]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
This commit was generated by cvs2svn to compensate for changes in r169962,
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
101
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105
106 static int prefault_pageorder[] = {
107         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
108         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
109         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
110         -4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119
120 struct faultstate {
121         vm_page_t m;
122         vm_object_t object;
123         vm_pindex_t pindex;
124         vm_page_t first_m;
125         vm_object_t     first_object;
126         vm_pindex_t first_pindex;
127         vm_map_t map;
128         vm_map_entry_t entry;
129         int lookup_still_valid;
130         struct vnode *vp;
131 };
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136         vm_page_wakeup(fs->m);
137         vm_page_lock_queues();
138         vm_page_deactivate(fs->m);
139         vm_page_unlock_queues();
140         fs->m = NULL;
141 }
142
143 static inline void
144 unlock_map(struct faultstate *fs)
145 {
146         if (fs->lookup_still_valid) {
147                 vm_map_lookup_done(fs->map, fs->entry);
148                 fs->lookup_still_valid = FALSE;
149         }
150 }
151
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155
156         vm_object_pip_wakeup(fs->object);
157         VM_OBJECT_UNLOCK(fs->object);
158         if (fs->object != fs->first_object) {
159                 VM_OBJECT_LOCK(fs->first_object);
160                 vm_page_lock_queues();
161                 vm_page_free(fs->first_m);
162                 vm_page_unlock_queues();
163                 vm_object_pip_wakeup(fs->first_object);
164                 VM_OBJECT_UNLOCK(fs->first_object);
165                 fs->first_m = NULL;
166         }
167         vm_object_deallocate(fs->first_object);
168         unlock_map(fs); 
169         if (fs->vp != NULL) { 
170                 int vfslocked;
171
172                 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173                 vput(fs->vp);
174                 fs->vp = NULL;
175                 VFS_UNLOCK_GIANT(vfslocked);
176         }
177 }
178
179 /*
180  * TRYPAGER - used by vm_fault to calculate whether the pager for the
181  *            current object *might* contain the page.
182  *
183  *            default objects are zero-fill, there is no real pager.
184  */
185 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
186                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
187
188 /*
189  *      vm_fault:
190  *
191  *      Handle a page fault occurring at the given address,
192  *      requiring the given permissions, in the map specified.
193  *      If successful, the page is inserted into the
194  *      associated physical map.
195  *
196  *      NOTE: the given address should be truncated to the
197  *      proper page address.
198  *
199  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
200  *      a standard error specifying why the fault is fatal is returned.
201  *
202  *
203  *      The map in question must be referenced, and remains so.
204  *      Caller may hold no locks.
205  */
206 int
207 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
208          int fault_flags)
209 {
210         vm_prot_t prot;
211         int is_first_object_locked, result;
212         boolean_t growstack, wired;
213         int map_generation;
214         vm_object_t next_object;
215         vm_page_t marray[VM_FAULT_READ];
216         int hardfault;
217         int faultcount;
218         struct faultstate fs;
219
220         hardfault = 0;
221         growstack = TRUE;
222         PCPU_LAZY_INC(cnt.v_vm_faults);
223
224 RetryFault:;
225
226         /*
227          * Find the backing store object and offset into it to begin the
228          * search.
229          */
230         fs.map = map;
231         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
232             &fs.first_object, &fs.first_pindex, &prot, &wired);
233         if (result != KERN_SUCCESS) {
234                 if (result != KERN_PROTECTION_FAILURE ||
235                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
236                         if (growstack && result == KERN_INVALID_ADDRESS &&
237                             map != kernel_map && curproc != NULL) {
238                                 result = vm_map_growstack(curproc, vaddr);
239                                 if (result != KERN_SUCCESS)
240                                         return (KERN_FAILURE);
241                                 growstack = FALSE;
242                                 goto RetryFault;
243                         }
244                         return (result);
245                 }
246
247                 /*
248                  * If we are user-wiring a r/w segment, and it is COW, then
249                  * we need to do the COW operation.  Note that we don't COW
250                  * currently RO sections now, because it is NOT desirable
251                  * to COW .text.  We simply keep .text from ever being COW'ed
252                  * and take the heat that one cannot debug wired .text sections.
253                  */
254                 result = vm_map_lookup(&fs.map, vaddr,
255                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
256                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
257                 if (result != KERN_SUCCESS)
258                         return (result);
259
260                 /*
261                  * If we don't COW now, on a user wire, the user will never
262                  * be able to write to the mapping.  If we don't make this
263                  * restriction, the bookkeeping would be nearly impossible.
264                  *
265                  * XXX The following assignment modifies the map without
266                  * holding a write lock on it.
267                  */
268                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
269                         fs.entry->max_protection &= ~VM_PROT_WRITE;
270         }
271
272         map_generation = fs.map->timestamp;
273
274         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
275                 panic("vm_fault: fault on nofault entry, addr: %lx",
276                     (u_long)vaddr);
277         }
278
279         /*
280          * Make a reference to this object to prevent its disposal while we
281          * are messing with it.  Once we have the reference, the map is free
282          * to be diddled.  Since objects reference their shadows (and copies),
283          * they will stay around as well.
284          *
285          * Bump the paging-in-progress count to prevent size changes (e.g. 
286          * truncation operations) during I/O.  This must be done after
287          * obtaining the vnode lock in order to avoid possible deadlocks.
288          *
289          * XXX vnode_pager_lock() can block without releasing the map lock.
290          */
291         if (fs.first_object->flags & OBJ_NEEDGIANT)
292                 mtx_lock(&Giant);
293         VM_OBJECT_LOCK(fs.first_object);
294         vm_object_reference_locked(fs.first_object);
295         fs.vp = vnode_pager_lock(fs.first_object);
296         KASSERT(fs.vp == NULL || !fs.map->system_map,
297             ("vm_fault: vnode-backed object mapped by system map"));
298         KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
299             !fs.map->system_map,
300             ("vm_fault: Object requiring giant mapped by system map"));
301         if (fs.first_object->flags & OBJ_NEEDGIANT)
302                 mtx_unlock(&Giant);
303         vm_object_pip_add(fs.first_object, 1);
304
305         fs.lookup_still_valid = TRUE;
306
307         if (wired)
308                 fault_type = prot;
309
310         fs.first_m = NULL;
311
312         /*
313          * Search for the page at object/offset.
314          */
315         fs.object = fs.first_object;
316         fs.pindex = fs.first_pindex;
317         while (TRUE) {
318                 /*
319                  * If the object is dead, we stop here
320                  */
321                 if (fs.object->flags & OBJ_DEAD) {
322                         unlock_and_deallocate(&fs);
323                         return (KERN_PROTECTION_FAILURE);
324                 }
325
326                 /*
327                  * See if page is resident
328                  */
329                 fs.m = vm_page_lookup(fs.object, fs.pindex);
330                 if (fs.m != NULL) {
331                         int queue;
332
333                         /* 
334                          * check for page-based copy on write.
335                          * We check fs.object == fs.first_object so
336                          * as to ensure the legacy COW mechanism is
337                          * used when the page in question is part of
338                          * a shadow object.  Otherwise, vm_page_cowfault()
339                          * removes the page from the backing object, 
340                          * which is not what we want.
341                          */
342                         vm_page_lock_queues();
343                         if ((fs.m->cow) && 
344                             (fault_type & VM_PROT_WRITE) &&
345                             (fs.object == fs.first_object)) {
346                                 vm_page_cowfault(fs.m);
347                                 vm_page_unlock_queues();
348                                 unlock_and_deallocate(&fs);
349                                 goto RetryFault;
350                         }
351
352                         /*
353                          * Wait/Retry if the page is busy.  We have to do this
354                          * if the page is busy via either VPO_BUSY or 
355                          * vm_page_t->busy because the vm_pager may be using
356                          * vm_page_t->busy for pageouts ( and even pageins if
357                          * it is the vnode pager ), and we could end up trying
358                          * to pagein and pageout the same page simultaneously.
359                          *
360                          * We can theoretically allow the busy case on a read
361                          * fault if the page is marked valid, but since such
362                          * pages are typically already pmap'd, putting that
363                          * special case in might be more effort then it is 
364                          * worth.  We cannot under any circumstances mess
365                          * around with a vm_page_t->busy page except, perhaps,
366                          * to pmap it.
367                          */
368                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
369                                 vm_page_unlock_queues();
370                                 VM_OBJECT_UNLOCK(fs.object);
371                                 if (fs.object != fs.first_object) {
372                                         VM_OBJECT_LOCK(fs.first_object);
373                                         vm_page_lock_queues();
374                                         vm_page_free(fs.first_m);
375                                         vm_page_unlock_queues();
376                                         vm_object_pip_wakeup(fs.first_object);
377                                         VM_OBJECT_UNLOCK(fs.first_object);
378                                         fs.first_m = NULL;
379                                 }
380                                 unlock_map(&fs);
381                                 if (fs.vp != NULL) {
382                                         int vfslck;
383
384                                         vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
385                                         vput(fs.vp);
386                                         fs.vp = NULL;
387                                         VFS_UNLOCK_GIANT(vfslck);
388                                 }
389                                 VM_OBJECT_LOCK(fs.object);
390                                 if (fs.m == vm_page_lookup(fs.object,
391                                     fs.pindex)) {
392                                         vm_page_sleep_if_busy(fs.m, TRUE,
393                                             "vmpfw");
394                                 }
395                                 vm_object_pip_wakeup(fs.object);
396                                 VM_OBJECT_UNLOCK(fs.object);
397                                 PCPU_LAZY_INC(cnt.v_intrans);
398                                 vm_object_deallocate(fs.first_object);
399                                 goto RetryFault;
400                         }
401                         queue = fs.m->queue;
402
403                         vm_pageq_remove_nowakeup(fs.m);
404
405                         if (VM_PAGE_RESOLVEQUEUE(fs.m, queue) == PQ_CACHE &&
406                             vm_page_count_severe()) {
407                                 vm_page_activate(fs.m);
408                                 vm_page_unlock_queues();
409                                 unlock_and_deallocate(&fs);
410                                 VM_WAITPFAULT;
411                                 goto RetryFault;
412                         }
413                         vm_page_unlock_queues();
414
415                         /*
416                          * Mark page busy for other processes, and the 
417                          * pagedaemon.  If it still isn't completely valid
418                          * (readable), jump to readrest, else break-out ( we
419                          * found the page ).
420                          */
421                         vm_page_busy(fs.m);
422                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
423                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
424                                 goto readrest;
425                         }
426
427                         break;
428                 }
429
430                 /*
431                  * Page is not resident, If this is the search termination
432                  * or the pager might contain the page, allocate a new page.
433                  */
434                 if (TRYPAGER || fs.object == fs.first_object) {
435                         if (fs.pindex >= fs.object->size) {
436                                 unlock_and_deallocate(&fs);
437                                 return (KERN_PROTECTION_FAILURE);
438                         }
439
440                         /*
441                          * Allocate a new page for this object/offset pair.
442                          */
443                         fs.m = NULL;
444                         if (!vm_page_count_severe()) {
445                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
446                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
447                         }
448                         if (fs.m == NULL) {
449                                 unlock_and_deallocate(&fs);
450                                 VM_WAITPFAULT;
451                                 goto RetryFault;
452                         }
453                 }
454
455 readrest:
456                 /*
457                  * We have found a valid page or we have allocated a new page.
458                  * The page thus may not be valid or may not be entirely 
459                  * valid.
460                  *
461                  * Attempt to fault-in the page if there is a chance that the
462                  * pager has it, and potentially fault in additional pages
463                  * at the same time.
464                  */
465                 if (TRYPAGER) {
466                         int rv;
467                         int reqpage;
468                         int ahead, behind;
469                         u_char behavior = vm_map_entry_behavior(fs.entry);
470
471                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
472                                 ahead = 0;
473                                 behind = 0;
474                         } else {
475                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
476                                 if (behind > VM_FAULT_READ_BEHIND)
477                                         behind = VM_FAULT_READ_BEHIND;
478
479                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
480                                 if (ahead > VM_FAULT_READ_AHEAD)
481                                         ahead = VM_FAULT_READ_AHEAD;
482                         }
483                         is_first_object_locked = FALSE;
484                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
485                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
486                               fs.pindex >= fs.entry->lastr &&
487                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
488                             (fs.first_object == fs.object ||
489                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
490                             fs.first_object->type != OBJT_DEVICE) {
491                                 vm_pindex_t firstpindex, tmppindex;
492
493                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
494                                         firstpindex = 0;
495                                 else
496                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
497
498                                 vm_page_lock_queues();
499                                 /*
500                                  * note: partially valid pages cannot be 
501                                  * included in the lookahead - NFS piecemeal
502                                  * writes will barf on it badly.
503                                  */
504                                 for (tmppindex = fs.first_pindex - 1;
505                                         tmppindex >= firstpindex;
506                                         --tmppindex) {
507                                         vm_page_t mt;
508
509                                         mt = vm_page_lookup(fs.first_object, tmppindex);
510                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
511                                                 break;
512                                         if (mt->busy ||
513                                             (mt->oflags & VPO_BUSY) ||
514                                             (mt->flags & (PG_FICTITIOUS | PG_UNMANAGED)) ||
515                                                 mt->hold_count ||
516                                                 mt->wire_count) 
517                                                 continue;
518                                         pmap_remove_all(mt);
519                                         if (mt->dirty) {
520                                                 vm_page_deactivate(mt);
521                                         } else {
522                                                 vm_page_cache(mt);
523                                         }
524                                 }
525                                 vm_page_unlock_queues();
526                                 ahead += behind;
527                                 behind = 0;
528                         }
529                         if (is_first_object_locked)
530                                 VM_OBJECT_UNLOCK(fs.first_object);
531                         /*
532                          * now we find out if any other pages should be paged
533                          * in at this time this routine checks to see if the
534                          * pages surrounding this fault reside in the same
535                          * object as the page for this fault.  If they do,
536                          * then they are faulted in also into the object.  The
537                          * array "marray" returned contains an array of
538                          * vm_page_t structs where one of them is the
539                          * vm_page_t passed to the routine.  The reqpage
540                          * return value is the index into the marray for the
541                          * vm_page_t passed to the routine.
542                          *
543                          * fs.m plus the additional pages are VPO_BUSY'd.
544                          *
545                          * XXX vm_fault_additional_pages() can block
546                          * without releasing the map lock.
547                          */
548                         faultcount = vm_fault_additional_pages(
549                             fs.m, behind, ahead, marray, &reqpage);
550
551                         /*
552                          * update lastr imperfectly (we do not know how much
553                          * getpages will actually read), but good enough.
554                          *
555                          * XXX The following assignment modifies the map
556                          * without holding a write lock on it.
557                          */
558                         fs.entry->lastr = fs.pindex + faultcount - behind;
559
560                         /*
561                          * Call the pager to retrieve the data, if any, after
562                          * releasing the lock on the map.  We hold a ref on
563                          * fs.object and the pages are VPO_BUSY'd.
564                          */
565                         unlock_map(&fs);
566
567                         rv = faultcount ?
568                             vm_pager_get_pages(fs.object, marray, faultcount,
569                                 reqpage) : VM_PAGER_FAIL;
570
571                         if (rv == VM_PAGER_OK) {
572                                 /*
573                                  * Found the page. Leave it busy while we play
574                                  * with it.
575                                  */
576
577                                 /*
578                                  * Relookup in case pager changed page. Pager
579                                  * is responsible for disposition of old page
580                                  * if moved.
581                                  */
582                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
583                                 if (!fs.m) {
584                                         unlock_and_deallocate(&fs);
585                                         goto RetryFault;
586                                 }
587
588                                 hardfault++;
589                                 break; /* break to PAGE HAS BEEN FOUND */
590                         }
591                         /*
592                          * Remove the bogus page (which does not exist at this
593                          * object/offset); before doing so, we must get back
594                          * our object lock to preserve our invariant.
595                          *
596                          * Also wake up any other process that may want to bring
597                          * in this page.
598                          *
599                          * If this is the top-level object, we must leave the
600                          * busy page to prevent another process from rushing
601                          * past us, and inserting the page in that object at
602                          * the same time that we are.
603                          */
604                         if (rv == VM_PAGER_ERROR)
605                                 printf("vm_fault: pager read error, pid %d (%s)\n",
606                                     curproc->p_pid, curproc->p_comm);
607                         /*
608                          * Data outside the range of the pager or an I/O error
609                          */
610                         /*
611                          * XXX - the check for kernel_map is a kludge to work
612                          * around having the machine panic on a kernel space
613                          * fault w/ I/O error.
614                          */
615                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
616                                 (rv == VM_PAGER_BAD)) {
617                                 vm_page_lock_queues();
618                                 vm_page_free(fs.m);
619                                 vm_page_unlock_queues();
620                                 fs.m = NULL;
621                                 unlock_and_deallocate(&fs);
622                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
623                         }
624                         if (fs.object != fs.first_object) {
625                                 vm_page_lock_queues();
626                                 vm_page_free(fs.m);
627                                 vm_page_unlock_queues();
628                                 fs.m = NULL;
629                                 /*
630                                  * XXX - we cannot just fall out at this
631                                  * point, m has been freed and is invalid!
632                                  */
633                         }
634                 }
635
636                 /*
637                  * We get here if the object has default pager (or unwiring) 
638                  * or the pager doesn't have the page.
639                  */
640                 if (fs.object == fs.first_object)
641                         fs.first_m = fs.m;
642
643                 /*
644                  * Move on to the next object.  Lock the next object before
645                  * unlocking the current one.
646                  */
647                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
648                 next_object = fs.object->backing_object;
649                 if (next_object == NULL) {
650                         /*
651                          * If there's no object left, fill the page in the top
652                          * object with zeros.
653                          */
654                         if (fs.object != fs.first_object) {
655                                 vm_object_pip_wakeup(fs.object);
656                                 VM_OBJECT_UNLOCK(fs.object);
657
658                                 fs.object = fs.first_object;
659                                 fs.pindex = fs.first_pindex;
660                                 fs.m = fs.first_m;
661                                 VM_OBJECT_LOCK(fs.object);
662                         }
663                         fs.first_m = NULL;
664
665                         /*
666                          * Zero the page if necessary and mark it valid.
667                          */
668                         if ((fs.m->flags & PG_ZERO) == 0) {
669                                 pmap_zero_page(fs.m);
670                         } else {
671                                 PCPU_LAZY_INC(cnt.v_ozfod);
672                         }
673                         PCPU_LAZY_INC(cnt.v_zfod);
674                         fs.m->valid = VM_PAGE_BITS_ALL;
675                         break;  /* break to PAGE HAS BEEN FOUND */
676                 } else {
677                         KASSERT(fs.object != next_object,
678                             ("object loop %p", next_object));
679                         VM_OBJECT_LOCK(next_object);
680                         vm_object_pip_add(next_object, 1);
681                         if (fs.object != fs.first_object)
682                                 vm_object_pip_wakeup(fs.object);
683                         VM_OBJECT_UNLOCK(fs.object);
684                         fs.object = next_object;
685                 }
686         }
687
688         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
689             ("vm_fault: not busy after main loop"));
690
691         /*
692          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
693          * is held.]
694          */
695
696         /*
697          * If the page is being written, but isn't already owned by the
698          * top-level object, we have to copy it into a new page owned by the
699          * top-level object.
700          */
701         if (fs.object != fs.first_object) {
702                 /*
703                  * We only really need to copy if we want to write it.
704                  */
705                 if (fault_type & VM_PROT_WRITE) {
706                         /*
707                          * This allows pages to be virtually copied from a 
708                          * backing_object into the first_object, where the 
709                          * backing object has no other refs to it, and cannot
710                          * gain any more refs.  Instead of a bcopy, we just 
711                          * move the page from the backing object to the 
712                          * first object.  Note that we must mark the page 
713                          * dirty in the first object so that it will go out 
714                          * to swap when needed.
715                          */
716                         is_first_object_locked = FALSE;
717                         if (
718                                 /*
719                                  * Only one shadow object
720                                  */
721                                 (fs.object->shadow_count == 1) &&
722                                 /*
723                                  * No COW refs, except us
724                                  */
725                                 (fs.object->ref_count == 1) &&
726                                 /*
727                                  * No one else can look this object up
728                                  */
729                                 (fs.object->handle == NULL) &&
730                                 /*
731                                  * No other ways to look the object up
732                                  */
733                                 ((fs.object->type == OBJT_DEFAULT) ||
734                                  (fs.object->type == OBJT_SWAP)) &&
735                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
736                                 /*
737                                  * We don't chase down the shadow chain
738                                  */
739                             fs.object == fs.first_object->backing_object) {
740                                 vm_page_lock_queues();
741                                 /*
742                                  * get rid of the unnecessary page
743                                  */
744                                 vm_page_free(fs.first_m);
745                                 /*
746                                  * grab the page and put it into the 
747                                  * process'es object.  The page is 
748                                  * automatically made dirty.
749                                  */
750                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
751                                 vm_page_unlock_queues();
752                                 vm_page_busy(fs.m);
753                                 fs.first_m = fs.m;
754                                 fs.m = NULL;
755                                 PCPU_LAZY_INC(cnt.v_cow_optim);
756                         } else {
757                                 /*
758                                  * Oh, well, lets copy it.
759                                  */
760                                 pmap_copy_page(fs.m, fs.first_m);
761                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
762                         }
763                         if (fs.m) {
764                                 /*
765                                  * We no longer need the old page or object.
766                                  */
767                                 release_page(&fs);
768                         }
769                         /*
770                          * fs.object != fs.first_object due to above 
771                          * conditional
772                          */
773                         vm_object_pip_wakeup(fs.object);
774                         VM_OBJECT_UNLOCK(fs.object);
775                         /*
776                          * Only use the new page below...
777                          */
778                         fs.object = fs.first_object;
779                         fs.pindex = fs.first_pindex;
780                         fs.m = fs.first_m;
781                         if (!is_first_object_locked)
782                                 VM_OBJECT_LOCK(fs.object);
783                         PCPU_LAZY_INC(cnt.v_cow_faults);
784                 } else {
785                         prot &= ~VM_PROT_WRITE;
786                 }
787         }
788
789         /*
790          * We must verify that the maps have not changed since our last
791          * lookup.
792          */
793         if (!fs.lookup_still_valid) {
794                 vm_object_t retry_object;
795                 vm_pindex_t retry_pindex;
796                 vm_prot_t retry_prot;
797
798                 if (!vm_map_trylock_read(fs.map)) {
799                         release_page(&fs);
800                         unlock_and_deallocate(&fs);
801                         goto RetryFault;
802                 }
803                 fs.lookup_still_valid = TRUE;
804                 if (fs.map->timestamp != map_generation) {
805                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
806                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
807
808                         /*
809                          * If we don't need the page any longer, put it on the inactive
810                          * list (the easiest thing to do here).  If no one needs it,
811                          * pageout will grab it eventually.
812                          */
813                         if (result != KERN_SUCCESS) {
814                                 release_page(&fs);
815                                 unlock_and_deallocate(&fs);
816
817                                 /*
818                                  * If retry of map lookup would have blocked then
819                                  * retry fault from start.
820                                  */
821                                 if (result == KERN_FAILURE)
822                                         goto RetryFault;
823                                 return (result);
824                         }
825                         if ((retry_object != fs.first_object) ||
826                             (retry_pindex != fs.first_pindex)) {
827                                 release_page(&fs);
828                                 unlock_and_deallocate(&fs);
829                                 goto RetryFault;
830                         }
831
832                         /*
833                          * Check whether the protection has changed or the object has
834                          * been copied while we left the map unlocked. Changing from
835                          * read to write permission is OK - we leave the page
836                          * write-protected, and catch the write fault. Changing from
837                          * write to read permission means that we can't mark the page
838                          * write-enabled after all.
839                          */
840                         prot &= retry_prot;
841                 }
842         }
843         if (prot & VM_PROT_WRITE) {
844                 vm_object_set_writeable_dirty(fs.object);
845
846                 /*
847                  * If the fault is a write, we know that this page is being
848                  * written NOW so dirty it explicitly to save on 
849                  * pmap_is_modified() calls later.
850                  *
851                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
852                  * if the page is already dirty to prevent data written with
853                  * the expectation of being synced from not being synced.
854                  * Likewise if this entry does not request NOSYNC then make
855                  * sure the page isn't marked NOSYNC.  Applications sharing
856                  * data should use the same flags to avoid ping ponging.
857                  *
858                  * Also tell the backing pager, if any, that it should remove
859                  * any swap backing since the page is now dirty.
860                  */
861                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
862                         if (fs.m->dirty == 0)
863                                 fs.m->oflags |= VPO_NOSYNC;
864                 } else {
865                         fs.m->oflags &= ~VPO_NOSYNC;
866                 }
867                 if (fault_flags & VM_FAULT_DIRTY) {
868                         vm_page_dirty(fs.m);
869                         vm_pager_page_unswapped(fs.m);
870                 }
871         }
872
873         /*
874          * Page had better still be busy
875          */
876         KASSERT(fs.m->oflags & VPO_BUSY,
877                 ("vm_fault: page %p not busy!", fs.m));
878         /*
879          * Sanity check: page must be completely valid or it is not fit to
880          * map into user space.  vm_pager_get_pages() ensures this.
881          */
882         if (fs.m->valid != VM_PAGE_BITS_ALL) {
883                 vm_page_zero_invalid(fs.m, TRUE);
884                 printf("Warning: page %p partially invalid on fault\n", fs.m);
885         }
886         VM_OBJECT_UNLOCK(fs.object);
887
888         /*
889          * Put this page into the physical map.  We had to do the unlock above
890          * because pmap_enter() may sleep.  We don't put the page
891          * back on the active queue until later so that the pageout daemon
892          * won't find it (yet).
893          */
894         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
895         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
896                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
897         }
898         VM_OBJECT_LOCK(fs.object);
899         vm_page_lock_queues();
900         vm_page_flag_set(fs.m, PG_REFERENCED);
901
902         /*
903          * If the page is not wired down, then put it where the pageout daemon
904          * can find it.
905          */
906         if (fault_flags & VM_FAULT_WIRE_MASK) {
907                 if (wired)
908                         vm_page_wire(fs.m);
909                 else
910                         vm_page_unwire(fs.m, 1);
911         } else {
912                 vm_page_activate(fs.m);
913         }
914         vm_page_unlock_queues();
915         vm_page_wakeup(fs.m);
916
917         /*
918          * Unlock everything, and return
919          */
920         unlock_and_deallocate(&fs);
921         PROC_LOCK(curproc);
922         if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
923                 if (hardfault) {
924                         curproc->p_stats->p_ru.ru_majflt++;
925                 } else {
926                         curproc->p_stats->p_ru.ru_minflt++;
927                 }
928         }
929         PROC_UNLOCK(curproc);
930
931         return (KERN_SUCCESS);
932 }
933
934 /*
935  * vm_fault_prefault provides a quick way of clustering
936  * pagefaults into a processes address space.  It is a "cousin"
937  * of vm_map_pmap_enter, except it runs at page fault time instead
938  * of mmap time.
939  */
940 static void
941 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
942 {
943         int i;
944         vm_offset_t addr, starta;
945         vm_pindex_t pindex;
946         vm_page_t m;
947         vm_object_t object;
948
949         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
950                 return;
951
952         object = entry->object.vm_object;
953
954         starta = addra - PFBAK * PAGE_SIZE;
955         if (starta < entry->start) {
956                 starta = entry->start;
957         } else if (starta > addra) {
958                 starta = 0;
959         }
960
961         for (i = 0; i < PAGEORDER_SIZE; i++) {
962                 vm_object_t backing_object, lobject;
963
964                 addr = addra + prefault_pageorder[i];
965                 if (addr > addra + (PFFOR * PAGE_SIZE))
966                         addr = 0;
967
968                 if (addr < starta || addr >= entry->end)
969                         continue;
970
971                 if (!pmap_is_prefaultable(pmap, addr))
972                         continue;
973
974                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
975                 lobject = object;
976                 VM_OBJECT_LOCK(lobject);
977                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
978                     lobject->type == OBJT_DEFAULT &&
979                     (backing_object = lobject->backing_object) != NULL) {
980                         if (lobject->backing_object_offset & PAGE_MASK)
981                                 break;
982                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
983                         VM_OBJECT_LOCK(backing_object);
984                         VM_OBJECT_UNLOCK(lobject);
985                         lobject = backing_object;
986                 }
987                 /*
988                  * give-up when a page is not in memory
989                  */
990                 if (m == NULL) {
991                         VM_OBJECT_UNLOCK(lobject);
992                         break;
993                 }
994                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
995                         (m->busy == 0) &&
996                     (m->flags & PG_FICTITIOUS) == 0) {
997
998                         vm_page_lock_queues();
999                         if (!VM_PAGE_INQUEUE1(m, PQ_CACHE))
1000                                 pmap_enter_quick(pmap, addr, m,
1001                                     entry->protection);
1002                         vm_page_unlock_queues();
1003                 }
1004                 VM_OBJECT_UNLOCK(lobject);
1005         }
1006 }
1007
1008 /*
1009  *      vm_fault_quick:
1010  *
1011  *      Ensure that the requested virtual address, which may be in userland,
1012  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1013  */
1014 int
1015 vm_fault_quick(caddr_t v, int prot)
1016 {
1017         int r;
1018
1019         if (prot & VM_PROT_WRITE)
1020                 r = subyte(v, fubyte(v));
1021         else
1022                 r = fubyte(v);
1023         return(r);
1024 }
1025
1026 /*
1027  *      vm_fault_wire:
1028  *
1029  *      Wire down a range of virtual addresses in a map.
1030  */
1031 int
1032 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1033     boolean_t user_wire, boolean_t fictitious)
1034 {
1035         vm_offset_t va;
1036         int rv;
1037
1038         /*
1039          * We simulate a fault to get the page and enter it in the physical
1040          * map.  For user wiring, we only ask for read access on currently
1041          * read-only sections.
1042          */
1043         for (va = start; va < end; va += PAGE_SIZE) {
1044                 rv = vm_fault(map, va,
1045                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1046                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1047                 if (rv) {
1048                         if (va != start)
1049                                 vm_fault_unwire(map, start, va, fictitious);
1050                         return (rv);
1051                 }
1052         }
1053         return (KERN_SUCCESS);
1054 }
1055
1056 /*
1057  *      vm_fault_unwire:
1058  *
1059  *      Unwire a range of virtual addresses in a map.
1060  */
1061 void
1062 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1063     boolean_t fictitious)
1064 {
1065         vm_paddr_t pa;
1066         vm_offset_t va;
1067         pmap_t pmap;
1068
1069         pmap = vm_map_pmap(map);
1070
1071         /*
1072          * Since the pages are wired down, we must be able to get their
1073          * mappings from the physical map system.
1074          */
1075         for (va = start; va < end; va += PAGE_SIZE) {
1076                 pa = pmap_extract(pmap, va);
1077                 if (pa != 0) {
1078                         pmap_change_wiring(pmap, va, FALSE);
1079                         if (!fictitious) {
1080                                 vm_page_lock_queues();
1081                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1082                                 vm_page_unlock_queues();
1083                         }
1084                 }
1085         }
1086 }
1087
1088 /*
1089  *      Routine:
1090  *              vm_fault_copy_entry
1091  *      Function:
1092  *              Copy all of the pages from a wired-down map entry to another.
1093  *
1094  *      In/out conditions:
1095  *              The source and destination maps must be locked for write.
1096  *              The source map entry must be wired down (or be a sharing map
1097  *              entry corresponding to a main map entry that is wired down).
1098  */
1099 void
1100 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1101         vm_map_t dst_map;
1102         vm_map_t src_map;
1103         vm_map_entry_t dst_entry;
1104         vm_map_entry_t src_entry;
1105 {
1106         vm_object_t backing_object, dst_object, object;
1107         vm_object_t src_object;
1108         vm_ooffset_t dst_offset;
1109         vm_ooffset_t src_offset;
1110         vm_pindex_t pindex;
1111         vm_prot_t prot;
1112         vm_offset_t vaddr;
1113         vm_page_t dst_m;
1114         vm_page_t src_m;
1115
1116 #ifdef  lint
1117         src_map++;
1118 #endif  /* lint */
1119
1120         src_object = src_entry->object.vm_object;
1121         src_offset = src_entry->offset;
1122
1123         /*
1124          * Create the top-level object for the destination entry. (Doesn't
1125          * actually shadow anything - we copy the pages directly.)
1126          */
1127         dst_object = vm_object_allocate(OBJT_DEFAULT,
1128             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1129
1130         VM_OBJECT_LOCK(dst_object);
1131         dst_entry->object.vm_object = dst_object;
1132         dst_entry->offset = 0;
1133
1134         prot = dst_entry->max_protection;
1135
1136         /*
1137          * Loop through all of the pages in the entry's range, copying each
1138          * one from the source object (it should be there) to the destination
1139          * object.
1140          */
1141         for (vaddr = dst_entry->start, dst_offset = 0;
1142             vaddr < dst_entry->end;
1143             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1144
1145                 /*
1146                  * Allocate a page in the destination object
1147                  */
1148                 do {
1149                         dst_m = vm_page_alloc(dst_object,
1150                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1151                         if (dst_m == NULL) {
1152                                 VM_OBJECT_UNLOCK(dst_object);
1153                                 VM_WAIT;
1154                                 VM_OBJECT_LOCK(dst_object);
1155                         }
1156                 } while (dst_m == NULL);
1157
1158                 /*
1159                  * Find the page in the source object, and copy it in.
1160                  * (Because the source is wired down, the page will be in
1161                  * memory.)
1162                  */
1163                 VM_OBJECT_LOCK(src_object);
1164                 object = src_object;
1165                 pindex = 0;
1166                 while ((src_m = vm_page_lookup(object, pindex +
1167                     OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1168                     (src_entry->protection & VM_PROT_WRITE) == 0 &&
1169                     (backing_object = object->backing_object) != NULL) {
1170                         /*
1171                          * Allow fallback to backing objects if we are reading.
1172                          */
1173                         VM_OBJECT_LOCK(backing_object);
1174                         pindex += OFF_TO_IDX(object->backing_object_offset);
1175                         VM_OBJECT_UNLOCK(object);
1176                         object = backing_object;
1177                 }
1178                 if (src_m == NULL)
1179                         panic("vm_fault_copy_wired: page missing");
1180                 pmap_copy_page(src_m, dst_m);
1181                 VM_OBJECT_UNLOCK(object);
1182                 dst_m->valid = VM_PAGE_BITS_ALL;
1183                 VM_OBJECT_UNLOCK(dst_object);
1184
1185                 /*
1186                  * Enter it in the pmap...
1187                  */
1188                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1189
1190                 /*
1191                  * Mark it no longer busy, and put it on the active list.
1192                  */
1193                 VM_OBJECT_LOCK(dst_object);
1194                 vm_page_lock_queues();
1195                 vm_page_activate(dst_m);
1196                 vm_page_unlock_queues();
1197                 vm_page_wakeup(dst_m);
1198         }
1199         VM_OBJECT_UNLOCK(dst_object);
1200 }
1201
1202
1203 /*
1204  * This routine checks around the requested page for other pages that
1205  * might be able to be faulted in.  This routine brackets the viable
1206  * pages for the pages to be paged in.
1207  *
1208  * Inputs:
1209  *      m, rbehind, rahead
1210  *
1211  * Outputs:
1212  *  marray (array of vm_page_t), reqpage (index of requested page)
1213  *
1214  * Return value:
1215  *  number of pages in marray
1216  *
1217  * This routine can't block.
1218  */
1219 static int
1220 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1221         vm_page_t m;
1222         int rbehind;
1223         int rahead;
1224         vm_page_t *marray;
1225         int *reqpage;
1226 {
1227         int i,j;
1228         vm_object_t object;
1229         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1230         vm_page_t rtm;
1231         int cbehind, cahead;
1232
1233         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1234
1235         object = m->object;
1236         pindex = m->pindex;
1237
1238         /*
1239          * we don't fault-ahead for device pager
1240          */
1241         if (object->type == OBJT_DEVICE) {
1242                 *reqpage = 0;
1243                 marray[0] = m;
1244                 return 1;
1245         }
1246
1247         cbehind = cahead = 0;
1248
1249         /*
1250          * if the requested page is not available, then give up now
1251          */
1252         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1253                 return 0;
1254         }
1255
1256         if ((cbehind == 0) && (cahead == 0)) {
1257                 *reqpage = 0;
1258                 marray[0] = m;
1259                 return 1;
1260         }
1261
1262         if (rahead > cahead) {
1263                 rahead = cahead;
1264         }
1265
1266         if (rbehind > cbehind) {
1267                 rbehind = cbehind;
1268         }
1269
1270         /*
1271          * try to do any readahead that we might have free pages for.
1272          */
1273         if ((rahead + rbehind) >
1274                 ((VMCNT_GET(free_count) + VMCNT_GET(cache_count)) -
1275                 VMCNT_GET(free_reserved))) {
1276                 pagedaemon_wakeup();
1277                 marray[0] = m;
1278                 *reqpage = 0;
1279                 return 1;
1280         }
1281
1282         /*
1283          * scan backward for the read behind pages -- in memory 
1284          */
1285         if (pindex > 0) {
1286                 if (rbehind > pindex) {
1287                         rbehind = pindex;
1288                         startpindex = 0;
1289                 } else {
1290                         startpindex = pindex - rbehind;
1291                 }
1292
1293                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1294                     rtm->pindex >= startpindex)
1295                         startpindex = rtm->pindex + 1;
1296
1297                 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1298
1299                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1300                         if (rtm == NULL) {
1301                                 vm_page_lock_queues();
1302                                 for (j = 0; j < i; j++) {
1303                                         vm_page_free(marray[j]);
1304                                 }
1305                                 vm_page_unlock_queues();
1306                                 marray[0] = m;
1307                                 *reqpage = 0;
1308                                 return 1;
1309                         }
1310
1311                         marray[i] = rtm;
1312                 }
1313         } else {
1314                 startpindex = 0;
1315                 i = 0;
1316         }
1317
1318         marray[i] = m;
1319         /* page offset of the required page */
1320         *reqpage = i;
1321
1322         tpindex = pindex + 1;
1323         i++;
1324
1325         /*
1326          * scan forward for the read ahead pages
1327          */
1328         endpindex = tpindex + rahead;
1329         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1330                 endpindex = rtm->pindex;
1331         if (endpindex > object->size)
1332                 endpindex = object->size;
1333
1334         for (; tpindex < endpindex; i++, tpindex++) {
1335
1336                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1337                 if (rtm == NULL) {
1338                         break;
1339                 }
1340
1341                 marray[i] = rtm;
1342         }
1343
1344         /* return number of bytes of pages */
1345         return i;
1346 }