]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_glue.c
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / vm / vm_glue.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include "opt_vm.h"
65 #include "opt_kstack_pages.h"
66 #include "opt_kstack_max_pages.h"
67 #include "opt_kstack_usage_prof.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/domainset.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/racct.h>
78 #include <sys/resourcevar.h>
79 #include <sys/rwlock.h>
80 #include <sys/sched.h>
81 #include <sys/sf_buf.h>
82 #include <sys/shm.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vmem.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/eventhandler.h>
88 #include <sys/kernel.h>
89 #include <sys/ktr.h>
90 #include <sys/unistd.h>
91
92 #include <vm/uma.h>
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_domainset.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_extern.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105
106 #include <machine/cpu.h>
107
108 /*
109  * MPSAFE
110  *
111  * WARNING!  This code calls vm_map_check_protection() which only checks
112  * the associated vm_map_entry range.  It does not determine whether the
113  * contents of the memory is actually readable or writable.  In most cases
114  * just checking the vm_map_entry is sufficient within the kernel's address
115  * space.
116  */
117 int
118 kernacc(void *addr, int len, int rw)
119 {
120         boolean_t rv;
121         vm_offset_t saddr, eaddr;
122         vm_prot_t prot;
123
124         KASSERT((rw & ~VM_PROT_ALL) == 0,
125             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
126
127         if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
128             (vm_offset_t)addr + len < (vm_offset_t)addr)
129                 return (FALSE);
130
131         prot = rw;
132         saddr = trunc_page((vm_offset_t)addr);
133         eaddr = round_page((vm_offset_t)addr + len);
134         vm_map_lock_read(kernel_map);
135         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
136         vm_map_unlock_read(kernel_map);
137         return (rv == TRUE);
138 }
139
140 /*
141  * MPSAFE
142  *
143  * WARNING!  This code calls vm_map_check_protection() which only checks
144  * the associated vm_map_entry range.  It does not determine whether the
145  * contents of the memory is actually readable or writable.  vmapbuf(),
146  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
147  * used in conjunction with this call.
148  */
149 int
150 useracc(void *addr, int len, int rw)
151 {
152         boolean_t rv;
153         vm_prot_t prot;
154         vm_map_t map;
155
156         KASSERT((rw & ~VM_PROT_ALL) == 0,
157             ("illegal ``rw'' argument to useracc (%x)\n", rw));
158         prot = rw;
159         map = &curproc->p_vmspace->vm_map;
160         if ((vm_offset_t)addr + len > vm_map_max(map) ||
161             (vm_offset_t)addr + len < (vm_offset_t)addr) {
162                 return (FALSE);
163         }
164         vm_map_lock_read(map);
165         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
166             round_page((vm_offset_t)addr + len), prot);
167         vm_map_unlock_read(map);
168         return (rv == TRUE);
169 }
170
171 int
172 vslock(void *addr, size_t len)
173 {
174         vm_offset_t end, last, start;
175         vm_size_t npages;
176         int error;
177
178         last = (vm_offset_t)addr + len;
179         start = trunc_page((vm_offset_t)addr);
180         end = round_page(last);
181         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
182                 return (EINVAL);
183         npages = atop(end - start);
184         if (npages > vm_page_max_user_wired)
185                 return (ENOMEM);
186         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
187             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
188         if (error == KERN_SUCCESS) {
189                 curthread->td_vslock_sz += len;
190                 return (0);
191         }
192
193         /*
194          * Return EFAULT on error to match copy{in,out}() behaviour
195          * rather than returning ENOMEM like mlock() would.
196          */
197         return (EFAULT);
198 }
199
200 void
201 vsunlock(void *addr, size_t len)
202 {
203
204         /* Rely on the parameter sanity checks performed by vslock(). */
205         MPASS(curthread->td_vslock_sz >= len);
206         curthread->td_vslock_sz -= len;
207         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
208             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
209             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
210 }
211
212 /*
213  * Pin the page contained within the given object at the given offset.  If the
214  * page is not resident, allocate and load it using the given object's pager.
215  * Return the pinned page if successful; otherwise, return NULL.
216  */
217 static vm_page_t
218 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
219 {
220         vm_page_t m;
221         vm_pindex_t pindex;
222         int rv;
223
224         VM_OBJECT_WLOCK(object);
225         pindex = OFF_TO_IDX(offset);
226         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
227             VM_ALLOC_WIRED);
228         if (m->valid != VM_PAGE_BITS_ALL) {
229                 vm_page_xbusy(m);
230                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
231                 if (rv != VM_PAGER_OK) {
232                         vm_page_lock(m);
233                         vm_page_unwire(m, PQ_NONE);
234                         vm_page_free(m);
235                         vm_page_unlock(m);
236                         m = NULL;
237                         goto out;
238                 }
239                 vm_page_xunbusy(m);
240         }
241 out:
242         VM_OBJECT_WUNLOCK(object);
243         return (m);
244 }
245
246 /*
247  * Return a CPU private mapping to the page at the given offset within the
248  * given object.  The page is pinned before it is mapped.
249  */
250 struct sf_buf *
251 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
252 {
253         vm_page_t m;
254
255         m = vm_imgact_hold_page(object, offset);
256         if (m == NULL)
257                 return (NULL);
258         sched_pin();
259         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
260 }
261
262 /*
263  * Destroy the given CPU private mapping and unpin the page that it mapped.
264  */
265 void
266 vm_imgact_unmap_page(struct sf_buf *sf)
267 {
268         vm_page_t m;
269
270         m = sf_buf_page(sf);
271         sf_buf_free(sf);
272         sched_unpin();
273         vm_page_lock(m);
274         vm_page_unwire(m, PQ_ACTIVE);
275         vm_page_unlock(m);
276 }
277
278 void
279 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
280 {
281
282         pmap_sync_icache(map->pmap, va, sz);
283 }
284
285 static uma_zone_t kstack_cache;
286 static int kstack_cache_size = 128;
287 static int kstack_domain_iter;
288
289 static int
290 sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
291 {
292         int error, newsize;
293
294         newsize = kstack_cache_size;
295         error = sysctl_handle_int(oidp, &newsize, 0, req);
296         if (error == 0 && req->newptr && newsize != kstack_cache_size)
297                 kstack_cache_size =
298                     uma_zone_set_maxcache(kstack_cache, newsize);
299         return (error);
300 }
301 SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size, CTLTYPE_INT|CTLFLAG_RW,
302         &kstack_cache_size, 0, sysctl_kstack_cache_size, "IU",
303         "Maximum number of cached kernel stacks");
304
305 /*
306  * Create the kernel stack (including pcb for i386) for a new thread.
307  * This routine directly affects the fork perf for a process and
308  * create performance for a thread.
309  */
310 static vm_offset_t
311 vm_thread_stack_create(struct domainset *ds, vm_object_t *ksobjp, int pages)
312 {
313         vm_page_t ma[KSTACK_MAX_PAGES];
314         vm_object_t ksobj;
315         vm_offset_t ks;
316         int i;
317
318         /*
319          * Allocate an object for the kstack.
320          */
321         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
322         
323         /*
324          * Get a kernel virtual address for this thread's kstack.
325          */
326 #if defined(__mips__)
327         /*
328          * We need to align the kstack's mapped address to fit within
329          * a single TLB entry.
330          */
331         if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
332             PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
333             M_BESTFIT | M_NOWAIT, &ks)) {
334                 ks = 0;
335         }
336 #else
337         ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
338 #endif
339         if (ks == 0) {
340                 printf("vm_thread_new: kstack allocation failed\n");
341                 vm_object_deallocate(ksobj);
342                 return (0);
343         }
344         if (vm_ndomains > 1) {
345                 ksobj->domain.dr_policy = ds;
346                 ksobj->domain.dr_iter =
347                     atomic_fetchadd_int(&kstack_domain_iter, 1);
348         }
349
350         if (KSTACK_GUARD_PAGES != 0) {
351                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
352                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
353         }
354
355         /* 
356          * For the length of the stack, link in a real page of ram for each
357          * page of stack.
358          */
359         VM_OBJECT_WLOCK(ksobj);
360         (void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
361             VM_ALLOC_WIRED, ma, pages);
362         for (i = 0; i < pages; i++)
363                 ma[i]->valid = VM_PAGE_BITS_ALL;
364         VM_OBJECT_WUNLOCK(ksobj);
365         pmap_qenter(ks, ma, pages);
366         *ksobjp = ksobj;
367
368         return (ks);
369 }
370
371 static void
372 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
373 {
374         vm_page_t m;
375         int i;
376
377         pmap_qremove(ks, pages);
378         VM_OBJECT_WLOCK(ksobj);
379         for (i = 0; i < pages; i++) {
380                 m = vm_page_lookup(ksobj, i);
381                 if (m == NULL)
382                         panic("vm_thread_dispose: kstack already missing?");
383                 vm_page_lock(m);
384                 vm_page_unwire_noq(m);
385                 vm_page_free(m);
386                 vm_page_unlock(m);
387         }
388         VM_OBJECT_WUNLOCK(ksobj);
389         vm_object_deallocate(ksobj);
390         kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
391             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
392 }
393
394 /*
395  * Allocate the kernel stack for a new thread.
396  */
397 int
398 vm_thread_new(struct thread *td, int pages)
399 {
400         vm_object_t ksobj;
401         vm_offset_t ks;
402
403         /* Bounds check */
404         if (pages <= 1)
405                 pages = kstack_pages;
406         else if (pages > KSTACK_MAX_PAGES)
407                 pages = KSTACK_MAX_PAGES;
408
409         ks = 0;
410         ksobj = NULL;
411         if (pages == kstack_pages && kstack_cache != NULL) {
412                 ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT);
413                 if (ks != 0) 
414                         ksobj = PHYS_TO_VM_PAGE(pmap_kextract(ks))->object;
415         }
416
417         /*
418          * Ensure that kstack objects can draw pages from any memory
419          * domain.  Otherwise a local memory shortage can block a process
420          * swap-in.
421          */
422         if (ks == 0)
423                 ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)),
424                     &ksobj, pages);
425         if (ks == 0)
426                 return (0);
427         td->td_kstack_obj = ksobj;
428         td->td_kstack = ks;
429         td->td_kstack_pages = pages;
430         return (1);
431 }
432
433 /*
434  * Dispose of a thread's kernel stack.
435  */
436 void
437 vm_thread_dispose(struct thread *td)
438 {
439         vm_object_t ksobj;
440         vm_offset_t ks;
441         int pages;
442
443         pages = td->td_kstack_pages;
444         ksobj = td->td_kstack_obj;
445         ks = td->td_kstack;
446         td->td_kstack = 0;
447         td->td_kstack_pages = 0;
448         if (pages == kstack_pages)
449                 uma_zfree(kstack_cache, (void *)ks);
450         else
451                 vm_thread_stack_dispose(ksobj, ks, pages);
452 }
453
454 static int
455 kstack_import(void *arg, void **store, int cnt, int domain, int flags)
456 {
457         vm_object_t ksobj;
458         int i;
459
460         for (i = 0; i < cnt; i++) {
461                 store[i] = (void *)vm_thread_stack_create(
462                     DOMAINSET_PREF(domain), &ksobj, kstack_pages);
463                 if (store[i] == NULL)
464                         break;
465         }
466         return (i);
467 }
468
469 static void
470 kstack_release(void *arg, void **store, int cnt)
471 {
472         vm_offset_t ks;
473         int i;
474
475         for (i = 0; i < cnt; i++) {
476                 ks = (vm_offset_t)store[i];
477                 vm_thread_stack_dispose(
478                     PHYS_TO_VM_PAGE(pmap_kextract(ks))->object,
479                     ks, kstack_pages);
480         }
481 }
482
483 static void
484 kstack_cache_init(void *null)
485 {
486         kstack_cache = uma_zcache_create("kstack_cache",
487             kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL,
488             kstack_import, kstack_release, NULL,
489             UMA_ZONE_NUMA|UMA_ZONE_MINBUCKET);
490         uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
491 }
492
493 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
494
495 #ifdef KSTACK_USAGE_PROF
496 /*
497  * Track maximum stack used by a thread in kernel.
498  */
499 static int max_kstack_used;
500
501 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
502     &max_kstack_used, 0,
503     "Maxiumum stack depth used by a thread in kernel");
504
505 void
506 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
507 {
508         vm_offset_t stack_top;
509         vm_offset_t current;
510         int used, prev_used;
511
512         /*
513          * Testing for interrupted kernel mode isn't strictly
514          * needed. It optimizes the execution, since interrupts from
515          * usermode will have only the trap frame on the stack.
516          */
517         if (TRAPF_USERMODE(frame))
518                 return;
519
520         stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
521         current = (vm_offset_t)(uintptr_t)&stack_top;
522
523         /*
524          * Try to detect if interrupt is using kernel thread stack.
525          * Hardware could use a dedicated stack for interrupt handling.
526          */
527         if (stack_top <= current || current < td->td_kstack)
528                 return;
529
530         used = stack_top - current;
531         for (;;) {
532                 prev_used = max_kstack_used;
533                 if (prev_used >= used)
534                         break;
535                 if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
536                         break;
537         }
538 }
539 #endif /* KSTACK_USAGE_PROF */
540
541 /*
542  * Implement fork's actions on an address space.
543  * Here we arrange for the address space to be copied or referenced,
544  * allocate a user struct (pcb and kernel stack), then call the
545  * machine-dependent layer to fill those in and make the new process
546  * ready to run.  The new process is set up so that it returns directly
547  * to user mode to avoid stack copying and relocation problems.
548  */
549 int
550 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
551     struct vmspace *vm2, int flags)
552 {
553         struct proc *p1 = td->td_proc;
554         struct domainset *dset;
555         int error;
556
557         if ((flags & RFPROC) == 0) {
558                 /*
559                  * Divorce the memory, if it is shared, essentially
560                  * this changes shared memory amongst threads, into
561                  * COW locally.
562                  */
563                 if ((flags & RFMEM) == 0) {
564                         if (p1->p_vmspace->vm_refcnt > 1) {
565                                 error = vmspace_unshare(p1);
566                                 if (error)
567                                         return (error);
568                         }
569                 }
570                 cpu_fork(td, p2, td2, flags);
571                 return (0);
572         }
573
574         if (flags & RFMEM) {
575                 p2->p_vmspace = p1->p_vmspace;
576                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
577         }
578         dset = td2->td_domain.dr_policy;
579         while (vm_page_count_severe_set(&dset->ds_mask)) {
580                 vm_wait_doms(&dset->ds_mask);
581         }
582
583         if ((flags & RFMEM) == 0) {
584                 p2->p_vmspace = vm2;
585                 if (p1->p_vmspace->vm_shm)
586                         shmfork(p1, p2);
587         }
588
589         /*
590          * cpu_fork will copy and update the pcb, set up the kernel stack,
591          * and make the child ready to run.
592          */
593         cpu_fork(td, p2, td2, flags);
594         return (0);
595 }
596
597 /*
598  * Called after process has been wait(2)'ed upon and is being reaped.
599  * The idea is to reclaim resources that we could not reclaim while
600  * the process was still executing.
601  */
602 void
603 vm_waitproc(p)
604         struct proc *p;
605 {
606
607         vmspace_exitfree(p);            /* and clean-out the vmspace */
608 }
609
610 void
611 kick_proc0(void)
612 {
613
614         wakeup(&proc0);
615 }