]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
MFC
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107 #define PAGEORDER_SIZE (PFBAK+PFFOR)
108
109 static int prefault_pageorder[] = {
110         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
111         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
112         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
113         -4 * PAGE_SIZE, 4 * PAGE_SIZE
114 };
115
116 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
117 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
118
119 #define VM_FAULT_READ_BEHIND    8
120 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
121 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
122 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
123 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
124
125 struct faultstate {
126         vm_page_t m;
127         vm_object_t object;
128         vm_pindex_t pindex;
129         vm_page_t first_m;
130         vm_object_t     first_object;
131         vm_pindex_t first_pindex;
132         vm_map_t map;
133         vm_map_entry_t entry;
134         int lookup_still_valid;
135         struct vnode *vp;
136 };
137
138 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
139
140 static inline void
141 release_page(struct faultstate *fs)
142 {
143
144         vm_page_wakeup(fs->m);
145         vm_page_lock(fs->m);
146         vm_page_deactivate(fs->m);
147         vm_page_unlock(fs->m);
148         fs->m = NULL;
149 }
150
151 static inline void
152 unlock_map(struct faultstate *fs)
153 {
154
155         if (fs->lookup_still_valid) {
156                 vm_map_lookup_done(fs->map, fs->entry);
157                 fs->lookup_still_valid = FALSE;
158         }
159 }
160
161 static void
162 unlock_and_deallocate(struct faultstate *fs)
163 {
164
165         vm_object_pip_wakeup(fs->object);
166         VM_OBJECT_UNLOCK(fs->object);
167         if (fs->object != fs->first_object) {
168                 VM_OBJECT_LOCK(fs->first_object);
169                 vm_page_lock(fs->first_m);
170                 vm_page_free(fs->first_m);
171                 vm_page_unlock(fs->first_m);
172                 vm_object_pip_wakeup(fs->first_object);
173                 VM_OBJECT_UNLOCK(fs->first_object);
174                 fs->first_m = NULL;
175         }
176         vm_object_deallocate(fs->first_object);
177         unlock_map(fs); 
178         if (fs->vp != NULL) { 
179                 vput(fs->vp);
180                 fs->vp = NULL;
181         }
182 }
183
184 /*
185  * TRYPAGER - used by vm_fault to calculate whether the pager for the
186  *            current object *might* contain the page.
187  *
188  *            default objects are zero-fill, there is no real pager.
189  */
190 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
191                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
192
193 /*
194  *      vm_fault:
195  *
196  *      Handle a page fault occurring at the given address,
197  *      requiring the given permissions, in the map specified.
198  *      If successful, the page is inserted into the
199  *      associated physical map.
200  *
201  *      NOTE: the given address should be truncated to the
202  *      proper page address.
203  *
204  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
205  *      a standard error specifying why the fault is fatal is returned.
206  *
207  *      The map in question must be referenced, and remains so.
208  *      Caller may hold no locks.
209  */
210 int
211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212     int fault_flags)
213 {
214         struct thread *td;
215         int result;
216
217         td = curthread;
218         if ((td->td_pflags & TDP_NOFAULTING) != 0)
219                 return (KERN_PROTECTION_FAILURE);
220 #ifdef KTRACE
221         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
222                 ktrfault(vaddr, fault_type);
223 #endif
224         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
225             NULL);
226 #ifdef KTRACE
227         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
228                 ktrfaultend(result);
229 #endif
230         return (result);
231 }
232
233 int
234 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
235     int fault_flags, vm_page_t *m_hold)
236 {
237         vm_prot_t prot;
238         long ahead, behind;
239         int alloc_req, era, faultcount, nera, reqpage, result;
240         boolean_t growstack, is_first_object_locked, wired;
241         int map_generation;
242         vm_object_t next_object;
243         vm_page_t marray[VM_FAULT_READ_MAX];
244         int hardfault;
245         struct faultstate fs;
246         struct vnode *vp;
247         int locked, error;
248
249         hardfault = 0;
250         growstack = TRUE;
251         PCPU_INC(cnt.v_vm_faults);
252         fs.vp = NULL;
253         faultcount = reqpage = 0;
254
255 RetryFault:;
256
257         /*
258          * Find the backing store object and offset into it to begin the
259          * search.
260          */
261         fs.map = map;
262         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
263             &fs.first_object, &fs.first_pindex, &prot, &wired);
264         if (result != KERN_SUCCESS) {
265                 if (growstack && result == KERN_INVALID_ADDRESS &&
266                     map != kernel_map) {
267                         result = vm_map_growstack(curproc, vaddr);
268                         if (result != KERN_SUCCESS)
269                                 return (KERN_FAILURE);
270                         growstack = FALSE;
271                         goto RetryFault;
272                 }
273                 return (result);
274         }
275
276         map_generation = fs.map->timestamp;
277
278         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279                 panic("vm_fault: fault on nofault entry, addr: %lx",
280                     (u_long)vaddr);
281         }
282
283         /*
284          * Make a reference to this object to prevent its disposal while we
285          * are messing with it.  Once we have the reference, the map is free
286          * to be diddled.  Since objects reference their shadows (and copies),
287          * they will stay around as well.
288          *
289          * Bump the paging-in-progress count to prevent size changes (e.g. 
290          * truncation operations) during I/O.  This must be done after
291          * obtaining the vnode lock in order to avoid possible deadlocks.
292          */
293         VM_OBJECT_LOCK(fs.first_object);
294         vm_object_reference_locked(fs.first_object);
295         vm_object_pip_add(fs.first_object, 1);
296
297         fs.lookup_still_valid = TRUE;
298
299         if (wired)
300                 fault_type = prot | (fault_type & VM_PROT_COPY);
301
302         fs.first_m = NULL;
303
304         /*
305          * Search for the page at object/offset.
306          */
307         fs.object = fs.first_object;
308         fs.pindex = fs.first_pindex;
309         while (TRUE) {
310                 /*
311                  * If the object is dead, we stop here
312                  */
313                 if (fs.object->flags & OBJ_DEAD) {
314                         unlock_and_deallocate(&fs);
315                         return (KERN_PROTECTION_FAILURE);
316                 }
317
318                 /*
319                  * See if page is resident
320                  */
321                 fs.m = vm_page_lookup(fs.object, fs.pindex);
322                 if (fs.m != NULL) {
323                         /* 
324                          * check for page-based copy on write.
325                          * We check fs.object == fs.first_object so
326                          * as to ensure the legacy COW mechanism is
327                          * used when the page in question is part of
328                          * a shadow object.  Otherwise, vm_page_cowfault()
329                          * removes the page from the backing object, 
330                          * which is not what we want.
331                          */
332                         vm_page_lock(fs.m);
333                         if ((fs.m->cow) && 
334                             (fault_type & VM_PROT_WRITE) &&
335                             (fs.object == fs.first_object)) {
336                                 vm_page_cowfault(fs.m);
337                                 unlock_and_deallocate(&fs);
338                                 goto RetryFault;
339                         }
340
341                         /*
342                          * Wait/Retry if the page is busy.  We have to do this
343                          * if the page is busy via either VPO_BUSY or 
344                          * vm_page_t->busy because the vm_pager may be using
345                          * vm_page_t->busy for pageouts ( and even pageins if
346                          * it is the vnode pager ), and we could end up trying
347                          * to pagein and pageout the same page simultaneously.
348                          *
349                          * We can theoretically allow the busy case on a read
350                          * fault if the page is marked valid, but since such
351                          * pages are typically already pmap'd, putting that
352                          * special case in might be more effort then it is 
353                          * worth.  We cannot under any circumstances mess
354                          * around with a vm_page_t->busy page except, perhaps,
355                          * to pmap it.
356                          */
357                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
358                                 /*
359                                  * Reference the page before unlocking and
360                                  * sleeping so that the page daemon is less
361                                  * likely to reclaim it. 
362                                  */
363                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
364                                 vm_page_unlock(fs.m);
365                                 if (fs.object != fs.first_object) {
366                                         if (!VM_OBJECT_TRYLOCK(
367                                             fs.first_object)) {
368                                                 VM_OBJECT_UNLOCK(fs.object);
369                                                 VM_OBJECT_LOCK(fs.first_object);
370                                                 VM_OBJECT_LOCK(fs.object);
371                                         }
372                                         vm_page_lock(fs.first_m);
373                                         vm_page_free(fs.first_m);
374                                         vm_page_unlock(fs.first_m);
375                                         vm_object_pip_wakeup(fs.first_object);
376                                         VM_OBJECT_UNLOCK(fs.first_object);
377                                         fs.first_m = NULL;
378                                 }
379                                 unlock_map(&fs);
380                                 if (fs.m == vm_page_lookup(fs.object,
381                                     fs.pindex)) {
382                                         vm_page_sleep_if_busy(fs.m, TRUE,
383                                             "vmpfw");
384                                 }
385                                 vm_object_pip_wakeup(fs.object);
386                                 VM_OBJECT_UNLOCK(fs.object);
387                                 PCPU_INC(cnt.v_intrans);
388                                 vm_object_deallocate(fs.first_object);
389                                 goto RetryFault;
390                         }
391                         vm_page_remque(fs.m);
392                         vm_page_unlock(fs.m);
393
394                         /*
395                          * Mark page busy for other processes, and the 
396                          * pagedaemon.  If it still isn't completely valid
397                          * (readable), jump to readrest, else break-out ( we
398                          * found the page ).
399                          */
400                         vm_page_busy(fs.m);
401                         if (fs.m->valid != VM_PAGE_BITS_ALL)
402                                 goto readrest;
403                         break;
404                 }
405
406                 /*
407                  * Page is not resident, If this is the search termination
408                  * or the pager might contain the page, allocate a new page.
409                  */
410                 if (TRYPAGER || fs.object == fs.first_object) {
411                         if (fs.pindex >= fs.object->size) {
412                                 unlock_and_deallocate(&fs);
413                                 return (KERN_PROTECTION_FAILURE);
414                         }
415
416                         /*
417                          * Allocate a new page for this object/offset pair.
418                          *
419                          * Unlocked read of the p_flag is harmless. At
420                          * worst, the P_KILLED might be not observed
421                          * there, and allocation can fail, causing
422                          * restart and new reading of the p_flag.
423                          */
424                         fs.m = NULL;
425                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
426 #if VM_NRESERVLEVEL > 0
427                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
428                                         fs.object->flags |= OBJ_COLORED;
429                                         fs.object->pg_color = atop(vaddr) -
430                                             fs.pindex;
431                                 }
432 #endif
433                                 alloc_req = P_KILLED(curproc) ?
434                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
435                                 if (fs.object->type != OBJT_VNODE &&
436                                     fs.object->backing_object == NULL)
437                                         alloc_req |= VM_ALLOC_ZERO;
438                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
439                                     alloc_req);
440                         }
441                         if (fs.m == NULL) {
442                                 unlock_and_deallocate(&fs);
443                                 VM_WAITPFAULT;
444                                 goto RetryFault;
445                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
446                                 break;
447                 }
448
449 readrest:
450                 /*
451                  * We have found a valid page or we have allocated a new page.
452                  * The page thus may not be valid or may not be entirely 
453                  * valid.
454                  *
455                  * Attempt to fault-in the page if there is a chance that the
456                  * pager has it, and potentially fault in additional pages
457                  * at the same time.
458                  */
459                 if (TRYPAGER) {
460                         int rv;
461                         u_char behavior = vm_map_entry_behavior(fs.entry);
462
463                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
464                             P_KILLED(curproc)) {
465                                 behind = 0;
466                                 ahead = 0;
467                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
468                                 behind = 0;
469                                 ahead = atop(fs.entry->end - vaddr) - 1;
470                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
471                                         ahead = VM_FAULT_READ_AHEAD_MAX;
472                                 if (fs.pindex == fs.entry->next_read)
473                                         vm_fault_cache_behind(&fs,
474                                             VM_FAULT_READ_MAX);
475                         } else {
476                                 /*
477                                  * If this is a sequential page fault, then
478                                  * arithmetically increase the number of pages
479                                  * in the read-ahead window.  Otherwise, reset
480                                  * the read-ahead window to its smallest size.
481                                  */
482                                 behind = atop(vaddr - fs.entry->start);
483                                 if (behind > VM_FAULT_READ_BEHIND)
484                                         behind = VM_FAULT_READ_BEHIND;
485                                 ahead = atop(fs.entry->end - vaddr) - 1;
486                                 era = fs.entry->read_ahead;
487                                 if (fs.pindex == fs.entry->next_read) {
488                                         nera = era + behind;
489                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
490                                                 nera = VM_FAULT_READ_AHEAD_MAX;
491                                         behind = 0;
492                                         if (ahead > nera)
493                                                 ahead = nera;
494                                         if (era == VM_FAULT_READ_AHEAD_MAX)
495                                                 vm_fault_cache_behind(&fs,
496                                                     VM_FAULT_CACHE_BEHIND);
497                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
498                                         ahead = VM_FAULT_READ_AHEAD_MIN;
499                                 if (era != ahead)
500                                         fs.entry->read_ahead = ahead;
501                         }
502
503                         /*
504                          * Call the pager to retrieve the data, if any, after
505                          * releasing the lock on the map.  We hold a ref on
506                          * fs.object and the pages are VPO_BUSY'd.
507                          */
508                         unlock_map(&fs);
509
510                         if (fs.object->type == OBJT_VNODE) {
511                                 vp = fs.object->handle;
512                                 if (vp == fs.vp)
513                                         goto vnode_locked;
514                                 else if (fs.vp != NULL) {
515                                         vput(fs.vp);
516                                         fs.vp = NULL;
517                                 }
518                                 locked = VOP_ISLOCKED(vp);
519
520                                 if (locked != LK_EXCLUSIVE)
521                                         locked = LK_SHARED;
522                                 /* Do not sleep for vnode lock while fs.m is busy */
523                                 error = vget(vp, locked | LK_CANRECURSE |
524                                     LK_NOWAIT, curthread);
525                                 if (error != 0) {
526                                         vhold(vp);
527                                         release_page(&fs);
528                                         unlock_and_deallocate(&fs);
529                                         error = vget(vp, locked | LK_RETRY |
530                                             LK_CANRECURSE, curthread);
531                                         vdrop(vp);
532                                         fs.vp = vp;
533                                         KASSERT(error == 0,
534                                             ("vm_fault: vget failed"));
535                                         goto RetryFault;
536                                 }
537                                 fs.vp = vp;
538                         }
539 vnode_locked:
540                         KASSERT(fs.vp == NULL || !fs.map->system_map,
541                             ("vm_fault: vnode-backed object mapped by system map"));
542
543                         /*
544                          * now we find out if any other pages should be paged
545                          * in at this time this routine checks to see if the
546                          * pages surrounding this fault reside in the same
547                          * object as the page for this fault.  If they do,
548                          * then they are faulted in also into the object.  The
549                          * array "marray" returned contains an array of
550                          * vm_page_t structs where one of them is the
551                          * vm_page_t passed to the routine.  The reqpage
552                          * return value is the index into the marray for the
553                          * vm_page_t passed to the routine.
554                          *
555                          * fs.m plus the additional pages are VPO_BUSY'd.
556                          */
557                         faultcount = vm_fault_additional_pages(
558                             fs.m, behind, ahead, marray, &reqpage);
559
560                         rv = faultcount ?
561                             vm_pager_get_pages(fs.object, marray, faultcount,
562                                 reqpage) : VM_PAGER_FAIL;
563
564                         if (rv == VM_PAGER_OK) {
565                                 /*
566                                  * Found the page. Leave it busy while we play
567                                  * with it.
568                                  */
569
570                                 /*
571                                  * Relookup in case pager changed page. Pager
572                                  * is responsible for disposition of old page
573                                  * if moved.
574                                  */
575                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
576                                 if (!fs.m) {
577                                         unlock_and_deallocate(&fs);
578                                         goto RetryFault;
579                                 }
580
581                                 hardfault++;
582                                 break; /* break to PAGE HAS BEEN FOUND */
583                         }
584                         /*
585                          * Remove the bogus page (which does not exist at this
586                          * object/offset); before doing so, we must get back
587                          * our object lock to preserve our invariant.
588                          *
589                          * Also wake up any other process that may want to bring
590                          * in this page.
591                          *
592                          * If this is the top-level object, we must leave the
593                          * busy page to prevent another process from rushing
594                          * past us, and inserting the page in that object at
595                          * the same time that we are.
596                          */
597                         if (rv == VM_PAGER_ERROR)
598                                 printf("vm_fault: pager read error, pid %d (%s)\n",
599                                     curproc->p_pid, curproc->p_comm);
600                         /*
601                          * Data outside the range of the pager or an I/O error
602                          */
603                         /*
604                          * XXX - the check for kernel_map is a kludge to work
605                          * around having the machine panic on a kernel space
606                          * fault w/ I/O error.
607                          */
608                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
609                                 (rv == VM_PAGER_BAD)) {
610                                 vm_page_lock(fs.m);
611                                 vm_page_free(fs.m);
612                                 vm_page_unlock(fs.m);
613                                 fs.m = NULL;
614                                 unlock_and_deallocate(&fs);
615                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
616                         }
617                         if (fs.object != fs.first_object) {
618                                 vm_page_lock(fs.m);
619                                 vm_page_free(fs.m);
620                                 vm_page_unlock(fs.m);
621                                 fs.m = NULL;
622                                 /*
623                                  * XXX - we cannot just fall out at this
624                                  * point, m has been freed and is invalid!
625                                  */
626                         }
627                 }
628
629                 /*
630                  * We get here if the object has default pager (or unwiring) 
631                  * or the pager doesn't have the page.
632                  */
633                 if (fs.object == fs.first_object)
634                         fs.first_m = fs.m;
635
636                 /*
637                  * Move on to the next object.  Lock the next object before
638                  * unlocking the current one.
639                  */
640                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
641                 next_object = fs.object->backing_object;
642                 if (next_object == NULL) {
643                         /*
644                          * If there's no object left, fill the page in the top
645                          * object with zeros.
646                          */
647                         if (fs.object != fs.first_object) {
648                                 vm_object_pip_wakeup(fs.object);
649                                 VM_OBJECT_UNLOCK(fs.object);
650
651                                 fs.object = fs.first_object;
652                                 fs.pindex = fs.first_pindex;
653                                 fs.m = fs.first_m;
654                                 VM_OBJECT_LOCK(fs.object);
655                         }
656                         fs.first_m = NULL;
657
658                         /*
659                          * Zero the page if necessary and mark it valid.
660                          */
661                         if ((fs.m->flags & PG_ZERO) == 0) {
662                                 pmap_zero_page(fs.m);
663                         } else {
664                                 PCPU_INC(cnt.v_ozfod);
665                         }
666                         PCPU_INC(cnt.v_zfod);
667                         fs.m->valid = VM_PAGE_BITS_ALL;
668                         break;  /* break to PAGE HAS BEEN FOUND */
669                 } else {
670                         KASSERT(fs.object != next_object,
671                             ("object loop %p", next_object));
672                         VM_OBJECT_LOCK(next_object);
673                         vm_object_pip_add(next_object, 1);
674                         if (fs.object != fs.first_object)
675                                 vm_object_pip_wakeup(fs.object);
676                         VM_OBJECT_UNLOCK(fs.object);
677                         fs.object = next_object;
678                 }
679         }
680
681         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
682             ("vm_fault: not busy after main loop"));
683
684         /*
685          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
686          * is held.]
687          */
688
689         /*
690          * If the page is being written, but isn't already owned by the
691          * top-level object, we have to copy it into a new page owned by the
692          * top-level object.
693          */
694         if (fs.object != fs.first_object) {
695                 /*
696                  * We only really need to copy if we want to write it.
697                  */
698                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
699                         /*
700                          * This allows pages to be virtually copied from a 
701                          * backing_object into the first_object, where the 
702                          * backing object has no other refs to it, and cannot
703                          * gain any more refs.  Instead of a bcopy, we just 
704                          * move the page from the backing object to the 
705                          * first object.  Note that we must mark the page 
706                          * dirty in the first object so that it will go out 
707                          * to swap when needed.
708                          */
709                         is_first_object_locked = FALSE;
710                         if (
711                                 /*
712                                  * Only one shadow object
713                                  */
714                                 (fs.object->shadow_count == 1) &&
715                                 /*
716                                  * No COW refs, except us
717                                  */
718                                 (fs.object->ref_count == 1) &&
719                                 /*
720                                  * No one else can look this object up
721                                  */
722                                 (fs.object->handle == NULL) &&
723                                 /*
724                                  * No other ways to look the object up
725                                  */
726                                 ((fs.object->type == OBJT_DEFAULT) ||
727                                  (fs.object->type == OBJT_SWAP)) &&
728                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
729                                 /*
730                                  * We don't chase down the shadow chain
731                                  */
732                             fs.object == fs.first_object->backing_object) {
733                                 /*
734                                  * get rid of the unnecessary page
735                                  */
736                                 vm_page_lock(fs.first_m);
737                                 vm_page_free(fs.first_m);
738                                 vm_page_unlock(fs.first_m);
739                                 /*
740                                  * grab the page and put it into the 
741                                  * process'es object.  The page is 
742                                  * automatically made dirty.
743                                  */
744                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
745                                 vm_page_busy(fs.m);
746                                 fs.first_m = fs.m;
747                                 fs.m = NULL;
748                                 PCPU_INC(cnt.v_cow_optim);
749                         } else {
750                                 /*
751                                  * Oh, well, lets copy it.
752                                  */
753                                 pmap_copy_page(fs.m, fs.first_m);
754                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
755                                 if (wired && (fault_flags &
756                                     VM_FAULT_CHANGE_WIRING) == 0) {
757                                         vm_page_lock(fs.first_m);
758                                         vm_page_wire(fs.first_m);
759                                         vm_page_unlock(fs.first_m);
760                                         
761                                         vm_page_lock(fs.m);
762                                         vm_page_unwire(fs.m, FALSE);
763                                         vm_page_unlock(fs.m);
764                                 }
765                                 /*
766                                  * We no longer need the old page or object.
767                                  */
768                                 release_page(&fs);
769                         }
770                         /*
771                          * fs.object != fs.first_object due to above 
772                          * conditional
773                          */
774                         vm_object_pip_wakeup(fs.object);
775                         VM_OBJECT_UNLOCK(fs.object);
776                         /*
777                          * Only use the new page below...
778                          */
779                         fs.object = fs.first_object;
780                         fs.pindex = fs.first_pindex;
781                         fs.m = fs.first_m;
782                         if (!is_first_object_locked)
783                                 VM_OBJECT_LOCK(fs.object);
784                         PCPU_INC(cnt.v_cow_faults);
785                         curthread->td_cow++;
786                 } else {
787                         prot &= ~VM_PROT_WRITE;
788                 }
789         }
790
791         /*
792          * We must verify that the maps have not changed since our last
793          * lookup.
794          */
795         if (!fs.lookup_still_valid) {
796                 vm_object_t retry_object;
797                 vm_pindex_t retry_pindex;
798                 vm_prot_t retry_prot;
799
800                 if (!vm_map_trylock_read(fs.map)) {
801                         release_page(&fs);
802                         unlock_and_deallocate(&fs);
803                         goto RetryFault;
804                 }
805                 fs.lookup_still_valid = TRUE;
806                 if (fs.map->timestamp != map_generation) {
807                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
808                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
809
810                         /*
811                          * If we don't need the page any longer, put it on the inactive
812                          * list (the easiest thing to do here).  If no one needs it,
813                          * pageout will grab it eventually.
814                          */
815                         if (result != KERN_SUCCESS) {
816                                 release_page(&fs);
817                                 unlock_and_deallocate(&fs);
818
819                                 /*
820                                  * If retry of map lookup would have blocked then
821                                  * retry fault from start.
822                                  */
823                                 if (result == KERN_FAILURE)
824                                         goto RetryFault;
825                                 return (result);
826                         }
827                         if ((retry_object != fs.first_object) ||
828                             (retry_pindex != fs.first_pindex)) {
829                                 release_page(&fs);
830                                 unlock_and_deallocate(&fs);
831                                 goto RetryFault;
832                         }
833
834                         /*
835                          * Check whether the protection has changed or the object has
836                          * been copied while we left the map unlocked. Changing from
837                          * read to write permission is OK - we leave the page
838                          * write-protected, and catch the write fault. Changing from
839                          * write to read permission means that we can't mark the page
840                          * write-enabled after all.
841                          */
842                         prot &= retry_prot;
843                 }
844         }
845         /*
846          * If the page was filled by a pager, update the map entry's
847          * last read offset.  Since the pager does not return the
848          * actual set of pages that it read, this update is based on
849          * the requested set.  Typically, the requested and actual
850          * sets are the same.
851          *
852          * XXX The following assignment modifies the map
853          * without holding a write lock on it.
854          */
855         if (hardfault)
856                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
857
858         if ((prot & VM_PROT_WRITE) != 0 ||
859             (fault_flags & VM_FAULT_DIRTY) != 0) {
860                 vm_object_set_writeable_dirty(fs.object);
861
862                 /*
863                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
864                  * if the page is already dirty to prevent data written with
865                  * the expectation of being synced from not being synced.
866                  * Likewise if this entry does not request NOSYNC then make
867                  * sure the page isn't marked NOSYNC.  Applications sharing
868                  * data should use the same flags to avoid ping ponging.
869                  */
870                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
871                         if (fs.m->dirty == 0)
872                                 fs.m->oflags |= VPO_NOSYNC;
873                 } else {
874                         fs.m->oflags &= ~VPO_NOSYNC;
875                 }
876
877                 /*
878                  * If the fault is a write, we know that this page is being
879                  * written NOW so dirty it explicitly to save on 
880                  * pmap_is_modified() calls later.
881                  *
882                  * Also tell the backing pager, if any, that it should remove
883                  * any swap backing since the page is now dirty.
884                  */
885                 if (((fault_type & VM_PROT_WRITE) != 0 &&
886                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
887                     (fault_flags & VM_FAULT_DIRTY) != 0) {
888                         vm_page_dirty(fs.m);
889                         vm_pager_page_unswapped(fs.m);
890                 }
891         }
892
893         /*
894          * Page had better still be busy
895          */
896         KASSERT(fs.m->oflags & VPO_BUSY,
897                 ("vm_fault: page %p not busy!", fs.m));
898         /*
899          * Page must be completely valid or it is not fit to
900          * map into user space.  vm_pager_get_pages() ensures this.
901          */
902         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
903             ("vm_fault: page %p partially invalid", fs.m));
904         VM_OBJECT_UNLOCK(fs.object);
905
906         /*
907          * Put this page into the physical map.  We had to do the unlock above
908          * because pmap_enter() may sleep.  We don't put the page
909          * back on the active queue until later so that the pageout daemon
910          * won't find it (yet).
911          */
912         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
913         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
914                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
915         VM_OBJECT_LOCK(fs.object);
916         vm_page_lock(fs.m);
917
918         /*
919          * If the page is not wired down, then put it where the pageout daemon
920          * can find it.
921          */
922         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
923                 if (wired)
924                         vm_page_wire(fs.m);
925                 else
926                         vm_page_unwire(fs.m, 1);
927         } else
928                 vm_page_activate(fs.m);
929         if (m_hold != NULL) {
930                 *m_hold = fs.m;
931                 vm_page_hold(fs.m);
932         }
933         vm_page_unlock(fs.m);
934         vm_page_wakeup(fs.m);
935
936         /*
937          * Unlock everything, and return
938          */
939         unlock_and_deallocate(&fs);
940         if (hardfault) {
941                 PCPU_INC(cnt.v_io_faults);
942                 curthread->td_ru.ru_majflt++;
943         } else 
944                 curthread->td_ru.ru_minflt++;
945
946         return (KERN_SUCCESS);
947 }
948
949 /*
950  * Speed up the reclamation of up to "distance" pages that precede the
951  * faulting pindex within the first object of the shadow chain.
952  */
953 static void
954 vm_fault_cache_behind(const struct faultstate *fs, int distance)
955 {
956         vm_object_t first_object, object;
957         vm_page_t m, m_prev;
958         vm_pindex_t pindex;
959
960         object = fs->object;
961         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
962         first_object = fs->first_object;
963         if (first_object != object) {
964                 if (!VM_OBJECT_TRYLOCK(first_object)) {
965                         VM_OBJECT_UNLOCK(object);
966                         VM_OBJECT_LOCK(first_object);
967                         VM_OBJECT_LOCK(object);
968                 }
969         }
970         /* Neither fictitious nor unmanaged pages can be cached. */
971         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
972                 if (fs->first_pindex < distance)
973                         pindex = 0;
974                 else
975                         pindex = fs->first_pindex - distance;
976                 if (pindex < OFF_TO_IDX(fs->entry->offset))
977                         pindex = OFF_TO_IDX(fs->entry->offset);
978                 m = first_object != object ? fs->first_m : fs->m;
979                 KASSERT((m->oflags & VPO_BUSY) != 0,
980                     ("vm_fault_cache_behind: page %p is not busy", m));
981                 m_prev = vm_page_prev(m);
982                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
983                     m->valid == VM_PAGE_BITS_ALL) {
984                         m_prev = vm_page_prev(m);
985                         if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
986                                 continue;
987                         vm_page_lock(m);
988                         if (m->hold_count == 0 && m->wire_count == 0) {
989                                 pmap_remove_all(m);
990                                 vm_page_aflag_clear(m, PGA_REFERENCED);
991                                 if (m->dirty != 0)
992                                         vm_page_deactivate(m);
993                                 else
994                                         vm_page_cache(m);
995                         }
996                         vm_page_unlock(m);
997                 }
998         }
999         if (first_object != object)
1000                 VM_OBJECT_UNLOCK(first_object);
1001 }
1002
1003 /*
1004  * vm_fault_prefault provides a quick way of clustering
1005  * pagefaults into a processes address space.  It is a "cousin"
1006  * of vm_map_pmap_enter, except it runs at page fault time instead
1007  * of mmap time.
1008  */
1009 static void
1010 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1011 {
1012         int i;
1013         vm_offset_t addr, starta;
1014         vm_pindex_t pindex;
1015         vm_page_t m;
1016         vm_object_t object;
1017
1018         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1019                 return;
1020
1021         object = entry->object.vm_object;
1022
1023         starta = addra - PFBAK * PAGE_SIZE;
1024         if (starta < entry->start) {
1025                 starta = entry->start;
1026         } else if (starta > addra) {
1027                 starta = 0;
1028         }
1029
1030         for (i = 0; i < PAGEORDER_SIZE; i++) {
1031                 vm_object_t backing_object, lobject;
1032
1033                 addr = addra + prefault_pageorder[i];
1034                 if (addr > addra + (PFFOR * PAGE_SIZE))
1035                         addr = 0;
1036
1037                 if (addr < starta || addr >= entry->end)
1038                         continue;
1039
1040                 if (!pmap_is_prefaultable(pmap, addr))
1041                         continue;
1042
1043                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1044                 lobject = object;
1045                 VM_OBJECT_LOCK(lobject);
1046                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1047                     lobject->type == OBJT_DEFAULT &&
1048                     (backing_object = lobject->backing_object) != NULL) {
1049                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1050                             0, ("vm_fault_prefault: unaligned object offset"));
1051                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1052                         VM_OBJECT_LOCK(backing_object);
1053                         VM_OBJECT_UNLOCK(lobject);
1054                         lobject = backing_object;
1055                 }
1056                 /*
1057                  * give-up when a page is not in memory
1058                  */
1059                 if (m == NULL) {
1060                         VM_OBJECT_UNLOCK(lobject);
1061                         break;
1062                 }
1063                 if (m->valid == VM_PAGE_BITS_ALL &&
1064                     (m->flags & PG_FICTITIOUS) == 0)
1065                         pmap_enter_quick(pmap, addr, m, entry->protection);
1066                 VM_OBJECT_UNLOCK(lobject);
1067         }
1068 }
1069
1070 /*
1071  * Hold each of the physical pages that are mapped by the specified range of
1072  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1073  * and allow the specified types of access, "prot".  If all of the implied
1074  * pages are successfully held, then the number of held pages is returned
1075  * together with pointers to those pages in the array "ma".  However, if any
1076  * of the pages cannot be held, -1 is returned.
1077  */
1078 int
1079 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1080     vm_prot_t prot, vm_page_t *ma, int max_count)
1081 {
1082         vm_offset_t end, va;
1083         vm_page_t *mp;
1084         int count;
1085         boolean_t pmap_failed;
1086
1087         if (len == 0)
1088                 return (0);
1089         end = round_page(addr + len);   
1090         addr = trunc_page(addr);
1091
1092         /*
1093          * Check for illegal addresses.
1094          */
1095         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1096                 return (-1);
1097
1098         count = howmany(end - addr, PAGE_SIZE);
1099         if (count > max_count)
1100                 panic("vm_fault_quick_hold_pages: count > max_count");
1101
1102         /*
1103          * Most likely, the physical pages are resident in the pmap, so it is
1104          * faster to try pmap_extract_and_hold() first.
1105          */
1106         pmap_failed = FALSE;
1107         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1108                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1109                 if (*mp == NULL)
1110                         pmap_failed = TRUE;
1111                 else if ((prot & VM_PROT_WRITE) != 0 &&
1112                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1113                         /*
1114                          * Explicitly dirty the physical page.  Otherwise, the
1115                          * caller's changes may go unnoticed because they are
1116                          * performed through an unmanaged mapping or by a DMA
1117                          * operation.
1118                          *
1119                          * The object lock is not held here.
1120                          * See vm_page_clear_dirty_mask().
1121                          */
1122                         vm_page_dirty(*mp);
1123                 }
1124         }
1125         if (pmap_failed) {
1126                 /*
1127                  * One or more pages could not be held by the pmap.  Either no
1128                  * page was mapped at the specified virtual address or that
1129                  * mapping had insufficient permissions.  Attempt to fault in
1130                  * and hold these pages.
1131                  */
1132                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1133                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1134                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1135                                 goto error;
1136         }
1137         return (count);
1138 error:  
1139         for (mp = ma; mp < ma + count; mp++)
1140                 if (*mp != NULL) {
1141                         vm_page_lock(*mp);
1142                         vm_page_unhold(*mp);
1143                         vm_page_unlock(*mp);
1144                 }
1145         return (-1);
1146 }
1147
1148 /*
1149  *      vm_fault_wire:
1150  *
1151  *      Wire down a range of virtual addresses in a map.
1152  */
1153 int
1154 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1155     boolean_t fictitious)
1156 {
1157         vm_offset_t va;
1158         int rv;
1159
1160         /*
1161          * We simulate a fault to get the page and enter it in the physical
1162          * map.  For user wiring, we only ask for read access on currently
1163          * read-only sections.
1164          */
1165         for (va = start; va < end; va += PAGE_SIZE) {
1166                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1167                 if (rv) {
1168                         if (va != start)
1169                                 vm_fault_unwire(map, start, va, fictitious);
1170                         return (rv);
1171                 }
1172         }
1173         return (KERN_SUCCESS);
1174 }
1175
1176 /*
1177  *      vm_fault_unwire:
1178  *
1179  *      Unwire a range of virtual addresses in a map.
1180  */
1181 void
1182 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1183     boolean_t fictitious)
1184 {
1185         vm_paddr_t pa;
1186         vm_offset_t va;
1187         vm_page_t m;
1188         pmap_t pmap;
1189
1190         pmap = vm_map_pmap(map);
1191
1192         /*
1193          * Since the pages are wired down, we must be able to get their
1194          * mappings from the physical map system.
1195          */
1196         for (va = start; va < end; va += PAGE_SIZE) {
1197                 pa = pmap_extract(pmap, va);
1198                 if (pa != 0) {
1199                         pmap_change_wiring(pmap, va, FALSE);
1200                         if (!fictitious) {
1201                                 m = PHYS_TO_VM_PAGE(pa);
1202                                 vm_page_lock(m);
1203                                 vm_page_unwire(m, TRUE);
1204                                 vm_page_unlock(m);
1205                         }
1206                 }
1207         }
1208 }
1209
1210 /*
1211  *      Routine:
1212  *              vm_fault_copy_entry
1213  *      Function:
1214  *              Create new shadow object backing dst_entry with private copy of
1215  *              all underlying pages. When src_entry is equal to dst_entry,
1216  *              function implements COW for wired-down map entry. Otherwise,
1217  *              it forks wired entry into dst_map.
1218  *
1219  *      In/out conditions:
1220  *              The source and destination maps must be locked for write.
1221  *              The source map entry must be wired down (or be a sharing map
1222  *              entry corresponding to a main map entry that is wired down).
1223  */
1224 void
1225 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1226     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1227     vm_ooffset_t *fork_charge)
1228 {
1229         vm_object_t backing_object, dst_object, object, src_object;
1230         vm_pindex_t dst_pindex, pindex, src_pindex;
1231         vm_prot_t access, prot;
1232         vm_offset_t vaddr;
1233         vm_page_t dst_m;
1234         vm_page_t src_m;
1235         boolean_t src_readonly, upgrade;
1236
1237 #ifdef  lint
1238         src_map++;
1239 #endif  /* lint */
1240
1241         upgrade = src_entry == dst_entry;
1242
1243         src_object = src_entry->object.vm_object;
1244         src_pindex = OFF_TO_IDX(src_entry->offset);
1245         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1246
1247         /*
1248          * Create the top-level object for the destination entry. (Doesn't
1249          * actually shadow anything - we copy the pages directly.)
1250          */
1251         dst_object = vm_object_allocate(OBJT_DEFAULT,
1252             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1253 #if VM_NRESERVLEVEL > 0
1254         dst_object->flags |= OBJ_COLORED;
1255         dst_object->pg_color = atop(dst_entry->start);
1256 #endif
1257
1258         VM_OBJECT_LOCK(dst_object);
1259         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1260             ("vm_fault_copy_entry: vm_object not NULL"));
1261         dst_entry->object.vm_object = dst_object;
1262         dst_entry->offset = 0;
1263         dst_object->charge = dst_entry->end - dst_entry->start;
1264         if (fork_charge != NULL) {
1265                 KASSERT(dst_entry->cred == NULL,
1266                     ("vm_fault_copy_entry: leaked swp charge"));
1267                 dst_object->cred = curthread->td_ucred;
1268                 crhold(dst_object->cred);
1269                 *fork_charge += dst_object->charge;
1270         } else {
1271                 dst_object->cred = dst_entry->cred;
1272                 dst_entry->cred = NULL;
1273         }
1274         access = prot = dst_entry->protection;
1275         /*
1276          * If not an upgrade, then enter the mappings in the pmap as
1277          * read and/or execute accesses.  Otherwise, enter them as
1278          * write accesses.
1279          *
1280          * A writeable large page mapping is only created if all of
1281          * the constituent small page mappings are modified. Marking
1282          * PTEs as modified on inception allows promotion to happen
1283          * without taking potentially large number of soft faults.
1284          */
1285         if (!upgrade)
1286                 access &= ~VM_PROT_WRITE;
1287
1288         /*
1289          * Loop through all of the virtual pages within the entry's
1290          * range, copying each page from the source object to the
1291          * destination object.  Since the source is wired, those pages
1292          * must exist.  In contrast, the destination is pageable.
1293          * Since the destination object does share any backing storage
1294          * with the source object, all of its pages must be dirtied,
1295          * regardless of whether they can be written.
1296          */
1297         for (vaddr = dst_entry->start, dst_pindex = 0;
1298             vaddr < dst_entry->end;
1299             vaddr += PAGE_SIZE, dst_pindex++) {
1300
1301                 /*
1302                  * Allocate a page in the destination object.
1303                  */
1304                 do {
1305                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1306                             VM_ALLOC_NORMAL);
1307                         if (dst_m == NULL) {
1308                                 VM_OBJECT_UNLOCK(dst_object);
1309                                 VM_WAIT;
1310                                 VM_OBJECT_LOCK(dst_object);
1311                         }
1312                 } while (dst_m == NULL);
1313
1314                 /*
1315                  * Find the page in the source object, and copy it in.
1316                  * (Because the source is wired down, the page will be in
1317                  * memory.)
1318                  */
1319                 VM_OBJECT_LOCK(src_object);
1320                 object = src_object;
1321                 pindex = src_pindex + dst_pindex;
1322                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1323                     src_readonly &&
1324                     (backing_object = object->backing_object) != NULL) {
1325                         /*
1326                          * Allow fallback to backing objects if we are reading.
1327                          */
1328                         VM_OBJECT_LOCK(backing_object);
1329                         pindex += OFF_TO_IDX(object->backing_object_offset);
1330                         VM_OBJECT_UNLOCK(object);
1331                         object = backing_object;
1332                 }
1333                 if (src_m == NULL)
1334                         panic("vm_fault_copy_wired: page missing");
1335                 pmap_copy_page(src_m, dst_m);
1336                 VM_OBJECT_UNLOCK(object);
1337                 dst_m->valid = VM_PAGE_BITS_ALL;
1338                 dst_m->dirty = VM_PAGE_BITS_ALL;
1339                 VM_OBJECT_UNLOCK(dst_object);
1340
1341                 /*
1342                  * Enter it in the pmap. If a wired, copy-on-write
1343                  * mapping is being replaced by a write-enabled
1344                  * mapping, then wire that new mapping.
1345                  */
1346                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1347
1348                 /*
1349                  * Mark it no longer busy, and put it on the active list.
1350                  */
1351                 VM_OBJECT_LOCK(dst_object);
1352                 
1353                 if (upgrade) {
1354                         vm_page_lock(src_m);
1355                         vm_page_unwire(src_m, 0);
1356                         vm_page_unlock(src_m);
1357
1358                         vm_page_lock(dst_m);
1359                         vm_page_wire(dst_m);
1360                         vm_page_unlock(dst_m);
1361                 } else {
1362                         vm_page_lock(dst_m);
1363                         vm_page_activate(dst_m);
1364                         vm_page_unlock(dst_m);
1365                 }
1366                 vm_page_wakeup(dst_m);
1367         }
1368         VM_OBJECT_UNLOCK(dst_object);
1369         if (upgrade) {
1370                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1371                 vm_object_deallocate(src_object);
1372         }
1373 }
1374
1375
1376 /*
1377  * This routine checks around the requested page for other pages that
1378  * might be able to be faulted in.  This routine brackets the viable
1379  * pages for the pages to be paged in.
1380  *
1381  * Inputs:
1382  *      m, rbehind, rahead
1383  *
1384  * Outputs:
1385  *  marray (array of vm_page_t), reqpage (index of requested page)
1386  *
1387  * Return value:
1388  *  number of pages in marray
1389  */
1390 static int
1391 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1392         vm_page_t m;
1393         int rbehind;
1394         int rahead;
1395         vm_page_t *marray;
1396         int *reqpage;
1397 {
1398         int i,j;
1399         vm_object_t object;
1400         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1401         vm_page_t rtm;
1402         int cbehind, cahead;
1403
1404         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1405
1406         object = m->object;
1407         pindex = m->pindex;
1408         cbehind = cahead = 0;
1409
1410         /*
1411          * if the requested page is not available, then give up now
1412          */
1413         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1414                 return 0;
1415         }
1416
1417         if ((cbehind == 0) && (cahead == 0)) {
1418                 *reqpage = 0;
1419                 marray[0] = m;
1420                 return 1;
1421         }
1422
1423         if (rahead > cahead) {
1424                 rahead = cahead;
1425         }
1426
1427         if (rbehind > cbehind) {
1428                 rbehind = cbehind;
1429         }
1430
1431         /*
1432          * scan backward for the read behind pages -- in memory 
1433          */
1434         if (pindex > 0) {
1435                 if (rbehind > pindex) {
1436                         rbehind = pindex;
1437                         startpindex = 0;
1438                 } else {
1439                         startpindex = pindex - rbehind;
1440                 }
1441
1442                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1443                     rtm->pindex >= startpindex)
1444                         startpindex = rtm->pindex + 1;
1445
1446                 /* tpindex is unsigned; beware of numeric underflow. */
1447                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1448                     tpindex < pindex; i++, tpindex--) {
1449
1450                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1451                             VM_ALLOC_IFNOTCACHED);
1452                         if (rtm == NULL) {
1453                                 /*
1454                                  * Shift the allocated pages to the
1455                                  * beginning of the array.
1456                                  */
1457                                 for (j = 0; j < i; j++) {
1458                                         marray[j] = marray[j + tpindex + 1 -
1459                                             startpindex];
1460                                 }
1461                                 break;
1462                         }
1463
1464                         marray[tpindex - startpindex] = rtm;
1465                 }
1466         } else {
1467                 startpindex = 0;
1468                 i = 0;
1469         }
1470
1471         marray[i] = m;
1472         /* page offset of the required page */
1473         *reqpage = i;
1474
1475         tpindex = pindex + 1;
1476         i++;
1477
1478         /*
1479          * scan forward for the read ahead pages
1480          */
1481         endpindex = tpindex + rahead;
1482         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1483                 endpindex = rtm->pindex;
1484         if (endpindex > object->size)
1485                 endpindex = object->size;
1486
1487         for (; tpindex < endpindex; i++, tpindex++) {
1488
1489                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1490                     VM_ALLOC_IFNOTCACHED);
1491                 if (rtm == NULL) {
1492                         break;
1493                 }
1494
1495                 marray[i] = rtm;
1496         }
1497
1498         /* return number of pages */
1499         return i;
1500 }
1501
1502 /*
1503  * Block entry into the machine-independent layer's page fault handler by
1504  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1505  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1506  * spurious page faults. 
1507  */
1508 int
1509 vm_fault_disable_pagefaults(void)
1510 {
1511
1512         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1513 }
1514
1515 void
1516 vm_fault_enable_pagefaults(int save)
1517 {
1518
1519         curthread_pflags_restore(save);
1520 }