]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
Merge llvm-project release/16.x llvmorg-16.0.3-0-gda3cd333bea5
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/pctrie.h>
89 #include <sys/proc.h>
90 #include <sys/racct.h>
91 #include <sys/refcount.h>
92 #include <sys/resourcevar.h>
93 #include <sys/rwlock.h>
94 #include <sys/signalvar.h>
95 #include <sys/sysctl.h>
96 #include <sys/sysent.h>
97 #include <sys/vmmeter.h>
98 #include <sys/vnode.h>
99 #ifdef KTRACE
100 #include <sys/ktrace.h>
101 #endif
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/vm_reserv.h>
114
115 #define PFBAK 4
116 #define PFFOR 4
117
118 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         /* Fault parameters. */
124         vm_offset_t     vaddr;
125         vm_page_t       *m_hold;
126         vm_prot_t       fault_type;
127         vm_prot_t       prot;
128         int             fault_flags;
129         boolean_t       wired;
130
131         /* Control state. */
132         struct timeval  oom_start_time;
133         bool            oom_started;
134         int             nera;
135         bool            can_read_lock;
136
137         /* Page reference for cow. */
138         vm_page_t m_cow;
139
140         /* Current object. */
141         vm_object_t     object;
142         vm_pindex_t     pindex;
143         vm_page_t       m;
144
145         /* Top-level map object. */
146         vm_object_t     first_object;
147         vm_pindex_t     first_pindex;
148         vm_page_t       first_m;
149
150         /* Map state. */
151         vm_map_t        map;
152         vm_map_entry_t  entry;
153         int             map_generation;
154         bool            lookup_still_valid;
155
156         /* Vnode if locked. */
157         struct vnode    *vp;
158 };
159
160 /*
161  * Return codes for internal fault routines.
162  */
163 enum fault_status {
164         FAULT_SUCCESS = 1,      /* Return success to user. */
165         FAULT_FAILURE,          /* Return failure to user. */
166         FAULT_CONTINUE,         /* Continue faulting. */
167         FAULT_RESTART,          /* Restart fault. */
168         FAULT_OUT_OF_BOUNDS,    /* Invalid address for pager. */
169         FAULT_HARD,             /* Performed I/O. */
170         FAULT_SOFT,             /* Found valid page. */
171         FAULT_PROTECTION_FAILURE, /* Invalid access. */
172 };
173
174 enum fault_next_status {
175         FAULT_NEXT_GOTOBJ = 1,
176         FAULT_NEXT_NOOBJ,
177         FAULT_NEXT_RESTART,
178 };
179
180 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
181             int ahead);
182 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
183             int backward, int forward, bool obj_locked);
184
185 static int vm_pfault_oom_attempts = 3;
186 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
187     &vm_pfault_oom_attempts, 0,
188     "Number of page allocation attempts in page fault handler before it "
189     "triggers OOM handling");
190
191 static int vm_pfault_oom_wait = 10;
192 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
193     &vm_pfault_oom_wait, 0,
194     "Number of seconds to wait for free pages before retrying "
195     "the page fault handler");
196
197 static inline void
198 vm_fault_page_release(vm_page_t *mp)
199 {
200         vm_page_t m;
201
202         m = *mp;
203         if (m != NULL) {
204                 /*
205                  * We are likely to loop around again and attempt to busy
206                  * this page.  Deactivating it leaves it available for
207                  * pageout while optimizing fault restarts.
208                  */
209                 vm_page_deactivate(m);
210                 vm_page_xunbusy(m);
211                 *mp = NULL;
212         }
213 }
214
215 static inline void
216 vm_fault_page_free(vm_page_t *mp)
217 {
218         vm_page_t m;
219
220         m = *mp;
221         if (m != NULL) {
222                 VM_OBJECT_ASSERT_WLOCKED(m->object);
223                 if (!vm_page_wired(m))
224                         vm_page_free(m);
225                 else
226                         vm_page_xunbusy(m);
227                 *mp = NULL;
228         }
229 }
230
231 /*
232  * Return true if a vm_pager_get_pages() call is needed in order to check
233  * whether the pager might have a particular page, false if it can be determined
234  * immediately that the pager can not have a copy.  For swap objects, this can
235  * be checked quickly.
236  */
237 static inline bool
238 vm_fault_object_needs_getpages(vm_object_t object)
239 {
240         VM_OBJECT_ASSERT_LOCKED(object);
241
242         return ((object->flags & OBJ_SWAP) == 0 ||
243             !pctrie_is_empty(&object->un_pager.swp.swp_blks));
244 }
245
246 static inline void
247 vm_fault_unlock_map(struct faultstate *fs)
248 {
249
250         if (fs->lookup_still_valid) {
251                 vm_map_lookup_done(fs->map, fs->entry);
252                 fs->lookup_still_valid = false;
253         }
254 }
255
256 static void
257 vm_fault_unlock_vp(struct faultstate *fs)
258 {
259
260         if (fs->vp != NULL) {
261                 vput(fs->vp);
262                 fs->vp = NULL;
263         }
264 }
265
266 static void
267 vm_fault_deallocate(struct faultstate *fs)
268 {
269
270         vm_fault_page_release(&fs->m_cow);
271         vm_fault_page_release(&fs->m);
272         vm_object_pip_wakeup(fs->object);
273         if (fs->object != fs->first_object) {
274                 VM_OBJECT_WLOCK(fs->first_object);
275                 vm_fault_page_free(&fs->first_m);
276                 VM_OBJECT_WUNLOCK(fs->first_object);
277                 vm_object_pip_wakeup(fs->first_object);
278         }
279         vm_object_deallocate(fs->first_object);
280         vm_fault_unlock_map(fs);
281         vm_fault_unlock_vp(fs);
282 }
283
284 static void
285 vm_fault_unlock_and_deallocate(struct faultstate *fs)
286 {
287
288         VM_OBJECT_UNLOCK(fs->object);
289         vm_fault_deallocate(fs);
290 }
291
292 static void
293 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
294 {
295         bool need_dirty;
296
297         if (((fs->prot & VM_PROT_WRITE) == 0 &&
298             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
299             (m->oflags & VPO_UNMANAGED) != 0)
300                 return;
301
302         VM_PAGE_OBJECT_BUSY_ASSERT(m);
303
304         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
305             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
306             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
307
308         vm_object_set_writeable_dirty(m->object);
309
310         /*
311          * If the fault is a write, we know that this page is being
312          * written NOW so dirty it explicitly to save on
313          * pmap_is_modified() calls later.
314          *
315          * Also, since the page is now dirty, we can possibly tell
316          * the pager to release any swap backing the page.
317          */
318         if (need_dirty && vm_page_set_dirty(m) == 0) {
319                 /*
320                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
321                  * if the page is already dirty to prevent data written with
322                  * the expectation of being synced from not being synced.
323                  * Likewise if this entry does not request NOSYNC then make
324                  * sure the page isn't marked NOSYNC.  Applications sharing
325                  * data should use the same flags to avoid ping ponging.
326                  */
327                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
328                         vm_page_aflag_set(m, PGA_NOSYNC);
329                 else
330                         vm_page_aflag_clear(m, PGA_NOSYNC);
331         }
332
333 }
334
335 /*
336  * Unlocks fs.first_object and fs.map on success.
337  */
338 static enum fault_status
339 vm_fault_soft_fast(struct faultstate *fs)
340 {
341         vm_page_t m, m_map;
342 #if VM_NRESERVLEVEL > 0
343         vm_page_t m_super;
344         int flags;
345 #endif
346         int psind;
347         vm_offset_t vaddr;
348
349         MPASS(fs->vp == NULL);
350
351         /*
352          * If we fail, vast majority of the time it is because the page is not
353          * there to begin with. Opportunistically perform the lookup and
354          * subsequent checks without the object lock, revalidate later.
355          *
356          * Note: a busy page can be mapped for read|execute access.
357          */
358         m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
359         if (m == NULL || !vm_page_all_valid(m) ||
360             ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
361                 VM_OBJECT_WLOCK(fs->first_object);
362                 return (FAULT_FAILURE);
363         }
364
365         vaddr = fs->vaddr;
366
367         VM_OBJECT_RLOCK(fs->first_object);
368
369         /*
370          * Now that we stabilized the state, revalidate the page is in the shape
371          * we encountered above.
372          */
373
374         if (m->object != fs->first_object || m->pindex != fs->first_pindex)
375                 goto fail;
376
377         vm_object_busy(fs->first_object);
378
379         if (!vm_page_all_valid(m) ||
380             ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
381                 goto fail_busy;
382
383         m_map = m;
384         psind = 0;
385 #if VM_NRESERVLEVEL > 0
386         if ((m->flags & PG_FICTITIOUS) == 0 &&
387             (m_super = vm_reserv_to_superpage(m)) != NULL &&
388             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
389             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
390             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
391             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
392             pmap_ps_enabled(fs->map->pmap)) {
393                 flags = PS_ALL_VALID;
394                 if ((fs->prot & VM_PROT_WRITE) != 0) {
395                         /*
396                          * Create a superpage mapping allowing write access
397                          * only if none of the constituent pages are busy and
398                          * all of them are already dirty (except possibly for
399                          * the page that was faulted on).
400                          */
401                         flags |= PS_NONE_BUSY;
402                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
403                                 flags |= PS_ALL_DIRTY;
404                 }
405                 if (vm_page_ps_test(m_super, flags, m)) {
406                         m_map = m_super;
407                         psind = m_super->psind;
408                         vaddr = rounddown2(vaddr, pagesizes[psind]);
409                         /* Preset the modified bit for dirty superpages. */
410                         if ((flags & PS_ALL_DIRTY) != 0)
411                                 fs->fault_type |= VM_PROT_WRITE;
412                 }
413         }
414 #endif
415         if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
416             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
417             KERN_SUCCESS)
418                 goto fail_busy;
419         if (fs->m_hold != NULL) {
420                 (*fs->m_hold) = m;
421                 vm_page_wire(m);
422         }
423         if (psind == 0 && !fs->wired)
424                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
425         VM_OBJECT_RUNLOCK(fs->first_object);
426         vm_fault_dirty(fs, m);
427         vm_object_unbusy(fs->first_object);
428         vm_map_lookup_done(fs->map, fs->entry);
429         curthread->td_ru.ru_minflt++;
430         return (FAULT_SUCCESS);
431 fail_busy:
432         vm_object_unbusy(fs->first_object);
433 fail:
434         if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
435                 VM_OBJECT_RUNLOCK(fs->first_object);
436                 VM_OBJECT_WLOCK(fs->first_object);
437         }
438         return (FAULT_FAILURE);
439 }
440
441 static void
442 vm_fault_restore_map_lock(struct faultstate *fs)
443 {
444
445         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
446         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
447
448         if (!vm_map_trylock_read(fs->map)) {
449                 VM_OBJECT_WUNLOCK(fs->first_object);
450                 vm_map_lock_read(fs->map);
451                 VM_OBJECT_WLOCK(fs->first_object);
452         }
453         fs->lookup_still_valid = true;
454 }
455
456 static void
457 vm_fault_populate_check_page(vm_page_t m)
458 {
459
460         /*
461          * Check each page to ensure that the pager is obeying the
462          * interface: the page must be installed in the object, fully
463          * valid, and exclusively busied.
464          */
465         MPASS(m != NULL);
466         MPASS(vm_page_all_valid(m));
467         MPASS(vm_page_xbusied(m));
468 }
469
470 static void
471 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
472     vm_pindex_t last)
473 {
474         vm_page_t m;
475         vm_pindex_t pidx;
476
477         VM_OBJECT_ASSERT_WLOCKED(object);
478         MPASS(first <= last);
479         for (pidx = first, m = vm_page_lookup(object, pidx);
480             pidx <= last; pidx++, m = vm_page_next(m)) {
481                 vm_fault_populate_check_page(m);
482                 vm_page_deactivate(m);
483                 vm_page_xunbusy(m);
484         }
485 }
486
487 static enum fault_status
488 vm_fault_populate(struct faultstate *fs)
489 {
490         vm_offset_t vaddr;
491         vm_page_t m;
492         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
493         int bdry_idx, i, npages, psind, rv;
494         enum fault_status res;
495
496         MPASS(fs->object == fs->first_object);
497         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
498         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
499         MPASS(fs->first_object->backing_object == NULL);
500         MPASS(fs->lookup_still_valid);
501
502         pager_first = OFF_TO_IDX(fs->entry->offset);
503         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
504         vm_fault_unlock_map(fs);
505         vm_fault_unlock_vp(fs);
506
507         res = FAULT_SUCCESS;
508
509         /*
510          * Call the pager (driver) populate() method.
511          *
512          * There is no guarantee that the method will be called again
513          * if the current fault is for read, and a future fault is
514          * for write.  Report the entry's maximum allowed protection
515          * to the driver.
516          */
517         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
518             fs->fault_type, fs->entry->max_protection, &pager_first,
519             &pager_last);
520
521         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
522         if (rv == VM_PAGER_BAD) {
523                 /*
524                  * VM_PAGER_BAD is the backdoor for a pager to request
525                  * normal fault handling.
526                  */
527                 vm_fault_restore_map_lock(fs);
528                 if (fs->map->timestamp != fs->map_generation)
529                         return (FAULT_RESTART);
530                 return (FAULT_CONTINUE);
531         }
532         if (rv != VM_PAGER_OK)
533                 return (FAULT_FAILURE); /* AKA SIGSEGV */
534
535         /* Ensure that the driver is obeying the interface. */
536         MPASS(pager_first <= pager_last);
537         MPASS(fs->first_pindex <= pager_last);
538         MPASS(fs->first_pindex >= pager_first);
539         MPASS(pager_last < fs->first_object->size);
540
541         vm_fault_restore_map_lock(fs);
542         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
543             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
544         if (fs->map->timestamp != fs->map_generation) {
545                 if (bdry_idx == 0) {
546                         vm_fault_populate_cleanup(fs->first_object, pager_first,
547                             pager_last);
548                 } else {
549                         m = vm_page_lookup(fs->first_object, pager_first);
550                         if (m != fs->m)
551                                 vm_page_xunbusy(m);
552                 }
553                 return (FAULT_RESTART);
554         }
555
556         /*
557          * The map is unchanged after our last unlock.  Process the fault.
558          *
559          * First, the special case of largepage mappings, where
560          * populate only busies the first page in superpage run.
561          */
562         if (bdry_idx != 0) {
563                 KASSERT(PMAP_HAS_LARGEPAGES,
564                     ("missing pmap support for large pages"));
565                 m = vm_page_lookup(fs->first_object, pager_first);
566                 vm_fault_populate_check_page(m);
567                 VM_OBJECT_WUNLOCK(fs->first_object);
568                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
569                     fs->entry->offset;
570                 /* assert alignment for entry */
571                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
572     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
573                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
574                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
575                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
576                     ("unaligned superpage m %p %#jx", m,
577                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
578                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
579                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
580                     PMAP_ENTER_LARGEPAGE, bdry_idx);
581                 VM_OBJECT_WLOCK(fs->first_object);
582                 vm_page_xunbusy(m);
583                 if (rv != KERN_SUCCESS) {
584                         res = FAULT_FAILURE;
585                         goto out;
586                 }
587                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
588                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
589                                 vm_page_wire(m + i);
590                 }
591                 if (fs->m_hold != NULL) {
592                         *fs->m_hold = m + (fs->first_pindex - pager_first);
593                         vm_page_wire(*fs->m_hold);
594                 }
595                 goto out;
596         }
597
598         /*
599          * The range [pager_first, pager_last] that is given to the
600          * pager is only a hint.  The pager may populate any range
601          * within the object that includes the requested page index.
602          * In case the pager expanded the range, clip it to fit into
603          * the map entry.
604          */
605         map_first = OFF_TO_IDX(fs->entry->offset);
606         if (map_first > pager_first) {
607                 vm_fault_populate_cleanup(fs->first_object, pager_first,
608                     map_first - 1);
609                 pager_first = map_first;
610         }
611         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
612         if (map_last < pager_last) {
613                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
614                     pager_last);
615                 pager_last = map_last;
616         }
617         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
618             pidx <= pager_last;
619             pidx += npages, m = vm_page_next(&m[npages - 1])) {
620                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
621
622                 psind = m->psind;
623                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
624                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
625                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
626                         psind = 0;
627
628                 npages = atop(pagesizes[psind]);
629                 for (i = 0; i < npages; i++) {
630                         vm_fault_populate_check_page(&m[i]);
631                         vm_fault_dirty(fs, &m[i]);
632                 }
633                 VM_OBJECT_WUNLOCK(fs->first_object);
634                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
635                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
636
637                 /*
638                  * pmap_enter() may fail for a superpage mapping if additional
639                  * protection policies prevent the full mapping.
640                  * For example, this will happen on amd64 if the entire
641                  * address range does not share the same userspace protection
642                  * key.  Revert to single-page mappings if this happens.
643                  */
644                 MPASS(rv == KERN_SUCCESS ||
645                     (psind > 0 && rv == KERN_PROTECTION_FAILURE));
646                 if (__predict_false(psind > 0 &&
647                     rv == KERN_PROTECTION_FAILURE)) {
648                         MPASS(!fs->wired);
649                         for (i = 0; i < npages; i++) {
650                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
651                                     &m[i], fs->prot, fs->fault_type, 0);
652                                 MPASS(rv == KERN_SUCCESS);
653                         }
654                 }
655
656                 VM_OBJECT_WLOCK(fs->first_object);
657                 for (i = 0; i < npages; i++) {
658                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
659                             m[i].pindex == fs->first_pindex)
660                                 vm_page_wire(&m[i]);
661                         else
662                                 vm_page_activate(&m[i]);
663                         if (fs->m_hold != NULL &&
664                             m[i].pindex == fs->first_pindex) {
665                                 (*fs->m_hold) = &m[i];
666                                 vm_page_wire(&m[i]);
667                         }
668                         vm_page_xunbusy(&m[i]);
669                 }
670         }
671 out:
672         curthread->td_ru.ru_majflt++;
673         return (res);
674 }
675
676 static int prot_fault_translation;
677 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
678     &prot_fault_translation, 0,
679     "Control signal to deliver on protection fault");
680
681 /* compat definition to keep common code for signal translation */
682 #define UCODE_PAGEFLT   12
683 #ifdef T_PAGEFLT
684 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
685 #endif
686
687 /*
688  *      vm_fault_trap:
689  *
690  *      Handle a page fault occurring at the given address,
691  *      requiring the given permissions, in the map specified.
692  *      If successful, the page is inserted into the
693  *      associated physical map.
694  *
695  *      NOTE: the given address should be truncated to the
696  *      proper page address.
697  *
698  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
699  *      a standard error specifying why the fault is fatal is returned.
700  *
701  *      The map in question must be referenced, and remains so.
702  *      Caller may hold no locks.
703  */
704 int
705 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
706     int fault_flags, int *signo, int *ucode)
707 {
708         int result;
709
710         MPASS(signo == NULL || ucode != NULL);
711 #ifdef KTRACE
712         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
713                 ktrfault(vaddr, fault_type);
714 #endif
715         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
716             NULL);
717         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
718             result == KERN_INVALID_ADDRESS ||
719             result == KERN_RESOURCE_SHORTAGE ||
720             result == KERN_PROTECTION_FAILURE ||
721             result == KERN_OUT_OF_BOUNDS,
722             ("Unexpected Mach error %d from vm_fault()", result));
723 #ifdef KTRACE
724         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
725                 ktrfaultend(result);
726 #endif
727         if (result != KERN_SUCCESS && signo != NULL) {
728                 switch (result) {
729                 case KERN_FAILURE:
730                 case KERN_INVALID_ADDRESS:
731                         *signo = SIGSEGV;
732                         *ucode = SEGV_MAPERR;
733                         break;
734                 case KERN_RESOURCE_SHORTAGE:
735                         *signo = SIGBUS;
736                         *ucode = BUS_OOMERR;
737                         break;
738                 case KERN_OUT_OF_BOUNDS:
739                         *signo = SIGBUS;
740                         *ucode = BUS_OBJERR;
741                         break;
742                 case KERN_PROTECTION_FAILURE:
743                         if (prot_fault_translation == 0) {
744                                 /*
745                                  * Autodetect.  This check also covers
746                                  * the images without the ABI-tag ELF
747                                  * note.
748                                  */
749                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
750                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
751                                         *signo = SIGSEGV;
752                                         *ucode = SEGV_ACCERR;
753                                 } else {
754                                         *signo = SIGBUS;
755                                         *ucode = UCODE_PAGEFLT;
756                                 }
757                         } else if (prot_fault_translation == 1) {
758                                 /* Always compat mode. */
759                                 *signo = SIGBUS;
760                                 *ucode = UCODE_PAGEFLT;
761                         } else {
762                                 /* Always SIGSEGV mode. */
763                                 *signo = SIGSEGV;
764                                 *ucode = SEGV_ACCERR;
765                         }
766                         break;
767                 default:
768                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
769                             result));
770                         break;
771                 }
772         }
773         return (result);
774 }
775
776 static bool
777 vm_fault_object_ensure_wlocked(struct faultstate *fs)
778 {
779         if (fs->object == fs->first_object)
780                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
781
782         if (!fs->can_read_lock)  {
783                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
784                 return (true);
785         }
786
787         if (VM_OBJECT_WOWNED(fs->object))
788                 return (true);
789
790         if (VM_OBJECT_TRYUPGRADE(fs->object))
791                 return (true);
792
793         return (false);
794 }
795
796 static enum fault_status
797 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
798 {
799         struct vnode *vp;
800         int error, locked;
801
802         if (fs->object->type != OBJT_VNODE)
803                 return (FAULT_CONTINUE);
804         vp = fs->object->handle;
805         if (vp == fs->vp) {
806                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
807                 return (FAULT_CONTINUE);
808         }
809
810         /*
811          * Perform an unlock in case the desired vnode changed while
812          * the map was unlocked during a retry.
813          */
814         vm_fault_unlock_vp(fs);
815
816         locked = VOP_ISLOCKED(vp);
817         if (locked != LK_EXCLUSIVE)
818                 locked = LK_SHARED;
819
820         /*
821          * We must not sleep acquiring the vnode lock while we have
822          * the page exclusive busied or the object's
823          * paging-in-progress count incremented.  Otherwise, we could
824          * deadlock.
825          */
826         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
827         if (error == 0) {
828                 fs->vp = vp;
829                 return (FAULT_CONTINUE);
830         }
831
832         vhold(vp);
833         if (objlocked)
834                 vm_fault_unlock_and_deallocate(fs);
835         else
836                 vm_fault_deallocate(fs);
837         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
838         vdrop(vp);
839         fs->vp = vp;
840         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
841         return (FAULT_RESTART);
842 }
843
844 /*
845  * Calculate the desired readahead.  Handle drop-behind.
846  *
847  * Returns the number of readahead blocks to pass to the pager.
848  */
849 static int
850 vm_fault_readahead(struct faultstate *fs)
851 {
852         int era, nera;
853         u_char behavior;
854
855         KASSERT(fs->lookup_still_valid, ("map unlocked"));
856         era = fs->entry->read_ahead;
857         behavior = vm_map_entry_behavior(fs->entry);
858         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
859                 nera = 0;
860         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
861                 nera = VM_FAULT_READ_AHEAD_MAX;
862                 if (fs->vaddr == fs->entry->next_read)
863                         vm_fault_dontneed(fs, fs->vaddr, nera);
864         } else if (fs->vaddr == fs->entry->next_read) {
865                 /*
866                  * This is a sequential fault.  Arithmetically
867                  * increase the requested number of pages in
868                  * the read-ahead window.  The requested
869                  * number of pages is "# of sequential faults
870                  * x (read ahead min + 1) + read ahead min"
871                  */
872                 nera = VM_FAULT_READ_AHEAD_MIN;
873                 if (era > 0) {
874                         nera += era + 1;
875                         if (nera > VM_FAULT_READ_AHEAD_MAX)
876                                 nera = VM_FAULT_READ_AHEAD_MAX;
877                 }
878                 if (era == VM_FAULT_READ_AHEAD_MAX)
879                         vm_fault_dontneed(fs, fs->vaddr, nera);
880         } else {
881                 /*
882                  * This is a non-sequential fault.
883                  */
884                 nera = 0;
885         }
886         if (era != nera) {
887                 /*
888                  * A read lock on the map suffices to update
889                  * the read ahead count safely.
890                  */
891                 fs->entry->read_ahead = nera;
892         }
893
894         return (nera);
895 }
896
897 static int
898 vm_fault_lookup(struct faultstate *fs)
899 {
900         int result;
901
902         KASSERT(!fs->lookup_still_valid,
903            ("vm_fault_lookup: Map already locked."));
904         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
905             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
906             &fs->first_pindex, &fs->prot, &fs->wired);
907         if (result != KERN_SUCCESS) {
908                 vm_fault_unlock_vp(fs);
909                 return (result);
910         }
911
912         fs->map_generation = fs->map->timestamp;
913
914         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
915                 panic("%s: fault on nofault entry, addr: %#lx",
916                     __func__, (u_long)fs->vaddr);
917         }
918
919         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
920             fs->entry->wiring_thread != curthread) {
921                 vm_map_unlock_read(fs->map);
922                 vm_map_lock(fs->map);
923                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
924                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
925                         vm_fault_unlock_vp(fs);
926                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
927                         vm_map_unlock_and_wait(fs->map, 0);
928                 } else
929                         vm_map_unlock(fs->map);
930                 return (KERN_RESOURCE_SHORTAGE);
931         }
932
933         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
934
935         if (fs->wired)
936                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
937         else
938                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
939                     ("!fs->wired && VM_FAULT_WIRE"));
940         fs->lookup_still_valid = true;
941
942         return (KERN_SUCCESS);
943 }
944
945 static int
946 vm_fault_relookup(struct faultstate *fs)
947 {
948         vm_object_t retry_object;
949         vm_pindex_t retry_pindex;
950         vm_prot_t retry_prot;
951         int result;
952
953         if (!vm_map_trylock_read(fs->map))
954                 return (KERN_RESTART);
955
956         fs->lookup_still_valid = true;
957         if (fs->map->timestamp == fs->map_generation)
958                 return (KERN_SUCCESS);
959
960         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
961             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
962             &fs->wired);
963         if (result != KERN_SUCCESS) {
964                 /*
965                  * If retry of map lookup would have blocked then
966                  * retry fault from start.
967                  */
968                 if (result == KERN_FAILURE)
969                         return (KERN_RESTART);
970                 return (result);
971         }
972         if (retry_object != fs->first_object ||
973             retry_pindex != fs->first_pindex)
974                 return (KERN_RESTART);
975
976         /*
977          * Check whether the protection has changed or the object has
978          * been copied while we left the map unlocked. Changing from
979          * read to write permission is OK - we leave the page
980          * write-protected, and catch the write fault. Changing from
981          * write to read permission means that we can't mark the page
982          * write-enabled after all.
983          */
984         fs->prot &= retry_prot;
985         fs->fault_type &= retry_prot;
986         if (fs->prot == 0)
987                 return (KERN_RESTART);
988
989         /* Reassert because wired may have changed. */
990         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
991             ("!wired && VM_FAULT_WIRE"));
992
993         return (KERN_SUCCESS);
994 }
995
996 static void
997 vm_fault_cow(struct faultstate *fs)
998 {
999         bool is_first_object_locked;
1000
1001         KASSERT(fs->object != fs->first_object,
1002             ("source and target COW objects are identical"));
1003
1004         /*
1005          * This allows pages to be virtually copied from a backing_object
1006          * into the first_object, where the backing object has no other
1007          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1008          * we just move the page from the backing object to the first
1009          * object.  Note that we must mark the page dirty in the first
1010          * object so that it will go out to swap when needed.
1011          */
1012         is_first_object_locked = false;
1013         if (
1014             /*
1015              * Only one shadow object and no other refs.
1016              */
1017             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1018             /*
1019              * No other ways to look the object up
1020              */
1021             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1022             /*
1023              * We don't chase down the shadow chain and we can acquire locks.
1024              */
1025             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1026             fs->object == fs->first_object->backing_object &&
1027             VM_OBJECT_TRYWLOCK(fs->object)) {
1028                 /*
1029                  * Remove but keep xbusy for replace.  fs->m is moved into
1030                  * fs->first_object and left busy while fs->first_m is
1031                  * conditionally freed.
1032                  */
1033                 vm_page_remove_xbusy(fs->m);
1034                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1035                     fs->first_m);
1036                 vm_page_dirty(fs->m);
1037 #if VM_NRESERVLEVEL > 0
1038                 /*
1039                  * Rename the reservation.
1040                  */
1041                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1042                     OFF_TO_IDX(fs->first_object->backing_object_offset));
1043 #endif
1044                 VM_OBJECT_WUNLOCK(fs->object);
1045                 VM_OBJECT_WUNLOCK(fs->first_object);
1046                 fs->first_m = fs->m;
1047                 fs->m = NULL;
1048                 VM_CNT_INC(v_cow_optim);
1049         } else {
1050                 if (is_first_object_locked)
1051                         VM_OBJECT_WUNLOCK(fs->first_object);
1052                 /*
1053                  * Oh, well, lets copy it.
1054                  */
1055                 pmap_copy_page(fs->m, fs->first_m);
1056                 vm_page_valid(fs->first_m);
1057                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1058                         vm_page_wire(fs->first_m);
1059                         vm_page_unwire(fs->m, PQ_INACTIVE);
1060                 }
1061                 /*
1062                  * Save the cow page to be released after
1063                  * pmap_enter is complete.
1064                  */
1065                 fs->m_cow = fs->m;
1066                 fs->m = NULL;
1067
1068                 /*
1069                  * Typically, the shadow object is either private to this
1070                  * address space (OBJ_ONEMAPPING) or its pages are read only.
1071                  * In the highly unusual case where the pages of a shadow object
1072                  * are read/write shared between this and other address spaces,
1073                  * we need to ensure that any pmap-level mappings to the
1074                  * original, copy-on-write page from the backing object are
1075                  * removed from those other address spaces.
1076                  *
1077                  * The flag check is racy, but this is tolerable: if
1078                  * OBJ_ONEMAPPING is cleared after the check, the busy state
1079                  * ensures that new mappings of m_cow can't be created.
1080                  * pmap_enter() will replace an existing mapping in the current
1081                  * address space.  If OBJ_ONEMAPPING is set after the check,
1082                  * removing mappings will at worse trigger some unnecessary page
1083                  * faults.
1084                  */
1085                 vm_page_assert_xbusied(fs->m_cow);
1086                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1087                         pmap_remove_all(fs->m_cow);
1088         }
1089
1090         vm_object_pip_wakeup(fs->object);
1091
1092         /*
1093          * Only use the new page below...
1094          */
1095         fs->object = fs->first_object;
1096         fs->pindex = fs->first_pindex;
1097         fs->m = fs->first_m;
1098         VM_CNT_INC(v_cow_faults);
1099         curthread->td_cow++;
1100 }
1101
1102 static enum fault_next_status
1103 vm_fault_next(struct faultstate *fs)
1104 {
1105         vm_object_t next_object;
1106
1107         if (fs->object == fs->first_object || !fs->can_read_lock)
1108                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1109         else
1110                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1111
1112         /*
1113          * The requested page does not exist at this object/
1114          * offset.  Remove the invalid page from the object,
1115          * waking up anyone waiting for it, and continue on to
1116          * the next object.  However, if this is the top-level
1117          * object, we must leave the busy page in place to
1118          * prevent another process from rushing past us, and
1119          * inserting the page in that object at the same time
1120          * that we are.
1121          */
1122         if (fs->object == fs->first_object) {
1123                 fs->first_m = fs->m;
1124                 fs->m = NULL;
1125         } else if (fs->m != NULL) {
1126                 if (!vm_fault_object_ensure_wlocked(fs)) {
1127                         fs->can_read_lock = false;
1128                         vm_fault_unlock_and_deallocate(fs);
1129                         return (FAULT_NEXT_RESTART);
1130                 }
1131                 vm_fault_page_free(&fs->m);
1132         }
1133
1134         /*
1135          * Move on to the next object.  Lock the next object before
1136          * unlocking the current one.
1137          */
1138         next_object = fs->object->backing_object;
1139         if (next_object == NULL)
1140                 return (FAULT_NEXT_NOOBJ);
1141         MPASS(fs->first_m != NULL);
1142         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1143         if (fs->can_read_lock)
1144                 VM_OBJECT_RLOCK(next_object);
1145         else
1146                 VM_OBJECT_WLOCK(next_object);
1147         vm_object_pip_add(next_object, 1);
1148         if (fs->object != fs->first_object)
1149                 vm_object_pip_wakeup(fs->object);
1150         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1151         VM_OBJECT_UNLOCK(fs->object);
1152         fs->object = next_object;
1153
1154         return (FAULT_NEXT_GOTOBJ);
1155 }
1156
1157 static void
1158 vm_fault_zerofill(struct faultstate *fs)
1159 {
1160
1161         /*
1162          * If there's no object left, fill the page in the top
1163          * object with zeros.
1164          */
1165         if (fs->object != fs->first_object) {
1166                 vm_object_pip_wakeup(fs->object);
1167                 fs->object = fs->first_object;
1168                 fs->pindex = fs->first_pindex;
1169         }
1170         MPASS(fs->first_m != NULL);
1171         MPASS(fs->m == NULL);
1172         fs->m = fs->first_m;
1173         fs->first_m = NULL;
1174
1175         /*
1176          * Zero the page if necessary and mark it valid.
1177          */
1178         if ((fs->m->flags & PG_ZERO) == 0) {
1179                 pmap_zero_page(fs->m);
1180         } else {
1181                 VM_CNT_INC(v_ozfod);
1182         }
1183         VM_CNT_INC(v_zfod);
1184         vm_page_valid(fs->m);
1185 }
1186
1187 /*
1188  * Initiate page fault after timeout.  Returns true if caller should
1189  * do vm_waitpfault() after the call.
1190  */
1191 static bool
1192 vm_fault_allocate_oom(struct faultstate *fs)
1193 {
1194         struct timeval now;
1195
1196         vm_fault_unlock_and_deallocate(fs);
1197         if (vm_pfault_oom_attempts < 0)
1198                 return (true);
1199         if (!fs->oom_started) {
1200                 fs->oom_started = true;
1201                 getmicrotime(&fs->oom_start_time);
1202                 return (true);
1203         }
1204
1205         getmicrotime(&now);
1206         timevalsub(&now, &fs->oom_start_time);
1207         if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1208                 return (true);
1209
1210         if (bootverbose)
1211                 printf(
1212             "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1213                     curproc->p_pid, curproc->p_comm);
1214         vm_pageout_oom(VM_OOM_MEM_PF);
1215         fs->oom_started = false;
1216         return (false);
1217 }
1218
1219 /*
1220  * Allocate a page directly or via the object populate method.
1221  */
1222 static enum fault_status
1223 vm_fault_allocate(struct faultstate *fs)
1224 {
1225         struct domainset *dset;
1226         enum fault_status res;
1227
1228         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1229                 res = vm_fault_lock_vnode(fs, true);
1230                 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1231                 if (res == FAULT_RESTART)
1232                         return (res);
1233         }
1234
1235         if (fs->pindex >= fs->object->size) {
1236                 vm_fault_unlock_and_deallocate(fs);
1237                 return (FAULT_OUT_OF_BOUNDS);
1238         }
1239
1240         if (fs->object == fs->first_object &&
1241             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1242             fs->first_object->shadow_count == 0) {
1243                 res = vm_fault_populate(fs);
1244                 switch (res) {
1245                 case FAULT_SUCCESS:
1246                 case FAULT_FAILURE:
1247                 case FAULT_RESTART:
1248                         vm_fault_unlock_and_deallocate(fs);
1249                         return (res);
1250                 case FAULT_CONTINUE:
1251                         /*
1252                          * Pager's populate() method
1253                          * returned VM_PAGER_BAD.
1254                          */
1255                         break;
1256                 default:
1257                         panic("inconsistent return codes");
1258                 }
1259         }
1260
1261         /*
1262          * Allocate a new page for this object/offset pair.
1263          *
1264          * If the process has a fatal signal pending, prioritize the allocation
1265          * with the expectation that the process will exit shortly and free some
1266          * pages.  In particular, the signal may have been posted by the page
1267          * daemon in an attempt to resolve an out-of-memory condition.
1268          *
1269          * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1270          * might be not observed here, and allocation fails, causing a restart
1271          * and new reading of the p_flag.
1272          */
1273         dset = fs->object->domain.dr_policy;
1274         if (dset == NULL)
1275                 dset = curthread->td_domain.dr_policy;
1276         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1277 #if VM_NRESERVLEVEL > 0
1278                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1279 #endif
1280                 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1281                         vm_fault_unlock_and_deallocate(fs);
1282                         return (FAULT_FAILURE);
1283                 }
1284                 fs->m = vm_page_alloc(fs->object, fs->pindex,
1285                     P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1286         }
1287         if (fs->m == NULL) {
1288                 if (vm_fault_allocate_oom(fs))
1289                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1290                 return (FAULT_RESTART);
1291         }
1292         fs->oom_started = false;
1293
1294         return (FAULT_CONTINUE);
1295 }
1296
1297 /*
1298  * Call the pager to retrieve the page if there is a chance
1299  * that the pager has it, and potentially retrieve additional
1300  * pages at the same time.
1301  */
1302 static enum fault_status
1303 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1304 {
1305         vm_offset_t e_end, e_start;
1306         int ahead, behind, cluster_offset, rv;
1307         enum fault_status status;
1308         u_char behavior;
1309
1310         /*
1311          * Prepare for unlocking the map.  Save the map
1312          * entry's start and end addresses, which are used to
1313          * optimize the size of the pager operation below.
1314          * Even if the map entry's addresses change after
1315          * unlocking the map, using the saved addresses is
1316          * safe.
1317          */
1318         e_start = fs->entry->start;
1319         e_end = fs->entry->end;
1320         behavior = vm_map_entry_behavior(fs->entry);
1321
1322         /*
1323          * If the pager for the current object might have
1324          * the page, then determine the number of additional
1325          * pages to read and potentially reprioritize
1326          * previously read pages for earlier reclamation.
1327          * These operations should only be performed once per
1328          * page fault.  Even if the current pager doesn't
1329          * have the page, the number of additional pages to
1330          * read will apply to subsequent objects in the
1331          * shadow chain.
1332          */
1333         if (fs->nera == -1 && !P_KILLED(curproc))
1334                 fs->nera = vm_fault_readahead(fs);
1335
1336         /*
1337          * Release the map lock before locking the vnode or
1338          * sleeping in the pager.  (If the current object has
1339          * a shadow, then an earlier iteration of this loop
1340          * may have already unlocked the map.)
1341          */
1342         vm_fault_unlock_map(fs);
1343
1344         status = vm_fault_lock_vnode(fs, false);
1345         MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1346         if (status == FAULT_RESTART)
1347                 return (status);
1348         KASSERT(fs->vp == NULL || !fs->map->system_map,
1349             ("vm_fault: vnode-backed object mapped by system map"));
1350
1351         /*
1352          * Page in the requested page and hint the pager,
1353          * that it may bring up surrounding pages.
1354          */
1355         if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1356             P_KILLED(curproc)) {
1357                 behind = 0;
1358                 ahead = 0;
1359         } else {
1360                 /* Is this a sequential fault? */
1361                 if (fs->nera > 0) {
1362                         behind = 0;
1363                         ahead = fs->nera;
1364                 } else {
1365                         /*
1366                          * Request a cluster of pages that is
1367                          * aligned to a VM_FAULT_READ_DEFAULT
1368                          * page offset boundary within the
1369                          * object.  Alignment to a page offset
1370                          * boundary is more likely to coincide
1371                          * with the underlying file system
1372                          * block than alignment to a virtual
1373                          * address boundary.
1374                          */
1375                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1376                         behind = ulmin(cluster_offset,
1377                             atop(fs->vaddr - e_start));
1378                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1379                 }
1380                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1381         }
1382         *behindp = behind;
1383         *aheadp = ahead;
1384         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1385         if (rv == VM_PAGER_OK)
1386                 return (FAULT_HARD);
1387         if (rv == VM_PAGER_ERROR)
1388                 printf("vm_fault: pager read error, pid %d (%s)\n",
1389                     curproc->p_pid, curproc->p_comm);
1390         /*
1391          * If an I/O error occurred or the requested page was
1392          * outside the range of the pager, clean up and return
1393          * an error.
1394          */
1395         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1396                 VM_OBJECT_WLOCK(fs->object);
1397                 vm_fault_page_free(&fs->m);
1398                 vm_fault_unlock_and_deallocate(fs);
1399                 return (FAULT_OUT_OF_BOUNDS);
1400         }
1401         KASSERT(rv == VM_PAGER_FAIL,
1402             ("%s: unexpected pager error %d", __func__, rv));
1403         return (FAULT_CONTINUE);
1404 }
1405
1406 /*
1407  * Wait/Retry if the page is busy.  We have to do this if the page is
1408  * either exclusive or shared busy because the vm_pager may be using
1409  * read busy for pageouts (and even pageins if it is the vnode pager),
1410  * and we could end up trying to pagein and pageout the same page
1411  * simultaneously.
1412  *
1413  * We can theoretically allow the busy case on a read fault if the page
1414  * is marked valid, but since such pages are typically already pmap'd,
1415  * putting that special case in might be more effort then it is worth.
1416  * We cannot under any circumstances mess around with a shared busied
1417  * page except, perhaps, to pmap it.
1418  */
1419 static void
1420 vm_fault_busy_sleep(struct faultstate *fs)
1421 {
1422         /*
1423          * Reference the page before unlocking and
1424          * sleeping so that the page daemon is less
1425          * likely to reclaim it.
1426          */
1427         vm_page_aflag_set(fs->m, PGA_REFERENCED);
1428         if (fs->object != fs->first_object) {
1429                 vm_fault_page_release(&fs->first_m);
1430                 vm_object_pip_wakeup(fs->first_object);
1431         }
1432         vm_object_pip_wakeup(fs->object);
1433         vm_fault_unlock_map(fs);
1434         if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1435             !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1436                 VM_OBJECT_UNLOCK(fs->object);
1437         VM_CNT_INC(v_intrans);
1438         vm_object_deallocate(fs->first_object);
1439 }
1440
1441 /*
1442  * Handle page lookup, populate, allocate, page-in for the current
1443  * object.
1444  *
1445  * The object is locked on entry and will remain locked with a return
1446  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1447  * Otherwise, the object will be unlocked upon return.
1448  */
1449 static enum fault_status
1450 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1451 {
1452         enum fault_status res;
1453         bool dead;
1454
1455         if (fs->object == fs->first_object || !fs->can_read_lock)
1456                 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1457         else
1458                 VM_OBJECT_ASSERT_LOCKED(fs->object);
1459
1460         /*
1461          * If the object is marked for imminent termination, we retry
1462          * here, since the collapse pass has raced with us.  Otherwise,
1463          * if we see terminally dead object, return fail.
1464          */
1465         if ((fs->object->flags & OBJ_DEAD) != 0) {
1466                 dead = fs->object->type == OBJT_DEAD;
1467                 vm_fault_unlock_and_deallocate(fs);
1468                 if (dead)
1469                         return (FAULT_PROTECTION_FAILURE);
1470                 pause("vmf_de", 1);
1471                 return (FAULT_RESTART);
1472         }
1473
1474         /*
1475          * See if the page is resident.
1476          */
1477         fs->m = vm_page_lookup(fs->object, fs->pindex);
1478         if (fs->m != NULL) {
1479                 if (!vm_page_tryxbusy(fs->m)) {
1480                         vm_fault_busy_sleep(fs);
1481                         return (FAULT_RESTART);
1482                 }
1483
1484                 /*
1485                  * The page is marked busy for other processes and the
1486                  * pagedaemon.  If it is still completely valid we are
1487                  * done.
1488                  */
1489                 if (vm_page_all_valid(fs->m)) {
1490                         VM_OBJECT_UNLOCK(fs->object);
1491                         return (FAULT_SOFT);
1492                 }
1493         }
1494
1495         /*
1496          * Page is not resident.  If the pager might contain the page
1497          * or this is the beginning of the search, allocate a new
1498          * page.
1499          */
1500         if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1501             fs->object == fs->first_object)) {
1502                 if (!vm_fault_object_ensure_wlocked(fs)) {
1503                         fs->can_read_lock = false;
1504                         vm_fault_unlock_and_deallocate(fs);
1505                         return (FAULT_RESTART);
1506                 }
1507                 res = vm_fault_allocate(fs);
1508                 if (res != FAULT_CONTINUE)
1509                         return (res);
1510         }
1511
1512         /*
1513          * Check to see if the pager can possibly satisfy this fault.
1514          * If not, skip to the next object without dropping the lock to
1515          * preserve atomicity of shadow faults.
1516          */
1517         if (vm_fault_object_needs_getpages(fs->object)) {
1518                 /*
1519                  * At this point, we have either allocated a new page
1520                  * or found an existing page that is only partially
1521                  * valid.
1522                  *
1523                  * We hold a reference on the current object and the
1524                  * page is exclusive busied.  The exclusive busy
1525                  * prevents simultaneous faults and collapses while
1526                  * the object lock is dropped.
1527                  */
1528                 VM_OBJECT_UNLOCK(fs->object);
1529                 res = vm_fault_getpages(fs, behindp, aheadp);
1530                 if (res == FAULT_CONTINUE)
1531                         VM_OBJECT_WLOCK(fs->object);
1532         } else {
1533                 res = FAULT_CONTINUE;
1534         }
1535         return (res);
1536 }
1537
1538 int
1539 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1540     int fault_flags, vm_page_t *m_hold)
1541 {
1542         struct faultstate fs;
1543         int ahead, behind, faultcount, rv;
1544         enum fault_status res;
1545         enum fault_next_status res_next;
1546         bool hardfault;
1547
1548         VM_CNT_INC(v_vm_faults);
1549
1550         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1551                 return (KERN_PROTECTION_FAILURE);
1552
1553         fs.vp = NULL;
1554         fs.vaddr = vaddr;
1555         fs.m_hold = m_hold;
1556         fs.fault_flags = fault_flags;
1557         fs.map = map;
1558         fs.lookup_still_valid = false;
1559         fs.oom_started = false;
1560         fs.nera = -1;
1561         fs.can_read_lock = true;
1562         faultcount = 0;
1563         hardfault = false;
1564
1565 RetryFault:
1566         fs.fault_type = fault_type;
1567
1568         /*
1569          * Find the backing store object and offset into it to begin the
1570          * search.
1571          */
1572         rv = vm_fault_lookup(&fs);
1573         if (rv != KERN_SUCCESS) {
1574                 if (rv == KERN_RESOURCE_SHORTAGE)
1575                         goto RetryFault;
1576                 return (rv);
1577         }
1578
1579         /*
1580          * Try to avoid lock contention on the top-level object through
1581          * special-case handling of some types of page faults, specifically,
1582          * those that are mapping an existing page from the top-level object.
1583          * Under this condition, a read lock on the object suffices, allowing
1584          * multiple page faults of a similar type to run in parallel.
1585          */
1586         if (fs.vp == NULL /* avoid locked vnode leak */ &&
1587             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1588             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1589                 res = vm_fault_soft_fast(&fs);
1590                 if (res == FAULT_SUCCESS) {
1591                         VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1592                         return (KERN_SUCCESS);
1593                 }
1594                 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1595         } else {
1596                 VM_OBJECT_WLOCK(fs.first_object);
1597         }
1598
1599         /*
1600          * Make a reference to this object to prevent its disposal while we
1601          * are messing with it.  Once we have the reference, the map is free
1602          * to be diddled.  Since objects reference their shadows (and copies),
1603          * they will stay around as well.
1604          *
1605          * Bump the paging-in-progress count to prevent size changes (e.g. 
1606          * truncation operations) during I/O.
1607          */
1608         vm_object_reference_locked(fs.first_object);
1609         vm_object_pip_add(fs.first_object, 1);
1610
1611         fs.m_cow = fs.m = fs.first_m = NULL;
1612
1613         /*
1614          * Search for the page at object/offset.
1615          */
1616         fs.object = fs.first_object;
1617         fs.pindex = fs.first_pindex;
1618
1619         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1620                 res = vm_fault_allocate(&fs);
1621                 switch (res) {
1622                 case FAULT_RESTART:
1623                         goto RetryFault;
1624                 case FAULT_SUCCESS:
1625                         return (KERN_SUCCESS);
1626                 case FAULT_FAILURE:
1627                         return (KERN_FAILURE);
1628                 case FAULT_OUT_OF_BOUNDS:
1629                         return (KERN_OUT_OF_BOUNDS);
1630                 case FAULT_CONTINUE:
1631                         break;
1632                 default:
1633                         panic("vm_fault: Unhandled status %d", res);
1634                 }
1635         }
1636
1637         while (TRUE) {
1638                 KASSERT(fs.m == NULL,
1639                     ("page still set %p at loop start", fs.m));
1640
1641                 res = vm_fault_object(&fs, &behind, &ahead);
1642                 switch (res) {
1643                 case FAULT_SOFT:
1644                         goto found;
1645                 case FAULT_HARD:
1646                         faultcount = behind + 1 + ahead;
1647                         hardfault = true;
1648                         goto found;
1649                 case FAULT_RESTART:
1650                         goto RetryFault;
1651                 case FAULT_SUCCESS:
1652                         return (KERN_SUCCESS);
1653                 case FAULT_FAILURE:
1654                         return (KERN_FAILURE);
1655                 case FAULT_OUT_OF_BOUNDS:
1656                         return (KERN_OUT_OF_BOUNDS);
1657                 case FAULT_PROTECTION_FAILURE:
1658                         return (KERN_PROTECTION_FAILURE);
1659                 case FAULT_CONTINUE:
1660                         break;
1661                 default:
1662                         panic("vm_fault: Unhandled status %d", res);
1663                 }
1664
1665                 /*
1666                  * The page was not found in the current object.  Try to
1667                  * traverse into a backing object or zero fill if none is
1668                  * found.
1669                  */
1670                 res_next = vm_fault_next(&fs);
1671                 if (res_next == FAULT_NEXT_RESTART)
1672                         goto RetryFault;
1673                 else if (res_next == FAULT_NEXT_GOTOBJ)
1674                         continue;
1675                 MPASS(res_next == FAULT_NEXT_NOOBJ);
1676                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1677                         if (fs.first_object == fs.object)
1678                                 vm_fault_page_free(&fs.first_m);
1679                         vm_fault_unlock_and_deallocate(&fs);
1680                         return (KERN_OUT_OF_BOUNDS);
1681                 }
1682                 VM_OBJECT_UNLOCK(fs.object);
1683                 vm_fault_zerofill(&fs);
1684                 /* Don't try to prefault neighboring pages. */
1685                 faultcount = 1;
1686                 break;
1687         }
1688
1689 found:
1690         /*
1691          * A valid page has been found and exclusively busied.  The
1692          * object lock must no longer be held.
1693          */
1694         vm_page_assert_xbusied(fs.m);
1695         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1696
1697         /*
1698          * If the page is being written, but isn't already owned by the
1699          * top-level object, we have to copy it into a new page owned by the
1700          * top-level object.
1701          */
1702         if (fs.object != fs.first_object) {
1703                 /*
1704                  * We only really need to copy if we want to write it.
1705                  */
1706                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1707                         vm_fault_cow(&fs);
1708                         /*
1709                          * We only try to prefault read-only mappings to the
1710                          * neighboring pages when this copy-on-write fault is
1711                          * a hard fault.  In other cases, trying to prefault
1712                          * is typically wasted effort.
1713                          */
1714                         if (faultcount == 0)
1715                                 faultcount = 1;
1716
1717                 } else {
1718                         fs.prot &= ~VM_PROT_WRITE;
1719                 }
1720         }
1721
1722         /*
1723          * We must verify that the maps have not changed since our last
1724          * lookup.
1725          */
1726         if (!fs.lookup_still_valid) {
1727                 rv = vm_fault_relookup(&fs);
1728                 if (rv != KERN_SUCCESS) {
1729                         vm_fault_deallocate(&fs);
1730                         if (rv == KERN_RESTART)
1731                                 goto RetryFault;
1732                         return (rv);
1733                 }
1734         }
1735         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1736
1737         /*
1738          * If the page was filled by a pager, save the virtual address that
1739          * should be faulted on next under a sequential access pattern to the
1740          * map entry.  A read lock on the map suffices to update this address
1741          * safely.
1742          */
1743         if (hardfault)
1744                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1745
1746         /*
1747          * Page must be completely valid or it is not fit to
1748          * map into user space.  vm_pager_get_pages() ensures this.
1749          */
1750         vm_page_assert_xbusied(fs.m);
1751         KASSERT(vm_page_all_valid(fs.m),
1752             ("vm_fault: page %p partially invalid", fs.m));
1753
1754         vm_fault_dirty(&fs, fs.m);
1755
1756         /*
1757          * Put this page into the physical map.  We had to do the unlock above
1758          * because pmap_enter() may sleep.  We don't put the page
1759          * back on the active queue until later so that the pageout daemon
1760          * won't find it (yet).
1761          */
1762         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1763             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1764         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1765             fs.wired == 0)
1766                 vm_fault_prefault(&fs, vaddr,
1767                     faultcount > 0 ? behind : PFBAK,
1768                     faultcount > 0 ? ahead : PFFOR, false);
1769
1770         /*
1771          * If the page is not wired down, then put it where the pageout daemon
1772          * can find it.
1773          */
1774         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1775                 vm_page_wire(fs.m);
1776         else
1777                 vm_page_activate(fs.m);
1778         if (fs.m_hold != NULL) {
1779                 (*fs.m_hold) = fs.m;
1780                 vm_page_wire(fs.m);
1781         }
1782         vm_page_xunbusy(fs.m);
1783         fs.m = NULL;
1784
1785         /*
1786          * Unlock everything, and return
1787          */
1788         vm_fault_deallocate(&fs);
1789         if (hardfault) {
1790                 VM_CNT_INC(v_io_faults);
1791                 curthread->td_ru.ru_majflt++;
1792 #ifdef RACCT
1793                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1794                         PROC_LOCK(curproc);
1795                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1796                                 racct_add_force(curproc, RACCT_WRITEBPS,
1797                                     PAGE_SIZE + behind * PAGE_SIZE);
1798                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1799                         } else {
1800                                 racct_add_force(curproc, RACCT_READBPS,
1801                                     PAGE_SIZE + ahead * PAGE_SIZE);
1802                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1803                         }
1804                         PROC_UNLOCK(curproc);
1805                 }
1806 #endif
1807         } else 
1808                 curthread->td_ru.ru_minflt++;
1809
1810         return (KERN_SUCCESS);
1811 }
1812
1813 /*
1814  * Speed up the reclamation of pages that precede the faulting pindex within
1815  * the first object of the shadow chain.  Essentially, perform the equivalent
1816  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1817  * the faulting pindex by the cluster size when the pages read by vm_fault()
1818  * cross a cluster-size boundary.  The cluster size is the greater of the
1819  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1820  *
1821  * When "fs->first_object" is a shadow object, the pages in the backing object
1822  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1823  * function must only be concerned with pages in the first object.
1824  */
1825 static void
1826 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1827 {
1828         vm_map_entry_t entry;
1829         vm_object_t first_object;
1830         vm_offset_t end, start;
1831         vm_page_t m, m_next;
1832         vm_pindex_t pend, pstart;
1833         vm_size_t size;
1834
1835         VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1836         first_object = fs->first_object;
1837         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1838         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1839                 VM_OBJECT_RLOCK(first_object);
1840                 size = VM_FAULT_DONTNEED_MIN;
1841                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1842                         size = pagesizes[1];
1843                 end = rounddown2(vaddr, size);
1844                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1845                     (entry = fs->entry)->start < end) {
1846                         if (end - entry->start < size)
1847                                 start = entry->start;
1848                         else
1849                                 start = end - size;
1850                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1851                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1852                             entry->start);
1853                         m_next = vm_page_find_least(first_object, pstart);
1854                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1855                             entry->start);
1856                         while ((m = m_next) != NULL && m->pindex < pend) {
1857                                 m_next = TAILQ_NEXT(m, listq);
1858                                 if (!vm_page_all_valid(m) ||
1859                                     vm_page_busied(m))
1860                                         continue;
1861
1862                                 /*
1863                                  * Don't clear PGA_REFERENCED, since it would
1864                                  * likely represent a reference by a different
1865                                  * process.
1866                                  *
1867                                  * Typically, at this point, prefetched pages
1868                                  * are still in the inactive queue.  Only
1869                                  * pages that triggered page faults are in the
1870                                  * active queue.  The test for whether the page
1871                                  * is in the inactive queue is racy; in the
1872                                  * worst case we will requeue the page
1873                                  * unnecessarily.
1874                                  */
1875                                 if (!vm_page_inactive(m))
1876                                         vm_page_deactivate(m);
1877                         }
1878                 }
1879                 VM_OBJECT_RUNLOCK(first_object);
1880         }
1881 }
1882
1883 /*
1884  * vm_fault_prefault provides a quick way of clustering
1885  * pagefaults into a processes address space.  It is a "cousin"
1886  * of vm_map_pmap_enter, except it runs at page fault time instead
1887  * of mmap time.
1888  */
1889 static void
1890 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1891     int backward, int forward, bool obj_locked)
1892 {
1893         pmap_t pmap;
1894         vm_map_entry_t entry;
1895         vm_object_t backing_object, lobject;
1896         vm_offset_t addr, starta;
1897         vm_pindex_t pindex;
1898         vm_page_t m;
1899         int i;
1900
1901         pmap = fs->map->pmap;
1902         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1903                 return;
1904
1905         entry = fs->entry;
1906
1907         if (addra < backward * PAGE_SIZE) {
1908                 starta = entry->start;
1909         } else {
1910                 starta = addra - backward * PAGE_SIZE;
1911                 if (starta < entry->start)
1912                         starta = entry->start;
1913         }
1914
1915         /*
1916          * Generate the sequence of virtual addresses that are candidates for
1917          * prefaulting in an outward spiral from the faulting virtual address,
1918          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1919          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1920          * If the candidate address doesn't have a backing physical page, then
1921          * the loop immediately terminates.
1922          */
1923         for (i = 0; i < 2 * imax(backward, forward); i++) {
1924                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1925                     PAGE_SIZE);
1926                 if (addr > addra + forward * PAGE_SIZE)
1927                         addr = 0;
1928
1929                 if (addr < starta || addr >= entry->end)
1930                         continue;
1931
1932                 if (!pmap_is_prefaultable(pmap, addr))
1933                         continue;
1934
1935                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1936                 lobject = entry->object.vm_object;
1937                 if (!obj_locked)
1938                         VM_OBJECT_RLOCK(lobject);
1939                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1940                     !vm_fault_object_needs_getpages(lobject) &&
1941                     (backing_object = lobject->backing_object) != NULL) {
1942                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1943                             0, ("vm_fault_prefault: unaligned object offset"));
1944                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1945                         VM_OBJECT_RLOCK(backing_object);
1946                         if (!obj_locked || lobject != entry->object.vm_object)
1947                                 VM_OBJECT_RUNLOCK(lobject);
1948                         lobject = backing_object;
1949                 }
1950                 if (m == NULL) {
1951                         if (!obj_locked || lobject != entry->object.vm_object)
1952                                 VM_OBJECT_RUNLOCK(lobject);
1953                         break;
1954                 }
1955                 if (vm_page_all_valid(m) &&
1956                     (m->flags & PG_FICTITIOUS) == 0)
1957                         pmap_enter_quick(pmap, addr, m, entry->protection);
1958                 if (!obj_locked || lobject != entry->object.vm_object)
1959                         VM_OBJECT_RUNLOCK(lobject);
1960         }
1961 }
1962
1963 /*
1964  * Hold each of the physical pages that are mapped by the specified range of
1965  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1966  * and allow the specified types of access, "prot".  If all of the implied
1967  * pages are successfully held, then the number of held pages is returned
1968  * together with pointers to those pages in the array "ma".  However, if any
1969  * of the pages cannot be held, -1 is returned.
1970  */
1971 int
1972 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1973     vm_prot_t prot, vm_page_t *ma, int max_count)
1974 {
1975         vm_offset_t end, va;
1976         vm_page_t *mp;
1977         int count;
1978         boolean_t pmap_failed;
1979
1980         if (len == 0)
1981                 return (0);
1982         end = round_page(addr + len);
1983         addr = trunc_page(addr);
1984
1985         if (!vm_map_range_valid(map, addr, end))
1986                 return (-1);
1987
1988         if (atop(end - addr) > max_count)
1989                 panic("vm_fault_quick_hold_pages: count > max_count");
1990         count = atop(end - addr);
1991
1992         /*
1993          * Most likely, the physical pages are resident in the pmap, so it is
1994          * faster to try pmap_extract_and_hold() first.
1995          */
1996         pmap_failed = FALSE;
1997         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1998                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1999                 if (*mp == NULL)
2000                         pmap_failed = TRUE;
2001                 else if ((prot & VM_PROT_WRITE) != 0 &&
2002                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
2003                         /*
2004                          * Explicitly dirty the physical page.  Otherwise, the
2005                          * caller's changes may go unnoticed because they are
2006                          * performed through an unmanaged mapping or by a DMA
2007                          * operation.
2008                          *
2009                          * The object lock is not held here.
2010                          * See vm_page_clear_dirty_mask().
2011                          */
2012                         vm_page_dirty(*mp);
2013                 }
2014         }
2015         if (pmap_failed) {
2016                 /*
2017                  * One or more pages could not be held by the pmap.  Either no
2018                  * page was mapped at the specified virtual address or that
2019                  * mapping had insufficient permissions.  Attempt to fault in
2020                  * and hold these pages.
2021                  *
2022                  * If vm_fault_disable_pagefaults() was called,
2023                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
2024                  * acquire MD VM locks, which means we must not call
2025                  * vm_fault().  Some (out of tree) callers mark
2026                  * too wide a code area with vm_fault_disable_pagefaults()
2027                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
2028                  * the proper behaviour explicitly.
2029                  */
2030                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2031                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
2032                         goto error;
2033                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2034                         if (*mp == NULL && vm_fault(map, va, prot,
2035                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2036                                 goto error;
2037         }
2038         return (count);
2039 error:  
2040         for (mp = ma; mp < ma + count; mp++)
2041                 if (*mp != NULL)
2042                         vm_page_unwire(*mp, PQ_INACTIVE);
2043         return (-1);
2044 }
2045
2046 /*
2047  *      Routine:
2048  *              vm_fault_copy_entry
2049  *      Function:
2050  *              Create new object backing dst_entry with private copy of all
2051  *              underlying pages. When src_entry is equal to dst_entry, function
2052  *              implements COW for wired-down map entry. Otherwise, it forks
2053  *              wired entry into dst_map.
2054  *
2055  *      In/out conditions:
2056  *              The source and destination maps must be locked for write.
2057  *              The source map entry must be wired down (or be a sharing map
2058  *              entry corresponding to a main map entry that is wired down).
2059  */
2060 void
2061 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2062     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2063     vm_ooffset_t *fork_charge)
2064 {
2065         vm_object_t backing_object, dst_object, object, src_object;
2066         vm_pindex_t dst_pindex, pindex, src_pindex;
2067         vm_prot_t access, prot;
2068         vm_offset_t vaddr;
2069         vm_page_t dst_m;
2070         vm_page_t src_m;
2071         bool upgrade;
2072
2073         upgrade = src_entry == dst_entry;
2074         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2075             ("vm_fault_copy_entry: vm_object not NULL"));
2076
2077         /*
2078          * If not an upgrade, then enter the mappings in the pmap as
2079          * read and/or execute accesses.  Otherwise, enter them as
2080          * write accesses.
2081          *
2082          * A writeable large page mapping is only created if all of
2083          * the constituent small page mappings are modified. Marking
2084          * PTEs as modified on inception allows promotion to happen
2085          * without taking potentially large number of soft faults.
2086          */
2087         access = prot = dst_entry->protection;
2088         if (!upgrade)
2089                 access &= ~VM_PROT_WRITE;
2090
2091         src_object = src_entry->object.vm_object;
2092         src_pindex = OFF_TO_IDX(src_entry->offset);
2093
2094         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2095                 dst_object = src_object;
2096                 vm_object_reference(dst_object);
2097         } else {
2098                 /*
2099                  * Create the top-level object for the destination entry.
2100                  * Doesn't actually shadow anything - we copy the pages
2101                  * directly.
2102                  */
2103                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2104                     dst_entry->start), NULL, NULL, 0);
2105 #if VM_NRESERVLEVEL > 0
2106                 dst_object->flags |= OBJ_COLORED;
2107                 dst_object->pg_color = atop(dst_entry->start);
2108 #endif
2109                 dst_object->domain = src_object->domain;
2110                 dst_object->charge = dst_entry->end - dst_entry->start;
2111
2112                 dst_entry->object.vm_object = dst_object;
2113                 dst_entry->offset = 0;
2114                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2115         }
2116
2117         VM_OBJECT_WLOCK(dst_object);
2118         if (fork_charge != NULL) {
2119                 KASSERT(dst_entry->cred == NULL,
2120                     ("vm_fault_copy_entry: leaked swp charge"));
2121                 dst_object->cred = curthread->td_ucred;
2122                 crhold(dst_object->cred);
2123                 *fork_charge += dst_object->charge;
2124         } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2125             dst_object->cred == NULL) {
2126                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2127                     dst_entry));
2128                 dst_object->cred = dst_entry->cred;
2129                 dst_entry->cred = NULL;
2130         }
2131
2132         /*
2133          * Loop through all of the virtual pages within the entry's
2134          * range, copying each page from the source object to the
2135          * destination object.  Since the source is wired, those pages
2136          * must exist.  In contrast, the destination is pageable.
2137          * Since the destination object doesn't share any backing storage
2138          * with the source object, all of its pages must be dirtied,
2139          * regardless of whether they can be written.
2140          */
2141         for (vaddr = dst_entry->start, dst_pindex = 0;
2142             vaddr < dst_entry->end;
2143             vaddr += PAGE_SIZE, dst_pindex++) {
2144 again:
2145                 /*
2146                  * Find the page in the source object, and copy it in.
2147                  * Because the source is wired down, the page will be
2148                  * in memory.
2149                  */
2150                 if (src_object != dst_object)
2151                         VM_OBJECT_RLOCK(src_object);
2152                 object = src_object;
2153                 pindex = src_pindex + dst_pindex;
2154                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2155                     (backing_object = object->backing_object) != NULL) {
2156                         /*
2157                          * Unless the source mapping is read-only or
2158                          * it is presently being upgraded from
2159                          * read-only, the first object in the shadow
2160                          * chain should provide all of the pages.  In
2161                          * other words, this loop body should never be
2162                          * executed when the source mapping is already
2163                          * read/write.
2164                          */
2165                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2166                             upgrade,
2167                             ("vm_fault_copy_entry: main object missing page"));
2168
2169                         VM_OBJECT_RLOCK(backing_object);
2170                         pindex += OFF_TO_IDX(object->backing_object_offset);
2171                         if (object != dst_object)
2172                                 VM_OBJECT_RUNLOCK(object);
2173                         object = backing_object;
2174                 }
2175                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2176
2177                 if (object != dst_object) {
2178                         /*
2179                          * Allocate a page in the destination object.
2180                          */
2181                         dst_m = vm_page_alloc(dst_object, (src_object ==
2182                             dst_object ? src_pindex : 0) + dst_pindex,
2183                             VM_ALLOC_NORMAL);
2184                         if (dst_m == NULL) {
2185                                 VM_OBJECT_WUNLOCK(dst_object);
2186                                 VM_OBJECT_RUNLOCK(object);
2187                                 vm_wait(dst_object);
2188                                 VM_OBJECT_WLOCK(dst_object);
2189                                 goto again;
2190                         }
2191
2192                         /*
2193                          * See the comment in vm_fault_cow().
2194                          */
2195                         if (src_object == dst_object &&
2196                             (object->flags & OBJ_ONEMAPPING) == 0)
2197                                 pmap_remove_all(src_m);
2198                         pmap_copy_page(src_m, dst_m);
2199
2200                         /*
2201                          * The object lock does not guarantee that "src_m" will
2202                          * transition from invalid to valid, but it does ensure
2203                          * that "src_m" will not transition from valid to
2204                          * invalid.
2205                          */
2206                         dst_m->dirty = dst_m->valid = src_m->valid;
2207                         VM_OBJECT_RUNLOCK(object);
2208                 } else {
2209                         dst_m = src_m;
2210                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2211                                 goto again;
2212                         if (dst_m->pindex >= dst_object->size) {
2213                                 /*
2214                                  * We are upgrading.  Index can occur
2215                                  * out of bounds if the object type is
2216                                  * vnode and the file was truncated.
2217                                  */
2218                                 vm_page_xunbusy(dst_m);
2219                                 break;
2220                         }
2221                 }
2222
2223                 /*
2224                  * Enter it in the pmap. If a wired, copy-on-write
2225                  * mapping is being replaced by a write-enabled
2226                  * mapping, then wire that new mapping.
2227                  *
2228                  * The page can be invalid if the user called
2229                  * msync(MS_INVALIDATE) or truncated the backing vnode
2230                  * or shared memory object.  In this case, do not
2231                  * insert it into pmap, but still do the copy so that
2232                  * all copies of the wired map entry have similar
2233                  * backing pages.
2234                  */
2235                 if (vm_page_all_valid(dst_m)) {
2236                         VM_OBJECT_WUNLOCK(dst_object);
2237                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2238                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2239                         VM_OBJECT_WLOCK(dst_object);
2240                 }
2241
2242                 /*
2243                  * Mark it no longer busy, and put it on the active list.
2244                  */
2245                 if (upgrade) {
2246                         if (src_m != dst_m) {
2247                                 vm_page_unwire(src_m, PQ_INACTIVE);
2248                                 vm_page_wire(dst_m);
2249                         } else {
2250                                 KASSERT(vm_page_wired(dst_m),
2251                                     ("dst_m %p is not wired", dst_m));
2252                         }
2253                 } else {
2254                         vm_page_activate(dst_m);
2255                 }
2256                 vm_page_xunbusy(dst_m);
2257         }
2258         VM_OBJECT_WUNLOCK(dst_object);
2259         if (upgrade) {
2260                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2261                 vm_object_deallocate(src_object);
2262         }
2263 }
2264
2265 /*
2266  * Block entry into the machine-independent layer's page fault handler by
2267  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2268  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2269  * spurious page faults. 
2270  */
2271 int
2272 vm_fault_disable_pagefaults(void)
2273 {
2274
2275         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2276 }
2277
2278 void
2279 vm_fault_enable_pagefaults(int save)
2280 {
2281
2282         curthread_pflags_restore(save);
2283 }