atop(vaddr) -
568                                     fs.pindex);
569 #endif
570                                 alloc_req = P_KILLED(curproc) ?
571                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
572                                 if (fs.object->type != OBJT_VNODE &&
573                                     fs.object->backing_object == NULL)
574                                         alloc_req |= VM_ALLOC_ZERO;
575                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
576                                     alloc_req);
577                         }
578                         if (fs.m == NULL) {
579                                 unlock_and_deallocate(&fs);
580                                 VM_WAITPFAULT;
581                                 goto RetryFault;
582                         }
583                 }
584
585 readrest:
586                 /*
587                  * At this point, we have either allocated a new page or found
588                  * an existing page that is only partially valid.
589                  *
590                  * We hold a reference on the current object and the page is
591                  * exclusive busied.
592                  */
593
594                 /*
595                  * If the pager for the current object might have the page,
596                  * then determine the number of additional pages to read and
597                  * potentially reprioritize previously read pages for earlier
598                  * reclamation.  These operations should only be performed
599                  * once per page fault.  Even if the current pager doesn't
600                  * have the page, the number of additional pages to read will
601                  * apply to subsequent objects in the shadow chain.
602                  */
603                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
604                     !P_KILLED(curproc)) {
605                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
606                         era = fs.entry->read_ahead;
607                         behavior = vm_map_entry_behavior(fs.entry);
608                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
609                                 nera = 0;
610                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
611                                 nera = VM_FAULT_READ_AHEAD_MAX;
612                                 if (vaddr == fs.entry->next_read)
613                                         vm_fault_dontneed(&fs, vaddr, nera);
614                         } else if (vaddr == fs.entry->next_read) {
615                                 /*
616                                  * This is a sequential fault.  Arithmetically
617                                  * increase the requested number of pages in
618                                  * the read-ahead window.  The requested
619                                  * number of pages is "# of sequential faults
620                                  * x (read ahead min + 1) + read ahead min"
621                                  */
622                                 nera = VM_FAULT_READ_AHEAD_MIN;
623                                 if (era > 0) {
624                                         nera += era + 1;
625                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
626                                                 nera = VM_FAULT_READ_AHEAD_MAX;
627                                 }
628                                 if (era == VM_FAULT_READ_AHEAD_MAX)
629                                         vm_fault_dontneed(&fs, vaddr, nera);
630                         } else {
631                                 /*
632                                  * This is a non-sequential fault.
633                                  */
634                                 nera = 0;
635                         }
636                         if (era != nera) {
637                                 /*
638                                  * A read lock on the map suffices to update
639                                  * the read ahead count safely.
640                                  */
641                                 fs.entry->read_ahead = nera;
642                         }
643
644                         /*
645                          * Prepare for unlocking the map.  Save the map
646                          * entry's start and end addresses, which are used to
647                          * optimize the size of the pager operation below.
648                          * Even if the map entry's addresses change after
649                          * unlocking the map, using the saved addresses is
650                          * safe.
651                          */
652                         e_start = fs.entry->start;
653                         e_end = fs.entry->end;
654                 }
655
656                 /*
657                  * Call the pager to retrieve the page if there is a chance
658                  * that the pager has it, and potentially retrieve additional
659                  * pages at the same time.
660                  */
661                 if (fs.object->type != OBJT_DEFAULT) {
662                         /*
663                          * Release the map lock before locking the vnode or
664                          * sleeping in the pager.  (If the current object has
665                          * a shadow, then an earlier iteration of this loop
666                          * may have already unlocked the map.)
667                          */
668                         unlock_map(&fs);
669
670                         if (fs.object->type == OBJT_VNODE &&
671                             (vp = fs.object->handle) != fs.vp) {
672                                 /*
673                                  * Perform an unlock in case the desired vnode
674                                  * changed while the map was unlocked during a
675                                  * retry.
676                                  */
677                                 unlock_vp(&fs);
678
679                                 locked = VOP_ISLOCKED(vp);
680                                 if (locked != LK_EXCLUSIVE)
681                                         locked = LK_SHARED;
682
683                                 /*
684                                  * We must not sleep acquiring the vnode lock
685                                  * while we have the page exclusive busied or
686                                  * the object's paging-in-progress count
687                                  * incremented.  Otherwise, we could deadlock.
688                                  */
689                                 error = vget(vp, locked | LK_CANRECURSE |
690                                     LK_NOWAIT, curthread);
691                                 if (error != 0) {
692                                         vhold(vp);
693                                         release_page(&fs);
694                                         unlock_and_deallocate(&fs);
695                                         error = vget(vp, locked | LK_RETRY |
696                                             LK_CANRECURSE, curthread);
697                                         vdrop(vp);
698                                         fs.vp = vp;
699                                         KASSERT(error == 0,
700                                             ("vm_fault: vget failed"));
701                                         goto RetryFault;
702                                 }
703                                 fs.vp = vp;
704                         }
705                         KASSERT(fs.vp == NULL || !fs.map->system_map,
706                             ("vm_fault: vnode-backed object mapped by system map"));
707
708                         /*
709                          * Page in the requested page and hint the pager,
710                          * that it may bring up surrounding pages.
711                          */
712                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
713                             P_KILLED(curproc)) {
714                                 behind = 0;
715                                 ahead = 0;
716                         } else {
717                                 /* Is this a sequential fault? */
718                                 if (nera > 0) {
719                                         behind = 0;
720                                         ahead = nera;
721                                 } else {
722                                         /*
723                                          * Request a cluster of pages that is
724                                          * aligned to a VM_FAULT_READ_DEFAULT
725                                          * page offset boundary within the
726                                          * object.  Alignment to a page offset
727                                          * boundary is more likely to coincide
728                                          * with the underlying file system
729                                          * block than alignment to a virtual
730                                          * address boundary.
731                                          */
732                                         cluster_offset = fs.pindex %
733                                             VM_FAULT_READ_DEFAULT;
734                                         behind = ulmin(cluster_offset,
735                                             atop(vaddr - e_start));
736                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
737                                             cluster_offset;
738                                 }
739                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
740                         }
741                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
742                             &behind, &ahead);
743                         if (rv == VM_PAGER_OK) {
744                                 faultcount = behind + 1 + ahead;
745                                 hardfault = true;
746                                 break; /* break to PAGE HAS BEEN FOUND */
747                         }
748                         if (rv == VM_PAGER_ERROR)
749                                 printf("vm_fault: pager read error, pid %d (%s)\n",
750                                     curproc->p_pid, curproc->p_comm);
751
752                         /*
753                          * If an I/O error occurred or the requested page was
754                          * outside the range of the pager, clean up and return
755                          * an error.
756                          */
757                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
758                                 vm_page_lock(fs.m);
759                                 if (fs.m->wire_count == 0)
760                                         vm_page_free(fs.m);
761                                 else
762                                         vm_page_xunbusy_maybelocked(fs.m);
763                                 vm_page_unlock(fs.m);
764                                 fs.m = NULL;
765                                 unlock_and_deallocate(&fs);
766                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
767                                     KERN_PROTECTION_FAILURE);
768                         }
769
770                         /*
771                          * The requested page does not exist at this object/
772                          * offset.  Remove the invalid page from the object,
773                          * waking up anyone waiting for it, and continue on to
774                          * the next object.  However, if this is the top-level
775                          * object, we must leave the busy page in place to
776                          * prevent another process from rushing past us, and
777                          * inserting the page in that object at the same time
778                          * that we are.
779                          */
780                         if (fs.object != fs.first_object) {
781                                 vm_page_lock(fs.m);
782                                 if (fs.m->wire_count == 0)
783                                         vm_page_free(fs.m);
784                                 else
785                                         vm_page_xunbusy_maybelocked(fs.m);
786                                 vm_page_unlock(fs.m);
787                                 fs.m = NULL;
788                         }
789                 }
790
791                 /*
792                  * We get here if the object has default pager (or unwiring) 
793                  * or the pager doesn't have the page.
794                  */
795                 if (fs.object == fs.first_object)
796                         fs.first_m = fs.m;
797
798                 /*
799                  * Move on to the next object.  Lock the next object before
800                  * unlocking the current one.
801                  */
802                 next_object = fs.object->backing_object;
803                 if (next_object == NULL) {
804                         /*
805                          * If there's no object left, fill the page in the top
806                          * object with zeros.
807                          */
808                         if (fs.object != fs.first_object) {
809                                 vm_object_pip_wakeup(fs.object);
810                                 VM_OBJECT_WUNLOCK(fs.object);
811
812                                 fs.object = fs.first_object;
813                                 fs.pindex = fs.first_pindex;
814                                 fs.m = fs.first_m;
815                                 VM_OBJECT_WLOCK(fs.object);
816                         }
817                         fs.first_m = NULL;
818
819                         /*
820                          * Zero the page if necessary and mark it valid.
821                          */
822                         if ((fs.m->flags & PG_ZERO) == 0) {
823                                 pmap_zero_page(fs.m);
824                         } else {
825                                 PCPU_INC(cnt.v_ozfod);
826                         }
827                         PCPU_INC(cnt.v_zfod);
828                         fs.m->valid = VM_PAGE_BITS_ALL;
829                         /* Don't try to prefault neighboring pages. */
830                         faultcount = 1;
831                         break;  /* break to PAGE HAS BEEN FOUND */
832                 } else {
833                         KASSERT(fs.object != next_object,
834                             ("object loop %p", next_object));
835                         VM_OBJECT_WLOCK(next_object);
836                         vm_object_pip_add(next_object, 1);
837                         if (fs.object != fs.first_object)
838                                 vm_object_pip_wakeup(fs.object);
839                         fs.pindex +=
840                             OFF_TO_IDX(fs.object->backing_object_offset);
841                         VM_OBJECT_WUNLOCK(fs.object);
842                         fs.object = next_object;
843                 }
844         }
845
846         vm_page_assert_xbusied(fs.m);
847
848         /*
849          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
850          * is held.]
851          */
852
853         /*
854          * If the page is being written, but isn't already owned by the
855          * top-level object, we have to copy it into a new page owned by the
856          * top-level object.
857          */
858         if (fs.object != fs.first_object) {
859                 /*
860                  * We only really need to copy if we want to write it.
861                  */
862                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
863                         /*
864                          * This allows pages to be virtually copied from a 
865                          * backing_object into the first_object, where the 
866                          * backing object has no other refs to it, and cannot
867                          * gain any more refs.  Instead of a bcopy, we just 
868                          * move the page from the backing object to the 
869                          * first object.  Note that we must mark the page 
870                          * dirty in the first object so that it will go out 
871                          * to swap when needed.
872                          */
873                         is_first_object_locked = false;
874                         if (
875                                 /*
876                                  * Only one shadow object
877                                  */
878                                 (fs.object->shadow_count == 1) &&
879                                 /*
880                                  * No COW refs, except us
881                                  */
882                                 (fs.object->ref_count == 1) &&
883                                 /*
884                                  * No one else can look this object up
885                                  */
886                                 (fs.object->handle == NULL) &&
887                                 /*
888                                  * No other ways to look the object up
889                                  */
890                                 ((fs.object->type == OBJT_DEFAULT) ||
891                                  (fs.object->type == OBJT_SWAP)) &&
892                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
893                                 /*
894                                  * We don't chase down the shadow chain
895                                  */
896                             fs.object == fs.first_object->backing_object) {
897                                 vm_page_lock(fs.m);
898                                 vm_page_remove(fs.m);
899                                 vm_page_unlock(fs.m);
900                                 vm_page_lock(fs.first_m);
901                                 vm_page_replace_checked(fs.m, fs.first_object,
902                                     fs.first_pindex, fs.first_m);
903                                 vm_page_free(fs.first_m);
904                                 vm_page_unlock(fs.first_m);
905                                 vm_page_dirty(fs.m);
906 #if VM_NRESERVLEVEL > 0
907                                 /*
908                                  * Rename the reservation.
909                                  */
910                                 vm_reserv_rename(fs.m, fs.first_object,
911                                     fs.object, OFF_TO_IDX(
912                                     fs.first_object->backing_object_offset));
913 #endif
914                                 /*
915                                  * Removing the page from the backing object
916                                  * unbusied it.
917                                  */
918                                 vm_page_xbusy(fs.m);
919                                 fs.first_m = fs.m;
920                                 fs.m = NULL;
921                                 PCPU_INC(cnt.v_cow_optim);
922                         } else {
923                                 /*
924                                  * Oh, well, lets copy it.
925                                  */
926                                 pmap_copy_page(fs.m, fs.first_m);
927                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
928                                 if (wired && (fault_flags &
929                                     VM_FAULT_WIRE) == 0) {
930                                         vm_page_lock(fs.first_m);
931                                         vm_page_wire(fs.first_m);
932                                         vm_page_unlock(fs.first_m);
933                                         
934                                         vm_page_lock(fs.m);
935                                         vm_page_unwire(fs.m, PQ_INACTIVE);
936                                         vm_page_unlock(fs.m);
937                                 }
938                                 /*
939                                  * We no longer need the old page or object.
940                                  */
941                                 release_page(&fs);
942                         }
943                         /*
944                          * fs.object != fs.first_object due to above 
945                          * conditional
946                          */
947                         vm_object_pip_wakeup(fs.object);
948                         VM_OBJECT_WUNLOCK(fs.object);
949                         /*
950                          * Only use the new page below...
951                          */
952                         fs.object = fs.first_object;
953                         fs.pindex = fs.first_pindex;
954                         fs.m = fs.first_m;
955                         if (!is_first_object_locked)
956                                 VM_OBJECT_WLOCK(fs.object);
957                         PCPU_INC(cnt.v_cow_faults);
958                         curthread->td_cow++;
959                 } else {
960                         prot &= ~VM_PROT_WRITE;
961                 }
962         }
963
964         /*
965          * We must verify that the maps have not changed since our last
966          * lookup.
967          */
968         if (!fs.lookup_still_valid) {
969                 if (!vm_map_trylock_read(fs.map)) {
970                         release_page(&fs);
971                         unlock_and_deallocate(&fs);
972                         goto RetryFault;
973                 }
974                 fs.lookup_still_valid = true;
975                 if (fs.map->timestamp != map_generation) {
976                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
977                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
978
979                         /*
980                          * If we don't need the page any longer, put it on the inactive
981                          * list (the easiest thing to do here).  If no one needs it,
982                          * pageout will grab it eventually.
983                          */
984                         if (result != KERN_SUCCESS) {
985                                 release_page(&fs);
986                                 unlock_and_deallocate(&fs);
987
988                                 /*
989                                  * If retry of map lookup would have blocked then
990                                  * retry fault from start.
991                                  */
992                                 if (result == KERN_FAILURE)
993                                         goto RetryFault;
994                                 return (result);
995                         }
996                         if ((retry_object != fs.first_object) ||
997                             (retry_pindex != fs.first_pindex)) {
998                                 release_page(&fs);
999                                 unlock_and_deallocate(&fs);
1000                                 goto RetryFault;
1001                         }
1002
1003                         /*
1004                          * Check whether the protection has changed or the object has
1005                          * been copied while we left the map unlocked. Changing from
1006                          * read to write permission is OK - we leave the page
1007                          * write-protected, and catch the write fault. Changing from
1008                          * write to read permission means that we can't mark the page
1009                          * write-enabled after all.
1010                          */
1011                         prot &= retry_prot;
1012                 }
1013         }
1014
1015         /*
1016          * If the page was filled by a pager, save the virtual address that
1017          * should be faulted on next under a sequential access pattern to the
1018          * map entry.  A read lock on the map suffices to update this address
1019          * safely.
1020          */
1021         if (hardfault)
1022                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1023
1024         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1025         vm_page_assert_xbusied(fs.m);
1026
1027         /*
1028          * Page must be completely valid or it is not fit to
1029          * map into user space.  vm_pager_get_pages() ensures this.
1030          */
1031         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1032             ("vm_fault: page %p partially invalid", fs.m));
1033         VM_OBJECT_WUNLOCK(fs.object);
1034
1035         /*
1036          * Put this page into the physical map.  We had to do the unlock above
1037          * because pmap_enter() may sleep.  We don't put the page
1038          * back on the active queue until later so that the pageout daemon
1039          * won't find it (yet).
1040          */
1041         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1042             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1043         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1044             wired == 0)
1045                 vm_fault_prefault(&fs, vaddr,
1046                     faultcount > 0 ? behind : PFBAK,
1047                     faultcount > 0 ? ahead : PFFOR);
1048         VM_OBJECT_WLOCK(fs.object);
1049         vm_page_lock(fs.m);
1050
1051         /*
1052          * If the page is not wired down, then put it where the pageout daemon
1053          * can find it.
1054          */
1055         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1056                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1057                 vm_page_wire(fs.m);
1058         } else
1059                 vm_page_activate(fs.m);
1060         if (m_hold != NULL) {
1061                 *m_hold = fs.m;
1062                 vm_page_hold(fs.m);
1063         }
1064         vm_page_unlock(fs.m);
1065         vm_page_xunbusy(fs.m);
1066
1067         /*
1068          * Unlock everything, and return
1069          */
1070         unlock_and_deallocate(&fs);
1071         if (hardfault) {
1072                 PCPU_INC(cnt.v_io_faults);
1073                 curthread->td_ru.ru_majflt++;
1074 #ifdef RACCT
1075                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1076                         PROC_LOCK(curproc);
1077                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1078                                 racct_add_force(curproc, RACCT_WRITEBPS,
1079                                     PAGE_SIZE + behind * PAGE_SIZE);
1080                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1081                         } else {
1082                                 racct_add_force(curproc, RACCT_READBPS,
1083                                     PAGE_SIZE + ahead * PAGE_SIZE);
1084                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1085                         }
1086                         PROC_UNLOCK(curproc);
1087                 }
1088 #endif
1089         } else 
1090                 curthread->td_ru.ru_minflt++;
1091
1092         return (KERN_SUCCESS);
1093 }
1094
1095 /*
1096  * Speed up the reclamation of pages that precede the faulting pindex within
1097  * the first object of the shadow chain.  Essentially, perform the equivalent
1098  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1099  * the faulting pindex by the cluster size when the pages read by vm_fault()
1100  * cross a cluster-size boundary.  The cluster size is the greater of the
1101  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1102  *
1103  * When "fs->first_object" is a shadow object, the pages in the backing object
1104  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1105  * function must only be concerned with pages in the first object.
1106  */
1107 static void
1108 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1109 {
1110         vm_map_entry_t entry;
1111         vm_object_t first_object, object;
1112         vm_offset_t end, start;
1113         vm_page_t m, m_next;
1114         vm_pindex_t pend, pstart;
1115         vm_size_t size;
1116
1117         object = fs->object;
1118         VM_OBJECT_ASSERT_WLOCKED(object);
1119         first_object = fs->first_object;
1120         if (first_object != object) {
1121                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1122                         VM_OBJECT_WUNLOCK(object);
1123                         VM_OBJECT_WLOCK(first_object);
1124                         VM_OBJECT_WLOCK(object);
1125                 }
1126         }
1127         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1128         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1129                 size = VM_FAULT_DONTNEED_MIN;
1130                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1131                         size = pagesizes[1];
1132                 end = rounddown2(vaddr, size);
1133                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1134                     (entry = fs->entry)->start < end) {
1135                         if (end - entry->start < size)
1136                                 start = entry->start;
1137                         else
1138                                 start = end - size;
1139                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1140                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1141                             entry->start);
1142                         m_next = vm_page_find_least(first_object, pstart);
1143                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1144                             entry->start);
1145                         while ((m = m_next) != NULL && m->pindex < pend) {
1146                                 m_next = TAILQ_NEXT(m, listq);
1147                                 if (m->valid != VM_PAGE_BITS_ALL ||
1148                                     vm_page_busied(m))
1149                                         continue;
1150
1151                                 /*
1152                                  * Don't clear PGA_REFERENCED, since it would
1153                                  * likely represent a reference by a different
1154                                  * process.
1155                                  *
1156                                  * Typically, at this point, prefetched pages
1157                                  * are still in the inactive queue.  Only
1158                                  * pages that triggered page faults are in the
1159                                  * active queue.
1160                                  */
1161                                 vm_page_lock(m);
1162                                 vm_page_deactivate(m);
1163                                 vm_page_unlock(m);
1164                         }
1165                 }
1166         }
1167         if (first_object != object)
1168                 VM_OBJECT_WUNLOCK(first_object);
1169 }
1170
1171 /*
1172  * vm_fault_prefault provides a quick way of clustering
1173  * pagefaults into a processes address space.  It is a "cousin"
1174  * of vm_map_pmap_enter, except it runs at page fault time instead
1175  * of mmap time.
1176  */
1177 static void
1178 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1179     int backward, int forward)
1180 {
1181         pmap_t pmap;
1182         vm_map_entry_t entry;
1183         vm_object_t backing_object, lobject;
1184         vm_offset_t addr, starta;
1185         vm_pindex_t pindex;
1186         vm_page_t m;
1187         int i;
1188
1189         pmap = fs->map->pmap;
1190         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1191                 return;
1192
1193         entry = fs->entry;
1194
1195         starta = addra - backward * PAGE_SIZE;
1196         if (starta < entry->start) {
1197                 starta = entry->start;
1198         } else if (starta > addra) {
1199                 starta = 0;
1200         }
1201
1202         /*
1203          * Generate the sequence of virtual addresses that are candidates for
1204          * prefaulting in an outward spiral from the faulting virtual address,
1205          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1206          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1207          * If the candidate address doesn't have a backing physical page, then
1208          * the loop immediately terminates.
1209          */
1210         for (i = 0; i < 2 * imax(backward, forward); i++) {
1211                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1212                     PAGE_SIZE);
1213                 if (addr > addra + forward * PAGE_SIZE)
1214                         addr = 0;
1215
1216                 if (addr < starta || addr >= entry->end)
1217                         continue;
1218
1219                 if (!pmap_is_prefaultable(pmap, addr))
1220                         continue;
1221
1222                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1223                 lobject = entry->object.vm_object;
1224                 VM_OBJECT_RLOCK(lobject);
1225                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1226                     lobject->type == OBJT_DEFAULT &&
1227                     (backing_object = lobject->backing_object) != NULL) {
1228                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1229                             0, ("vm_fault_prefault: unaligned object offset"));
1230                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1231                         VM_OBJECT_RLOCK(backing_object);
1232                         VM_OBJECT_RUNLOCK(lobject);
1233                         lobject = backing_object;
1234                 }
1235                 if (m == NULL) {
1236                         VM_OBJECT_RUNLOCK(lobject);
1237                         break;
1238                 }
1239                 if (m->valid == VM_PAGE_BITS_ALL &&
1240                     (m->flags & PG_FICTITIOUS) == 0)
1241                         pmap_enter_quick(pmap, addr, m, entry->protection);
1242                 VM_OBJECT_RUNLOCK(lobject);
1243         }
1244 }
1245
1246 /*
1247  * Hold each of the physical pages that are mapped by the specified range of
1248  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1249  * and allow the specified types of access, "prot".  If all of the implied
1250  * pages are successfully held, then the number of held pages is returned
1251  * together with pointers to those pages in the array "ma".  However, if any
1252  * of the pages cannot be held, -1 is returned.
1253  */
1254 int
1255 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1256     vm_prot_t prot, vm_page_t *ma, int max_count)
1257 {
1258         vm_offset_t end, va;
1259         vm_page_t *mp;
1260         int count;
1261         boolean_t pmap_failed;
1262
1263         if (len == 0)
1264                 return (0);
1265         end = round_page(addr + len);
1266         addr = trunc_page(addr);
1267
1268         /*
1269          * Check for illegal addresses.
1270          */
1271         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1272                 return (-1);
1273
1274         if (atop(end - addr) > max_count)
1275                 panic("vm_fault_quick_hold_pages: count > max_count");
1276         count = atop(end - addr);
1277
1278         /*
1279          * Most likely, the physical pages are resident in the pmap, so it is
1280          * faster to try pmap_extract_and_hold() first.
1281          */
1282         pmap_failed = FALSE;
1283         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1284                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1285                 if (*mp == NULL)
1286                         pmap_failed = TRUE;
1287                 else if ((prot & VM_PROT_WRITE) != 0 &&
1288                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1289                         /*
1290                          * Explicitly dirty the physical page.  Otherwise, the
1291                          * caller's changes may go unnoticed because they are
1292                          * performed through an unmanaged mapping or by a DMA
1293                          * operation.
1294                          *
1295                          * The object lock is not held here.
1296                          * See vm_page_clear_dirty_mask().
1297                          */
1298                         vm_page_dirty(*mp);
1299                 }
1300         }
1301         if (pmap_failed) {
1302                 /*
1303                  * One or more pages could not be held by the pmap.  Either no
1304                  * page was mapped at the specified virtual address or that
1305                  * mapping had insufficient permissions.  Attempt to fault in
1306                  * and hold these pages.
1307                  */
1308                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1309                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1310                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1311                                 goto error;
1312         }
1313         return (count);
1314 error:  
1315         for (mp = ma; mp < ma + count; mp++)
1316                 if (*mp != NULL) {
1317                         vm_page_lock(*mp);
1318                         vm_page_unhold(*mp);
1319                         vm_page_unlock(*mp);
1320                 }
1321         return (-1);
1322 }
1323
1324 /*
1325  *      Routine:
1326  *              vm_fault_copy_entry
1327  *      Function:
1328  *              Create new shadow object backing dst_entry with private copy of
1329  *              all underlying pages. When src_entry is equal to dst_entry,
1330  *              function implements COW for wired-down map entry. Otherwise,
1331  *              it forks wired entry into dst_map.
1332  *
1333  *      In/out conditions:
1334  *              The source and destination maps must be locked for write.
1335  *              The source map entry must be wired down (or be a sharing map
1336  *              entry corresponding to a main map entry that is wired down).
1337  */
1338 void
1339 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1340     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1341     vm_ooffset_t *fork_charge)
1342 {
1343         vm_object_t backing_object, dst_object, object, src_object;
1344         vm_pindex_t dst_pindex, pindex, src_pindex;
1345         vm_prot_t access, prot;
1346         vm_offset_t vaddr;
1347         vm_page_t dst_m;
1348         vm_page_t src_m;
1349         boolean_t upgrade;
1350
1351 #ifdef  lint
1352         src_map++;
1353 #endif  /* lint */
1354
1355         upgrade = src_entry == dst_entry;
1356         access = prot = dst_entry->protection;
1357
1358         src_object = src_entry->object.vm_object;
1359         src_pindex = OFF_TO_IDX(src_entry->offset);
1360
1361         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1362                 dst_object = src_object;
1363                 vm_object_reference(dst_object);
1364         } else {
1365                 /*
1366                  * Create the top-level object for the destination entry. (Doesn't
1367                  * actually shadow anything - we copy the pages directly.)
1368                  */
1369                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1370                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1371 #if VM_NRESERVLEVEL > 0
1372                 dst_object->flags |= OBJ_COLORED;
1373                 dst_object->pg_color = atop(dst_entry->start);
1374 #endif
1375         }
1376
1377         VM_OBJECT_WLOCK(dst_object);
1378         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1379             ("vm_fault_copy_entry: vm_object not NULL"));
1380         if (src_object != dst_object) {
1381                 dst_entry->object.vm_object = dst_object;
1382                 dst_entry->offset = 0;
1383                 dst_object->charge = dst_entry->end - dst_entry->start;
1384         }
1385         if (fork_charge != NULL) {
1386                 KASSERT(dst_entry->cred == NULL,
1387                     ("vm_fault_copy_entry: leaked swp charge"));
1388                 dst_object->cred = curthread->td_ucred;
1389                 crhold(dst_object->cred);
1390                 *fork_charge += dst_object->charge;
1391         } else if (dst_object->cred == NULL) {
1392                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1393                     dst_entry));
1394                 dst_object->cred = dst_entry->cred;
1395                 dst_entry->cred = NULL;
1396         }
1397
1398         /*
1399          * If not an upgrade, then enter the mappings in the pmap as
1400          * read and/or execute accesses.  Otherwise, enter them as
1401          * write accesses.
1402          *
1403          * A writeable large page mapping is only created if all of
1404          * the constituent small page mappings are modified. Marking
1405          * PTEs as modified on inception allows promotion to happen
1406          * without taking potentially large number of soft faults.
1407          */
1408         if (!upgrade)
1409                 access &= ~VM_PROT_WRITE;
1410
1411         /*
1412          * Loop through all of the virtual pages within the entry's
1413          * range, copying each page from the source object to the
1414          * destination object.  Since the source is wired, those pages
1415          * must exist.  In contrast, the destination is pageable.
1416          * Since the destination object does share any backing storage
1417          * with the source object, all of its pages must be dirtied,
1418          * regardless of whether they can be written.
1419          */
1420         for (vaddr = dst_entry->start, dst_pindex = 0;
1421             vaddr < dst_entry->end;
1422             vaddr += PAGE_SIZE, dst_pindex++) {
1423 again:
1424                 /*
1425                  * Find the page in the source object, and copy it in.
1426                  * Because the source is wired down, the page will be
1427                  * in memory.
1428                  */
1429                 if (src_object != dst_object)
1430                         VM_OBJECT_RLOCK(src_object);
1431                 object = src_object;
1432                 pindex = src_pindex + dst_pindex;
1433                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1434                     (backing_object = object->backing_object) != NULL) {
1435                         /*
1436                          * Unless the source mapping is read-only or
1437                          * it is presently being upgraded from
1438                          * read-only, the first object in the shadow
1439                          * chain should provide all of the pages.  In
1440                          * other words, this loop body should never be
1441                          * executed when the source mapping is already
1442                          * read/write.
1443                          */
1444                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1445                             upgrade,
1446                             ("vm_fault_copy_entry: main object missing page"));
1447
1448                         VM_OBJECT_RLOCK(backing_object);
1449                         pindex += OFF_TO_IDX(object->backing_object_offset);
1450                         if (object != dst_object)
1451                                 VM_OBJECT_RUNLOCK(object);
1452                         object = backing_object;
1453                 }
1454                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1455
1456                 if (object != dst_object) {
1457                         /*
1458                          * Allocate a page in the destination object.
1459                          */
1460                         dst_m = vm_page_alloc(dst_object, (src_object ==
1461                             dst_object ? src_pindex : 0) + dst_pindex,
1462                             VM_ALLOC_NORMAL);
1463                         if (dst_m == NULL) {
1464                                 VM_OBJECT_WUNLOCK(dst_object);
1465                                 VM_OBJECT_RUNLOCK(object);
1466                                 VM_WAIT;
1467                                 VM_OBJECT_WLOCK(dst_object);
1468                                 goto again;
1469                         }
1470                         pmap_copy_page(src_m, dst_m);
1471                         VM_OBJECT_RUNLOCK(object);
1472                         dst_m->valid = VM_PAGE_BITS_ALL;
1473                         dst_m->dirty = VM_PAGE_BITS_ALL;
1474                 } else {
1475                         dst_m = src_m;
1476                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1477                                 goto again;
1478                         vm_page_xbusy(dst_m);
1479                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1480                             ("invalid dst page %p", dst_m));
1481                 }
1482                 VM_OBJECT_WUNLOCK(dst_object);
1483
1484                 /*
1485                  * Enter it in the pmap. If a wired, copy-on-write
1486                  * mapping is being replaced by a write-enabled
1487                  * mapping, then wire that new mapping.
1488                  */
1489                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1490                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1491
1492                 /*
1493                  * Mark it no longer busy, and put it on the active list.
1494                  */
1495                 VM_OBJECT_WLOCK(dst_object);
1496                 
1497                 if (upgrade) {
1498                         if (src_m != dst_m) {
1499                                 vm_page_lock(src_m);
1500                                 vm_page_unwire(src_m, PQ_INACTIVE);
1501                                 vm_page_unlock(src_m);
1502                                 vm_page_lock(dst_m);
1503                                 vm_page_wire(dst_m);
1504                                 vm_page_unlock(dst_m);
1505                         } else {
1506                                 KASSERT(dst_m->wire_count > 0,
1507                                     ("dst_m %p is not wired", dst_m));
1508                         }
1509                 } else {
1510                         vm_page_lock(dst_m);
1511                         vm_page_activate(dst_m);
1512                         vm_page_unlock(dst_m);
1513                 }
1514                 vm_page_xunbusy(dst_m);
1515         }
1516         VM_OBJECT_WUNLOCK(dst_object);
1517         if (upgrade) {
1518                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1519                 vm_object_deallocate(src_object);
1520         }
1521 }
1522
1523 /*
1524  * Block entry into the machine-independent layer's page fault handler by
1525  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1526  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1527  * spurious page faults. 
1528  */
1529 int
1530 vm_fault_disable_pagefaults(void)
1531 {
1532
1533         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1534 }
1535
1536 void
1537 vm_fault_enable_pagefaults(int save)
1538 {
1539
1540         curthread_pflags_restore(save);
1541 }