]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_glue.c
Implement transparent 2MB superpage promotion for RISC-V.
[FreeBSD/FreeBSD.git] / sys / vm / vm_glue.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include "opt_vm.h"
65 #include "opt_kstack_pages.h"
66 #include "opt_kstack_max_pages.h"
67 #include "opt_kstack_usage_prof.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/domainset.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/racct.h>
78 #include <sys/resourcevar.h>
79 #include <sys/rwlock.h>
80 #include <sys/sched.h>
81 #include <sys/sf_buf.h>
82 #include <sys/shm.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vmem.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/_kstack_cache.h>
88 #include <sys/eventhandler.h>
89 #include <sys/kernel.h>
90 #include <sys/ktr.h>
91 #include <sys/unistd.h>
92
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_domainset.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_extern.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105
106 #include <machine/cpu.h>
107
108 /*
109  * MPSAFE
110  *
111  * WARNING!  This code calls vm_map_check_protection() which only checks
112  * the associated vm_map_entry range.  It does not determine whether the
113  * contents of the memory is actually readable or writable.  In most cases
114  * just checking the vm_map_entry is sufficient within the kernel's address
115  * space.
116  */
117 int
118 kernacc(void *addr, int len, int rw)
119 {
120         boolean_t rv;
121         vm_offset_t saddr, eaddr;
122         vm_prot_t prot;
123
124         KASSERT((rw & ~VM_PROT_ALL) == 0,
125             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
126
127         if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
128             (vm_offset_t)addr + len < (vm_offset_t)addr)
129                 return (FALSE);
130
131         prot = rw;
132         saddr = trunc_page((vm_offset_t)addr);
133         eaddr = round_page((vm_offset_t)addr + len);
134         vm_map_lock_read(kernel_map);
135         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
136         vm_map_unlock_read(kernel_map);
137         return (rv == TRUE);
138 }
139
140 /*
141  * MPSAFE
142  *
143  * WARNING!  This code calls vm_map_check_protection() which only checks
144  * the associated vm_map_entry range.  It does not determine whether the
145  * contents of the memory is actually readable or writable.  vmapbuf(),
146  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
147  * used in conjunction with this call.
148  */
149 int
150 useracc(void *addr, int len, int rw)
151 {
152         boolean_t rv;
153         vm_prot_t prot;
154         vm_map_t map;
155
156         KASSERT((rw & ~VM_PROT_ALL) == 0,
157             ("illegal ``rw'' argument to useracc (%x)\n", rw));
158         prot = rw;
159         map = &curproc->p_vmspace->vm_map;
160         if ((vm_offset_t)addr + len > vm_map_max(map) ||
161             (vm_offset_t)addr + len < (vm_offset_t)addr) {
162                 return (FALSE);
163         }
164         vm_map_lock_read(map);
165         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
166             round_page((vm_offset_t)addr + len), prot);
167         vm_map_unlock_read(map);
168         return (rv == TRUE);
169 }
170
171 int
172 vslock(void *addr, size_t len)
173 {
174         vm_offset_t end, last, start;
175         vm_size_t npages;
176         int error;
177
178         last = (vm_offset_t)addr + len;
179         start = trunc_page((vm_offset_t)addr);
180         end = round_page(last);
181         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
182                 return (EINVAL);
183         npages = atop(end - start);
184         if (npages > vm_page_max_wired)
185                 return (ENOMEM);
186 #if 0
187         /*
188          * XXX - not yet
189          *
190          * The limit for transient usage of wired pages should be
191          * larger than for "permanent" wired pages (mlock()).
192          *
193          * Also, the sysctl code, which is the only present user
194          * of vslock(), does a hard loop on EAGAIN.
195          */
196         if (npages + vm_wire_count() > vm_page_max_wired)
197                 return (EAGAIN);
198 #endif
199         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
200             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
201         if (error == KERN_SUCCESS) {
202                 curthread->td_vslock_sz += len;
203                 return (0);
204         }
205
206         /*
207          * Return EFAULT on error to match copy{in,out}() behaviour
208          * rather than returning ENOMEM like mlock() would.
209          */
210         return (EFAULT);
211 }
212
213 void
214 vsunlock(void *addr, size_t len)
215 {
216
217         /* Rely on the parameter sanity checks performed by vslock(). */
218         MPASS(curthread->td_vslock_sz >= len);
219         curthread->td_vslock_sz -= len;
220         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
221             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
222             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
223 }
224
225 /*
226  * Pin the page contained within the given object at the given offset.  If the
227  * page is not resident, allocate and load it using the given object's pager.
228  * Return the pinned page if successful; otherwise, return NULL.
229  */
230 static vm_page_t
231 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
232 {
233         vm_page_t m;
234         vm_pindex_t pindex;
235         int rv;
236
237         VM_OBJECT_WLOCK(object);
238         pindex = OFF_TO_IDX(offset);
239         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
240         if (m->valid != VM_PAGE_BITS_ALL) {
241                 vm_page_xbusy(m);
242                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
243                 if (rv != VM_PAGER_OK) {
244                         vm_page_lock(m);
245                         vm_page_free(m);
246                         vm_page_unlock(m);
247                         m = NULL;
248                         goto out;
249                 }
250                 vm_page_xunbusy(m);
251         }
252         vm_page_lock(m);
253         vm_page_hold(m);
254         vm_page_activate(m);
255         vm_page_unlock(m);
256 out:
257         VM_OBJECT_WUNLOCK(object);
258         return (m);
259 }
260
261 /*
262  * Return a CPU private mapping to the page at the given offset within the
263  * given object.  The page is pinned before it is mapped.
264  */
265 struct sf_buf *
266 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
267 {
268         vm_page_t m;
269
270         m = vm_imgact_hold_page(object, offset);
271         if (m == NULL)
272                 return (NULL);
273         sched_pin();
274         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
275 }
276
277 /*
278  * Destroy the given CPU private mapping and unpin the page that it mapped.
279  */
280 void
281 vm_imgact_unmap_page(struct sf_buf *sf)
282 {
283         vm_page_t m;
284
285         m = sf_buf_page(sf);
286         sf_buf_free(sf);
287         sched_unpin();
288         vm_page_lock(m);
289         vm_page_unhold(m);
290         vm_page_unlock(m);
291 }
292
293 void
294 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
295 {
296
297         pmap_sync_icache(map->pmap, va, sz);
298 }
299
300 struct kstack_cache_entry *kstack_cache;
301 static int kstack_cache_size = 128;
302 static int kstacks, kstack_domain_iter;
303 static struct mtx kstack_cache_mtx;
304 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
305
306 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
307     "");
308 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
309     "");
310
311 /*
312  * Create the kernel stack (including pcb for i386) for a new thread.
313  * This routine directly affects the fork perf for a process and
314  * create performance for a thread.
315  */
316 int
317 vm_thread_new(struct thread *td, int pages)
318 {
319         vm_object_t ksobj;
320         vm_offset_t ks;
321         vm_page_t ma[KSTACK_MAX_PAGES];
322         struct kstack_cache_entry *ks_ce;
323         int i;
324
325         /* Bounds check */
326         if (pages <= 1)
327                 pages = kstack_pages;
328         else if (pages > KSTACK_MAX_PAGES)
329                 pages = KSTACK_MAX_PAGES;
330
331         if (pages == kstack_pages && kstack_cache != NULL) {
332                 mtx_lock(&kstack_cache_mtx);
333                 if (kstack_cache != NULL) {
334                         ks_ce = kstack_cache;
335                         kstack_cache = ks_ce->next_ks_entry;
336                         mtx_unlock(&kstack_cache_mtx);
337
338                         td->td_kstack_obj = ks_ce->ksobj;
339                         td->td_kstack = (vm_offset_t)ks_ce;
340                         td->td_kstack_pages = kstack_pages;
341                         return (1);
342                 }
343                 mtx_unlock(&kstack_cache_mtx);
344         }
345
346         /*
347          * Allocate an object for the kstack.
348          */
349         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
350         
351         /*
352          * Get a kernel virtual address for this thread's kstack.
353          */
354 #if defined(__mips__)
355         /*
356          * We need to align the kstack's mapped address to fit within
357          * a single TLB entry.
358          */
359         if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
360             PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
361             M_BESTFIT | M_NOWAIT, &ks)) {
362                 ks = 0;
363         }
364 #else
365         ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
366 #endif
367         if (ks == 0) {
368                 printf("vm_thread_new: kstack allocation failed\n");
369                 vm_object_deallocate(ksobj);
370                 return (0);
371         }
372
373         /*
374          * Ensure that kstack objects can draw pages from any memory
375          * domain.  Otherwise a local memory shortage can block a process
376          * swap-in.
377          */
378         if (vm_ndomains > 1) {
379                 ksobj->domain.dr_policy = DOMAINSET_RR();
380                 ksobj->domain.dr_iter =
381                     atomic_fetchadd_int(&kstack_domain_iter, 1);
382         }
383
384         atomic_add_int(&kstacks, 1);
385         if (KSTACK_GUARD_PAGES != 0) {
386                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
387                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
388         }
389         td->td_kstack_obj = ksobj;
390         td->td_kstack = ks;
391         /*
392          * Knowing the number of pages allocated is useful when you
393          * want to deallocate them.
394          */
395         td->td_kstack_pages = pages;
396         /* 
397          * For the length of the stack, link in a real page of ram for each
398          * page of stack.
399          */
400         VM_OBJECT_WLOCK(ksobj);
401         (void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
402             VM_ALLOC_WIRED, ma, pages);
403         for (i = 0; i < pages; i++)
404                 ma[i]->valid = VM_PAGE_BITS_ALL;
405         VM_OBJECT_WUNLOCK(ksobj);
406         pmap_qenter(ks, ma, pages);
407         return (1);
408 }
409
410 static void
411 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
412 {
413         vm_page_t m;
414         int i;
415
416         atomic_add_int(&kstacks, -1);
417         pmap_qremove(ks, pages);
418         VM_OBJECT_WLOCK(ksobj);
419         for (i = 0; i < pages; i++) {
420                 m = vm_page_lookup(ksobj, i);
421                 if (m == NULL)
422                         panic("vm_thread_dispose: kstack already missing?");
423                 vm_page_lock(m);
424                 vm_page_unwire(m, PQ_NONE);
425                 vm_page_free(m);
426                 vm_page_unlock(m);
427         }
428         VM_OBJECT_WUNLOCK(ksobj);
429         vm_object_deallocate(ksobj);
430         kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
431             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
432 }
433
434 /*
435  * Dispose of a thread's kernel stack.
436  */
437 void
438 vm_thread_dispose(struct thread *td)
439 {
440         vm_object_t ksobj;
441         vm_offset_t ks;
442         struct kstack_cache_entry *ks_ce;
443         int pages;
444
445         pages = td->td_kstack_pages;
446         ksobj = td->td_kstack_obj;
447         ks = td->td_kstack;
448         td->td_kstack = 0;
449         td->td_kstack_pages = 0;
450         if (pages == kstack_pages && kstacks <= kstack_cache_size) {
451                 ks_ce = (struct kstack_cache_entry *)ks;
452                 ks_ce->ksobj = ksobj;
453                 mtx_lock(&kstack_cache_mtx);
454                 ks_ce->next_ks_entry = kstack_cache;
455                 kstack_cache = ks_ce;
456                 mtx_unlock(&kstack_cache_mtx);
457                 return;
458         }
459         vm_thread_stack_dispose(ksobj, ks, pages);
460 }
461
462 static void
463 vm_thread_stack_lowmem(void *nulll)
464 {
465         struct kstack_cache_entry *ks_ce, *ks_ce1;
466
467         mtx_lock(&kstack_cache_mtx);
468         ks_ce = kstack_cache;
469         kstack_cache = NULL;
470         mtx_unlock(&kstack_cache_mtx);
471
472         while (ks_ce != NULL) {
473                 ks_ce1 = ks_ce;
474                 ks_ce = ks_ce->next_ks_entry;
475
476                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
477                     kstack_pages);
478         }
479 }
480
481 static void
482 kstack_cache_init(void *nulll)
483 {
484
485         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
486             EVENTHANDLER_PRI_ANY);
487 }
488
489 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
490
491 #ifdef KSTACK_USAGE_PROF
492 /*
493  * Track maximum stack used by a thread in kernel.
494  */
495 static int max_kstack_used;
496
497 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
498     &max_kstack_used, 0,
499     "Maxiumum stack depth used by a thread in kernel");
500
501 void
502 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
503 {
504         vm_offset_t stack_top;
505         vm_offset_t current;
506         int used, prev_used;
507
508         /*
509          * Testing for interrupted kernel mode isn't strictly
510          * needed. It optimizes the execution, since interrupts from
511          * usermode will have only the trap frame on the stack.
512          */
513         if (TRAPF_USERMODE(frame))
514                 return;
515
516         stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
517         current = (vm_offset_t)(uintptr_t)&stack_top;
518
519         /*
520          * Try to detect if interrupt is using kernel thread stack.
521          * Hardware could use a dedicated stack for interrupt handling.
522          */
523         if (stack_top <= current || current < td->td_kstack)
524                 return;
525
526         used = stack_top - current;
527         for (;;) {
528                 prev_used = max_kstack_used;
529                 if (prev_used >= used)
530                         break;
531                 if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
532                         break;
533         }
534 }
535 #endif /* KSTACK_USAGE_PROF */
536
537 /*
538  * Implement fork's actions on an address space.
539  * Here we arrange for the address space to be copied or referenced,
540  * allocate a user struct (pcb and kernel stack), then call the
541  * machine-dependent layer to fill those in and make the new process
542  * ready to run.  The new process is set up so that it returns directly
543  * to user mode to avoid stack copying and relocation problems.
544  */
545 int
546 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
547     struct vmspace *vm2, int flags)
548 {
549         struct proc *p1 = td->td_proc;
550         struct domainset *dset;
551         int error;
552
553         if ((flags & RFPROC) == 0) {
554                 /*
555                  * Divorce the memory, if it is shared, essentially
556                  * this changes shared memory amongst threads, into
557                  * COW locally.
558                  */
559                 if ((flags & RFMEM) == 0) {
560                         if (p1->p_vmspace->vm_refcnt > 1) {
561                                 error = vmspace_unshare(p1);
562                                 if (error)
563                                         return (error);
564                         }
565                 }
566                 cpu_fork(td, p2, td2, flags);
567                 return (0);
568         }
569
570         if (flags & RFMEM) {
571                 p2->p_vmspace = p1->p_vmspace;
572                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
573         }
574         dset = td2->td_domain.dr_policy;
575         while (vm_page_count_severe_set(&dset->ds_mask)) {
576                 vm_wait_doms(&dset->ds_mask);
577         }
578
579         if ((flags & RFMEM) == 0) {
580                 p2->p_vmspace = vm2;
581                 if (p1->p_vmspace->vm_shm)
582                         shmfork(p1, p2);
583         }
584
585         /*
586          * cpu_fork will copy and update the pcb, set up the kernel stack,
587          * and make the child ready to run.
588          */
589         cpu_fork(td, p2, td2, flags);
590         return (0);
591 }
592
593 /*
594  * Called after process has been wait(2)'ed upon and is being reaped.
595  * The idea is to reclaim resources that we could not reclaim while
596  * the process was still executing.
597  */
598 void
599 vm_waitproc(p)
600         struct proc *p;
601 {
602
603         vmspace_exitfree(p);            /* and clean-out the vmspace */
604 }
605
606 void
607 kick_proc0(void)
608 {
609
610         wakeup(&proc0);
611 }