]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
This commit was generated by cvs2svn to compensate for changes in r161655,
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
101
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105
106 static int prefault_pageorder[] = {
107         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
108         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
109         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
110         -4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119
120 struct faultstate {
121         vm_page_t m;
122         vm_object_t object;
123         vm_pindex_t pindex;
124         vm_page_t first_m;
125         vm_object_t     first_object;
126         vm_pindex_t first_pindex;
127         vm_map_t map;
128         vm_map_entry_t entry;
129         int lookup_still_valid;
130         struct vnode *vp;
131 };
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136         vm_page_lock_queues();
137         vm_page_wakeup(fs->m);
138         vm_page_deactivate(fs->m);
139         vm_page_unlock_queues();
140         fs->m = NULL;
141 }
142
143 static inline void
144 unlock_map(struct faultstate *fs)
145 {
146         if (fs->lookup_still_valid) {
147                 vm_map_lookup_done(fs->map, fs->entry);
148                 fs->lookup_still_valid = FALSE;
149         }
150 }
151
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155
156         vm_object_pip_wakeup(fs->object);
157         VM_OBJECT_UNLOCK(fs->object);
158         if (fs->object != fs->first_object) {
159                 VM_OBJECT_LOCK(fs->first_object);
160                 vm_page_lock_queues();
161                 vm_page_free(fs->first_m);
162                 vm_page_unlock_queues();
163                 vm_object_pip_wakeup(fs->first_object);
164                 VM_OBJECT_UNLOCK(fs->first_object);
165                 fs->first_m = NULL;
166         }
167         vm_object_deallocate(fs->first_object);
168         unlock_map(fs); 
169         if (fs->vp != NULL) { 
170                 int vfslocked;
171
172                 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173                 vput(fs->vp);
174                 fs->vp = NULL;
175                 VFS_UNLOCK_GIANT(vfslocked);
176         }
177 }
178
179 /*
180  * TRYPAGER - used by vm_fault to calculate whether the pager for the
181  *            current object *might* contain the page.
182  *
183  *            default objects are zero-fill, there is no real pager.
184  */
185 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
186                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
187
188 /*
189  *      vm_fault:
190  *
191  *      Handle a page fault occurring at the given address,
192  *      requiring the given permissions, in the map specified.
193  *      If successful, the page is inserted into the
194  *      associated physical map.
195  *
196  *      NOTE: the given address should be truncated to the
197  *      proper page address.
198  *
199  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
200  *      a standard error specifying why the fault is fatal is returned.
201  *
202  *
203  *      The map in question must be referenced, and remains so.
204  *      Caller may hold no locks.
205  */
206 int
207 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
208          int fault_flags)
209 {
210         vm_prot_t prot;
211         int is_first_object_locked, result;
212         boolean_t growstack, wired;
213         int map_generation;
214         vm_object_t next_object;
215         vm_page_t marray[VM_FAULT_READ];
216         int hardfault;
217         int faultcount;
218         struct faultstate fs;
219
220         hardfault = 0;
221         growstack = TRUE;
222         atomic_add_int(&cnt.v_vm_faults, 1);
223
224 RetryFault:;
225
226         /*
227          * Find the backing store object and offset into it to begin the
228          * search.
229          */
230         fs.map = map;
231         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
232             &fs.first_object, &fs.first_pindex, &prot, &wired);
233         if (result != KERN_SUCCESS) {
234                 if (result != KERN_PROTECTION_FAILURE ||
235                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
236                         if (growstack && result == KERN_INVALID_ADDRESS &&
237                             map != kernel_map && curproc != NULL) {
238                                 result = vm_map_growstack(curproc, vaddr);
239                                 if (result != KERN_SUCCESS)
240                                         return (KERN_FAILURE);
241                                 growstack = FALSE;
242                                 goto RetryFault;
243                         }
244                         return (result);
245                 }
246
247                 /*
248                  * If we are user-wiring a r/w segment, and it is COW, then
249                  * we need to do the COW operation.  Note that we don't COW
250                  * currently RO sections now, because it is NOT desirable
251                  * to COW .text.  We simply keep .text from ever being COW'ed
252                  * and take the heat that one cannot debug wired .text sections.
253                  */
254                 result = vm_map_lookup(&fs.map, vaddr,
255                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
256                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
257                 if (result != KERN_SUCCESS)
258                         return (result);
259
260                 /*
261                  * If we don't COW now, on a user wire, the user will never
262                  * be able to write to the mapping.  If we don't make this
263                  * restriction, the bookkeeping would be nearly impossible.
264                  *
265                  * XXX The following assignment modifies the map without
266                  * holding a write lock on it.
267                  */
268                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
269                         fs.entry->max_protection &= ~VM_PROT_WRITE;
270         }
271
272         map_generation = fs.map->timestamp;
273
274         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
275                 panic("vm_fault: fault on nofault entry, addr: %lx",
276                     (u_long)vaddr);
277         }
278
279         /*
280          * Make a reference to this object to prevent its disposal while we
281          * are messing with it.  Once we have the reference, the map is free
282          * to be diddled.  Since objects reference their shadows (and copies),
283          * they will stay around as well.
284          *
285          * Bump the paging-in-progress count to prevent size changes (e.g. 
286          * truncation operations) during I/O.  This must be done after
287          * obtaining the vnode lock in order to avoid possible deadlocks.
288          *
289          * XXX vnode_pager_lock() can block without releasing the map lock.
290          */
291         if (fs.first_object->flags & OBJ_NEEDGIANT)
292                 mtx_lock(&Giant);
293         VM_OBJECT_LOCK(fs.first_object);
294         vm_object_reference_locked(fs.first_object);
295         fs.vp = vnode_pager_lock(fs.first_object);
296         KASSERT(fs.vp == NULL || !fs.map->system_map,
297             ("vm_fault: vnode-backed object mapped by system map"));
298         KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
299             !fs.map->system_map,
300             ("vm_fault: Object requiring giant mapped by system map"));
301         if (fs.first_object->flags & OBJ_NEEDGIANT)
302                 mtx_unlock(&Giant);
303         vm_object_pip_add(fs.first_object, 1);
304
305         fs.lookup_still_valid = TRUE;
306
307         if (wired)
308                 fault_type = prot;
309
310         fs.first_m = NULL;
311
312         /*
313          * Search for the page at object/offset.
314          */
315         fs.object = fs.first_object;
316         fs.pindex = fs.first_pindex;
317         while (TRUE) {
318                 /*
319                  * If the object is dead, we stop here
320                  */
321                 if (fs.object->flags & OBJ_DEAD) {
322                         unlock_and_deallocate(&fs);
323                         return (KERN_PROTECTION_FAILURE);
324                 }
325
326                 /*
327                  * See if page is resident
328                  */
329                 fs.m = vm_page_lookup(fs.object, fs.pindex);
330                 if (fs.m != NULL) {
331                         int queue;
332
333                         /* 
334                          * check for page-based copy on write.
335                          * We check fs.object == fs.first_object so
336                          * as to ensure the legacy COW mechanism is
337                          * used when the page in question is part of
338                          * a shadow object.  Otherwise, vm_page_cowfault()
339                          * removes the page from the backing object, 
340                          * which is not what we want.
341                          */
342                         vm_page_lock_queues();
343                         if ((fs.m->cow) && 
344                             (fault_type & VM_PROT_WRITE) &&
345                             (fs.object == fs.first_object)) {
346                                 vm_page_cowfault(fs.m);
347                                 vm_page_unlock_queues();
348                                 unlock_and_deallocate(&fs);
349                                 goto RetryFault;
350                         }
351
352                         /*
353                          * Wait/Retry if the page is busy.  We have to do this
354                          * if the page is busy via either PG_BUSY or 
355                          * vm_page_t->busy because the vm_pager may be using
356                          * vm_page_t->busy for pageouts ( and even pageins if
357                          * it is the vnode pager ), and we could end up trying
358                          * to pagein and pageout the same page simultaneously.
359                          *
360                          * We can theoretically allow the busy case on a read
361                          * fault if the page is marked valid, but since such
362                          * pages are typically already pmap'd, putting that
363                          * special case in might be more effort then it is 
364                          * worth.  We cannot under any circumstances mess
365                          * around with a vm_page_t->busy page except, perhaps,
366                          * to pmap it.
367                          */
368                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
369                                 vm_page_unlock_queues();
370                                 VM_OBJECT_UNLOCK(fs.object);
371                                 if (fs.object != fs.first_object) {
372                                         VM_OBJECT_LOCK(fs.first_object);
373                                         vm_page_lock_queues();
374                                         vm_page_free(fs.first_m);
375                                         vm_page_unlock_queues();
376                                         vm_object_pip_wakeup(fs.first_object);
377                                         VM_OBJECT_UNLOCK(fs.first_object);
378                                         fs.first_m = NULL;
379                                 }
380                                 unlock_map(&fs);
381                                 if (fs.vp != NULL) {
382                                         int vfslck;
383
384                                         vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
385                                         vput(fs.vp);
386                                         fs.vp = NULL;
387                                         VFS_UNLOCK_GIANT(vfslck);
388                                 }
389                                 VM_OBJECT_LOCK(fs.object);
390                                 if (fs.m == vm_page_lookup(fs.object,
391                                     fs.pindex)) {
392                                         vm_page_sleep_if_busy(fs.m, TRUE,
393                                             "vmpfw");
394                                 }
395                                 vm_object_pip_wakeup(fs.object);
396                                 VM_OBJECT_UNLOCK(fs.object);
397                                 atomic_add_int(&cnt.v_intrans, 1);
398                                 vm_object_deallocate(fs.first_object);
399                                 goto RetryFault;
400                         }
401                         queue = fs.m->queue;
402
403                         vm_pageq_remove_nowakeup(fs.m);
404
405                         if (VM_PAGE_RESOLVEQUEUE(fs.m, queue) == PQ_CACHE &&
406                             vm_page_count_severe()) {
407                                 vm_page_activate(fs.m);
408                                 vm_page_unlock_queues();
409                                 unlock_and_deallocate(&fs);
410                                 VM_WAITPFAULT;
411                                 goto RetryFault;
412                         }
413
414                         /*
415                          * Mark page busy for other processes, and the 
416                          * pagedaemon.  If it still isn't completely valid
417                          * (readable), jump to readrest, else break-out ( we
418                          * found the page ).
419                          */
420                         vm_page_busy(fs.m);
421                         vm_page_unlock_queues();
422                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
423                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
424                                 goto readrest;
425                         }
426
427                         break;
428                 }
429
430                 /*
431                  * Page is not resident, If this is the search termination
432                  * or the pager might contain the page, allocate a new page.
433                  */
434                 if (TRYPAGER || fs.object == fs.first_object) {
435                         if (fs.pindex >= fs.object->size) {
436                                 unlock_and_deallocate(&fs);
437                                 return (KERN_PROTECTION_FAILURE);
438                         }
439
440                         /*
441                          * Allocate a new page for this object/offset pair.
442                          */
443                         fs.m = NULL;
444                         if (!vm_page_count_severe()) {
445                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
446                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
447                         }
448                         if (fs.m == NULL) {
449                                 unlock_and_deallocate(&fs);
450                                 VM_WAITPFAULT;
451                                 goto RetryFault;
452                         }
453                 }
454
455 readrest:
456                 /*
457                  * We have found a valid page or we have allocated a new page.
458                  * The page thus may not be valid or may not be entirely 
459                  * valid.
460                  *
461                  * Attempt to fault-in the page if there is a chance that the
462                  * pager has it, and potentially fault in additional pages
463                  * at the same time.
464                  */
465                 if (TRYPAGER) {
466                         int rv;
467                         int reqpage;
468                         int ahead, behind;
469                         u_char behavior = vm_map_entry_behavior(fs.entry);
470
471                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
472                                 ahead = 0;
473                                 behind = 0;
474                         } else {
475                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
476                                 if (behind > VM_FAULT_READ_BEHIND)
477                                         behind = VM_FAULT_READ_BEHIND;
478
479                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
480                                 if (ahead > VM_FAULT_READ_AHEAD)
481                                         ahead = VM_FAULT_READ_AHEAD;
482                         }
483                         is_first_object_locked = FALSE;
484                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
485                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
486                               fs.pindex >= fs.entry->lastr &&
487                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
488                             (fs.first_object == fs.object ||
489                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
490                             fs.first_object->type != OBJT_DEVICE) {
491                                 vm_pindex_t firstpindex, tmppindex;
492
493                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
494                                         firstpindex = 0;
495                                 else
496                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
497
498                                 vm_page_lock_queues();
499                                 /*
500                                  * note: partially valid pages cannot be 
501                                  * included in the lookahead - NFS piecemeal
502                                  * writes will barf on it badly.
503                                  */
504                                 for (tmppindex = fs.first_pindex - 1;
505                                         tmppindex >= firstpindex;
506                                         --tmppindex) {
507                                         vm_page_t mt;
508
509                                         mt = vm_page_lookup(fs.first_object, tmppindex);
510                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
511                                                 break;
512                                         if (mt->busy ||
513                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
514                                                 mt->hold_count ||
515                                                 mt->wire_count) 
516                                                 continue;
517                                         pmap_remove_all(mt);
518                                         if (mt->dirty) {
519                                                 vm_page_deactivate(mt);
520                                         } else {
521                                                 vm_page_cache(mt);
522                                         }
523                                 }
524                                 vm_page_unlock_queues();
525                                 ahead += behind;
526                                 behind = 0;
527                         }
528                         if (is_first_object_locked)
529                                 VM_OBJECT_UNLOCK(fs.first_object);
530                         /*
531                          * now we find out if any other pages should be paged
532                          * in at this time this routine checks to see if the
533                          * pages surrounding this fault reside in the same
534                          * object as the page for this fault.  If they do,
535                          * then they are faulted in also into the object.  The
536                          * array "marray" returned contains an array of
537                          * vm_page_t structs where one of them is the
538                          * vm_page_t passed to the routine.  The reqpage
539                          * return value is the index into the marray for the
540                          * vm_page_t passed to the routine.
541                          *
542                          * fs.m plus the additional pages are PG_BUSY'd.
543                          *
544                          * XXX vm_fault_additional_pages() can block
545                          * without releasing the map lock.
546                          */
547                         faultcount = vm_fault_additional_pages(
548                             fs.m, behind, ahead, marray, &reqpage);
549
550                         /*
551                          * update lastr imperfectly (we do not know how much
552                          * getpages will actually read), but good enough.
553                          *
554                          * XXX The following assignment modifies the map
555                          * without holding a write lock on it.
556                          */
557                         fs.entry->lastr = fs.pindex + faultcount - behind;
558
559                         /*
560                          * Call the pager to retrieve the data, if any, after
561                          * releasing the lock on the map.  We hold a ref on
562                          * fs.object and the pages are PG_BUSY'd.
563                          */
564                         unlock_map(&fs);
565
566                         rv = faultcount ?
567                             vm_pager_get_pages(fs.object, marray, faultcount,
568                                 reqpage) : VM_PAGER_FAIL;
569
570                         if (rv == VM_PAGER_OK) {
571                                 /*
572                                  * Found the page. Leave it busy while we play
573                                  * with it.
574                                  */
575
576                                 /*
577                                  * Relookup in case pager changed page. Pager
578                                  * is responsible for disposition of old page
579                                  * if moved.
580                                  */
581                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
582                                 if (!fs.m) {
583                                         unlock_and_deallocate(&fs);
584                                         goto RetryFault;
585                                 }
586
587                                 hardfault++;
588                                 break; /* break to PAGE HAS BEEN FOUND */
589                         }
590                         /*
591                          * Remove the bogus page (which does not exist at this
592                          * object/offset); before doing so, we must get back
593                          * our object lock to preserve our invariant.
594                          *
595                          * Also wake up any other process that may want to bring
596                          * in this page.
597                          *
598                          * If this is the top-level object, we must leave the
599                          * busy page to prevent another process from rushing
600                          * past us, and inserting the page in that object at
601                          * the same time that we are.
602                          */
603                         if (rv == VM_PAGER_ERROR)
604                                 printf("vm_fault: pager read error, pid %d (%s)\n",
605                                     curproc->p_pid, curproc->p_comm);
606                         /*
607                          * Data outside the range of the pager or an I/O error
608                          */
609                         /*
610                          * XXX - the check for kernel_map is a kludge to work
611                          * around having the machine panic on a kernel space
612                          * fault w/ I/O error.
613                          */
614                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
615                                 (rv == VM_PAGER_BAD)) {
616                                 vm_page_lock_queues();
617                                 vm_page_free(fs.m);
618                                 vm_page_unlock_queues();
619                                 fs.m = NULL;
620                                 unlock_and_deallocate(&fs);
621                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
622                         }
623                         if (fs.object != fs.first_object) {
624                                 vm_page_lock_queues();
625                                 vm_page_free(fs.m);
626                                 vm_page_unlock_queues();
627                                 fs.m = NULL;
628                                 /*
629                                  * XXX - we cannot just fall out at this
630                                  * point, m has been freed and is invalid!
631                                  */
632                         }
633                 }
634
635                 /*
636                  * We get here if the object has default pager (or unwiring) 
637                  * or the pager doesn't have the page.
638                  */
639                 if (fs.object == fs.first_object)
640                         fs.first_m = fs.m;
641
642                 /*
643                  * Move on to the next object.  Lock the next object before
644                  * unlocking the current one.
645                  */
646                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
647                 next_object = fs.object->backing_object;
648                 if (next_object == NULL) {
649                         /*
650                          * If there's no object left, fill the page in the top
651                          * object with zeros.
652                          */
653                         if (fs.object != fs.first_object) {
654                                 vm_object_pip_wakeup(fs.object);
655                                 VM_OBJECT_UNLOCK(fs.object);
656
657                                 fs.object = fs.first_object;
658                                 fs.pindex = fs.first_pindex;
659                                 fs.m = fs.first_m;
660                                 VM_OBJECT_LOCK(fs.object);
661                         }
662                         fs.first_m = NULL;
663
664                         /*
665                          * Zero the page if necessary and mark it valid.
666                          */
667                         if ((fs.m->flags & PG_ZERO) == 0) {
668                                 pmap_zero_page(fs.m);
669                         } else {
670                                 atomic_add_int(&cnt.v_ozfod, 1);
671                         }
672                         atomic_add_int(&cnt.v_zfod, 1);
673                         fs.m->valid = VM_PAGE_BITS_ALL;
674                         break;  /* break to PAGE HAS BEEN FOUND */
675                 } else {
676                         KASSERT(fs.object != next_object,
677                             ("object loop %p", next_object));
678                         VM_OBJECT_LOCK(next_object);
679                         vm_object_pip_add(next_object, 1);
680                         if (fs.object != fs.first_object)
681                                 vm_object_pip_wakeup(fs.object);
682                         VM_OBJECT_UNLOCK(fs.object);
683                         fs.object = next_object;
684                 }
685         }
686
687         KASSERT((fs.m->flags & PG_BUSY) != 0,
688             ("vm_fault: not busy after main loop"));
689
690         /*
691          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
692          * is held.]
693          */
694
695         /*
696          * If the page is being written, but isn't already owned by the
697          * top-level object, we have to copy it into a new page owned by the
698          * top-level object.
699          */
700         if (fs.object != fs.first_object) {
701                 /*
702                  * We only really need to copy if we want to write it.
703                  */
704                 if (fault_type & VM_PROT_WRITE) {
705                         /*
706                          * This allows pages to be virtually copied from a 
707                          * backing_object into the first_object, where the 
708                          * backing object has no other refs to it, and cannot
709                          * gain any more refs.  Instead of a bcopy, we just 
710                          * move the page from the backing object to the 
711                          * first object.  Note that we must mark the page 
712                          * dirty in the first object so that it will go out 
713                          * to swap when needed.
714                          */
715                         is_first_object_locked = FALSE;
716                         if (
717                                 /*
718                                  * Only one shadow object
719                                  */
720                                 (fs.object->shadow_count == 1) &&
721                                 /*
722                                  * No COW refs, except us
723                                  */
724                                 (fs.object->ref_count == 1) &&
725                                 /*
726                                  * No one else can look this object up
727                                  */
728                                 (fs.object->handle == NULL) &&
729                                 /*
730                                  * No other ways to look the object up
731                                  */
732                                 ((fs.object->type == OBJT_DEFAULT) ||
733                                  (fs.object->type == OBJT_SWAP)) &&
734                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
735                                 /*
736                                  * We don't chase down the shadow chain
737                                  */
738                             fs.object == fs.first_object->backing_object) {
739                                 vm_page_lock_queues();
740                                 /*
741                                  * get rid of the unnecessary page
742                                  */
743                                 vm_page_free(fs.first_m);
744                                 /*
745                                  * grab the page and put it into the 
746                                  * process'es object.  The page is 
747                                  * automatically made dirty.
748                                  */
749                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
750                                 vm_page_busy(fs.m);
751                                 vm_page_unlock_queues();
752                                 fs.first_m = fs.m;
753                                 fs.m = NULL;
754                                 atomic_add_int(&cnt.v_cow_optim, 1);
755                         } else {
756                                 /*
757                                  * Oh, well, lets copy it.
758                                  */
759                                 pmap_copy_page(fs.m, fs.first_m);
760                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
761                         }
762                         if (fs.m) {
763                                 /*
764                                  * We no longer need the old page or object.
765                                  */
766                                 release_page(&fs);
767                         }
768                         /*
769                          * fs.object != fs.first_object due to above 
770                          * conditional
771                          */
772                         vm_object_pip_wakeup(fs.object);
773                         VM_OBJECT_UNLOCK(fs.object);
774                         /*
775                          * Only use the new page below...
776                          */
777                         fs.object = fs.first_object;
778                         fs.pindex = fs.first_pindex;
779                         fs.m = fs.first_m;
780                         if (!is_first_object_locked)
781                                 VM_OBJECT_LOCK(fs.object);
782                         atomic_add_int(&cnt.v_cow_faults, 1);
783                 } else {
784                         prot &= ~VM_PROT_WRITE;
785                 }
786         }
787
788         /*
789          * We must verify that the maps have not changed since our last
790          * lookup.
791          */
792         if (!fs.lookup_still_valid) {
793                 vm_object_t retry_object;
794                 vm_pindex_t retry_pindex;
795                 vm_prot_t retry_prot;
796
797                 if (!vm_map_trylock_read(fs.map)) {
798                         release_page(&fs);
799                         unlock_and_deallocate(&fs);
800                         goto RetryFault;
801                 }
802                 fs.lookup_still_valid = TRUE;
803                 if (fs.map->timestamp != map_generation) {
804                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
805                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
806
807                         /*
808                          * If we don't need the page any longer, put it on the inactive
809                          * list (the easiest thing to do here).  If no one needs it,
810                          * pageout will grab it eventually.
811                          */
812                         if (result != KERN_SUCCESS) {
813                                 release_page(&fs);
814                                 unlock_and_deallocate(&fs);
815
816                                 /*
817                                  * If retry of map lookup would have blocked then
818                                  * retry fault from start.
819                                  */
820                                 if (result == KERN_FAILURE)
821                                         goto RetryFault;
822                                 return (result);
823                         }
824                         if ((retry_object != fs.first_object) ||
825                             (retry_pindex != fs.first_pindex)) {
826                                 release_page(&fs);
827                                 unlock_and_deallocate(&fs);
828                                 goto RetryFault;
829                         }
830
831                         /*
832                          * Check whether the protection has changed or the object has
833                          * been copied while we left the map unlocked. Changing from
834                          * read to write permission is OK - we leave the page
835                          * write-protected, and catch the write fault. Changing from
836                          * write to read permission means that we can't mark the page
837                          * write-enabled after all.
838                          */
839                         prot &= retry_prot;
840                 }
841         }
842         if (prot & VM_PROT_WRITE) {
843                 vm_page_lock_queues();
844                 vm_page_flag_set(fs.m, PG_WRITEABLE);
845                 vm_page_unlock_queues();
846                 vm_object_set_writeable_dirty(fs.object);
847
848                 /*
849                  * If the fault is a write, we know that this page is being
850                  * written NOW so dirty it explicitly to save on 
851                  * pmap_is_modified() calls later.
852                  *
853                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
854                  * if the page is already dirty to prevent data written with
855                  * the expectation of being synced from not being synced.
856                  * Likewise if this entry does not request NOSYNC then make
857                  * sure the page isn't marked NOSYNC.  Applications sharing
858                  * data should use the same flags to avoid ping ponging.
859                  *
860                  * Also tell the backing pager, if any, that it should remove
861                  * any swap backing since the page is now dirty.
862                  */
863                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
864                         if (fs.m->dirty == 0)
865                                 fs.m->oflags |= VPO_NOSYNC;
866                 } else {
867                         fs.m->oflags &= ~VPO_NOSYNC;
868                 }
869                 if (fault_flags & VM_FAULT_DIRTY) {
870                         vm_page_dirty(fs.m);
871                         vm_pager_page_unswapped(fs.m);
872                 }
873         }
874
875         /*
876          * Page had better still be busy
877          */
878         KASSERT(fs.m->flags & PG_BUSY,
879                 ("vm_fault: page %p not busy!", fs.m));
880         /*
881          * Sanity check: page must be completely valid or it is not fit to
882          * map into user space.  vm_pager_get_pages() ensures this.
883          */
884         if (fs.m->valid != VM_PAGE_BITS_ALL) {
885                 vm_page_zero_invalid(fs.m, TRUE);
886                 printf("Warning: page %p partially invalid on fault\n", fs.m);
887         }
888         VM_OBJECT_UNLOCK(fs.object);
889
890         /*
891          * Put this page into the physical map.  We had to do the unlock above
892          * because pmap_enter() may sleep.  We don't put the page
893          * back on the active queue until later so that the pageout daemon
894          * won't find it (yet).
895          */
896         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
897         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
898                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
899         }
900         VM_OBJECT_LOCK(fs.object);
901         vm_page_lock_queues();
902         vm_page_flag_set(fs.m, PG_REFERENCED);
903
904         /*
905          * If the page is not wired down, then put it where the pageout daemon
906          * can find it.
907          */
908         if (fault_flags & VM_FAULT_WIRE_MASK) {
909                 if (wired)
910                         vm_page_wire(fs.m);
911                 else
912                         vm_page_unwire(fs.m, 1);
913         } else {
914                 vm_page_activate(fs.m);
915         }
916         vm_page_wakeup(fs.m);
917         vm_page_unlock_queues();
918
919         /*
920          * Unlock everything, and return
921          */
922         unlock_and_deallocate(&fs);
923         PROC_LOCK(curproc);
924         if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
925                 if (hardfault) {
926                         curproc->p_stats->p_ru.ru_majflt++;
927                 } else {
928                         curproc->p_stats->p_ru.ru_minflt++;
929                 }
930         }
931         PROC_UNLOCK(curproc);
932
933         return (KERN_SUCCESS);
934 }
935
936 /*
937  * vm_fault_prefault provides a quick way of clustering
938  * pagefaults into a processes address space.  It is a "cousin"
939  * of vm_map_pmap_enter, except it runs at page fault time instead
940  * of mmap time.
941  */
942 static void
943 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
944 {
945         int i;
946         vm_offset_t addr, starta;
947         vm_pindex_t pindex;
948         vm_page_t m;
949         vm_object_t object;
950
951         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
952                 return;
953
954         object = entry->object.vm_object;
955
956         starta = addra - PFBAK * PAGE_SIZE;
957         if (starta < entry->start) {
958                 starta = entry->start;
959         } else if (starta > addra) {
960                 starta = 0;
961         }
962
963         for (i = 0; i < PAGEORDER_SIZE; i++) {
964                 vm_object_t backing_object, lobject;
965
966                 addr = addra + prefault_pageorder[i];
967                 if (addr > addra + (PFFOR * PAGE_SIZE))
968                         addr = 0;
969
970                 if (addr < starta || addr >= entry->end)
971                         continue;
972
973                 if (!pmap_is_prefaultable(pmap, addr))
974                         continue;
975
976                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
977                 lobject = object;
978                 VM_OBJECT_LOCK(lobject);
979                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
980                     lobject->type == OBJT_DEFAULT &&
981                     (backing_object = lobject->backing_object) != NULL) {
982                         if (lobject->backing_object_offset & PAGE_MASK)
983                                 break;
984                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
985                         VM_OBJECT_LOCK(backing_object);
986                         VM_OBJECT_UNLOCK(lobject);
987                         lobject = backing_object;
988                 }
989                 /*
990                  * give-up when a page is not in memory
991                  */
992                 if (m == NULL) {
993                         VM_OBJECT_UNLOCK(lobject);
994                         break;
995                 }
996                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
997                         (m->busy == 0) &&
998                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
999
1000                         vm_page_lock_queues();
1001                         if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1002                                 vm_page_deactivate(m);
1003                         pmap_enter_quick(pmap, addr, m, entry->protection);
1004                         vm_page_unlock_queues();
1005                 }
1006                 VM_OBJECT_UNLOCK(lobject);
1007         }
1008 }
1009
1010 /*
1011  *      vm_fault_quick:
1012  *
1013  *      Ensure that the requested virtual address, which may be in userland,
1014  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1015  */
1016 int
1017 vm_fault_quick(caddr_t v, int prot)
1018 {
1019         int r;
1020
1021         if (prot & VM_PROT_WRITE)
1022                 r = subyte(v, fubyte(v));
1023         else
1024                 r = fubyte(v);
1025         return(r);
1026 }
1027
1028 /*
1029  *      vm_fault_wire:
1030  *
1031  *      Wire down a range of virtual addresses in a map.
1032  */
1033 int
1034 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1035     boolean_t user_wire, boolean_t fictitious)
1036 {
1037         vm_offset_t va;
1038         int rv;
1039
1040         /*
1041          * We simulate a fault to get the page and enter it in the physical
1042          * map.  For user wiring, we only ask for read access on currently
1043          * read-only sections.
1044          */
1045         for (va = start; va < end; va += PAGE_SIZE) {
1046                 rv = vm_fault(map, va,
1047                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1048                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1049                 if (rv) {
1050                         if (va != start)
1051                                 vm_fault_unwire(map, start, va, fictitious);
1052                         return (rv);
1053                 }
1054         }
1055         return (KERN_SUCCESS);
1056 }
1057
1058 /*
1059  *      vm_fault_unwire:
1060  *
1061  *      Unwire a range of virtual addresses in a map.
1062  */
1063 void
1064 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1065     boolean_t fictitious)
1066 {
1067         vm_paddr_t pa;
1068         vm_offset_t va;
1069         pmap_t pmap;
1070
1071         pmap = vm_map_pmap(map);
1072
1073         /*
1074          * Since the pages are wired down, we must be able to get their
1075          * mappings from the physical map system.
1076          */
1077         for (va = start; va < end; va += PAGE_SIZE) {
1078                 pa = pmap_extract(pmap, va);
1079                 if (pa != 0) {
1080                         pmap_change_wiring(pmap, va, FALSE);
1081                         if (!fictitious) {
1082                                 vm_page_lock_queues();
1083                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1084                                 vm_page_unlock_queues();
1085                         }
1086                 }
1087         }
1088 }
1089
1090 /*
1091  *      Routine:
1092  *              vm_fault_copy_entry
1093  *      Function:
1094  *              Copy all of the pages from a wired-down map entry to another.
1095  *
1096  *      In/out conditions:
1097  *              The source and destination maps must be locked for write.
1098  *              The source map entry must be wired down (or be a sharing map
1099  *              entry corresponding to a main map entry that is wired down).
1100  */
1101 void
1102 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1103         vm_map_t dst_map;
1104         vm_map_t src_map;
1105         vm_map_entry_t dst_entry;
1106         vm_map_entry_t src_entry;
1107 {
1108         vm_object_t backing_object, dst_object, object;
1109         vm_object_t src_object;
1110         vm_ooffset_t dst_offset;
1111         vm_ooffset_t src_offset;
1112         vm_pindex_t pindex;
1113         vm_prot_t prot;
1114         vm_offset_t vaddr;
1115         vm_page_t dst_m;
1116         vm_page_t src_m;
1117
1118 #ifdef  lint
1119         src_map++;
1120 #endif  /* lint */
1121
1122         src_object = src_entry->object.vm_object;
1123         src_offset = src_entry->offset;
1124
1125         /*
1126          * Create the top-level object for the destination entry. (Doesn't
1127          * actually shadow anything - we copy the pages directly.)
1128          */
1129         dst_object = vm_object_allocate(OBJT_DEFAULT,
1130             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1131
1132         VM_OBJECT_LOCK(dst_object);
1133         dst_entry->object.vm_object = dst_object;
1134         dst_entry->offset = 0;
1135
1136         prot = dst_entry->max_protection;
1137
1138         /*
1139          * Loop through all of the pages in the entry's range, copying each
1140          * one from the source object (it should be there) to the destination
1141          * object.
1142          */
1143         for (vaddr = dst_entry->start, dst_offset = 0;
1144             vaddr < dst_entry->end;
1145             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1146
1147                 /*
1148                  * Allocate a page in the destination object
1149                  */
1150                 do {
1151                         dst_m = vm_page_alloc(dst_object,
1152                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1153                         if (dst_m == NULL) {
1154                                 VM_OBJECT_UNLOCK(dst_object);
1155                                 VM_WAIT;
1156                                 VM_OBJECT_LOCK(dst_object);
1157                         }
1158                 } while (dst_m == NULL);
1159
1160                 /*
1161                  * Find the page in the source object, and copy it in.
1162                  * (Because the source is wired down, the page will be in
1163                  * memory.)
1164                  */
1165                 VM_OBJECT_LOCK(src_object);
1166                 object = src_object;
1167                 pindex = 0;
1168                 while ((src_m = vm_page_lookup(object, pindex +
1169                     OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1170                     (src_entry->protection & VM_PROT_WRITE) == 0 &&
1171                     (backing_object = object->backing_object) != NULL) {
1172                         /*
1173                          * Allow fallback to backing objects if we are reading.
1174                          */
1175                         VM_OBJECT_LOCK(backing_object);
1176                         pindex += OFF_TO_IDX(object->backing_object_offset);
1177                         VM_OBJECT_UNLOCK(object);
1178                         object = backing_object;
1179                 }
1180                 if (src_m == NULL)
1181                         panic("vm_fault_copy_wired: page missing");
1182                 pmap_copy_page(src_m, dst_m);
1183                 VM_OBJECT_UNLOCK(object);
1184                 dst_m->valid = VM_PAGE_BITS_ALL;
1185                 VM_OBJECT_UNLOCK(dst_object);
1186
1187                 /*
1188                  * Enter it in the pmap...
1189                  */
1190                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1191                 VM_OBJECT_LOCK(dst_object);
1192                 vm_page_lock_queues();
1193                 if ((prot & VM_PROT_WRITE) != 0)
1194                         vm_page_flag_set(dst_m, PG_WRITEABLE);
1195
1196                 /*
1197                  * Mark it no longer busy, and put it on the active list.
1198                  */
1199                 vm_page_activate(dst_m);
1200                 vm_page_wakeup(dst_m);
1201                 vm_page_unlock_queues();
1202         }
1203         VM_OBJECT_UNLOCK(dst_object);
1204 }
1205
1206
1207 /*
1208  * This routine checks around the requested page for other pages that
1209  * might be able to be faulted in.  This routine brackets the viable
1210  * pages for the pages to be paged in.
1211  *
1212  * Inputs:
1213  *      m, rbehind, rahead
1214  *
1215  * Outputs:
1216  *  marray (array of vm_page_t), reqpage (index of requested page)
1217  *
1218  * Return value:
1219  *  number of pages in marray
1220  *
1221  * This routine can't block.
1222  */
1223 static int
1224 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1225         vm_page_t m;
1226         int rbehind;
1227         int rahead;
1228         vm_page_t *marray;
1229         int *reqpage;
1230 {
1231         int i,j;
1232         vm_object_t object;
1233         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1234         vm_page_t rtm;
1235         int cbehind, cahead;
1236
1237         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1238
1239         object = m->object;
1240         pindex = m->pindex;
1241
1242         /*
1243          * we don't fault-ahead for device pager
1244          */
1245         if (object->type == OBJT_DEVICE) {
1246                 *reqpage = 0;
1247                 marray[0] = m;
1248                 return 1;
1249         }
1250
1251         /*
1252          * if the requested page is not available, then give up now
1253          */
1254         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1255                 return 0;
1256         }
1257
1258         if ((cbehind == 0) && (cahead == 0)) {
1259                 *reqpage = 0;
1260                 marray[0] = m;
1261                 return 1;
1262         }
1263
1264         if (rahead > cahead) {
1265                 rahead = cahead;
1266         }
1267
1268         if (rbehind > cbehind) {
1269                 rbehind = cbehind;
1270         }
1271
1272         /*
1273          * try to do any readahead that we might have free pages for.
1274          */
1275         if ((rahead + rbehind) >
1276                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1277                 pagedaemon_wakeup();
1278                 marray[0] = m;
1279                 *reqpage = 0;
1280                 return 1;
1281         }
1282
1283         /*
1284          * scan backward for the read behind pages -- in memory 
1285          */
1286         if (pindex > 0) {
1287                 if (rbehind > pindex) {
1288                         rbehind = pindex;
1289                         startpindex = 0;
1290                 } else {
1291                         startpindex = pindex - rbehind;
1292                 }
1293
1294                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1295                     rtm->pindex >= startpindex)
1296                         startpindex = rtm->pindex + 1;
1297
1298                 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1299
1300                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1301                         if (rtm == NULL) {
1302                                 vm_page_lock_queues();
1303                                 for (j = 0; j < i; j++) {
1304                                         vm_page_free(marray[j]);
1305                                 }
1306                                 vm_page_unlock_queues();
1307                                 marray[0] = m;
1308                                 *reqpage = 0;
1309                                 return 1;
1310                         }
1311
1312                         marray[i] = rtm;
1313                 }
1314         } else {
1315                 startpindex = 0;
1316                 i = 0;
1317         }
1318
1319         marray[i] = m;
1320         /* page offset of the required page */
1321         *reqpage = i;
1322
1323         tpindex = pindex + 1;
1324         i++;
1325
1326         /*
1327          * scan forward for the read ahead pages
1328          */
1329         endpindex = tpindex + rahead;
1330         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1331                 endpindex = rtm->pindex;
1332         if (endpindex > object->size)
1333                 endpindex = object->size;
1334
1335         for (; tpindex < endpindex; i++, tpindex++) {
1336
1337                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1338                 if (rtm == NULL) {
1339                         break;
1340                 }
1341
1342                 marray[i] = rtm;
1343         }
1344
1345         /* return number of bytes of pages */
1346         return i;
1347 }