]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
(fault 7/9) Move fault population and allocation into a dedicated function
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         /* Fault parameters. */
124         vm_offset_t     vaddr;
125         vm_page_t       *m_hold;
126         vm_prot_t       fault_type;
127         vm_prot_t       prot;
128         int             fault_flags;
129         int             oom;
130         boolean_t       wired;
131
132         /* Page reference for cow. */
133         vm_page_t m_cow;
134
135         /* Current object. */
136         vm_object_t     object;
137         vm_pindex_t     pindex;
138         vm_page_t       m;
139
140         /* Top-level map object. */
141         vm_object_t     first_object;
142         vm_pindex_t     first_pindex;
143         vm_page_t       first_m;
144
145         /* Map state. */
146         vm_map_t        map;
147         vm_map_entry_t  entry;
148         int             map_generation;
149         bool            lookup_still_valid;
150
151         /* Vnode if locked. */
152         struct vnode    *vp;
153 };
154
155 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
156             int ahead);
157 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
158             int backward, int forward, bool obj_locked);
159
160 static int vm_pfault_oom_attempts = 3;
161 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
162     &vm_pfault_oom_attempts, 0,
163     "Number of page allocation attempts in page fault handler before it "
164     "triggers OOM handling");
165
166 static int vm_pfault_oom_wait = 10;
167 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
168     &vm_pfault_oom_wait, 0,
169     "Number of seconds to wait for free pages before retrying "
170     "the page fault handler");
171
172 static inline void
173 fault_page_release(vm_page_t *mp)
174 {
175         vm_page_t m;
176
177         m = *mp;
178         if (m != NULL) {
179                 /*
180                  * We are likely to loop around again and attempt to busy
181                  * this page.  Deactivating it leaves it available for
182                  * pageout while optimizing fault restarts.
183                  */
184                 vm_page_deactivate(m);
185                 vm_page_xunbusy(m);
186                 *mp = NULL;
187         }
188 }
189
190 static inline void
191 fault_page_free(vm_page_t *mp)
192 {
193         vm_page_t m;
194
195         m = *mp;
196         if (m != NULL) {
197                 VM_OBJECT_ASSERT_WLOCKED(m->object);
198                 if (!vm_page_wired(m))
199                         vm_page_free(m);
200                 else
201                         vm_page_xunbusy(m);
202                 *mp = NULL;
203         }
204 }
205
206 static inline void
207 unlock_map(struct faultstate *fs)
208 {
209
210         if (fs->lookup_still_valid) {
211                 vm_map_lookup_done(fs->map, fs->entry);
212                 fs->lookup_still_valid = false;
213         }
214 }
215
216 static void
217 unlock_vp(struct faultstate *fs)
218 {
219
220         if (fs->vp != NULL) {
221                 vput(fs->vp);
222                 fs->vp = NULL;
223         }
224 }
225
226 static void
227 fault_deallocate(struct faultstate *fs)
228 {
229
230         fault_page_release(&fs->m_cow);
231         fault_page_release(&fs->m);
232         vm_object_pip_wakeup(fs->object);
233         if (fs->object != fs->first_object) {
234                 VM_OBJECT_WLOCK(fs->first_object);
235                 fault_page_free(&fs->first_m);
236                 VM_OBJECT_WUNLOCK(fs->first_object);
237                 vm_object_pip_wakeup(fs->first_object);
238         }
239         vm_object_deallocate(fs->first_object);
240         unlock_map(fs);
241         unlock_vp(fs);
242 }
243
244 static void
245 unlock_and_deallocate(struct faultstate *fs)
246 {
247
248         VM_OBJECT_WUNLOCK(fs->object);
249         fault_deallocate(fs);
250 }
251
252 static void
253 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
254 {
255         bool need_dirty;
256
257         if (((fs->prot & VM_PROT_WRITE) == 0 &&
258             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
259             (m->oflags & VPO_UNMANAGED) != 0)
260                 return;
261
262         VM_PAGE_OBJECT_BUSY_ASSERT(m);
263
264         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
265             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
266             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
267
268         vm_object_set_writeable_dirty(m->object);
269
270         /*
271          * If the fault is a write, we know that this page is being
272          * written NOW so dirty it explicitly to save on
273          * pmap_is_modified() calls later.
274          *
275          * Also, since the page is now dirty, we can possibly tell
276          * the pager to release any swap backing the page.
277          */
278         if (need_dirty && vm_page_set_dirty(m) == 0) {
279                 /*
280                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
281                  * if the page is already dirty to prevent data written with
282                  * the expectation of being synced from not being synced.
283                  * Likewise if this entry does not request NOSYNC then make
284                  * sure the page isn't marked NOSYNC.  Applications sharing
285                  * data should use the same flags to avoid ping ponging.
286                  */
287                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
288                         vm_page_aflag_set(m, PGA_NOSYNC);
289                 else
290                         vm_page_aflag_clear(m, PGA_NOSYNC);
291         }
292
293 }
294
295 /*
296  * Unlocks fs.first_object and fs.map on success.
297  */
298 static int
299 vm_fault_soft_fast(struct faultstate *fs)
300 {
301         vm_page_t m, m_map;
302 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
303     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
304     VM_NRESERVLEVEL > 0
305         vm_page_t m_super;
306         int flags;
307 #endif
308         int psind, rv;
309         vm_offset_t vaddr;
310
311         MPASS(fs->vp == NULL);
312         vaddr = fs->vaddr;
313         vm_object_busy(fs->first_object);
314         m = vm_page_lookup(fs->first_object, fs->first_pindex);
315         /* A busy page can be mapped for read|execute access. */
316         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
317             vm_page_busied(m)) || !vm_page_all_valid(m)) {
318                 rv = KERN_FAILURE;
319                 goto out;
320         }
321         m_map = m;
322         psind = 0;
323 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
324     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
325     VM_NRESERVLEVEL > 0
326         if ((m->flags & PG_FICTITIOUS) == 0 &&
327             (m_super = vm_reserv_to_superpage(m)) != NULL &&
328             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
329             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
330             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
331             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
332             pmap_ps_enabled(fs->map->pmap)) {
333                 flags = PS_ALL_VALID;
334                 if ((fs->prot & VM_PROT_WRITE) != 0) {
335                         /*
336                          * Create a superpage mapping allowing write access
337                          * only if none of the constituent pages are busy and
338                          * all of them are already dirty (except possibly for
339                          * the page that was faulted on).
340                          */
341                         flags |= PS_NONE_BUSY;
342                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
343                                 flags |= PS_ALL_DIRTY;
344                 }
345                 if (vm_page_ps_test(m_super, flags, m)) {
346                         m_map = m_super;
347                         psind = m_super->psind;
348                         vaddr = rounddown2(vaddr, pagesizes[psind]);
349                         /* Preset the modified bit for dirty superpages. */
350                         if ((flags & PS_ALL_DIRTY) != 0)
351                                 fs->fault_type |= VM_PROT_WRITE;
352                 }
353         }
354 #endif
355         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
356             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
357         if (rv != KERN_SUCCESS)
358                 goto out;
359         if (fs->m_hold != NULL) {
360                 (*fs->m_hold) = m;
361                 vm_page_wire(m);
362         }
363         if (psind == 0 && !fs->wired)
364                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
365         VM_OBJECT_RUNLOCK(fs->first_object);
366         vm_fault_dirty(fs, m);
367         vm_map_lookup_done(fs->map, fs->entry);
368         curthread->td_ru.ru_minflt++;
369
370 out:
371         vm_object_unbusy(fs->first_object);
372         return (rv);
373 }
374
375 static void
376 vm_fault_restore_map_lock(struct faultstate *fs)
377 {
378
379         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
380         MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
381
382         if (!vm_map_trylock_read(fs->map)) {
383                 VM_OBJECT_WUNLOCK(fs->first_object);
384                 vm_map_lock_read(fs->map);
385                 VM_OBJECT_WLOCK(fs->first_object);
386         }
387         fs->lookup_still_valid = true;
388 }
389
390 static void
391 vm_fault_populate_check_page(vm_page_t m)
392 {
393
394         /*
395          * Check each page to ensure that the pager is obeying the
396          * interface: the page must be installed in the object, fully
397          * valid, and exclusively busied.
398          */
399         MPASS(m != NULL);
400         MPASS(vm_page_all_valid(m));
401         MPASS(vm_page_xbusied(m));
402 }
403
404 static void
405 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
406     vm_pindex_t last)
407 {
408         vm_page_t m;
409         vm_pindex_t pidx;
410
411         VM_OBJECT_ASSERT_WLOCKED(object);
412         MPASS(first <= last);
413         for (pidx = first, m = vm_page_lookup(object, pidx);
414             pidx <= last; pidx++, m = vm_page_next(m)) {
415                 vm_fault_populate_check_page(m);
416                 vm_page_deactivate(m);
417                 vm_page_xunbusy(m);
418         }
419 }
420
421 static int
422 vm_fault_populate(struct faultstate *fs)
423 {
424         vm_offset_t vaddr;
425         vm_page_t m;
426         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
427         int i, npages, psind, rv;
428
429         MPASS(fs->object == fs->first_object);
430         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
431         MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
432         MPASS(fs->first_object->backing_object == NULL);
433         MPASS(fs->lookup_still_valid);
434
435         pager_first = OFF_TO_IDX(fs->entry->offset);
436         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
437         unlock_map(fs);
438         unlock_vp(fs);
439
440         /*
441          * Call the pager (driver) populate() method.
442          *
443          * There is no guarantee that the method will be called again
444          * if the current fault is for read, and a future fault is
445          * for write.  Report the entry's maximum allowed protection
446          * to the driver.
447          */
448         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
449             fs->fault_type, fs->entry->max_protection, &pager_first, &pager_last);
450
451         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
452         if (rv == VM_PAGER_BAD) {
453                 /*
454                  * VM_PAGER_BAD is the backdoor for a pager to request
455                  * normal fault handling.
456                  */
457                 vm_fault_restore_map_lock(fs);
458                 if (fs->map->timestamp != fs->map_generation)
459                         return (KERN_RESTART);
460                 return (KERN_NOT_RECEIVER);
461         }
462         if (rv != VM_PAGER_OK)
463                 return (KERN_FAILURE); /* AKA SIGSEGV */
464
465         /* Ensure that the driver is obeying the interface. */
466         MPASS(pager_first <= pager_last);
467         MPASS(fs->first_pindex <= pager_last);
468         MPASS(fs->first_pindex >= pager_first);
469         MPASS(pager_last < fs->first_object->size);
470
471         vm_fault_restore_map_lock(fs);
472         if (fs->map->timestamp != fs->map_generation) {
473                 vm_fault_populate_cleanup(fs->first_object, pager_first,
474                     pager_last);
475                 return (KERN_RESTART);
476         }
477
478         /*
479          * The map is unchanged after our last unlock.  Process the fault.
480          *
481          * The range [pager_first, pager_last] that is given to the
482          * pager is only a hint.  The pager may populate any range
483          * within the object that includes the requested page index.
484          * In case the pager expanded the range, clip it to fit into
485          * the map entry.
486          */
487         map_first = OFF_TO_IDX(fs->entry->offset);
488         if (map_first > pager_first) {
489                 vm_fault_populate_cleanup(fs->first_object, pager_first,
490                     map_first - 1);
491                 pager_first = map_first;
492         }
493         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
494         if (map_last < pager_last) {
495                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
496                     pager_last);
497                 pager_last = map_last;
498         }
499         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
500             pidx <= pager_last;
501             pidx += npages, m = vm_page_next(&m[npages - 1])) {
502                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
503 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
504     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
505                 psind = m->psind;
506                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
507                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
508                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
509                         psind = 0;
510 #else
511                 psind = 0;
512 #endif          
513                 npages = atop(pagesizes[psind]);
514                 for (i = 0; i < npages; i++) {
515                         vm_fault_populate_check_page(&m[i]);
516                         vm_fault_dirty(fs, &m[i]);
517                 }
518                 VM_OBJECT_WUNLOCK(fs->first_object);
519                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
520                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
521 #if defined(__amd64__)
522                 if (psind > 0 && rv == KERN_FAILURE) {
523                         for (i = 0; i < npages; i++) {
524                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
525                                     &m[i], fs->prot, fs->fault_type |
526                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
527                                 MPASS(rv == KERN_SUCCESS);
528                         }
529                 }
530 #else
531                 MPASS(rv == KERN_SUCCESS);
532 #endif
533                 VM_OBJECT_WLOCK(fs->first_object);
534                 for (i = 0; i < npages; i++) {
535                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
536                                 vm_page_wire(&m[i]);
537                         else
538                                 vm_page_activate(&m[i]);
539                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
540                                 (*fs->m_hold) = &m[i];
541                                 vm_page_wire(&m[i]);
542                         }
543                         vm_page_xunbusy(&m[i]);
544                 }
545         }
546         curthread->td_ru.ru_majflt++;
547         return (KERN_SUCCESS);
548 }
549
550 static int prot_fault_translation;
551 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
552     &prot_fault_translation, 0,
553     "Control signal to deliver on protection fault");
554
555 /* compat definition to keep common code for signal translation */
556 #define UCODE_PAGEFLT   12
557 #ifdef T_PAGEFLT
558 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
559 #endif
560
561 /*
562  *      vm_fault_trap:
563  *
564  *      Handle a page fault occurring at the given address,
565  *      requiring the given permissions, in the map specified.
566  *      If successful, the page is inserted into the
567  *      associated physical map.
568  *
569  *      NOTE: the given address should be truncated to the
570  *      proper page address.
571  *
572  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
573  *      a standard error specifying why the fault is fatal is returned.
574  *
575  *      The map in question must be referenced, and remains so.
576  *      Caller may hold no locks.
577  */
578 int
579 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
580     int fault_flags, int *signo, int *ucode)
581 {
582         int result;
583
584         MPASS(signo == NULL || ucode != NULL);
585 #ifdef KTRACE
586         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
587                 ktrfault(vaddr, fault_type);
588 #endif
589         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
590             NULL);
591         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
592             result == KERN_INVALID_ADDRESS ||
593             result == KERN_RESOURCE_SHORTAGE ||
594             result == KERN_PROTECTION_FAILURE ||
595             result == KERN_OUT_OF_BOUNDS,
596             ("Unexpected Mach error %d from vm_fault()", result));
597 #ifdef KTRACE
598         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
599                 ktrfaultend(result);
600 #endif
601         if (result != KERN_SUCCESS && signo != NULL) {
602                 switch (result) {
603                 case KERN_FAILURE:
604                 case KERN_INVALID_ADDRESS:
605                         *signo = SIGSEGV;
606                         *ucode = SEGV_MAPERR;
607                         break;
608                 case KERN_RESOURCE_SHORTAGE:
609                         *signo = SIGBUS;
610                         *ucode = BUS_OOMERR;
611                         break;
612                 case KERN_OUT_OF_BOUNDS:
613                         *signo = SIGBUS;
614                         *ucode = BUS_OBJERR;
615                         break;
616                 case KERN_PROTECTION_FAILURE:
617                         if (prot_fault_translation == 0) {
618                                 /*
619                                  * Autodetect.  This check also covers
620                                  * the images without the ABI-tag ELF
621                                  * note.
622                                  */
623                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
624                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
625                                         *signo = SIGSEGV;
626                                         *ucode = SEGV_ACCERR;
627                                 } else {
628                                         *signo = SIGBUS;
629                                         *ucode = UCODE_PAGEFLT;
630                                 }
631                         } else if (prot_fault_translation == 1) {
632                                 /* Always compat mode. */
633                                 *signo = SIGBUS;
634                                 *ucode = UCODE_PAGEFLT;
635                         } else {
636                                 /* Always SIGSEGV mode. */
637                                 *signo = SIGSEGV;
638                                 *ucode = SEGV_ACCERR;
639                         }
640                         break;
641                 default:
642                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
643                             result));
644                         break;
645                 }
646         }
647         return (result);
648 }
649
650 static int
651 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
652 {
653         struct vnode *vp;
654         int error, locked;
655
656         if (fs->object->type != OBJT_VNODE)
657                 return (KERN_SUCCESS);
658         vp = fs->object->handle;
659         if (vp == fs->vp) {
660                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
661                 return (KERN_SUCCESS);
662         }
663
664         /*
665          * Perform an unlock in case the desired vnode changed while
666          * the map was unlocked during a retry.
667          */
668         unlock_vp(fs);
669
670         locked = VOP_ISLOCKED(vp);
671         if (locked != LK_EXCLUSIVE)
672                 locked = LK_SHARED;
673
674         /*
675          * We must not sleep acquiring the vnode lock while we have
676          * the page exclusive busied or the object's
677          * paging-in-progress count incremented.  Otherwise, we could
678          * deadlock.
679          */
680         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread);
681         if (error == 0) {
682                 fs->vp = vp;
683                 return (KERN_SUCCESS);
684         }
685
686         vhold(vp);
687         if (objlocked)
688                 unlock_and_deallocate(fs);
689         else
690                 fault_deallocate(fs);
691         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread);
692         vdrop(vp);
693         fs->vp = vp;
694         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
695         return (KERN_RESOURCE_SHORTAGE);
696 }
697
698 /*
699  * Calculate the desired readahead.  Handle drop-behind.
700  *
701  * Returns the number of readahead blocks to pass to the pager.
702  */
703 static int
704 vm_fault_readahead(struct faultstate *fs)
705 {
706         int era, nera;
707         u_char behavior;
708
709         KASSERT(fs->lookup_still_valid, ("map unlocked"));
710         era = fs->entry->read_ahead;
711         behavior = vm_map_entry_behavior(fs->entry);
712         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
713                 nera = 0;
714         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
715                 nera = VM_FAULT_READ_AHEAD_MAX;
716                 if (fs->vaddr == fs->entry->next_read)
717                         vm_fault_dontneed(fs, fs->vaddr, nera);
718         } else if (fs->vaddr == fs->entry->next_read) {
719                 /*
720                  * This is a sequential fault.  Arithmetically
721                  * increase the requested number of pages in
722                  * the read-ahead window.  The requested
723                  * number of pages is "# of sequential faults
724                  * x (read ahead min + 1) + read ahead min"
725                  */
726                 nera = VM_FAULT_READ_AHEAD_MIN;
727                 if (era > 0) {
728                         nera += era + 1;
729                         if (nera > VM_FAULT_READ_AHEAD_MAX)
730                                 nera = VM_FAULT_READ_AHEAD_MAX;
731                 }
732                 if (era == VM_FAULT_READ_AHEAD_MAX)
733                         vm_fault_dontneed(fs, fs->vaddr, nera);
734         } else {
735                 /*
736                  * This is a non-sequential fault.
737                  */
738                 nera = 0;
739         }
740         if (era != nera) {
741                 /*
742                  * A read lock on the map suffices to update
743                  * the read ahead count safely.
744                  */
745                 fs->entry->read_ahead = nera;
746         }
747
748         return (nera);
749 }
750
751 static int
752 vm_fault_lookup(struct faultstate *fs)
753 {
754         int result;
755
756         KASSERT(!fs->lookup_still_valid,
757            ("vm_fault_lookup: Map already locked."));
758         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
759             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
760             &fs->first_pindex, &fs->prot, &fs->wired);
761         if (result != KERN_SUCCESS) {
762                 unlock_vp(fs);
763                 return (result);
764         }
765
766         fs->map_generation = fs->map->timestamp;
767
768         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
769                 panic("%s: fault on nofault entry, addr: %#lx",
770                     __func__, (u_long)fs->vaddr);
771         }
772
773         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
774             fs->entry->wiring_thread != curthread) {
775                 vm_map_unlock_read(fs->map);
776                 vm_map_lock(fs->map);
777                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
778                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
779                         unlock_vp(fs);
780                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
781                         vm_map_unlock_and_wait(fs->map, 0);
782                 } else
783                         vm_map_unlock(fs->map);
784                 return (KERN_RESOURCE_SHORTAGE);
785         }
786
787         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
788
789         if (fs->wired)
790                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
791         else
792                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
793                     ("!fs->wired && VM_FAULT_WIRE"));
794         fs->lookup_still_valid = true;
795
796         return (KERN_SUCCESS);
797 }
798
799 static int
800 vm_fault_relookup(struct faultstate *fs)
801 {
802         vm_object_t retry_object;
803         vm_pindex_t retry_pindex;
804         vm_prot_t retry_prot;
805         int result;
806
807         if (!vm_map_trylock_read(fs->map))
808                 return (KERN_RESTART);
809
810         fs->lookup_still_valid = true;
811         if (fs->map->timestamp == fs->map_generation)
812                 return (KERN_SUCCESS);
813
814         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
815             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
816             &fs->wired);
817         if (result != KERN_SUCCESS) {
818                 /*
819                  * If retry of map lookup would have blocked then
820                  * retry fault from start.
821                  */
822                 if (result == KERN_FAILURE)
823                         return (KERN_RESTART);
824                 return (result);
825         }
826         if (retry_object != fs->first_object ||
827             retry_pindex != fs->first_pindex)
828                 return (KERN_RESTART);
829
830         /*
831          * Check whether the protection has changed or the object has
832          * been copied while we left the map unlocked. Changing from
833          * read to write permission is OK - we leave the page
834          * write-protected, and catch the write fault. Changing from
835          * write to read permission means that we can't mark the page
836          * write-enabled after all.
837          */
838         fs->prot &= retry_prot;
839         fs->fault_type &= retry_prot;
840         if (fs->prot == 0)
841                 return (KERN_RESTART);
842
843         /* Reassert because wired may have changed. */
844         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
845             ("!wired && VM_FAULT_WIRE"));
846
847         return (KERN_SUCCESS);
848 }
849
850 static void
851 vm_fault_cow(struct faultstate *fs)
852 {
853         bool is_first_object_locked;
854
855         /*
856          * This allows pages to be virtually copied from a backing_object
857          * into the first_object, where the backing object has no other
858          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
859          * we just move the page from the backing object to the first
860          * object.  Note that we must mark the page dirty in the first
861          * object so that it will go out to swap when needed.
862          */
863         is_first_object_locked = false;
864         if (
865             /*
866              * Only one shadow object and no other refs.
867              */
868             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
869             /*
870              * No other ways to look the object up
871              */
872             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
873             /*
874              * We don't chase down the shadow chain and we can acquire locks.
875              */
876             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
877             fs->object == fs->first_object->backing_object &&
878             VM_OBJECT_TRYWLOCK(fs->object)) {
879
880                 /*
881                  * Remove but keep xbusy for replace.  fs->m is moved into
882                  * fs->first_object and left busy while fs->first_m is
883                  * conditionally freed.
884                  */
885                 vm_page_remove_xbusy(fs->m);
886                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
887                     fs->first_m);
888                 vm_page_dirty(fs->m);
889 #if VM_NRESERVLEVEL > 0
890                 /*
891                  * Rename the reservation.
892                  */
893                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
894                     OFF_TO_IDX(fs->first_object->backing_object_offset));
895 #endif
896                 VM_OBJECT_WUNLOCK(fs->object);
897                 VM_OBJECT_WUNLOCK(fs->first_object);
898                 fs->first_m = fs->m;
899                 fs->m = NULL;
900                 VM_CNT_INC(v_cow_optim);
901         } else {
902                 if (is_first_object_locked)
903                         VM_OBJECT_WUNLOCK(fs->first_object);
904                 /*
905                  * Oh, well, lets copy it.
906                  */
907                 pmap_copy_page(fs->m, fs->first_m);
908                 vm_page_valid(fs->first_m);
909                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
910                         vm_page_wire(fs->first_m);
911                         vm_page_unwire(fs->m, PQ_INACTIVE);
912                 }
913                 /*
914                  * Save the cow page to be released after
915                  * pmap_enter is complete.
916                  */
917                 fs->m_cow = fs->m;
918                 fs->m = NULL;
919         }
920         /*
921          * fs->object != fs->first_object due to above 
922          * conditional
923          */
924         vm_object_pip_wakeup(fs->object);
925
926         /*
927          * Only use the new page below...
928          */
929         fs->object = fs->first_object;
930         fs->pindex = fs->first_pindex;
931         fs->m = fs->first_m;
932         VM_CNT_INC(v_cow_faults);
933         curthread->td_cow++;
934 }
935
936 static bool
937 vm_fault_next(struct faultstate *fs)
938 {
939         vm_object_t next_object;
940
941         /*
942          * The requested page does not exist at this object/
943          * offset.  Remove the invalid page from the object,
944          * waking up anyone waiting for it, and continue on to
945          * the next object.  However, if this is the top-level
946          * object, we must leave the busy page in place to
947          * prevent another process from rushing past us, and
948          * inserting the page in that object at the same time
949          * that we are.
950          */
951         if (fs->object == fs->first_object) {
952                 fs->first_m = fs->m;
953                 fs->m = NULL;
954         } else
955                 fault_page_free(&fs->m);
956
957         /*
958          * Move on to the next object.  Lock the next object before
959          * unlocking the current one.
960          */
961         VM_OBJECT_ASSERT_WLOCKED(fs->object);
962         next_object = fs->object->backing_object;
963         if (next_object == NULL) {
964                 /*
965                  * If there's no object left, fill the page in the top
966                  * object with zeros.
967                  */
968                 VM_OBJECT_WUNLOCK(fs->object);
969                 if (fs->object != fs->first_object) {
970                         vm_object_pip_wakeup(fs->object);
971                         fs->object = fs->first_object;
972                         fs->pindex = fs->first_pindex;
973                 }
974                 MPASS(fs->first_m != NULL);
975                 MPASS(fs->m == NULL);
976                 fs->m = fs->first_m;
977                 fs->first_m = NULL;
978
979                 /*
980                  * Zero the page if necessary and mark it valid.
981                  */
982                 if ((fs->m->flags & PG_ZERO) == 0) {
983                         pmap_zero_page(fs->m);
984                 } else {
985                         VM_CNT_INC(v_ozfod);
986                 }
987                 VM_CNT_INC(v_zfod);
988                 vm_page_valid(fs->m);
989
990                 return (false);
991         }
992         MPASS(fs->first_m != NULL);
993         KASSERT(fs->object != next_object, ("object loop %p", next_object));
994         VM_OBJECT_WLOCK(next_object);
995         vm_object_pip_add(next_object, 1);
996         if (fs->object != fs->first_object)
997                 vm_object_pip_wakeup(fs->object);
998         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
999         VM_OBJECT_WUNLOCK(fs->object);
1000         fs->object = next_object;
1001
1002         return (true);
1003 }
1004
1005 /*
1006  * Allocate a page directly or via the object populate method.
1007  */
1008 static int
1009 vm_fault_allocate(struct faultstate *fs)
1010 {
1011         struct domainset *dset;
1012         int alloc_req;
1013         int rv;
1014
1015
1016         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1017                 rv = vm_fault_lock_vnode(fs, true);
1018                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1019                 if (rv == KERN_RESOURCE_SHORTAGE)
1020                         return (rv);
1021         }
1022
1023         if (fs->pindex >= fs->object->size)
1024                 return (KERN_OUT_OF_BOUNDS);
1025
1026         if (fs->object == fs->first_object &&
1027             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1028             fs->first_object->shadow_count == 0) {
1029                 rv = vm_fault_populate(fs);
1030                 switch (rv) {
1031                 case KERN_SUCCESS:
1032                 case KERN_FAILURE:
1033                 case KERN_RESTART:
1034                         return (rv);
1035                 case KERN_NOT_RECEIVER:
1036                         /*
1037                          * Pager's populate() method
1038                          * returned VM_PAGER_BAD.
1039                          */
1040                         break;
1041                 default:
1042                         panic("inconsistent return codes");
1043                 }
1044         }
1045
1046         /*
1047          * Allocate a new page for this object/offset pair.
1048          *
1049          * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1050          * might be not observed there, and allocation can fail, causing
1051          * restart and new reading of the p_flag.
1052          */
1053         dset = fs->object->domain.dr_policy;
1054         if (dset == NULL)
1055                 dset = curthread->td_domain.dr_policy;
1056         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1057 #if VM_NRESERVLEVEL > 0
1058                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1059 #endif
1060                 alloc_req = P_KILLED(curproc) ?
1061                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1062                 if (fs->object->type != OBJT_VNODE &&
1063                     fs->object->backing_object == NULL)
1064                         alloc_req |= VM_ALLOC_ZERO;
1065                 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1066         }
1067         if (fs->m == NULL) {
1068                 unlock_and_deallocate(fs);
1069                 if (vm_pfault_oom_attempts < 0 ||
1070                     fs->oom < vm_pfault_oom_attempts) {
1071                         fs->oom++;
1072                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1073                 }
1074                 if (bootverbose)
1075                         printf(
1076 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1077                             curproc->p_pid, curproc->p_comm);
1078                 vm_pageout_oom(VM_OOM_MEM_PF);
1079                 return (KERN_RESOURCE_SHORTAGE);
1080         }
1081         fs->oom = 0;
1082
1083         return (KERN_NOT_RECEIVER);
1084 }
1085
1086 /*
1087  * Call the pager to retrieve the page if there is a chance
1088  * that the pager has it, and potentially retrieve additional
1089  * pages at the same time.
1090  */
1091 static int
1092 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1093 {
1094         vm_offset_t e_end, e_start;
1095         int ahead, behind, cluster_offset, rv;
1096         u_char behavior;
1097
1098         /*
1099          * Prepare for unlocking the map.  Save the map
1100          * entry's start and end addresses, which are used to
1101          * optimize the size of the pager operation below.
1102          * Even if the map entry's addresses change after
1103          * unlocking the map, using the saved addresses is
1104          * safe.
1105          */
1106         e_start = fs->entry->start;
1107         e_end = fs->entry->end;
1108         behavior = vm_map_entry_behavior(fs->entry);
1109
1110         /*
1111          * Release the map lock before locking the vnode or
1112          * sleeping in the pager.  (If the current object has
1113          * a shadow, then an earlier iteration of this loop
1114          * may have already unlocked the map.)
1115          */
1116         unlock_map(fs);
1117
1118         rv = vm_fault_lock_vnode(fs, false);
1119         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1120         if (rv == KERN_RESOURCE_SHORTAGE)
1121                 return (rv);
1122         KASSERT(fs->vp == NULL || !fs->map->system_map,
1123             ("vm_fault: vnode-backed object mapped by system map"));
1124
1125         /*
1126          * Page in the requested page and hint the pager,
1127          * that it may bring up surrounding pages.
1128          */
1129         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1130             P_KILLED(curproc)) {
1131                 behind = 0;
1132                 ahead = 0;
1133         } else {
1134                 /* Is this a sequential fault? */
1135                 if (nera > 0) {
1136                         behind = 0;
1137                         ahead = nera;
1138                 } else {
1139                         /*
1140                          * Request a cluster of pages that is
1141                          * aligned to a VM_FAULT_READ_DEFAULT
1142                          * page offset boundary within the
1143                          * object.  Alignment to a page offset
1144                          * boundary is more likely to coincide
1145                          * with the underlying file system
1146                          * block than alignment to a virtual
1147                          * address boundary.
1148                          */
1149                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1150                         behind = ulmin(cluster_offset,
1151                             atop(fs->vaddr - e_start));
1152                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1153                 }
1154                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1155         }
1156         *behindp = behind;
1157         *aheadp = ahead;
1158         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1159         if (rv == VM_PAGER_OK)
1160                 return (KERN_SUCCESS);
1161         if (rv == VM_PAGER_ERROR)
1162                 printf("vm_fault: pager read error, pid %d (%s)\n",
1163                     curproc->p_pid, curproc->p_comm);
1164         /*
1165          * If an I/O error occurred or the requested page was
1166          * outside the range of the pager, clean up and return
1167          * an error.
1168          */
1169         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1170                 return (KERN_OUT_OF_BOUNDS);
1171         return (KERN_NOT_RECEIVER);
1172 }
1173
1174 /*
1175  * Wait/Retry if the page is busy.  We have to do this if the page is
1176  * either exclusive or shared busy because the vm_pager may be using
1177  * read busy for pageouts (and even pageins if it is the vnode pager),
1178  * and we could end up trying to pagein and pageout the same page
1179  * simultaneously.
1180  *
1181  * We can theoretically allow the busy case on a read fault if the page
1182  * is marked valid, but since such pages are typically already pmap'd,
1183  * putting that special case in might be more effort then it is worth.
1184  * We cannot under any circumstances mess around with a shared busied
1185  * page except, perhaps, to pmap it.
1186  */
1187 static void
1188 vm_fault_busy_sleep(struct faultstate *fs)
1189 {
1190         /*
1191          * Reference the page before unlocking and
1192          * sleeping so that the page daemon is less
1193          * likely to reclaim it.
1194          */
1195         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1196         if (fs->object != fs->first_object) {
1197                 fault_page_release(&fs->first_m);
1198                 vm_object_pip_wakeup(fs->first_object);
1199         }
1200         vm_object_pip_wakeup(fs->object);
1201         unlock_map(fs);
1202         if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1203                 vm_page_busy_sleep(fs->m, "vmpfw", false);
1204         else
1205                 VM_OBJECT_WUNLOCK(fs->object);
1206         VM_CNT_INC(v_intrans);
1207         vm_object_deallocate(fs->first_object);
1208 }
1209
1210 int
1211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1212     int fault_flags, vm_page_t *m_hold)
1213 {
1214         struct faultstate fs;
1215         int ahead, behind, faultcount;
1216         int nera, result, rv;
1217         bool dead, hardfault;
1218
1219         VM_CNT_INC(v_vm_faults);
1220
1221         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1222                 return (KERN_PROTECTION_FAILURE);
1223
1224         fs.vp = NULL;
1225         fs.vaddr = vaddr;
1226         fs.m_hold = m_hold;
1227         fs.fault_flags = fault_flags;
1228         fs.map = map;
1229         fs.lookup_still_valid = false;
1230         fs.oom = 0;
1231         faultcount = 0;
1232         nera = -1;
1233         hardfault = false;
1234
1235 RetryFault:
1236         fs.fault_type = fault_type;
1237
1238         /*
1239          * Find the backing store object and offset into it to begin the
1240          * search.
1241          */
1242         result = vm_fault_lookup(&fs);
1243         if (result != KERN_SUCCESS) {
1244                 if (result == KERN_RESOURCE_SHORTAGE)
1245                         goto RetryFault;
1246                 return (result);
1247         }
1248
1249         /*
1250          * Try to avoid lock contention on the top-level object through
1251          * special-case handling of some types of page faults, specifically,
1252          * those that are mapping an existing page from the top-level object.
1253          * Under this condition, a read lock on the object suffices, allowing
1254          * multiple page faults of a similar type to run in parallel.
1255          */
1256         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1257             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1258                 VM_OBJECT_RLOCK(fs.first_object);
1259                 rv = vm_fault_soft_fast(&fs);
1260                 if (rv == KERN_SUCCESS)
1261                         return (rv);
1262                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1263                         VM_OBJECT_RUNLOCK(fs.first_object);
1264                         VM_OBJECT_WLOCK(fs.first_object);
1265                 }
1266         } else {
1267                 VM_OBJECT_WLOCK(fs.first_object);
1268         }
1269
1270         /*
1271          * Make a reference to this object to prevent its disposal while we
1272          * are messing with it.  Once we have the reference, the map is free
1273          * to be diddled.  Since objects reference their shadows (and copies),
1274          * they will stay around as well.
1275          *
1276          * Bump the paging-in-progress count to prevent size changes (e.g. 
1277          * truncation operations) during I/O.
1278          */
1279         vm_object_reference_locked(fs.first_object);
1280         vm_object_pip_add(fs.first_object, 1);
1281
1282         fs.m_cow = fs.m = fs.first_m = NULL;
1283
1284         /*
1285          * Search for the page at object/offset.
1286          */
1287         fs.object = fs.first_object;
1288         fs.pindex = fs.first_pindex;
1289         while (TRUE) {
1290                 KASSERT(fs.m == NULL,
1291                     ("page still set %p at loop start", fs.m));
1292                 /*
1293                  * If the object is marked for imminent termination,
1294                  * we retry here, since the collapse pass has raced
1295                  * with us.  Otherwise, if we see terminally dead
1296                  * object, return fail.
1297                  */
1298                 if ((fs.object->flags & OBJ_DEAD) != 0) {
1299                         dead = fs.object->type == OBJT_DEAD;
1300                         unlock_and_deallocate(&fs);
1301                         if (dead)
1302                                 return (KERN_PROTECTION_FAILURE);
1303                         pause("vmf_de", 1);
1304                         goto RetryFault;
1305                 }
1306
1307                 /*
1308                  * See if page is resident
1309                  */
1310                 fs.m = vm_page_lookup(fs.object, fs.pindex);
1311                 if (fs.m != NULL) {
1312                         if (vm_page_tryxbusy(fs.m) == 0) {
1313                                 vm_fault_busy_sleep(&fs);
1314                                 goto RetryFault;
1315                         }
1316
1317                         /*
1318                          * The page is marked busy for other processes and the
1319                          * pagedaemon.  If it still is completely valid we
1320                          * are done.
1321                          */
1322                         if (vm_page_all_valid(fs.m)) {
1323                                 VM_OBJECT_WUNLOCK(fs.object);
1324                                 break; /* break to PAGE HAS BEEN FOUND. */
1325                         }
1326                 }
1327                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1328
1329                 /*
1330                  * Page is not resident.  If the pager might contain the page
1331                  * or this is the beginning of the search, allocate a new
1332                  * page.  (Default objects are zero-fill, so there is no real
1333                  * pager for them.)
1334                  */
1335                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1336                     fs.object == fs.first_object)) {
1337                         rv = vm_fault_allocate(&fs);
1338                         switch (rv) {
1339                         case KERN_RESTART:
1340                                 unlock_and_deallocate(&fs);
1341                                 /* FALLTHROUGH */
1342                         case KERN_RESOURCE_SHORTAGE:
1343                                 goto RetryFault;
1344                         case KERN_SUCCESS:
1345                         case KERN_FAILURE:
1346                         case KERN_OUT_OF_BOUNDS:
1347                                 unlock_and_deallocate(&fs);
1348                                 return (rv);
1349                         case KERN_NOT_RECEIVER:
1350                                 break;
1351                         default:
1352                                 panic("vm_fault: Unhandled rv %d", rv);
1353                         }
1354                 }
1355
1356                 /*
1357                  * Default objects have no pager so no exclusive busy exists
1358                  * to protect this page in the chain.  Skip to the next
1359                  * object without dropping the lock to preserve atomicity of
1360                  * shadow faults.
1361                  */
1362                 if (fs.object->type == OBJT_DEFAULT) {
1363                         if (vm_fault_next(&fs))
1364                                 continue;
1365                         /* Don't try to prefault neighboring pages. */
1366                         faultcount = 1;
1367                         break;
1368                 }
1369
1370                 /*
1371                  * At this point, we have either allocated a new page or found
1372                  * an existing page that is only partially valid.
1373                  *
1374                  * We hold a reference on the current object and the page is
1375                  * exclusive busied.  The exclusive busy prevents simultaneous
1376                  * faults and collapses while the object lock is dropped.
1377                  */
1378                 VM_OBJECT_WUNLOCK(fs.object);
1379
1380                 /*
1381                  * If the pager for the current object might have the page,
1382                  * then determine the number of additional pages to read and
1383                  * potentially reprioritize previously read pages for earlier
1384                  * reclamation.  These operations should only be performed
1385                  * once per page fault.  Even if the current pager doesn't
1386                  * have the page, the number of additional pages to read will
1387                  * apply to subsequent objects in the shadow chain.
1388                  */
1389                 if (nera == -1 && !P_KILLED(curproc))
1390                         nera = vm_fault_readahead(&fs);
1391
1392                 rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1393                 if (rv == KERN_SUCCESS) {
1394                         faultcount = behind + 1 + ahead;
1395                         hardfault = true;
1396                         break; /* break to PAGE HAS BEEN FOUND. */
1397                 }
1398                 if (rv == KERN_RESOURCE_SHORTAGE)
1399                         goto RetryFault;
1400                 VM_OBJECT_WLOCK(fs.object);
1401                 if (rv == KERN_OUT_OF_BOUNDS) {
1402                         fault_page_free(&fs.m);
1403                         unlock_and_deallocate(&fs);
1404                         return (rv);
1405                 }
1406
1407                 /*
1408                  * The page was not found in the current object.  Try to
1409                  * traverse into a backing object or zero fill if none is
1410                  * found.
1411                  */
1412                 if (!vm_fault_next(&fs)) {
1413                         /* Don't try to prefault neighboring pages. */
1414                         faultcount = 1;
1415                         break;  /* break to PAGE HAS BEEN FOUND. */
1416                 }
1417         }
1418
1419         /*
1420          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1421          * busied.  The object lock must no longer be held.
1422          */
1423         vm_page_assert_xbusied(fs.m);
1424         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1425
1426         /*
1427          * If the page is being written, but isn't already owned by the
1428          * top-level object, we have to copy it into a new page owned by the
1429          * top-level object.
1430          */
1431         if (fs.object != fs.first_object) {
1432                 /*
1433                  * We only really need to copy if we want to write it.
1434                  */
1435                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1436                         vm_fault_cow(&fs);
1437                         /*
1438                          * We only try to prefault read-only mappings to the
1439                          * neighboring pages when this copy-on-write fault is
1440                          * a hard fault.  In other cases, trying to prefault
1441                          * is typically wasted effort.
1442                          */
1443                         if (faultcount == 0)
1444                                 faultcount = 1;
1445
1446                 } else {
1447                         fs.prot &= ~VM_PROT_WRITE;
1448                 }
1449         }
1450
1451         /*
1452          * We must verify that the maps have not changed since our last
1453          * lookup.
1454          */
1455         if (!fs.lookup_still_valid) {
1456                 result = vm_fault_relookup(&fs);
1457                 if (result != KERN_SUCCESS) {
1458                         fault_deallocate(&fs);
1459                         if (result == KERN_RESTART)
1460                                 goto RetryFault;
1461                         return (result);
1462                 }
1463         }
1464         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1465
1466         /*
1467          * If the page was filled by a pager, save the virtual address that
1468          * should be faulted on next under a sequential access pattern to the
1469          * map entry.  A read lock on the map suffices to update this address
1470          * safely.
1471          */
1472         if (hardfault)
1473                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1474
1475         /*
1476          * Page must be completely valid or it is not fit to
1477          * map into user space.  vm_pager_get_pages() ensures this.
1478          */
1479         vm_page_assert_xbusied(fs.m);
1480         KASSERT(vm_page_all_valid(fs.m),
1481             ("vm_fault: page %p partially invalid", fs.m));
1482
1483         vm_fault_dirty(&fs, fs.m);
1484
1485         /*
1486          * Put this page into the physical map.  We had to do the unlock above
1487          * because pmap_enter() may sleep.  We don't put the page
1488          * back on the active queue until later so that the pageout daemon
1489          * won't find it (yet).
1490          */
1491         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1492             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1493         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1494             fs.wired == 0)
1495                 vm_fault_prefault(&fs, vaddr,
1496                     faultcount > 0 ? behind : PFBAK,
1497                     faultcount > 0 ? ahead : PFFOR, false);
1498
1499         /*
1500          * If the page is not wired down, then put it where the pageout daemon
1501          * can find it.
1502          */
1503         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1504                 vm_page_wire(fs.m);
1505         else
1506                 vm_page_activate(fs.m);
1507         if (fs.m_hold != NULL) {
1508                 (*fs.m_hold) = fs.m;
1509                 vm_page_wire(fs.m);
1510         }
1511         vm_page_xunbusy(fs.m);
1512         fs.m = NULL;
1513
1514         /*
1515          * Unlock everything, and return
1516          */
1517         fault_deallocate(&fs);
1518         if (hardfault) {
1519                 VM_CNT_INC(v_io_faults);
1520                 curthread->td_ru.ru_majflt++;
1521 #ifdef RACCT
1522                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1523                         PROC_LOCK(curproc);
1524                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1525                                 racct_add_force(curproc, RACCT_WRITEBPS,
1526                                     PAGE_SIZE + behind * PAGE_SIZE);
1527                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1528                         } else {
1529                                 racct_add_force(curproc, RACCT_READBPS,
1530                                     PAGE_SIZE + ahead * PAGE_SIZE);
1531                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1532                         }
1533                         PROC_UNLOCK(curproc);
1534                 }
1535 #endif
1536         } else 
1537                 curthread->td_ru.ru_minflt++;
1538
1539         return (KERN_SUCCESS);
1540 }
1541
1542 /*
1543  * Speed up the reclamation of pages that precede the faulting pindex within
1544  * the first object of the shadow chain.  Essentially, perform the equivalent
1545  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1546  * the faulting pindex by the cluster size when the pages read by vm_fault()
1547  * cross a cluster-size boundary.  The cluster size is the greater of the
1548  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1549  *
1550  * When "fs->first_object" is a shadow object, the pages in the backing object
1551  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1552  * function must only be concerned with pages in the first object.
1553  */
1554 static void
1555 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1556 {
1557         vm_map_entry_t entry;
1558         vm_object_t first_object, object;
1559         vm_offset_t end, start;
1560         vm_page_t m, m_next;
1561         vm_pindex_t pend, pstart;
1562         vm_size_t size;
1563
1564         object = fs->object;
1565         VM_OBJECT_ASSERT_UNLOCKED(object);
1566         first_object = fs->first_object;
1567         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1568         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1569                 VM_OBJECT_RLOCK(first_object);
1570                 size = VM_FAULT_DONTNEED_MIN;
1571                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1572                         size = pagesizes[1];
1573                 end = rounddown2(vaddr, size);
1574                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1575                     (entry = fs->entry)->start < end) {
1576                         if (end - entry->start < size)
1577                                 start = entry->start;
1578                         else
1579                                 start = end - size;
1580                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1581                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1582                             entry->start);
1583                         m_next = vm_page_find_least(first_object, pstart);
1584                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1585                             entry->start);
1586                         while ((m = m_next) != NULL && m->pindex < pend) {
1587                                 m_next = TAILQ_NEXT(m, listq);
1588                                 if (!vm_page_all_valid(m) ||
1589                                     vm_page_busied(m))
1590                                         continue;
1591
1592                                 /*
1593                                  * Don't clear PGA_REFERENCED, since it would
1594                                  * likely represent a reference by a different
1595                                  * process.
1596                                  *
1597                                  * Typically, at this point, prefetched pages
1598                                  * are still in the inactive queue.  Only
1599                                  * pages that triggered page faults are in the
1600                                  * active queue.  The test for whether the page
1601                                  * is in the inactive queue is racy; in the
1602                                  * worst case we will requeue the page
1603                                  * unnecessarily.
1604                                  */
1605                                 if (!vm_page_inactive(m))
1606                                         vm_page_deactivate(m);
1607                         }
1608                 }
1609                 VM_OBJECT_RUNLOCK(first_object);
1610         }
1611 }
1612
1613 /*
1614  * vm_fault_prefault provides a quick way of clustering
1615  * pagefaults into a processes address space.  It is a "cousin"
1616  * of vm_map_pmap_enter, except it runs at page fault time instead
1617  * of mmap time.
1618  */
1619 static void
1620 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1621     int backward, int forward, bool obj_locked)
1622 {
1623         pmap_t pmap;
1624         vm_map_entry_t entry;
1625         vm_object_t backing_object, lobject;
1626         vm_offset_t addr, starta;
1627         vm_pindex_t pindex;
1628         vm_page_t m;
1629         int i;
1630
1631         pmap = fs->map->pmap;
1632         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1633                 return;
1634
1635         entry = fs->entry;
1636
1637         if (addra < backward * PAGE_SIZE) {
1638                 starta = entry->start;
1639         } else {
1640                 starta = addra - backward * PAGE_SIZE;
1641                 if (starta < entry->start)
1642                         starta = entry->start;
1643         }
1644
1645         /*
1646          * Generate the sequence of virtual addresses that are candidates for
1647          * prefaulting in an outward spiral from the faulting virtual address,
1648          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1649          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1650          * If the candidate address doesn't have a backing physical page, then
1651          * the loop immediately terminates.
1652          */
1653         for (i = 0; i < 2 * imax(backward, forward); i++) {
1654                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1655                     PAGE_SIZE);
1656                 if (addr > addra + forward * PAGE_SIZE)
1657                         addr = 0;
1658
1659                 if (addr < starta || addr >= entry->end)
1660                         continue;
1661
1662                 if (!pmap_is_prefaultable(pmap, addr))
1663                         continue;
1664
1665                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1666                 lobject = entry->object.vm_object;
1667                 if (!obj_locked)
1668                         VM_OBJECT_RLOCK(lobject);
1669                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1670                     lobject->type == OBJT_DEFAULT &&
1671                     (backing_object = lobject->backing_object) != NULL) {
1672                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1673                             0, ("vm_fault_prefault: unaligned object offset"));
1674                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1675                         VM_OBJECT_RLOCK(backing_object);
1676                         if (!obj_locked || lobject != entry->object.vm_object)
1677                                 VM_OBJECT_RUNLOCK(lobject);
1678                         lobject = backing_object;
1679                 }
1680                 if (m == NULL) {
1681                         if (!obj_locked || lobject != entry->object.vm_object)
1682                                 VM_OBJECT_RUNLOCK(lobject);
1683                         break;
1684                 }
1685                 if (vm_page_all_valid(m) &&
1686                     (m->flags & PG_FICTITIOUS) == 0)
1687                         pmap_enter_quick(pmap, addr, m, entry->protection);
1688                 if (!obj_locked || lobject != entry->object.vm_object)
1689                         VM_OBJECT_RUNLOCK(lobject);
1690         }
1691 }
1692
1693 /*
1694  * Hold each of the physical pages that are mapped by the specified range of
1695  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1696  * and allow the specified types of access, "prot".  If all of the implied
1697  * pages are successfully held, then the number of held pages is returned
1698  * together with pointers to those pages in the array "ma".  However, if any
1699  * of the pages cannot be held, -1 is returned.
1700  */
1701 int
1702 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1703     vm_prot_t prot, vm_page_t *ma, int max_count)
1704 {
1705         vm_offset_t end, va;
1706         vm_page_t *mp;
1707         int count;
1708         boolean_t pmap_failed;
1709
1710         if (len == 0)
1711                 return (0);
1712         end = round_page(addr + len);
1713         addr = trunc_page(addr);
1714
1715         /*
1716          * Check for illegal addresses.
1717          */
1718         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1719                 return (-1);
1720
1721         if (atop(end - addr) > max_count)
1722                 panic("vm_fault_quick_hold_pages: count > max_count");
1723         count = atop(end - addr);
1724
1725         /*
1726          * Most likely, the physical pages are resident in the pmap, so it is
1727          * faster to try pmap_extract_and_hold() first.
1728          */
1729         pmap_failed = FALSE;
1730         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1731                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1732                 if (*mp == NULL)
1733                         pmap_failed = TRUE;
1734                 else if ((prot & VM_PROT_WRITE) != 0 &&
1735                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1736                         /*
1737                          * Explicitly dirty the physical page.  Otherwise, the
1738                          * caller's changes may go unnoticed because they are
1739                          * performed through an unmanaged mapping or by a DMA
1740                          * operation.
1741                          *
1742                          * The object lock is not held here.
1743                          * See vm_page_clear_dirty_mask().
1744                          */
1745                         vm_page_dirty(*mp);
1746                 }
1747         }
1748         if (pmap_failed) {
1749                 /*
1750                  * One or more pages could not be held by the pmap.  Either no
1751                  * page was mapped at the specified virtual address or that
1752                  * mapping had insufficient permissions.  Attempt to fault in
1753                  * and hold these pages.
1754                  *
1755                  * If vm_fault_disable_pagefaults() was called,
1756                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1757                  * acquire MD VM locks, which means we must not call
1758                  * vm_fault().  Some (out of tree) callers mark
1759                  * too wide a code area with vm_fault_disable_pagefaults()
1760                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1761                  * the proper behaviour explicitly.
1762                  */
1763                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1764                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1765                         goto error;
1766                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1767                         if (*mp == NULL && vm_fault(map, va, prot,
1768                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1769                                 goto error;
1770         }
1771         return (count);
1772 error:  
1773         for (mp = ma; mp < ma + count; mp++)
1774                 if (*mp != NULL)
1775                         vm_page_unwire(*mp, PQ_INACTIVE);
1776         return (-1);
1777 }
1778
1779 /*
1780  *      Routine:
1781  *              vm_fault_copy_entry
1782  *      Function:
1783  *              Create new shadow object backing dst_entry with private copy of
1784  *              all underlying pages. When src_entry is equal to dst_entry,
1785  *              function implements COW for wired-down map entry. Otherwise,
1786  *              it forks wired entry into dst_map.
1787  *
1788  *      In/out conditions:
1789  *              The source and destination maps must be locked for write.
1790  *              The source map entry must be wired down (or be a sharing map
1791  *              entry corresponding to a main map entry that is wired down).
1792  */
1793 void
1794 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1795     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1796     vm_ooffset_t *fork_charge)
1797 {
1798         vm_object_t backing_object, dst_object, object, src_object;
1799         vm_pindex_t dst_pindex, pindex, src_pindex;
1800         vm_prot_t access, prot;
1801         vm_offset_t vaddr;
1802         vm_page_t dst_m;
1803         vm_page_t src_m;
1804         boolean_t upgrade;
1805
1806 #ifdef  lint
1807         src_map++;
1808 #endif  /* lint */
1809
1810         upgrade = src_entry == dst_entry;
1811         access = prot = dst_entry->protection;
1812
1813         src_object = src_entry->object.vm_object;
1814         src_pindex = OFF_TO_IDX(src_entry->offset);
1815
1816         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1817                 dst_object = src_object;
1818                 vm_object_reference(dst_object);
1819         } else {
1820                 /*
1821                  * Create the top-level object for the destination entry.
1822                  * Doesn't actually shadow anything - we copy the pages
1823                  * directly.
1824                  */
1825                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1826                     dst_entry->start), NULL, NULL, 0);
1827 #if VM_NRESERVLEVEL > 0
1828                 dst_object->flags |= OBJ_COLORED;
1829                 dst_object->pg_color = atop(dst_entry->start);
1830 #endif
1831                 dst_object->domain = src_object->domain;
1832                 dst_object->charge = dst_entry->end - dst_entry->start;
1833         }
1834
1835         VM_OBJECT_WLOCK(dst_object);
1836         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1837             ("vm_fault_copy_entry: vm_object not NULL"));
1838         if (src_object != dst_object) {
1839                 dst_entry->object.vm_object = dst_object;
1840                 dst_entry->offset = 0;
1841                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1842         }
1843         if (fork_charge != NULL) {
1844                 KASSERT(dst_entry->cred == NULL,
1845                     ("vm_fault_copy_entry: leaked swp charge"));
1846                 dst_object->cred = curthread->td_ucred;
1847                 crhold(dst_object->cred);
1848                 *fork_charge += dst_object->charge;
1849         } else if ((dst_object->type == OBJT_DEFAULT ||
1850             dst_object->type == OBJT_SWAP) &&
1851             dst_object->cred == NULL) {
1852                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1853                     dst_entry));
1854                 dst_object->cred = dst_entry->cred;
1855                 dst_entry->cred = NULL;
1856         }
1857
1858         /*
1859          * If not an upgrade, then enter the mappings in the pmap as
1860          * read and/or execute accesses.  Otherwise, enter them as
1861          * write accesses.
1862          *
1863          * A writeable large page mapping is only created if all of
1864          * the constituent small page mappings are modified. Marking
1865          * PTEs as modified on inception allows promotion to happen
1866          * without taking potentially large number of soft faults.
1867          */
1868         if (!upgrade)
1869                 access &= ~VM_PROT_WRITE;
1870
1871         /*
1872          * Loop through all of the virtual pages within the entry's
1873          * range, copying each page from the source object to the
1874          * destination object.  Since the source is wired, those pages
1875          * must exist.  In contrast, the destination is pageable.
1876          * Since the destination object doesn't share any backing storage
1877          * with the source object, all of its pages must be dirtied,
1878          * regardless of whether they can be written.
1879          */
1880         for (vaddr = dst_entry->start, dst_pindex = 0;
1881             vaddr < dst_entry->end;
1882             vaddr += PAGE_SIZE, dst_pindex++) {
1883 again:
1884                 /*
1885                  * Find the page in the source object, and copy it in.
1886                  * Because the source is wired down, the page will be
1887                  * in memory.
1888                  */
1889                 if (src_object != dst_object)
1890                         VM_OBJECT_RLOCK(src_object);
1891                 object = src_object;
1892                 pindex = src_pindex + dst_pindex;
1893                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1894                     (backing_object = object->backing_object) != NULL) {
1895                         /*
1896                          * Unless the source mapping is read-only or
1897                          * it is presently being upgraded from
1898                          * read-only, the first object in the shadow
1899                          * chain should provide all of the pages.  In
1900                          * other words, this loop body should never be
1901                          * executed when the source mapping is already
1902                          * read/write.
1903                          */
1904                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1905                             upgrade,
1906                             ("vm_fault_copy_entry: main object missing page"));
1907
1908                         VM_OBJECT_RLOCK(backing_object);
1909                         pindex += OFF_TO_IDX(object->backing_object_offset);
1910                         if (object != dst_object)
1911                                 VM_OBJECT_RUNLOCK(object);
1912                         object = backing_object;
1913                 }
1914                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1915
1916                 if (object != dst_object) {
1917                         /*
1918                          * Allocate a page in the destination object.
1919                          */
1920                         dst_m = vm_page_alloc(dst_object, (src_object ==
1921                             dst_object ? src_pindex : 0) + dst_pindex,
1922                             VM_ALLOC_NORMAL);
1923                         if (dst_m == NULL) {
1924                                 VM_OBJECT_WUNLOCK(dst_object);
1925                                 VM_OBJECT_RUNLOCK(object);
1926                                 vm_wait(dst_object);
1927                                 VM_OBJECT_WLOCK(dst_object);
1928                                 goto again;
1929                         }
1930                         pmap_copy_page(src_m, dst_m);
1931                         VM_OBJECT_RUNLOCK(object);
1932                         dst_m->dirty = dst_m->valid = src_m->valid;
1933                 } else {
1934                         dst_m = src_m;
1935                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
1936                                 goto again;
1937                         if (dst_m->pindex >= dst_object->size) {
1938                                 /*
1939                                  * We are upgrading.  Index can occur
1940                                  * out of bounds if the object type is
1941                                  * vnode and the file was truncated.
1942                                  */
1943                                 vm_page_xunbusy(dst_m);
1944                                 break;
1945                         }
1946                 }
1947                 VM_OBJECT_WUNLOCK(dst_object);
1948
1949                 /*
1950                  * Enter it in the pmap. If a wired, copy-on-write
1951                  * mapping is being replaced by a write-enabled
1952                  * mapping, then wire that new mapping.
1953                  *
1954                  * The page can be invalid if the user called
1955                  * msync(MS_INVALIDATE) or truncated the backing vnode
1956                  * or shared memory object.  In this case, do not
1957                  * insert it into pmap, but still do the copy so that
1958                  * all copies of the wired map entry have similar
1959                  * backing pages.
1960                  */
1961                 if (vm_page_all_valid(dst_m)) {
1962                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1963                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1964                 }
1965
1966                 /*
1967                  * Mark it no longer busy, and put it on the active list.
1968                  */
1969                 VM_OBJECT_WLOCK(dst_object);
1970                 
1971                 if (upgrade) {
1972                         if (src_m != dst_m) {
1973                                 vm_page_unwire(src_m, PQ_INACTIVE);
1974                                 vm_page_wire(dst_m);
1975                         } else {
1976                                 KASSERT(vm_page_wired(dst_m),
1977                                     ("dst_m %p is not wired", dst_m));
1978                         }
1979                 } else {
1980                         vm_page_activate(dst_m);
1981                 }
1982                 vm_page_xunbusy(dst_m);
1983         }
1984         VM_OBJECT_WUNLOCK(dst_object);
1985         if (upgrade) {
1986                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1987                 vm_object_deallocate(src_object);
1988         }
1989 }
1990
1991 /*
1992  * Block entry into the machine-independent layer's page fault handler by
1993  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1994  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1995  * spurious page faults. 
1996  */
1997 int
1998 vm_fault_disable_pagefaults(void)
1999 {
2000
2001         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2002 }
2003
2004 void
2005 vm_fault_enable_pagefaults(int save)
2006 {
2007
2008         curthread_pflags_restore(save);
2009 }