]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
This commit was generated by cvs2svn to compensate for changes in r76238,
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD$
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/lock.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96
97 static int vm_fault_additional_pages __P((vm_page_t, int,
98                                           int, vm_page_t *, int *));
99
100 #define VM_FAULT_READ_AHEAD 8
101 #define VM_FAULT_READ_BEHIND 7
102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
103
104 struct faultstate {
105         vm_page_t m;
106         vm_object_t object;
107         vm_pindex_t pindex;
108         vm_page_t first_m;
109         vm_object_t     first_object;
110         vm_pindex_t first_pindex;
111         vm_map_t map;
112         vm_map_entry_t entry;
113         int lookup_still_valid;
114         struct vnode *vp;
115 };
116
117 static __inline void
118 release_page(struct faultstate *fs)
119 {
120         vm_page_wakeup(fs->m);
121         vm_page_deactivate(fs->m);
122         fs->m = NULL;
123 }
124
125 static __inline void
126 unlock_map(struct faultstate *fs)
127 {
128         if (fs->lookup_still_valid) {
129                 vm_map_lookup_done(fs->map, fs->entry);
130                 fs->lookup_still_valid = FALSE;
131         }
132 }
133
134 static void
135 _unlock_things(struct faultstate *fs, int dealloc)
136 {
137         vm_object_pip_wakeup(fs->object);
138         if (fs->object != fs->first_object) {
139                 vm_page_free(fs->first_m);
140                 vm_object_pip_wakeup(fs->first_object);
141                 fs->first_m = NULL;
142         }
143         if (dealloc) {
144                 vm_object_deallocate(fs->first_object);
145         }
146         unlock_map(fs); 
147         if (fs->vp != NULL) { 
148                 vput(fs->vp);
149                 fs->vp = NULL;
150         }
151 }
152
153 #define unlock_things(fs) _unlock_things(fs, 0)
154 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
155
156 /*
157  * TRYPAGER - used by vm_fault to calculate whether the pager for the
158  *            current object *might* contain the page.
159  *
160  *            default objects are zero-fill, there is no real pager.
161  */
162
163 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
164                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
165
166 /*
167  *      vm_fault:
168  *
169  *      Handle a page fault occurring at the given address,
170  *      requiring the given permissions, in the map specified.
171  *      If successful, the page is inserted into the
172  *      associated physical map.
173  *
174  *      NOTE: the given address should be truncated to the
175  *      proper page address.
176  *
177  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
178  *      a standard error specifying why the fault is fatal is returned.
179  *
180  *
181  *      The map in question must be referenced, and remains so.
182  *      Caller may hold no locks.
183  */
184 int
185 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
186 {
187         vm_prot_t prot;
188         int result;
189         boolean_t wired;
190         int map_generation;
191         vm_object_t next_object;
192         vm_page_t marray[VM_FAULT_READ];
193         int hardfault;
194         int faultcount;
195         struct faultstate fs;
196
197         cnt.v_vm_faults++;      /* needs lock XXX */
198         hardfault = 0;
199
200 RetryFault:;
201
202         /*
203          * Find the backing store object and offset into it to begin the
204          * search.
205          */
206         fs.map = map;
207         if ((result = vm_map_lookup(&fs.map, vaddr,
208                 fault_type, &fs.entry, &fs.first_object,
209                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
210                 if ((result != KERN_PROTECTION_FAILURE) ||
211                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
212                         return result;
213                 }
214
215                 /*
216                  * If we are user-wiring a r/w segment, and it is COW, then
217                  * we need to do the COW operation.  Note that we don't COW
218                  * currently RO sections now, because it is NOT desirable
219                  * to COW .text.  We simply keep .text from ever being COW'ed
220                  * and take the heat that one cannot debug wired .text sections.
221                  */
222                 result = vm_map_lookup(&fs.map, vaddr,
223                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
224                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
225                 if (result != KERN_SUCCESS) {
226                         return result;
227                 }
228
229                 /*
230                  * If we don't COW now, on a user wire, the user will never
231                  * be able to write to the mapping.  If we don't make this
232                  * restriction, the bookkeeping would be nearly impossible.
233                  */
234                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
235                         fs.entry->max_protection &= ~VM_PROT_WRITE;
236         }
237
238         map_generation = fs.map->timestamp;
239
240         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
241                 panic("vm_fault: fault on nofault entry, addr: %lx",
242                     (u_long)vaddr);
243         }
244
245         /*
246          * Make a reference to this object to prevent its disposal while we
247          * are messing with it.  Once we have the reference, the map is free
248          * to be diddled.  Since objects reference their shadows (and copies),
249          * they will stay around as well.
250          */
251         vm_object_reference(fs.first_object);
252         vm_object_pip_add(fs.first_object, 1);
253
254         fs.vp = vnode_pager_lock(fs.first_object);
255         if ((fault_type & VM_PROT_WRITE) &&
256                 (fs.first_object->type == OBJT_VNODE)) {
257                 vm_freeze_copyopts(fs.first_object,
258                         fs.first_pindex, fs.first_pindex + 1);
259         }
260
261         fs.lookup_still_valid = TRUE;
262
263         if (wired)
264                 fault_type = prot;
265
266         fs.first_m = NULL;
267
268         /*
269          * Search for the page at object/offset.
270          */
271
272         fs.object = fs.first_object;
273         fs.pindex = fs.first_pindex;
274
275         while (TRUE) {
276                 /*
277                  * If the object is dead, we stop here
278                  */
279
280                 if (fs.object->flags & OBJ_DEAD) {
281                         unlock_and_deallocate(&fs);
282                         return (KERN_PROTECTION_FAILURE);
283                 }
284
285                 /*
286                  * See if page is resident
287                  */
288                         
289                 fs.m = vm_page_lookup(fs.object, fs.pindex);
290                 if (fs.m != NULL) {
291                         int queue, s;
292                         /*
293                          * Wait/Retry if the page is busy.  We have to do this
294                          * if the page is busy via either PG_BUSY or 
295                          * vm_page_t->busy because the vm_pager may be using
296                          * vm_page_t->busy for pageouts ( and even pageins if
297                          * it is the vnode pager ), and we could end up trying
298                          * to pagein and pageout the same page simultaneously.
299                          *
300                          * We can theoretically allow the busy case on a read
301                          * fault if the page is marked valid, but since such
302                          * pages are typically already pmap'd, putting that
303                          * special case in might be more effort then it is 
304                          * worth.  We cannot under any circumstances mess
305                          * around with a vm_page_t->busy page except, perhaps,
306                          * to pmap it.
307                          */
308                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
309                                 unlock_things(&fs);
310                                 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
311                                 cnt.v_intrans++;
312                                 vm_object_deallocate(fs.first_object);
313                                 goto RetryFault;
314                         }
315
316                         queue = fs.m->queue;
317                         s = splvm();
318                         vm_page_unqueue_nowakeup(fs.m);
319                         splx(s);
320
321                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
322                                 vm_page_activate(fs.m);
323                                 unlock_and_deallocate(&fs);
324                                 VM_WAIT;
325                                 goto RetryFault;
326                         }
327
328                         /*
329                          * Mark page busy for other processes, and the 
330                          * pagedaemon.  If it still isn't completely valid
331                          * (readable), jump to readrest, else break-out ( we
332                          * found the page ).
333                          */
334
335                         vm_page_busy(fs.m);
336                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
337                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
338                                 goto readrest;
339                         }
340
341                         break;
342                 }
343
344                 /*
345                  * Page is not resident, If this is the search termination
346                  * or the pager might contain the page, allocate a new page.
347                  */
348
349                 if (TRYPAGER || fs.object == fs.first_object) {
350                         if (fs.pindex >= fs.object->size) {
351                                 unlock_and_deallocate(&fs);
352                                 return (KERN_PROTECTION_FAILURE);
353                         }
354
355                         /*
356                          * Allocate a new page for this object/offset pair.
357                          */
358                         fs.m = NULL;
359                         if (!vm_page_count_severe()) {
360                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
361                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
362                         }
363                         if (fs.m == NULL) {
364                                 unlock_and_deallocate(&fs);
365                                 VM_WAIT;
366                                 goto RetryFault;
367                         }
368                 }
369
370 readrest:
371                 /*
372                  * We have found a valid page or we have allocated a new page.
373                  * The page thus may not be valid or may not be entirely 
374                  * valid.
375                  *
376                  * Attempt to fault-in the page if there is a chance that the
377                  * pager has it, and potentially fault in additional pages
378                  * at the same time.
379                  */
380
381                 if (TRYPAGER) {
382                         int rv;
383                         int reqpage;
384                         int ahead, behind;
385                         u_char behavior = vm_map_entry_behavior(fs.entry);
386
387                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
388                                 ahead = 0;
389                                 behind = 0;
390                         } else {
391                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
392                                 if (behind > VM_FAULT_READ_BEHIND)
393                                         behind = VM_FAULT_READ_BEHIND;
394
395                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
396                                 if (ahead > VM_FAULT_READ_AHEAD)
397                                         ahead = VM_FAULT_READ_AHEAD;
398                         }
399
400                         if ((fs.first_object->type != OBJT_DEVICE) &&
401                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
402                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
403                                 fs.pindex >= fs.entry->lastr &&
404                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
405                         ) {
406                                 vm_pindex_t firstpindex, tmppindex;
407
408                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
409                                         firstpindex = 0;
410                                 else
411                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
412
413                                 /*
414                                  * note: partially valid pages cannot be 
415                                  * included in the lookahead - NFS piecemeal
416                                  * writes will barf on it badly.
417                                  */
418
419                                 for(tmppindex = fs.first_pindex - 1;
420                                         tmppindex >= firstpindex;
421                                         --tmppindex) {
422                                         vm_page_t mt;
423                                         mt = vm_page_lookup( fs.first_object, tmppindex);
424                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
425                                                 break;
426                                         if (mt->busy ||
427                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
428                                                 mt->hold_count ||
429                                                 mt->wire_count) 
430                                                 continue;
431                                         if (mt->dirty == 0)
432                                                 vm_page_test_dirty(mt);
433                                         if (mt->dirty) {
434                                                 vm_page_protect(mt, VM_PROT_NONE);
435                                                 vm_page_deactivate(mt);
436                                         } else {
437                                                 vm_page_cache(mt);
438                                         }
439                                 }
440
441                                 ahead += behind;
442                                 behind = 0;
443                         }
444
445                         /*
446                          * now we find out if any other pages should be paged
447                          * in at this time this routine checks to see if the
448                          * pages surrounding this fault reside in the same
449                          * object as the page for this fault.  If they do,
450                          * then they are faulted in also into the object.  The
451                          * array "marray" returned contains an array of
452                          * vm_page_t structs where one of them is the
453                          * vm_page_t passed to the routine.  The reqpage
454                          * return value is the index into the marray for the
455                          * vm_page_t passed to the routine.
456                          *
457                          * fs.m plus the additional pages are PG_BUSY'd.
458                          */
459                         faultcount = vm_fault_additional_pages(
460                             fs.m, behind, ahead, marray, &reqpage);
461
462                         /*
463                          * update lastr imperfectly (we do not know how much
464                          * getpages will actually read), but good enough.
465                          */
466                         fs.entry->lastr = fs.pindex + faultcount - behind;
467
468                         /*
469                          * Call the pager to retrieve the data, if any, after
470                          * releasing the lock on the map.  We hold a ref on
471                          * fs.object and the pages are PG_BUSY'd.
472                          */
473                         unlock_map(&fs);
474
475                         rv = faultcount ?
476                             vm_pager_get_pages(fs.object, marray, faultcount,
477                                 reqpage) : VM_PAGER_FAIL;
478
479                         if (rv == VM_PAGER_OK) {
480                                 /*
481                                  * Found the page. Leave it busy while we play
482                                  * with it.
483                                  */
484
485                                 /*
486                                  * Relookup in case pager changed page. Pager
487                                  * is responsible for disposition of old page
488                                  * if moved.
489                                  */
490                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
491                                 if(!fs.m) {
492                                         unlock_and_deallocate(&fs);
493                                         goto RetryFault;
494                                 }
495
496                                 hardfault++;
497                                 break; /* break to PAGE HAS BEEN FOUND */
498                         }
499                         /*
500                          * Remove the bogus page (which does not exist at this
501                          * object/offset); before doing so, we must get back
502                          * our object lock to preserve our invariant.
503                          *
504                          * Also wake up any other process that may want to bring
505                          * in this page.
506                          *
507                          * If this is the top-level object, we must leave the
508                          * busy page to prevent another process from rushing
509                          * past us, and inserting the page in that object at
510                          * the same time that we are.
511                          */
512
513                         if (rv == VM_PAGER_ERROR)
514                                 printf("vm_fault: pager read error, pid %d (%s)\n",
515                                     curproc->p_pid, curproc->p_comm);
516                         /*
517                          * Data outside the range of the pager or an I/O error
518                          */
519                         /*
520                          * XXX - the check for kernel_map is a kludge to work
521                          * around having the machine panic on a kernel space
522                          * fault w/ I/O error.
523                          */
524                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
525                                 (rv == VM_PAGER_BAD)) {
526                                 vm_page_free(fs.m);
527                                 fs.m = NULL;
528                                 unlock_and_deallocate(&fs);
529                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
530                         }
531                         if (fs.object != fs.first_object) {
532                                 vm_page_free(fs.m);
533                                 fs.m = NULL;
534                                 /*
535                                  * XXX - we cannot just fall out at this
536                                  * point, m has been freed and is invalid!
537                                  */
538                         }
539                 }
540
541                 /*
542                  * We get here if the object has default pager (or unwiring) 
543                  * or the pager doesn't have the page.
544                  */
545                 if (fs.object == fs.first_object)
546                         fs.first_m = fs.m;
547
548                 /*
549                  * Move on to the next object.  Lock the next object before
550                  * unlocking the current one.
551                  */
552
553                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
554                 next_object = fs.object->backing_object;
555                 if (next_object == NULL) {
556                         /*
557                          * If there's no object left, fill the page in the top
558                          * object with zeros.
559                          */
560                         if (fs.object != fs.first_object) {
561                                 vm_object_pip_wakeup(fs.object);
562
563                                 fs.object = fs.first_object;
564                                 fs.pindex = fs.first_pindex;
565                                 fs.m = fs.first_m;
566                         }
567                         fs.first_m = NULL;
568
569                         /*
570                          * Zero the page if necessary and mark it valid.
571                          */
572                         if ((fs.m->flags & PG_ZERO) == 0) {
573                                 vm_page_zero_fill(fs.m);
574                         } else {
575                                 cnt.v_ozfod++;
576                         }
577                         cnt.v_zfod++;
578                         fs.m->valid = VM_PAGE_BITS_ALL;
579                         break;  /* break to PAGE HAS BEEN FOUND */
580                 } else {
581                         if (fs.object != fs.first_object) {
582                                 vm_object_pip_wakeup(fs.object);
583                         }
584                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
585                         fs.object = next_object;
586                         vm_object_pip_add(fs.object, 1);
587                 }
588         }
589
590         KASSERT((fs.m->flags & PG_BUSY) != 0,
591             ("vm_fault: not busy after main loop"));
592
593         /*
594          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
595          * is held.]
596          */
597
598         /*
599          * If the page is being written, but isn't already owned by the
600          * top-level object, we have to copy it into a new page owned by the
601          * top-level object.
602          */
603
604         if (fs.object != fs.first_object) {
605                 /*
606                  * We only really need to copy if we want to write it.
607                  */
608
609                 if (fault_type & VM_PROT_WRITE) {
610                         /*
611                          * This allows pages to be virtually copied from a 
612                          * backing_object into the first_object, where the 
613                          * backing object has no other refs to it, and cannot
614                          * gain any more refs.  Instead of a bcopy, we just 
615                          * move the page from the backing object to the 
616                          * first object.  Note that we must mark the page 
617                          * dirty in the first object so that it will go out 
618                          * to swap when needed.
619                          */
620                         if (map_generation == fs.map->timestamp &&
621                                 /*
622                                  * Only one shadow object
623                                  */
624                                 (fs.object->shadow_count == 1) &&
625                                 /*
626                                  * No COW refs, except us
627                                  */
628                                 (fs.object->ref_count == 1) &&
629                                 /*
630                                  * No one else can look this object up
631                                  */
632                                 (fs.object->handle == NULL) &&
633                                 /*
634                                  * No other ways to look the object up
635                                  */
636                                 ((fs.object->type == OBJT_DEFAULT) ||
637                                  (fs.object->type == OBJT_SWAP)) &&
638                                 /*
639                                  * We don't chase down the shadow chain
640                                  */
641                                 (fs.object == fs.first_object->backing_object) &&
642
643                                 /*
644                                  * grab the lock if we need to
645                                  */
646                                 (fs.lookup_still_valid ||
647                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0)
648                             ) {
649                                 
650                                 fs.lookup_still_valid = 1;
651                                 /*
652                                  * get rid of the unnecessary page
653                                  */
654                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
655                                 vm_page_free(fs.first_m);
656                                 fs.first_m = NULL;
657
658                                 /*
659                                  * grab the page and put it into the 
660                                  * process'es object.  The page is 
661                                  * automatically made dirty.
662                                  */
663                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
664                                 fs.first_m = fs.m;
665                                 vm_page_busy(fs.first_m);
666                                 fs.m = NULL;
667                                 cnt.v_cow_optim++;
668                         } else {
669                                 /*
670                                  * Oh, well, lets copy it.
671                                  */
672                                 vm_page_copy(fs.m, fs.first_m);
673                         }
674
675                         if (fs.m) {
676                                 /*
677                                  * We no longer need the old page or object.
678                                  */
679                                 release_page(&fs);
680                         }
681
682                         /*
683                          * fs.object != fs.first_object due to above 
684                          * conditional
685                          */
686
687                         vm_object_pip_wakeup(fs.object);
688
689                         /*
690                          * Only use the new page below...
691                          */
692
693                         cnt.v_cow_faults++;
694                         fs.m = fs.first_m;
695                         fs.object = fs.first_object;
696                         fs.pindex = fs.first_pindex;
697
698                 } else {
699                         prot &= ~VM_PROT_WRITE;
700                 }
701         }
702
703         /*
704          * We must verify that the maps have not changed since our last
705          * lookup.
706          */
707
708         if (!fs.lookup_still_valid &&
709                 (fs.map->timestamp != map_generation)) {
710                 vm_object_t retry_object;
711                 vm_pindex_t retry_pindex;
712                 vm_prot_t retry_prot;
713
714                 /*
715                  * Since map entries may be pageable, make sure we can take a
716                  * page fault on them.
717                  */
718
719                 /*
720                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
721                  * avoid a deadlock between the inode and exec_map that can
722                  * occur due to locks being obtained in different orders.
723                  */
724
725                 if (fs.vp != NULL) {
726                         vput(fs.vp);
727                         fs.vp = NULL;
728                 }
729                 
730                 if (fs.map->infork) {
731                         release_page(&fs);
732                         unlock_and_deallocate(&fs);
733                         goto RetryFault;
734                 }
735
736                 /*
737                  * To avoid trying to write_lock the map while another process
738                  * has it read_locked (in vm_map_pageable), we do not try for
739                  * write permission.  If the page is still writable, we will
740                  * get write permission.  If it is not, or has been marked
741                  * needs_copy, we enter the mapping without write permission,
742                  * and will merely take another fault.
743                  */
744                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
745                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
746                 map_generation = fs.map->timestamp;
747
748                 /*
749                  * If we don't need the page any longer, put it on the active
750                  * list (the easiest thing to do here).  If no one needs it,
751                  * pageout will grab it eventually.
752                  */
753
754                 if (result != KERN_SUCCESS) {
755                         release_page(&fs);
756                         unlock_and_deallocate(&fs);
757                         return (result);
758                 }
759                 fs.lookup_still_valid = TRUE;
760
761                 if ((retry_object != fs.first_object) ||
762                     (retry_pindex != fs.first_pindex)) {
763                         release_page(&fs);
764                         unlock_and_deallocate(&fs);
765                         goto RetryFault;
766                 }
767                 /*
768                  * Check whether the protection has changed or the object has
769                  * been copied while we left the map unlocked. Changing from
770                  * read to write permission is OK - we leave the page
771                  * write-protected, and catch the write fault. Changing from
772                  * write to read permission means that we can't mark the page
773                  * write-enabled after all.
774                  */
775                 prot &= retry_prot;
776         }
777
778         /*
779          * Put this page into the physical map. We had to do the unlock above
780          * because pmap_enter may cause other faults.   We don't put the page
781          * back on the active queue until later so that the page-out daemon
782          * won't find us (yet).
783          */
784
785         if (prot & VM_PROT_WRITE) {
786                 vm_page_flag_set(fs.m, PG_WRITEABLE);
787                 vm_object_set_flag(fs.m->object,
788                                    OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
789
790                 /*
791                  * If the fault is a write, we know that this page is being
792                  * written NOW so dirty it explicitly to save on 
793                  * pmap_is_modified() calls later.
794                  *
795                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
796                  * if the page is already dirty to prevent data written with
797                  * the expectation of being synced from not being synced.
798                  * Likewise if this entry does not request NOSYNC then make
799                  * sure the page isn't marked NOSYNC.  Applications sharing
800                  * data should use the same flags to avoid ping ponging.
801                  *
802                  * Also tell the backing pager, if any, that it should remove
803                  * any swap backing since the page is now dirty.
804                  */
805                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
806                         if (fs.m->dirty == 0)
807                                 vm_page_flag_set(fs.m, PG_NOSYNC);
808                 } else {
809                         vm_page_flag_clear(fs.m, PG_NOSYNC);
810                 }
811                 if (fault_flags & VM_FAULT_DIRTY) {
812                         int s;
813                         vm_page_dirty(fs.m);
814                         s = splvm();
815                         vm_pager_page_unswapped(fs.m);
816                         splx(s);
817                 }
818         }
819
820         /*
821          * Page had better still be busy
822          */
823
824         KASSERT(fs.m->flags & PG_BUSY,
825                 ("vm_fault: page %p not busy!", fs.m));
826
827         unlock_things(&fs);
828
829         /*
830          * Sanity check: page must be completely valid or it is not fit to
831          * map into user space.  vm_pager_get_pages() ensures this.
832          */
833
834         if (fs.m->valid != VM_PAGE_BITS_ALL) {
835                 vm_page_zero_invalid(fs.m, TRUE);
836                 printf("Warning: page %p partially invalid on fault\n", fs.m);
837         }
838
839         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
840
841         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
842                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
843         }
844
845         vm_page_flag_clear(fs.m, PG_ZERO);
846         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
847         if (fault_flags & VM_FAULT_HOLD)
848                 vm_page_hold(fs.m);
849
850         /*
851          * If the page is not wired down, then put it where the pageout daemon
852          * can find it.
853          */
854
855         if (fault_flags & VM_FAULT_WIRE_MASK) {
856                 if (wired)
857                         vm_page_wire(fs.m);
858                 else
859                         vm_page_unwire(fs.m, 1);
860         } else {
861                 vm_page_activate(fs.m);
862         }
863
864         mtx_lock_spin(&sched_lock);
865         if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
866                 if (hardfault) {
867                         curproc->p_stats->p_ru.ru_majflt++;
868                 } else {
869                         curproc->p_stats->p_ru.ru_minflt++;
870                 }
871         }
872         mtx_unlock_spin(&sched_lock);
873
874         /*
875          * Unlock everything, and return
876          */
877
878         vm_page_wakeup(fs.m);
879         vm_object_deallocate(fs.first_object);
880
881         return (KERN_SUCCESS);
882
883 }
884
885 /*
886  *      vm_fault_wire:
887  *
888  *      Wire down a range of virtual addresses in a map.
889  */
890 int
891 vm_fault_wire(map, start, end)
892         vm_map_t map;
893         vm_offset_t start, end;
894 {
895
896         register vm_offset_t va;
897         register pmap_t pmap;
898         int rv;
899
900         pmap = vm_map_pmap(map);
901
902         /*
903          * Inform the physical mapping system that the range of addresses may
904          * not fault, so that page tables and such can be locked down as well.
905          */
906
907         pmap_pageable(pmap, start, end, FALSE);
908
909         /*
910          * We simulate a fault to get the page and enter it in the physical
911          * map.
912          */
913
914         for (va = start; va < end; va += PAGE_SIZE) {
915                 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
916                         VM_FAULT_CHANGE_WIRING);
917                 if (rv) {
918                         if (va != start)
919                                 vm_fault_unwire(map, start, va);
920                         return (rv);
921                 }
922         }
923         return (KERN_SUCCESS);
924 }
925
926 /*
927  *      vm_fault_user_wire:
928  *
929  *      Wire down a range of virtual addresses in a map.  This
930  *      is for user mode though, so we only ask for read access
931  *      on currently read only sections.
932  */
933 int
934 vm_fault_user_wire(map, start, end)
935         vm_map_t map;
936         vm_offset_t start, end;
937 {
938
939         register vm_offset_t va;
940         register pmap_t pmap;
941         int rv;
942
943         pmap = vm_map_pmap(map);
944
945         /*
946          * Inform the physical mapping system that the range of addresses may
947          * not fault, so that page tables and such can be locked down as well.
948          */
949
950         pmap_pageable(pmap, start, end, FALSE);
951
952         /*
953          * We simulate a fault to get the page and enter it in the physical
954          * map.
955          */
956         for (va = start; va < end; va += PAGE_SIZE) {
957                 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
958                 if (rv) {
959                         if (va != start)
960                                 vm_fault_unwire(map, start, va);
961                         return (rv);
962                 }
963         }
964         return (KERN_SUCCESS);
965 }
966
967
968 /*
969  *      vm_fault_unwire:
970  *
971  *      Unwire a range of virtual addresses in a map.
972  */
973 void
974 vm_fault_unwire(map, start, end)
975         vm_map_t map;
976         vm_offset_t start, end;
977 {
978
979         register vm_offset_t va, pa;
980         register pmap_t pmap;
981
982         pmap = vm_map_pmap(map);
983
984         /*
985          * Since the pages are wired down, we must be able to get their
986          * mappings from the physical map system.
987          */
988
989         for (va = start; va < end; va += PAGE_SIZE) {
990                 pa = pmap_extract(pmap, va);
991                 if (pa != (vm_offset_t) 0) {
992                         pmap_change_wiring(pmap, va, FALSE);
993                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
994                 }
995         }
996
997         /*
998          * Inform the physical mapping system that the range of addresses may
999          * fault, so that page tables and such may be unwired themselves.
1000          */
1001
1002         pmap_pageable(pmap, start, end, TRUE);
1003
1004 }
1005
1006 /*
1007  *      Routine:
1008  *              vm_fault_copy_entry
1009  *      Function:
1010  *              Copy all of the pages from a wired-down map entry to another.
1011  *
1012  *      In/out conditions:
1013  *              The source and destination maps must be locked for write.
1014  *              The source map entry must be wired down (or be a sharing map
1015  *              entry corresponding to a main map entry that is wired down).
1016  */
1017
1018 void
1019 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1020         vm_map_t dst_map;
1021         vm_map_t src_map;
1022         vm_map_entry_t dst_entry;
1023         vm_map_entry_t src_entry;
1024 {
1025         vm_object_t dst_object;
1026         vm_object_t src_object;
1027         vm_ooffset_t dst_offset;
1028         vm_ooffset_t src_offset;
1029         vm_prot_t prot;
1030         vm_offset_t vaddr;
1031         vm_page_t dst_m;
1032         vm_page_t src_m;
1033
1034 #ifdef  lint
1035         src_map++;
1036 #endif  /* lint */
1037
1038         src_object = src_entry->object.vm_object;
1039         src_offset = src_entry->offset;
1040
1041         /*
1042          * Create the top-level object for the destination entry. (Doesn't
1043          * actually shadow anything - we copy the pages directly.)
1044          */
1045         dst_object = vm_object_allocate(OBJT_DEFAULT,
1046             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1047
1048         dst_entry->object.vm_object = dst_object;
1049         dst_entry->offset = 0;
1050
1051         prot = dst_entry->max_protection;
1052
1053         /*
1054          * Loop through all of the pages in the entry's range, copying each
1055          * one from the source object (it should be there) to the destination
1056          * object.
1057          */
1058         for (vaddr = dst_entry->start, dst_offset = 0;
1059             vaddr < dst_entry->end;
1060             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1061
1062                 /*
1063                  * Allocate a page in the destination object
1064                  */
1065                 do {
1066                         dst_m = vm_page_alloc(dst_object,
1067                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1068                         if (dst_m == NULL) {
1069                                 VM_WAIT;
1070                         }
1071                 } while (dst_m == NULL);
1072
1073                 /*
1074                  * Find the page in the source object, and copy it in.
1075                  * (Because the source is wired down, the page will be in
1076                  * memory.)
1077                  */
1078                 src_m = vm_page_lookup(src_object,
1079                         OFF_TO_IDX(dst_offset + src_offset));
1080                 if (src_m == NULL)
1081                         panic("vm_fault_copy_wired: page missing");
1082
1083                 vm_page_copy(src_m, dst_m);
1084
1085                 /*
1086                  * Enter it in the pmap...
1087                  */
1088
1089                 vm_page_flag_clear(dst_m, PG_ZERO);
1090                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1091                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1092
1093                 /*
1094                  * Mark it no longer busy, and put it on the active list.
1095                  */
1096                 vm_page_activate(dst_m);
1097                 vm_page_wakeup(dst_m);
1098         }
1099 }
1100
1101
1102 /*
1103  * This routine checks around the requested page for other pages that
1104  * might be able to be faulted in.  This routine brackets the viable
1105  * pages for the pages to be paged in.
1106  *
1107  * Inputs:
1108  *      m, rbehind, rahead
1109  *
1110  * Outputs:
1111  *  marray (array of vm_page_t), reqpage (index of requested page)
1112  *
1113  * Return value:
1114  *  number of pages in marray
1115  */
1116 static int
1117 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1118         vm_page_t m;
1119         int rbehind;
1120         int rahead;
1121         vm_page_t *marray;
1122         int *reqpage;
1123 {
1124         int i,j;
1125         vm_object_t object;
1126         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1127         vm_page_t rtm;
1128         int cbehind, cahead;
1129
1130         object = m->object;
1131         pindex = m->pindex;
1132
1133         /*
1134          * we don't fault-ahead for device pager
1135          */
1136         if (object->type == OBJT_DEVICE) {
1137                 *reqpage = 0;
1138                 marray[0] = m;
1139                 return 1;
1140         }
1141
1142         /*
1143          * if the requested page is not available, then give up now
1144          */
1145
1146         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1147                 return 0;
1148         }
1149
1150         if ((cbehind == 0) && (cahead == 0)) {
1151                 *reqpage = 0;
1152                 marray[0] = m;
1153                 return 1;
1154         }
1155
1156         if (rahead > cahead) {
1157                 rahead = cahead;
1158         }
1159
1160         if (rbehind > cbehind) {
1161                 rbehind = cbehind;
1162         }
1163
1164         /*
1165          * try to do any readahead that we might have free pages for.
1166          */
1167         if ((rahead + rbehind) >
1168                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1169                 pagedaemon_wakeup();
1170                 marray[0] = m;
1171                 *reqpage = 0;
1172                 return 1;
1173         }
1174
1175         /*
1176          * scan backward for the read behind pages -- in memory 
1177          */
1178         if (pindex > 0) {
1179                 if (rbehind > pindex) {
1180                         rbehind = pindex;
1181                         startpindex = 0;
1182                 } else {
1183                         startpindex = pindex - rbehind;
1184                 }
1185
1186                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1187                         if (vm_page_lookup( object, tpindex)) {
1188                                 startpindex = tpindex + 1;
1189                                 break;
1190                         }
1191                         if (tpindex == 0)
1192                                 break;
1193                 }
1194
1195                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1196
1197                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1198                         if (rtm == NULL) {
1199                                 for (j = 0; j < i; j++) {
1200                                         vm_page_free(marray[j]);
1201                                 }
1202                                 marray[0] = m;
1203                                 *reqpage = 0;
1204                                 return 1;
1205                         }
1206
1207                         marray[i] = rtm;
1208                 }
1209         } else {
1210                 startpindex = 0;
1211                 i = 0;
1212         }
1213
1214         marray[i] = m;
1215         /* page offset of the required page */
1216         *reqpage = i;
1217
1218         tpindex = pindex + 1;
1219         i++;
1220
1221         /*
1222          * scan forward for the read ahead pages
1223          */
1224         endpindex = tpindex + rahead;
1225         if (endpindex > object->size)
1226                 endpindex = object->size;
1227
1228         for( ; tpindex < endpindex; i++, tpindex++) {
1229
1230                 if (vm_page_lookup(object, tpindex)) {
1231                         break;
1232                 }
1233
1234                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1235                 if (rtm == NULL) {
1236                         break;
1237                 }
1238
1239                 marray[i] = rtm;
1240         }
1241
1242         /* return number of bytes of pages */
1243         return i;
1244 }