]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_fault.c
(5/6) Move the VPO_NOSYNC to PGA_NOSYNC to eliminate the dependency on the
[FreeBSD/FreeBSD.git] / sys / vm / vm_fault.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71
72 /*
73  *      Page fault handling module.
74  */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
118 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
119
120 #define VM_FAULT_DONTNEED_MIN   1048576
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int map_generation;
132         bool lookup_still_valid;
133         struct vnode *vp;
134 };
135
136 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
137             int ahead);
138 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
139             int backward, int forward, bool obj_locked);
140
141 static int vm_pfault_oom_attempts = 3;
142 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
143     &vm_pfault_oom_attempts, 0,
144     "Number of page allocation attempts in page fault handler before it "
145     "triggers OOM handling");
146
147 static int vm_pfault_oom_wait = 10;
148 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
149     &vm_pfault_oom_wait, 0,
150     "Number of seconds to wait for free pages before retrying "
151     "the page fault handler");
152
153 static inline void
154 release_page(struct faultstate *fs)
155 {
156
157         vm_page_xunbusy(fs->m);
158         vm_page_lock(fs->m);
159         vm_page_deactivate(fs->m);
160         vm_page_unlock(fs->m);
161         fs->m = NULL;
162 }
163
164 static inline void
165 unlock_map(struct faultstate *fs)
166 {
167
168         if (fs->lookup_still_valid) {
169                 vm_map_lookup_done(fs->map, fs->entry);
170                 fs->lookup_still_valid = false;
171         }
172 }
173
174 static void
175 unlock_vp(struct faultstate *fs)
176 {
177
178         if (fs->vp != NULL) {
179                 vput(fs->vp);
180                 fs->vp = NULL;
181         }
182 }
183
184 static void
185 unlock_and_deallocate(struct faultstate *fs)
186 {
187
188         vm_object_pip_wakeup(fs->object);
189         VM_OBJECT_WUNLOCK(fs->object);
190         if (fs->object != fs->first_object) {
191                 VM_OBJECT_WLOCK(fs->first_object);
192                 vm_page_free(fs->first_m);
193                 vm_object_pip_wakeup(fs->first_object);
194                 VM_OBJECT_WUNLOCK(fs->first_object);
195                 fs->first_m = NULL;
196         }
197         vm_object_deallocate(fs->first_object);
198         unlock_map(fs);
199         unlock_vp(fs);
200 }
201
202 static void
203 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
204     vm_prot_t fault_type, int fault_flags, bool set_wd)
205 {
206         bool need_dirty;
207
208         if (((prot & VM_PROT_WRITE) == 0 &&
209             (fault_flags & VM_FAULT_DIRTY) == 0) ||
210             (m->oflags & VPO_UNMANAGED) != 0)
211                 return;
212
213         VM_OBJECT_ASSERT_LOCKED(m->object);
214         VM_PAGE_OBJECT_BUSY_ASSERT(m);
215
216         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
217             (fault_flags & VM_FAULT_WIRE) == 0) ||
218             (fault_flags & VM_FAULT_DIRTY) != 0;
219
220         if (set_wd)
221                 vm_object_set_writeable_dirty(m->object);
222         else
223                 /*
224                  * If two callers of vm_fault_dirty() with set_wd ==
225                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
226                  * flag set, other with flag clear, race, it is
227                  * possible for the no-NOSYNC thread to see m->dirty
228                  * != 0 and not clear PGA_NOSYNC.  Take vm_page lock
229                  * around manipulation of PGA_NOSYNC and
230                  * vm_page_dirty() call to avoid the race.
231                  */
232                 vm_page_lock(m);
233
234         /*
235          * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
236          * if the page is already dirty to prevent data written with
237          * the expectation of being synced from not being synced.
238          * Likewise if this entry does not request NOSYNC then make
239          * sure the page isn't marked NOSYNC.  Applications sharing
240          * data should use the same flags to avoid ping ponging.
241          */
242         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
243                 if (m->dirty == 0) {
244                         vm_page_aflag_set(m, PGA_NOSYNC);
245                 }
246         } else {
247                 vm_page_aflag_clear(m, PGA_NOSYNC);
248         }
249
250         /*
251          * If the fault is a write, we know that this page is being
252          * written NOW so dirty it explicitly to save on
253          * pmap_is_modified() calls later.
254          *
255          * Also, since the page is now dirty, we can possibly tell
256          * the pager to release any swap backing the page.  Calling
257          * the pager requires a write lock on the object.
258          */
259         if (need_dirty)
260                 vm_page_dirty(m);
261         if (!set_wd)
262                 vm_page_unlock(m);
263         else if (need_dirty)
264                 vm_pager_page_unswapped(m);
265 }
266
267 /*
268  * Unlocks fs.first_object and fs.map on success.
269  */
270 static int
271 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
272     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
273 {
274         vm_page_t m, m_map;
275 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
276     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
277     VM_NRESERVLEVEL > 0
278         vm_page_t m_super;
279         int flags;
280 #endif
281         int psind, rv;
282
283         MPASS(fs->vp == NULL);
284         vm_object_busy(fs->first_object);
285         m = vm_page_lookup(fs->first_object, fs->first_pindex);
286         /* A busy page can be mapped for read|execute access. */
287         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
288             vm_page_busied(m)) || !vm_page_all_valid(m)) {
289                 rv = KERN_FAILURE;
290                 goto out;
291         }
292         m_map = m;
293         psind = 0;
294 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
295     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
296     VM_NRESERVLEVEL > 0
297         if ((m->flags & PG_FICTITIOUS) == 0 &&
298             (m_super = vm_reserv_to_superpage(m)) != NULL &&
299             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
300             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
301             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
302             (pagesizes[m_super->psind] - 1)) && !wired &&
303             pmap_ps_enabled(fs->map->pmap)) {
304                 flags = PS_ALL_VALID;
305                 if ((prot & VM_PROT_WRITE) != 0) {
306                         /*
307                          * Create a superpage mapping allowing write access
308                          * only if none of the constituent pages are busy and
309                          * all of them are already dirty (except possibly for
310                          * the page that was faulted on).
311                          */
312                         flags |= PS_NONE_BUSY;
313                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
314                                 flags |= PS_ALL_DIRTY;
315                 }
316                 if (vm_page_ps_test(m_super, flags, m)) {
317                         m_map = m_super;
318                         psind = m_super->psind;
319                         vaddr = rounddown2(vaddr, pagesizes[psind]);
320                         /* Preset the modified bit for dirty superpages. */
321                         if ((flags & PS_ALL_DIRTY) != 0)
322                                 fault_type |= VM_PROT_WRITE;
323                 }
324         }
325 #endif
326         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
327             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
328         if (rv != KERN_SUCCESS)
329                 goto out;
330         if (m_hold != NULL) {
331                 *m_hold = m;
332                 vm_page_wire(m);
333         }
334         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
335         if (psind == 0 && !wired)
336                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
337         VM_OBJECT_RUNLOCK(fs->first_object);
338         vm_map_lookup_done(fs->map, fs->entry);
339         curthread->td_ru.ru_minflt++;
340
341 out:
342         vm_object_unbusy(fs->first_object);
343         return (rv);
344 }
345
346 static void
347 vm_fault_restore_map_lock(struct faultstate *fs)
348 {
349
350         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
351         MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
352
353         if (!vm_map_trylock_read(fs->map)) {
354                 VM_OBJECT_WUNLOCK(fs->first_object);
355                 vm_map_lock_read(fs->map);
356                 VM_OBJECT_WLOCK(fs->first_object);
357         }
358         fs->lookup_still_valid = true;
359 }
360
361 static void
362 vm_fault_populate_check_page(vm_page_t m)
363 {
364
365         /*
366          * Check each page to ensure that the pager is obeying the
367          * interface: the page must be installed in the object, fully
368          * valid, and exclusively busied.
369          */
370         MPASS(m != NULL);
371         MPASS(vm_page_all_valid(m));
372         MPASS(vm_page_xbusied(m));
373 }
374
375 static void
376 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
377     vm_pindex_t last)
378 {
379         vm_page_t m;
380         vm_pindex_t pidx;
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         MPASS(first <= last);
384         for (pidx = first, m = vm_page_lookup(object, pidx);
385             pidx <= last; pidx++, m = vm_page_next(m)) {
386                 vm_fault_populate_check_page(m);
387                 vm_page_lock(m);
388                 vm_page_deactivate(m);
389                 vm_page_unlock(m);
390                 vm_page_xunbusy(m);
391         }
392 }
393
394 static int
395 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
396     int fault_flags, boolean_t wired, vm_page_t *m_hold)
397 {
398         struct mtx *m_mtx;
399         vm_offset_t vaddr;
400         vm_page_t m;
401         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
402         int i, npages, psind, rv;
403
404         MPASS(fs->object == fs->first_object);
405         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
406         MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
407         MPASS(fs->first_object->backing_object == NULL);
408         MPASS(fs->lookup_still_valid);
409
410         pager_first = OFF_TO_IDX(fs->entry->offset);
411         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
412         unlock_map(fs);
413         unlock_vp(fs);
414
415         /*
416          * Call the pager (driver) populate() method.
417          *
418          * There is no guarantee that the method will be called again
419          * if the current fault is for read, and a future fault is
420          * for write.  Report the entry's maximum allowed protection
421          * to the driver.
422          */
423         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
424             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
425
426         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
427         if (rv == VM_PAGER_BAD) {
428                 /*
429                  * VM_PAGER_BAD is the backdoor for a pager to request
430                  * normal fault handling.
431                  */
432                 vm_fault_restore_map_lock(fs);
433                 if (fs->map->timestamp != fs->map_generation)
434                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
435                 return (KERN_NOT_RECEIVER);
436         }
437         if (rv != VM_PAGER_OK)
438                 return (KERN_FAILURE); /* AKA SIGSEGV */
439
440         /* Ensure that the driver is obeying the interface. */
441         MPASS(pager_first <= pager_last);
442         MPASS(fs->first_pindex <= pager_last);
443         MPASS(fs->first_pindex >= pager_first);
444         MPASS(pager_last < fs->first_object->size);
445
446         vm_fault_restore_map_lock(fs);
447         if (fs->map->timestamp != fs->map_generation) {
448                 vm_fault_populate_cleanup(fs->first_object, pager_first,
449                     pager_last);
450                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
451         }
452
453         /*
454          * The map is unchanged after our last unlock.  Process the fault.
455          *
456          * The range [pager_first, pager_last] that is given to the
457          * pager is only a hint.  The pager may populate any range
458          * within the object that includes the requested page index.
459          * In case the pager expanded the range, clip it to fit into
460          * the map entry.
461          */
462         map_first = OFF_TO_IDX(fs->entry->offset);
463         if (map_first > pager_first) {
464                 vm_fault_populate_cleanup(fs->first_object, pager_first,
465                     map_first - 1);
466                 pager_first = map_first;
467         }
468         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
469         if (map_last < pager_last) {
470                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
471                     pager_last);
472                 pager_last = map_last;
473         }
474         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
475             pidx <= pager_last;
476             pidx += npages, m = vm_page_next(&m[npages - 1])) {
477                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
478 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
479     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
480                 psind = m->psind;
481                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
482                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
483                     !pmap_ps_enabled(fs->map->pmap) || wired))
484                         psind = 0;
485 #else
486                 psind = 0;
487 #endif          
488                 npages = atop(pagesizes[psind]);
489                 for (i = 0; i < npages; i++) {
490                         vm_fault_populate_check_page(&m[i]);
491                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
492                             fault_flags, true);
493                 }
494                 VM_OBJECT_WUNLOCK(fs->first_object);
495                 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
496                     (wired ? PMAP_ENTER_WIRED : 0), psind);
497 #if defined(__amd64__)
498                 if (psind > 0 && rv == KERN_FAILURE) {
499                         for (i = 0; i < npages; i++) {
500                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
501                                     &m[i], prot, fault_type |
502                                     (wired ? PMAP_ENTER_WIRED : 0), 0);
503                                 MPASS(rv == KERN_SUCCESS);
504                         }
505                 }
506 #else
507                 MPASS(rv == KERN_SUCCESS);
508 #endif
509                 VM_OBJECT_WLOCK(fs->first_object);
510                 m_mtx = NULL;
511                 for (i = 0; i < npages; i++) {
512                         if ((fault_flags & VM_FAULT_WIRE) != 0) {
513                                 vm_page_wire(&m[i]);
514                         } else {
515                                 vm_page_change_lock(&m[i], &m_mtx);
516                                 vm_page_activate(&m[i]);
517                         }
518                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
519                                 *m_hold = &m[i];
520                                 vm_page_wire(&m[i]);
521                         }
522                         vm_page_xunbusy(&m[i]);
523                 }
524                 if (m_mtx != NULL)
525                         mtx_unlock(m_mtx);
526         }
527         curthread->td_ru.ru_majflt++;
528         return (KERN_SUCCESS);
529 }
530
531 static int prot_fault_translation;
532 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
533     &prot_fault_translation, 0,
534     "Control signal to deliver on protection fault");
535
536 /* compat definition to keep common code for signal translation */
537 #define UCODE_PAGEFLT   12
538 #ifdef T_PAGEFLT
539 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
540 #endif
541
542 /*
543  *      vm_fault_trap:
544  *
545  *      Handle a page fault occurring at the given address,
546  *      requiring the given permissions, in the map specified.
547  *      If successful, the page is inserted into the
548  *      associated physical map.
549  *
550  *      NOTE: the given address should be truncated to the
551  *      proper page address.
552  *
553  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
554  *      a standard error specifying why the fault is fatal is returned.
555  *
556  *      The map in question must be referenced, and remains so.
557  *      Caller may hold no locks.
558  */
559 int
560 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
561     int fault_flags, int *signo, int *ucode)
562 {
563         int result;
564
565         MPASS(signo == NULL || ucode != NULL);
566 #ifdef KTRACE
567         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
568                 ktrfault(vaddr, fault_type);
569 #endif
570         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
571             NULL);
572         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
573             result == KERN_INVALID_ADDRESS ||
574             result == KERN_RESOURCE_SHORTAGE ||
575             result == KERN_PROTECTION_FAILURE ||
576             result == KERN_OUT_OF_BOUNDS,
577             ("Unexpected Mach error %d from vm_fault()", result));
578 #ifdef KTRACE
579         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
580                 ktrfaultend(result);
581 #endif
582         if (result != KERN_SUCCESS && signo != NULL) {
583                 switch (result) {
584                 case KERN_FAILURE:
585                 case KERN_INVALID_ADDRESS:
586                         *signo = SIGSEGV;
587                         *ucode = SEGV_MAPERR;
588                         break;
589                 case KERN_RESOURCE_SHORTAGE:
590                         *signo = SIGBUS;
591                         *ucode = BUS_OOMERR;
592                         break;
593                 case KERN_OUT_OF_BOUNDS:
594                         *signo = SIGBUS;
595                         *ucode = BUS_OBJERR;
596                         break;
597                 case KERN_PROTECTION_FAILURE:
598                         if (prot_fault_translation == 0) {
599                                 /*
600                                  * Autodetect.  This check also covers
601                                  * the images without the ABI-tag ELF
602                                  * note.
603                                  */
604                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
605                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
606                                         *signo = SIGSEGV;
607                                         *ucode = SEGV_ACCERR;
608                                 } else {
609                                         *signo = SIGBUS;
610                                         *ucode = UCODE_PAGEFLT;
611                                 }
612                         } else if (prot_fault_translation == 1) {
613                                 /* Always compat mode. */
614                                 *signo = SIGBUS;
615                                 *ucode = UCODE_PAGEFLT;
616                         } else {
617                                 /* Always SIGSEGV mode. */
618                                 *signo = SIGSEGV;
619                                 *ucode = SEGV_ACCERR;
620                         }
621                         break;
622                 default:
623                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
624                             result));
625                         break;
626                 }
627         }
628         return (result);
629 }
630
631 int
632 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
633     int fault_flags, vm_page_t *m_hold)
634 {
635         struct faultstate fs;
636         struct vnode *vp;
637         struct domainset *dset;
638         vm_object_t next_object, retry_object;
639         vm_offset_t e_end, e_start;
640         vm_pindex_t retry_pindex;
641         vm_prot_t prot, retry_prot;
642         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
643         int locked, nera, oom, result, rv;
644         u_char behavior;
645         boolean_t wired;        /* Passed by reference. */
646         bool dead, hardfault, is_first_object_locked;
647
648         VM_CNT_INC(v_vm_faults);
649
650         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
651                 return (KERN_PROTECTION_FAILURE);
652
653         fs.vp = NULL;
654         faultcount = 0;
655         nera = -1;
656         hardfault = false;
657
658 RetryFault:
659         oom = 0;
660 RetryFault_oom:
661
662         /*
663          * Find the backing store object and offset into it to begin the
664          * search.
665          */
666         fs.map = map;
667         result = vm_map_lookup(&fs.map, vaddr, fault_type |
668             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
669             &fs.first_pindex, &prot, &wired);
670         if (result != KERN_SUCCESS) {
671                 unlock_vp(&fs);
672                 return (result);
673         }
674
675         fs.map_generation = fs.map->timestamp;
676
677         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
678                 panic("%s: fault on nofault entry, addr: %#lx",
679                     __func__, (u_long)vaddr);
680         }
681
682         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
683             fs.entry->wiring_thread != curthread) {
684                 vm_map_unlock_read(fs.map);
685                 vm_map_lock(fs.map);
686                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
687                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
688                         unlock_vp(&fs);
689                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
690                         vm_map_unlock_and_wait(fs.map, 0);
691                 } else
692                         vm_map_unlock(fs.map);
693                 goto RetryFault;
694         }
695
696         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
697
698         if (wired)
699                 fault_type = prot | (fault_type & VM_PROT_COPY);
700         else
701                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
702                     ("!wired && VM_FAULT_WIRE"));
703
704         /*
705          * Try to avoid lock contention on the top-level object through
706          * special-case handling of some types of page faults, specifically,
707          * those that are both (1) mapping an existing page from the top-
708          * level object and (2) not having to mark that object as containing
709          * dirty pages.  Under these conditions, a read lock on the top-level
710          * object suffices, allowing multiple page faults of a similar type to
711          * run in parallel on the same top-level object.
712          */
713         if (fs.vp == NULL /* avoid locked vnode leak */ &&
714             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
715             /* avoid calling vm_object_set_writeable_dirty() */
716             ((prot & VM_PROT_WRITE) == 0 ||
717             (fs.first_object->type != OBJT_VNODE &&
718             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
719             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
720                 VM_OBJECT_RLOCK(fs.first_object);
721                 if ((prot & VM_PROT_WRITE) == 0 ||
722                     (fs.first_object->type != OBJT_VNODE &&
723                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
724                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
725                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
726                             fault_flags, wired, m_hold);
727                         if (rv == KERN_SUCCESS)
728                                 return (rv);
729                 }
730                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
731                         VM_OBJECT_RUNLOCK(fs.first_object);
732                         VM_OBJECT_WLOCK(fs.first_object);
733                 }
734         } else {
735                 VM_OBJECT_WLOCK(fs.first_object);
736         }
737
738         /*
739          * Make a reference to this object to prevent its disposal while we
740          * are messing with it.  Once we have the reference, the map is free
741          * to be diddled.  Since objects reference their shadows (and copies),
742          * they will stay around as well.
743          *
744          * Bump the paging-in-progress count to prevent size changes (e.g. 
745          * truncation operations) during I/O.
746          */
747         vm_object_reference_locked(fs.first_object);
748         vm_object_pip_add(fs.first_object, 1);
749
750         fs.lookup_still_valid = true;
751
752         fs.first_m = NULL;
753
754         /*
755          * Search for the page at object/offset.
756          */
757         fs.object = fs.first_object;
758         fs.pindex = fs.first_pindex;
759         while (TRUE) {
760                 /*
761                  * If the object is marked for imminent termination,
762                  * we retry here, since the collapse pass has raced
763                  * with us.  Otherwise, if we see terminally dead
764                  * object, return fail.
765                  */
766                 if ((fs.object->flags & OBJ_DEAD) != 0) {
767                         dead = fs.object->type == OBJT_DEAD;
768                         unlock_and_deallocate(&fs);
769                         if (dead)
770                                 return (KERN_PROTECTION_FAILURE);
771                         pause("vmf_de", 1);
772                         goto RetryFault;
773                 }
774
775                 /*
776                  * See if page is resident
777                  */
778                 fs.m = vm_page_lookup(fs.object, fs.pindex);
779                 if (fs.m != NULL) {
780                         /*
781                          * Wait/Retry if the page is busy.  We have to do this
782                          * if the page is either exclusive or shared busy
783                          * because the vm_pager may be using read busy for
784                          * pageouts (and even pageins if it is the vnode
785                          * pager), and we could end up trying to pagein and
786                          * pageout the same page simultaneously.
787                          *
788                          * We can theoretically allow the busy case on a read
789                          * fault if the page is marked valid, but since such
790                          * pages are typically already pmap'd, putting that
791                          * special case in might be more effort then it is 
792                          * worth.  We cannot under any circumstances mess
793                          * around with a shared busied page except, perhaps,
794                          * to pmap it.
795                          */
796                         if (vm_page_tryxbusy(fs.m) == 0) {
797                                 /*
798                                  * Reference the page before unlocking and
799                                  * sleeping so that the page daemon is less
800                                  * likely to reclaim it.
801                                  */
802                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
803                                 if (fs.object != fs.first_object) {
804                                         if (!VM_OBJECT_TRYWLOCK(
805                                             fs.first_object)) {
806                                                 VM_OBJECT_WUNLOCK(fs.object);
807                                                 VM_OBJECT_WLOCK(fs.first_object);
808                                                 VM_OBJECT_WLOCK(fs.object);
809                                         }
810                                         vm_page_free(fs.first_m);
811                                         vm_object_pip_wakeup(fs.first_object);
812                                         VM_OBJECT_WUNLOCK(fs.first_object);
813                                         fs.first_m = NULL;
814                                 }
815                                 unlock_map(&fs);
816                                 if (fs.m == vm_page_lookup(fs.object,
817                                     fs.pindex)) {
818                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
819                                 }
820                                 vm_object_pip_wakeup(fs.object);
821                                 VM_OBJECT_WUNLOCK(fs.object);
822                                 VM_CNT_INC(v_intrans);
823                                 vm_object_deallocate(fs.first_object);
824                                 goto RetryFault;
825                         }
826
827                         /*
828                          * The page is marked busy for other processes and the
829                          * pagedaemon.  If it still isn't completely valid
830                          * (readable), jump to readrest, else break-out ( we
831                          * found the page ).
832                          */
833                         if (!vm_page_all_valid(fs.m))
834                                 goto readrest;
835                         break; /* break to PAGE HAS BEEN FOUND */
836                 }
837                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
838
839                 /*
840                  * Page is not resident.  If the pager might contain the page
841                  * or this is the beginning of the search, allocate a new
842                  * page.  (Default objects are zero-fill, so there is no real
843                  * pager for them.)
844                  */
845                 if (fs.object->type != OBJT_DEFAULT ||
846                     fs.object == fs.first_object) {
847                         if (fs.pindex >= fs.object->size) {
848                                 unlock_and_deallocate(&fs);
849                                 return (KERN_OUT_OF_BOUNDS);
850                         }
851
852                         if (fs.object == fs.first_object &&
853                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
854                             fs.first_object->shadow_count == 0) {
855                                 rv = vm_fault_populate(&fs, prot, fault_type,
856                                     fault_flags, wired, m_hold);
857                                 switch (rv) {
858                                 case KERN_SUCCESS:
859                                 case KERN_FAILURE:
860                                         unlock_and_deallocate(&fs);
861                                         return (rv);
862                                 case KERN_RESOURCE_SHORTAGE:
863                                         unlock_and_deallocate(&fs);
864                                         goto RetryFault;
865                                 case KERN_NOT_RECEIVER:
866                                         /*
867                                          * Pager's populate() method
868                                          * returned VM_PAGER_BAD.
869                                          */
870                                         break;
871                                 default:
872                                         panic("inconsistent return codes");
873                                 }
874                         }
875
876                         /*
877                          * Allocate a new page for this object/offset pair.
878                          *
879                          * Unlocked read of the p_flag is harmless. At
880                          * worst, the P_KILLED might be not observed
881                          * there, and allocation can fail, causing
882                          * restart and new reading of the p_flag.
883                          */
884                         dset = fs.object->domain.dr_policy;
885                         if (dset == NULL)
886                                 dset = curthread->td_domain.dr_policy;
887                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
888                             P_KILLED(curproc)) {
889 #if VM_NRESERVLEVEL > 0
890                                 vm_object_color(fs.object, atop(vaddr) -
891                                     fs.pindex);
892 #endif
893                                 alloc_req = P_KILLED(curproc) ?
894                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
895                                 if (fs.object->type != OBJT_VNODE &&
896                                     fs.object->backing_object == NULL)
897                                         alloc_req |= VM_ALLOC_ZERO;
898                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
899                                     alloc_req);
900                         }
901                         if (fs.m == NULL) {
902                                 unlock_and_deallocate(&fs);
903                                 if (vm_pfault_oom_attempts < 0 ||
904                                     oom < vm_pfault_oom_attempts) {
905                                         oom++;
906                                         vm_waitpfault(dset,
907                                             vm_pfault_oom_wait * hz);
908                                         goto RetryFault_oom;
909                                 }
910                                 if (bootverbose)
911                                         printf(
912         "proc %d (%s) failed to alloc page on fault, starting OOM\n",
913                                             curproc->p_pid, curproc->p_comm);
914                                 vm_pageout_oom(VM_OOM_MEM_PF);
915                                 goto RetryFault;
916                         }
917                 }
918
919 readrest:
920                 /*
921                  * At this point, we have either allocated a new page or found
922                  * an existing page that is only partially valid.
923                  *
924                  * We hold a reference on the current object and the page is
925                  * exclusive busied.
926                  */
927
928                 /*
929                  * If the pager for the current object might have the page,
930                  * then determine the number of additional pages to read and
931                  * potentially reprioritize previously read pages for earlier
932                  * reclamation.  These operations should only be performed
933                  * once per page fault.  Even if the current pager doesn't
934                  * have the page, the number of additional pages to read will
935                  * apply to subsequent objects in the shadow chain.
936                  */
937                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
938                     !P_KILLED(curproc)) {
939                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
940                         era = fs.entry->read_ahead;
941                         behavior = vm_map_entry_behavior(fs.entry);
942                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
943                                 nera = 0;
944                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
945                                 nera = VM_FAULT_READ_AHEAD_MAX;
946                                 if (vaddr == fs.entry->next_read)
947                                         vm_fault_dontneed(&fs, vaddr, nera);
948                         } else if (vaddr == fs.entry->next_read) {
949                                 /*
950                                  * This is a sequential fault.  Arithmetically
951                                  * increase the requested number of pages in
952                                  * the read-ahead window.  The requested
953                                  * number of pages is "# of sequential faults
954                                  * x (read ahead min + 1) + read ahead min"
955                                  */
956                                 nera = VM_FAULT_READ_AHEAD_MIN;
957                                 if (era > 0) {
958                                         nera += era + 1;
959                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
960                                                 nera = VM_FAULT_READ_AHEAD_MAX;
961                                 }
962                                 if (era == VM_FAULT_READ_AHEAD_MAX)
963                                         vm_fault_dontneed(&fs, vaddr, nera);
964                         } else {
965                                 /*
966                                  * This is a non-sequential fault.
967                                  */
968                                 nera = 0;
969                         }
970                         if (era != nera) {
971                                 /*
972                                  * A read lock on the map suffices to update
973                                  * the read ahead count safely.
974                                  */
975                                 fs.entry->read_ahead = nera;
976                         }
977
978                         /*
979                          * Prepare for unlocking the map.  Save the map
980                          * entry's start and end addresses, which are used to
981                          * optimize the size of the pager operation below.
982                          * Even if the map entry's addresses change after
983                          * unlocking the map, using the saved addresses is
984                          * safe.
985                          */
986                         e_start = fs.entry->start;
987                         e_end = fs.entry->end;
988                 }
989
990                 /*
991                  * Call the pager to retrieve the page if there is a chance
992                  * that the pager has it, and potentially retrieve additional
993                  * pages at the same time.
994                  */
995                 if (fs.object->type != OBJT_DEFAULT) {
996                         /*
997                          * Release the map lock before locking the vnode or
998                          * sleeping in the pager.  (If the current object has
999                          * a shadow, then an earlier iteration of this loop
1000                          * may have already unlocked the map.)
1001                          */
1002                         unlock_map(&fs);
1003
1004                         if (fs.object->type == OBJT_VNODE &&
1005                             (vp = fs.object->handle) != fs.vp) {
1006                                 /*
1007                                  * Perform an unlock in case the desired vnode
1008                                  * changed while the map was unlocked during a
1009                                  * retry.
1010                                  */
1011                                 unlock_vp(&fs);
1012
1013                                 locked = VOP_ISLOCKED(vp);
1014                                 if (locked != LK_EXCLUSIVE)
1015                                         locked = LK_SHARED;
1016
1017                                 /*
1018                                  * We must not sleep acquiring the vnode lock
1019                                  * while we have the page exclusive busied or
1020                                  * the object's paging-in-progress count
1021                                  * incremented.  Otherwise, we could deadlock.
1022                                  */
1023                                 error = vget(vp, locked | LK_CANRECURSE |
1024                                     LK_NOWAIT, curthread);
1025                                 if (error != 0) {
1026                                         vhold(vp);
1027                                         release_page(&fs);
1028                                         unlock_and_deallocate(&fs);
1029                                         error = vget(vp, locked | LK_RETRY |
1030                                             LK_CANRECURSE, curthread);
1031                                         vdrop(vp);
1032                                         fs.vp = vp;
1033                                         KASSERT(error == 0,
1034                                             ("vm_fault: vget failed"));
1035                                         goto RetryFault;
1036                                 }
1037                                 fs.vp = vp;
1038                         }
1039                         KASSERT(fs.vp == NULL || !fs.map->system_map,
1040                             ("vm_fault: vnode-backed object mapped by system map"));
1041
1042                         /*
1043                          * Page in the requested page and hint the pager,
1044                          * that it may bring up surrounding pages.
1045                          */
1046                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1047                             P_KILLED(curproc)) {
1048                                 behind = 0;
1049                                 ahead = 0;
1050                         } else {
1051                                 /* Is this a sequential fault? */
1052                                 if (nera > 0) {
1053                                         behind = 0;
1054                                         ahead = nera;
1055                                 } else {
1056                                         /*
1057                                          * Request a cluster of pages that is
1058                                          * aligned to a VM_FAULT_READ_DEFAULT
1059                                          * page offset boundary within the
1060                                          * object.  Alignment to a page offset
1061                                          * boundary is more likely to coincide
1062                                          * with the underlying file system
1063                                          * block than alignment to a virtual
1064                                          * address boundary.
1065                                          */
1066                                         cluster_offset = fs.pindex %
1067                                             VM_FAULT_READ_DEFAULT;
1068                                         behind = ulmin(cluster_offset,
1069                                             atop(vaddr - e_start));
1070                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
1071                                             cluster_offset;
1072                                 }
1073                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
1074                         }
1075                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
1076                             &behind, &ahead);
1077                         if (rv == VM_PAGER_OK) {
1078                                 faultcount = behind + 1 + ahead;
1079                                 hardfault = true;
1080                                 break; /* break to PAGE HAS BEEN FOUND */
1081                         }
1082                         if (rv == VM_PAGER_ERROR)
1083                                 printf("vm_fault: pager read error, pid %d (%s)\n",
1084                                     curproc->p_pid, curproc->p_comm);
1085
1086                         /*
1087                          * If an I/O error occurred or the requested page was
1088                          * outside the range of the pager, clean up and return
1089                          * an error.
1090                          */
1091                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1092                                 if (!vm_page_wired(fs.m))
1093                                         vm_page_free(fs.m);
1094                                 else
1095                                         vm_page_xunbusy(fs.m);
1096                                 fs.m = NULL;
1097                                 unlock_and_deallocate(&fs);
1098                                 return (KERN_OUT_OF_BOUNDS);
1099                         }
1100
1101                         /*
1102                          * The requested page does not exist at this object/
1103                          * offset.  Remove the invalid page from the object,
1104                          * waking up anyone waiting for it, and continue on to
1105                          * the next object.  However, if this is the top-level
1106                          * object, we must leave the busy page in place to
1107                          * prevent another process from rushing past us, and
1108                          * inserting the page in that object at the same time
1109                          * that we are.
1110                          */
1111                         if (fs.object != fs.first_object) {
1112                                 if (!vm_page_wired(fs.m))
1113                                         vm_page_free(fs.m);
1114                                 else
1115                                         vm_page_xunbusy(fs.m);
1116                                 fs.m = NULL;
1117                         }
1118                 }
1119
1120                 /*
1121                  * We get here if the object has default pager (or unwiring) 
1122                  * or the pager doesn't have the page.
1123                  */
1124                 if (fs.object == fs.first_object)
1125                         fs.first_m = fs.m;
1126
1127                 /*
1128                  * Move on to the next object.  Lock the next object before
1129                  * unlocking the current one.
1130                  */
1131                 next_object = fs.object->backing_object;
1132                 if (next_object == NULL) {
1133                         /*
1134                          * If there's no object left, fill the page in the top
1135                          * object with zeros.
1136                          */
1137                         if (fs.object != fs.first_object) {
1138                                 vm_object_pip_wakeup(fs.object);
1139                                 VM_OBJECT_WUNLOCK(fs.object);
1140
1141                                 fs.object = fs.first_object;
1142                                 fs.pindex = fs.first_pindex;
1143                                 fs.m = fs.first_m;
1144                                 VM_OBJECT_WLOCK(fs.object);
1145                         }
1146                         fs.first_m = NULL;
1147
1148                         /*
1149                          * Zero the page if necessary and mark it valid.
1150                          */
1151                         if ((fs.m->flags & PG_ZERO) == 0) {
1152                                 pmap_zero_page(fs.m);
1153                         } else {
1154                                 VM_CNT_INC(v_ozfod);
1155                         }
1156                         VM_CNT_INC(v_zfod);
1157                         vm_page_valid(fs.m);
1158                         /* Don't try to prefault neighboring pages. */
1159                         faultcount = 1;
1160                         break;  /* break to PAGE HAS BEEN FOUND */
1161                 } else {
1162                         KASSERT(fs.object != next_object,
1163                             ("object loop %p", next_object));
1164                         VM_OBJECT_WLOCK(next_object);
1165                         vm_object_pip_add(next_object, 1);
1166                         if (fs.object != fs.first_object)
1167                                 vm_object_pip_wakeup(fs.object);
1168                         fs.pindex +=
1169                             OFF_TO_IDX(fs.object->backing_object_offset);
1170                         VM_OBJECT_WUNLOCK(fs.object);
1171                         fs.object = next_object;
1172                 }
1173         }
1174
1175         vm_page_assert_xbusied(fs.m);
1176
1177         /*
1178          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1179          * is held.]
1180          */
1181
1182         /*
1183          * If the page is being written, but isn't already owned by the
1184          * top-level object, we have to copy it into a new page owned by the
1185          * top-level object.
1186          */
1187         if (fs.object != fs.first_object) {
1188                 /*
1189                  * We only really need to copy if we want to write it.
1190                  */
1191                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1192                         /*
1193                          * This allows pages to be virtually copied from a 
1194                          * backing_object into the first_object, where the 
1195                          * backing object has no other refs to it, and cannot
1196                          * gain any more refs.  Instead of a bcopy, we just 
1197                          * move the page from the backing object to the 
1198                          * first object.  Note that we must mark the page 
1199                          * dirty in the first object so that it will go out 
1200                          * to swap when needed.
1201                          */
1202                         is_first_object_locked = false;
1203                         if (
1204                                 /*
1205                                  * Only one shadow object
1206                                  */
1207                                 (fs.object->shadow_count == 1) &&
1208                                 /*
1209                                  * No COW refs, except us
1210                                  */
1211                                 (fs.object->ref_count == 1) &&
1212                                 /*
1213                                  * No one else can look this object up
1214                                  */
1215                                 (fs.object->handle == NULL) &&
1216                                 /*
1217                                  * No other ways to look the object up
1218                                  */
1219                                 ((fs.object->type == OBJT_DEFAULT) ||
1220                                  (fs.object->type == OBJT_SWAP)) &&
1221                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1222                                 /*
1223                                  * We don't chase down the shadow chain
1224                                  */
1225                             fs.object == fs.first_object->backing_object) {
1226
1227                                 (void)vm_page_remove(fs.m);
1228                                 vm_page_replace_checked(fs.m, fs.first_object,
1229                                     fs.first_pindex, fs.first_m);
1230                                 vm_page_free(fs.first_m);
1231                                 vm_page_dirty(fs.m);
1232 #if VM_NRESERVLEVEL > 0
1233                                 /*
1234                                  * Rename the reservation.
1235                                  */
1236                                 vm_reserv_rename(fs.m, fs.first_object,
1237                                     fs.object, OFF_TO_IDX(
1238                                     fs.first_object->backing_object_offset));
1239 #endif
1240                                 fs.first_m = fs.m;
1241                                 fs.m = NULL;
1242                                 VM_CNT_INC(v_cow_optim);
1243                         } else {
1244                                 /*
1245                                  * Oh, well, lets copy it.
1246                                  */
1247                                 pmap_copy_page(fs.m, fs.first_m);
1248                                 vm_page_valid(fs.first_m);
1249                                 if (wired && (fault_flags &
1250                                     VM_FAULT_WIRE) == 0) {
1251                                         vm_page_wire(fs.first_m);
1252                                         vm_page_unwire(fs.m, PQ_INACTIVE);
1253                                 }
1254                                 /*
1255                                  * We no longer need the old page or object.
1256                                  */
1257                                 release_page(&fs);
1258                         }
1259                         /*
1260                          * fs.object != fs.first_object due to above 
1261                          * conditional
1262                          */
1263                         vm_object_pip_wakeup(fs.object);
1264                         VM_OBJECT_WUNLOCK(fs.object);
1265
1266                         /*
1267                          * We only try to prefault read-only mappings to the
1268                          * neighboring pages when this copy-on-write fault is
1269                          * a hard fault.  In other cases, trying to prefault
1270                          * is typically wasted effort.
1271                          */
1272                         if (faultcount == 0)
1273                                 faultcount = 1;
1274
1275                         /*
1276                          * Only use the new page below...
1277                          */
1278                         fs.object = fs.first_object;
1279                         fs.pindex = fs.first_pindex;
1280                         fs.m = fs.first_m;
1281                         if (!is_first_object_locked)
1282                                 VM_OBJECT_WLOCK(fs.object);
1283                         VM_CNT_INC(v_cow_faults);
1284                         curthread->td_cow++;
1285                 } else {
1286                         prot &= ~VM_PROT_WRITE;
1287                 }
1288         }
1289
1290         /*
1291          * We must verify that the maps have not changed since our last
1292          * lookup.
1293          */
1294         if (!fs.lookup_still_valid) {
1295                 if (!vm_map_trylock_read(fs.map)) {
1296                         release_page(&fs);
1297                         unlock_and_deallocate(&fs);
1298                         goto RetryFault;
1299                 }
1300                 fs.lookup_still_valid = true;
1301                 if (fs.map->timestamp != fs.map_generation) {
1302                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1303                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1304
1305                         /*
1306                          * If we don't need the page any longer, put it on the inactive
1307                          * list (the easiest thing to do here).  If no one needs it,
1308                          * pageout will grab it eventually.
1309                          */
1310                         if (result != KERN_SUCCESS) {
1311                                 release_page(&fs);
1312                                 unlock_and_deallocate(&fs);
1313
1314                                 /*
1315                                  * If retry of map lookup would have blocked then
1316                                  * retry fault from start.
1317                                  */
1318                                 if (result == KERN_FAILURE)
1319                                         goto RetryFault;
1320                                 return (result);
1321                         }
1322                         if ((retry_object != fs.first_object) ||
1323                             (retry_pindex != fs.first_pindex)) {
1324                                 release_page(&fs);
1325                                 unlock_and_deallocate(&fs);
1326                                 goto RetryFault;
1327                         }
1328
1329                         /*
1330                          * Check whether the protection has changed or the object has
1331                          * been copied while we left the map unlocked. Changing from
1332                          * read to write permission is OK - we leave the page
1333                          * write-protected, and catch the write fault. Changing from
1334                          * write to read permission means that we can't mark the page
1335                          * write-enabled after all.
1336                          */
1337                         prot &= retry_prot;
1338                         fault_type &= retry_prot;
1339                         if (prot == 0) {
1340                                 release_page(&fs);
1341                                 unlock_and_deallocate(&fs);
1342                                 goto RetryFault;
1343                         }
1344
1345                         /* Reassert because wired may have changed. */
1346                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1347                             ("!wired && VM_FAULT_WIRE"));
1348                 }
1349         }
1350
1351         /*
1352          * If the page was filled by a pager, save the virtual address that
1353          * should be faulted on next under a sequential access pattern to the
1354          * map entry.  A read lock on the map suffices to update this address
1355          * safely.
1356          */
1357         if (hardfault)
1358                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1359
1360         vm_page_assert_xbusied(fs.m);
1361         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1362
1363         /*
1364          * Page must be completely valid or it is not fit to
1365          * map into user space.  vm_pager_get_pages() ensures this.
1366          */
1367         KASSERT(vm_page_all_valid(fs.m),
1368             ("vm_fault: page %p partially invalid", fs.m));
1369         VM_OBJECT_WUNLOCK(fs.object);
1370
1371         /*
1372          * Put this page into the physical map.  We had to do the unlock above
1373          * because pmap_enter() may sleep.  We don't put the page
1374          * back on the active queue until later so that the pageout daemon
1375          * won't find it (yet).
1376          */
1377         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1378             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1379         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1380             wired == 0)
1381                 vm_fault_prefault(&fs, vaddr,
1382                     faultcount > 0 ? behind : PFBAK,
1383                     faultcount > 0 ? ahead : PFFOR, false);
1384         VM_OBJECT_WLOCK(fs.object);
1385
1386         /*
1387          * If the page is not wired down, then put it where the pageout daemon
1388          * can find it.
1389          */
1390         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1391                 vm_page_wire(fs.m);
1392         } else {
1393                 vm_page_lock(fs.m);
1394                 vm_page_activate(fs.m);
1395                 vm_page_unlock(fs.m);
1396         }
1397         if (m_hold != NULL) {
1398                 *m_hold = fs.m;
1399                 vm_page_wire(fs.m);
1400         }
1401         vm_page_xunbusy(fs.m);
1402
1403         /*
1404          * Unlock everything, and return
1405          */
1406         unlock_and_deallocate(&fs);
1407         if (hardfault) {
1408                 VM_CNT_INC(v_io_faults);
1409                 curthread->td_ru.ru_majflt++;
1410 #ifdef RACCT
1411                 if (racct_enable && fs.object->type == OBJT_VNODE) {
1412                         PROC_LOCK(curproc);
1413                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1414                                 racct_add_force(curproc, RACCT_WRITEBPS,
1415                                     PAGE_SIZE + behind * PAGE_SIZE);
1416                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1417                         } else {
1418                                 racct_add_force(curproc, RACCT_READBPS,
1419                                     PAGE_SIZE + ahead * PAGE_SIZE);
1420                                 racct_add_force(curproc, RACCT_READIOPS, 1);
1421                         }
1422                         PROC_UNLOCK(curproc);
1423                 }
1424 #endif
1425         } else 
1426                 curthread->td_ru.ru_minflt++;
1427
1428         return (KERN_SUCCESS);
1429 }
1430
1431 /*
1432  * Speed up the reclamation of pages that precede the faulting pindex within
1433  * the first object of the shadow chain.  Essentially, perform the equivalent
1434  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1435  * the faulting pindex by the cluster size when the pages read by vm_fault()
1436  * cross a cluster-size boundary.  The cluster size is the greater of the
1437  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1438  *
1439  * When "fs->first_object" is a shadow object, the pages in the backing object
1440  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1441  * function must only be concerned with pages in the first object.
1442  */
1443 static void
1444 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1445 {
1446         vm_map_entry_t entry;
1447         vm_object_t first_object, object;
1448         vm_offset_t end, start;
1449         vm_page_t m, m_next;
1450         vm_pindex_t pend, pstart;
1451         vm_size_t size;
1452
1453         object = fs->object;
1454         VM_OBJECT_ASSERT_WLOCKED(object);
1455         first_object = fs->first_object;
1456         if (first_object != object) {
1457                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1458                         VM_OBJECT_WUNLOCK(object);
1459                         VM_OBJECT_WLOCK(first_object);
1460                         VM_OBJECT_WLOCK(object);
1461                 }
1462         }
1463         /* Neither fictitious nor unmanaged pages can be reclaimed. */
1464         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1465                 size = VM_FAULT_DONTNEED_MIN;
1466                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1467                         size = pagesizes[1];
1468                 end = rounddown2(vaddr, size);
1469                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1470                     (entry = fs->entry)->start < end) {
1471                         if (end - entry->start < size)
1472                                 start = entry->start;
1473                         else
1474                                 start = end - size;
1475                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1476                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
1477                             entry->start);
1478                         m_next = vm_page_find_least(first_object, pstart);
1479                         pend = OFF_TO_IDX(entry->offset) + atop(end -
1480                             entry->start);
1481                         while ((m = m_next) != NULL && m->pindex < pend) {
1482                                 m_next = TAILQ_NEXT(m, listq);
1483                                 if (!vm_page_all_valid(m) ||
1484                                     vm_page_busied(m))
1485                                         continue;
1486
1487                                 /*
1488                                  * Don't clear PGA_REFERENCED, since it would
1489                                  * likely represent a reference by a different
1490                                  * process.
1491                                  *
1492                                  * Typically, at this point, prefetched pages
1493                                  * are still in the inactive queue.  Only
1494                                  * pages that triggered page faults are in the
1495                                  * active queue.
1496                                  */
1497                                 vm_page_lock(m);
1498                                 if (!vm_page_inactive(m))
1499                                         vm_page_deactivate(m);
1500                                 vm_page_unlock(m);
1501                         }
1502                 }
1503         }
1504         if (first_object != object)
1505                 VM_OBJECT_WUNLOCK(first_object);
1506 }
1507
1508 /*
1509  * vm_fault_prefault provides a quick way of clustering
1510  * pagefaults into a processes address space.  It is a "cousin"
1511  * of vm_map_pmap_enter, except it runs at page fault time instead
1512  * of mmap time.
1513  */
1514 static void
1515 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1516     int backward, int forward, bool obj_locked)
1517 {
1518         pmap_t pmap;
1519         vm_map_entry_t entry;
1520         vm_object_t backing_object, lobject;
1521         vm_offset_t addr, starta;
1522         vm_pindex_t pindex;
1523         vm_page_t m;
1524         int i;
1525
1526         pmap = fs->map->pmap;
1527         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1528                 return;
1529
1530         entry = fs->entry;
1531
1532         if (addra < backward * PAGE_SIZE) {
1533                 starta = entry->start;
1534         } else {
1535                 starta = addra - backward * PAGE_SIZE;
1536                 if (starta < entry->start)
1537                         starta = entry->start;
1538         }
1539
1540         /*
1541          * Generate the sequence of virtual addresses that are candidates for
1542          * prefaulting in an outward spiral from the faulting virtual address,
1543          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1544          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1545          * If the candidate address doesn't have a backing physical page, then
1546          * the loop immediately terminates.
1547          */
1548         for (i = 0; i < 2 * imax(backward, forward); i++) {
1549                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1550                     PAGE_SIZE);
1551                 if (addr > addra + forward * PAGE_SIZE)
1552                         addr = 0;
1553
1554                 if (addr < starta || addr >= entry->end)
1555                         continue;
1556
1557                 if (!pmap_is_prefaultable(pmap, addr))
1558                         continue;
1559
1560                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1561                 lobject = entry->object.vm_object;
1562                 if (!obj_locked)
1563                         VM_OBJECT_RLOCK(lobject);
1564                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1565                     lobject->type == OBJT_DEFAULT &&
1566                     (backing_object = lobject->backing_object) != NULL) {
1567                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1568                             0, ("vm_fault_prefault: unaligned object offset"));
1569                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1570                         VM_OBJECT_RLOCK(backing_object);
1571                         if (!obj_locked || lobject != entry->object.vm_object)
1572                                 VM_OBJECT_RUNLOCK(lobject);
1573                         lobject = backing_object;
1574                 }
1575                 if (m == NULL) {
1576                         if (!obj_locked || lobject != entry->object.vm_object)
1577                                 VM_OBJECT_RUNLOCK(lobject);
1578                         break;
1579                 }
1580                 if (vm_page_all_valid(m) &&
1581                     (m->flags & PG_FICTITIOUS) == 0)
1582                         pmap_enter_quick(pmap, addr, m, entry->protection);
1583                 if (!obj_locked || lobject != entry->object.vm_object)
1584                         VM_OBJECT_RUNLOCK(lobject);
1585         }
1586 }
1587
1588 /*
1589  * Hold each of the physical pages that are mapped by the specified range of
1590  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1591  * and allow the specified types of access, "prot".  If all of the implied
1592  * pages are successfully held, then the number of held pages is returned
1593  * together with pointers to those pages in the array "ma".  However, if any
1594  * of the pages cannot be held, -1 is returned.
1595  */
1596 int
1597 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1598     vm_prot_t prot, vm_page_t *ma, int max_count)
1599 {
1600         vm_offset_t end, va;
1601         vm_page_t *mp;
1602         int count;
1603         boolean_t pmap_failed;
1604
1605         if (len == 0)
1606                 return (0);
1607         end = round_page(addr + len);
1608         addr = trunc_page(addr);
1609
1610         /*
1611          * Check for illegal addresses.
1612          */
1613         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1614                 return (-1);
1615
1616         if (atop(end - addr) > max_count)
1617                 panic("vm_fault_quick_hold_pages: count > max_count");
1618         count = atop(end - addr);
1619
1620         /*
1621          * Most likely, the physical pages are resident in the pmap, so it is
1622          * faster to try pmap_extract_and_hold() first.
1623          */
1624         pmap_failed = FALSE;
1625         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1626                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1627                 if (*mp == NULL)
1628                         pmap_failed = TRUE;
1629                 else if ((prot & VM_PROT_WRITE) != 0 &&
1630                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1631                         /*
1632                          * Explicitly dirty the physical page.  Otherwise, the
1633                          * caller's changes may go unnoticed because they are
1634                          * performed through an unmanaged mapping or by a DMA
1635                          * operation.
1636                          *
1637                          * The object lock is not held here.
1638                          * See vm_page_clear_dirty_mask().
1639                          */
1640                         vm_page_dirty(*mp);
1641                 }
1642         }
1643         if (pmap_failed) {
1644                 /*
1645                  * One or more pages could not be held by the pmap.  Either no
1646                  * page was mapped at the specified virtual address or that
1647                  * mapping had insufficient permissions.  Attempt to fault in
1648                  * and hold these pages.
1649                  *
1650                  * If vm_fault_disable_pagefaults() was called,
1651                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
1652                  * acquire MD VM locks, which means we must not call
1653                  * vm_fault().  Some (out of tree) callers mark
1654                  * too wide a code area with vm_fault_disable_pagefaults()
1655                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
1656                  * the proper behaviour explicitly.
1657                  */
1658                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1659                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
1660                         goto error;
1661                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1662                         if (*mp == NULL && vm_fault(map, va, prot,
1663                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1664                                 goto error;
1665         }
1666         return (count);
1667 error:  
1668         for (mp = ma; mp < ma + count; mp++)
1669                 if (*mp != NULL)
1670                         vm_page_unwire(*mp, PQ_INACTIVE);
1671         return (-1);
1672 }
1673
1674 /*
1675  *      Routine:
1676  *              vm_fault_copy_entry
1677  *      Function:
1678  *              Create new shadow object backing dst_entry with private copy of
1679  *              all underlying pages. When src_entry is equal to dst_entry,
1680  *              function implements COW for wired-down map entry. Otherwise,
1681  *              it forks wired entry into dst_map.
1682  *
1683  *      In/out conditions:
1684  *              The source and destination maps must be locked for write.
1685  *              The source map entry must be wired down (or be a sharing map
1686  *              entry corresponding to a main map entry that is wired down).
1687  */
1688 void
1689 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1690     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1691     vm_ooffset_t *fork_charge)
1692 {
1693         vm_object_t backing_object, dst_object, object, src_object;
1694         vm_pindex_t dst_pindex, pindex, src_pindex;
1695         vm_prot_t access, prot;
1696         vm_offset_t vaddr;
1697         vm_page_t dst_m;
1698         vm_page_t src_m;
1699         boolean_t upgrade;
1700
1701 #ifdef  lint
1702         src_map++;
1703 #endif  /* lint */
1704
1705         upgrade = src_entry == dst_entry;
1706         access = prot = dst_entry->protection;
1707
1708         src_object = src_entry->object.vm_object;
1709         src_pindex = OFF_TO_IDX(src_entry->offset);
1710
1711         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1712                 dst_object = src_object;
1713                 vm_object_reference(dst_object);
1714         } else {
1715                 /*
1716                  * Create the top-level object for the destination entry. (Doesn't
1717                  * actually shadow anything - we copy the pages directly.)
1718                  */
1719                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1720                     atop(dst_entry->end - dst_entry->start));
1721 #if VM_NRESERVLEVEL > 0
1722                 dst_object->flags |= OBJ_COLORED;
1723                 dst_object->pg_color = atop(dst_entry->start);
1724 #endif
1725                 dst_object->domain = src_object->domain;
1726                 dst_object->charge = dst_entry->end - dst_entry->start;
1727         }
1728
1729         VM_OBJECT_WLOCK(dst_object);
1730         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1731             ("vm_fault_copy_entry: vm_object not NULL"));
1732         if (src_object != dst_object) {
1733                 dst_entry->object.vm_object = dst_object;
1734                 dst_entry->offset = 0;
1735                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1736         }
1737         if (fork_charge != NULL) {
1738                 KASSERT(dst_entry->cred == NULL,
1739                     ("vm_fault_copy_entry: leaked swp charge"));
1740                 dst_object->cred = curthread->td_ucred;
1741                 crhold(dst_object->cred);
1742                 *fork_charge += dst_object->charge;
1743         } else if ((dst_object->type == OBJT_DEFAULT ||
1744             dst_object->type == OBJT_SWAP) &&
1745             dst_object->cred == NULL) {
1746                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1747                     dst_entry));
1748                 dst_object->cred = dst_entry->cred;
1749                 dst_entry->cred = NULL;
1750         }
1751
1752         /*
1753          * If not an upgrade, then enter the mappings in the pmap as
1754          * read and/or execute accesses.  Otherwise, enter them as
1755          * write accesses.
1756          *
1757          * A writeable large page mapping is only created if all of
1758          * the constituent small page mappings are modified. Marking
1759          * PTEs as modified on inception allows promotion to happen
1760          * without taking potentially large number of soft faults.
1761          */
1762         if (!upgrade)
1763                 access &= ~VM_PROT_WRITE;
1764
1765         /*
1766          * Loop through all of the virtual pages within the entry's
1767          * range, copying each page from the source object to the
1768          * destination object.  Since the source is wired, those pages
1769          * must exist.  In contrast, the destination is pageable.
1770          * Since the destination object doesn't share any backing storage
1771          * with the source object, all of its pages must be dirtied,
1772          * regardless of whether they can be written.
1773          */
1774         for (vaddr = dst_entry->start, dst_pindex = 0;
1775             vaddr < dst_entry->end;
1776             vaddr += PAGE_SIZE, dst_pindex++) {
1777 again:
1778                 /*
1779                  * Find the page in the source object, and copy it in.
1780                  * Because the source is wired down, the page will be
1781                  * in memory.
1782                  */
1783                 if (src_object != dst_object)
1784                         VM_OBJECT_RLOCK(src_object);
1785                 object = src_object;
1786                 pindex = src_pindex + dst_pindex;
1787                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1788                     (backing_object = object->backing_object) != NULL) {
1789                         /*
1790                          * Unless the source mapping is read-only or
1791                          * it is presently being upgraded from
1792                          * read-only, the first object in the shadow
1793                          * chain should provide all of the pages.  In
1794                          * other words, this loop body should never be
1795                          * executed when the source mapping is already
1796                          * read/write.
1797                          */
1798                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1799                             upgrade,
1800                             ("vm_fault_copy_entry: main object missing page"));
1801
1802                         VM_OBJECT_RLOCK(backing_object);
1803                         pindex += OFF_TO_IDX(object->backing_object_offset);
1804                         if (object != dst_object)
1805                                 VM_OBJECT_RUNLOCK(object);
1806                         object = backing_object;
1807                 }
1808                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1809
1810                 if (object != dst_object) {
1811                         /*
1812                          * Allocate a page in the destination object.
1813                          */
1814                         dst_m = vm_page_alloc(dst_object, (src_object ==
1815                             dst_object ? src_pindex : 0) + dst_pindex,
1816                             VM_ALLOC_NORMAL);
1817                         if (dst_m == NULL) {
1818                                 VM_OBJECT_WUNLOCK(dst_object);
1819                                 VM_OBJECT_RUNLOCK(object);
1820                                 vm_wait(dst_object);
1821                                 VM_OBJECT_WLOCK(dst_object);
1822                                 goto again;
1823                         }
1824                         pmap_copy_page(src_m, dst_m);
1825                         VM_OBJECT_RUNLOCK(object);
1826                         dst_m->dirty = dst_m->valid = src_m->valid;
1827                 } else {
1828                         dst_m = src_m;
1829                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
1830                                 goto again;
1831                         if (dst_m->pindex >= dst_object->size) {
1832                                 /*
1833                                  * We are upgrading.  Index can occur
1834                                  * out of bounds if the object type is
1835                                  * vnode and the file was truncated.
1836                                  */
1837                                 vm_page_xunbusy(dst_m);
1838                                 break;
1839                         }
1840                 }
1841                 VM_OBJECT_WUNLOCK(dst_object);
1842
1843                 /*
1844                  * Enter it in the pmap. If a wired, copy-on-write
1845                  * mapping is being replaced by a write-enabled
1846                  * mapping, then wire that new mapping.
1847                  *
1848                  * The page can be invalid if the user called
1849                  * msync(MS_INVALIDATE) or truncated the backing vnode
1850                  * or shared memory object.  In this case, do not
1851                  * insert it into pmap, but still do the copy so that
1852                  * all copies of the wired map entry have similar
1853                  * backing pages.
1854                  */
1855                 if (vm_page_all_valid(dst_m)) {
1856                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1857                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1858                 }
1859
1860                 /*
1861                  * Mark it no longer busy, and put it on the active list.
1862                  */
1863                 VM_OBJECT_WLOCK(dst_object);
1864                 
1865                 if (upgrade) {
1866                         if (src_m != dst_m) {
1867                                 vm_page_unwire(src_m, PQ_INACTIVE);
1868                                 vm_page_wire(dst_m);
1869                         } else {
1870                                 KASSERT(vm_page_wired(dst_m),
1871                                     ("dst_m %p is not wired", dst_m));
1872                         }
1873                 } else {
1874                         vm_page_lock(dst_m);
1875                         vm_page_activate(dst_m);
1876                         vm_page_unlock(dst_m);
1877                 }
1878                 vm_page_xunbusy(dst_m);
1879         }
1880         VM_OBJECT_WUNLOCK(dst_object);
1881         if (upgrade) {
1882                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1883                 vm_object_deallocate(src_object);
1884         }
1885 }
1886
1887 /*
1888  * Block entry into the machine-independent layer's page fault handler by
1889  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1890  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1891  * spurious page faults. 
1892  */
1893 int
1894 vm_fault_disable_pagefaults(void)
1895 {
1896
1897         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1898 }
1899
1900 void
1901 vm_fault_enable_pagefaults(int save)
1902 {
1903
1904         curthread_pflags_restore(save);
1905 }