]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_glue.c
This commit was generated by cvs2svn to compensate for changes in r133492,
[FreeBSD/FreeBSD.git] / sys / vm / vm_glue.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sx.h>
76 #include <sys/sysctl.h>
77
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/unistd.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93
94 #include <sys/user.h>
95
96 extern int maxslp;
97
98 /*
99  * System initialization
100  *
101  * Note: proc0 from proc.h
102  */
103 static void vm_init_limits(void *);
104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106 /*
107  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108  *
109  * Note: run scheduling should be divorced from the vm system.
110  */
111 static void scheduler(void *);
112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114 #ifndef NO_SWAPPING
115 static void swapout(struct proc *);
116 static void vm_proc_swapin(struct proc *p);
117 static void vm_proc_swapout(struct proc *p);
118 #endif
119
120 /*
121  * MPSAFE
122  *
123  * WARNING!  This code calls vm_map_check_protection() which only checks
124  * the associated vm_map_entry range.  It does not determine whether the
125  * contents of the memory is actually readable or writable.  In most cases
126  * just checking the vm_map_entry is sufficient within the kernel's address
127  * space.
128  */
129 int
130 kernacc(addr, len, rw)
131         void *addr;
132         int len, rw;
133 {
134         boolean_t rv;
135         vm_offset_t saddr, eaddr;
136         vm_prot_t prot;
137
138         KASSERT((rw & ~VM_PROT_ALL) == 0,
139             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140         prot = rw;
141         saddr = trunc_page((vm_offset_t)addr);
142         eaddr = round_page((vm_offset_t)addr + len);
143         vm_map_lock_read(kernel_map);
144         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145         vm_map_unlock_read(kernel_map);
146         return (rv == TRUE);
147 }
148
149 /*
150  * MPSAFE
151  *
152  * WARNING!  This code calls vm_map_check_protection() which only checks
153  * the associated vm_map_entry range.  It does not determine whether the
154  * contents of the memory is actually readable or writable.  vmapbuf(),
155  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156  * used in conjuction with this call.
157  */
158 int
159 useracc(addr, len, rw)
160         void *addr;
161         int len, rw;
162 {
163         boolean_t rv;
164         vm_prot_t prot;
165         vm_map_t map;
166
167         KASSERT((rw & ~VM_PROT_ALL) == 0,
168             ("illegal ``rw'' argument to useracc (%x)\n", rw));
169         prot = rw;
170         map = &curproc->p_vmspace->vm_map;
171         if ((vm_offset_t)addr + len > vm_map_max(map) ||
172             (vm_offset_t)addr + len < (vm_offset_t)addr) {
173                 return (FALSE);
174         }
175         vm_map_lock_read(map);
176         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177             round_page((vm_offset_t)addr + len), prot);
178         vm_map_unlock_read(map);
179         return (rv == TRUE);
180 }
181
182 int
183 vslock(void *addr, size_t len)
184 {
185         vm_offset_t end, last, start;
186         vm_size_t npages;
187         int error;
188
189         last = (vm_offset_t)addr + len;
190         start = trunc_page((vm_offset_t)addr);
191         end = round_page(last);
192         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
193                 return (EINVAL);
194         npages = atop(end - start);
195         if (npages > vm_page_max_wired)
196                 return (ENOMEM);
197         PROC_LOCK(curproc);
198         if (ptoa(npages +
199             pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
200             lim_cur(curproc, RLIMIT_MEMLOCK)) {
201                 PROC_UNLOCK(curproc);
202                 return (ENOMEM);
203         }
204         PROC_UNLOCK(curproc);
205 #if 0
206         /*
207          * XXX - not yet
208          *
209          * The limit for transient usage of wired pages should be
210          * larger than for "permanent" wired pages (mlock()).
211          *
212          * Also, the sysctl code, which is the only present user
213          * of vslock(), does a hard loop on EAGAIN.
214          */
215         if (npages + cnt.v_wire_count > vm_page_max_wired)
216                 return (EAGAIN);
217 #endif
218         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
219             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
220         /*
221          * Return EFAULT on error to match copy{in,out}() behaviour
222          * rather than returning ENOMEM like mlock() would.
223          */
224         return (error == KERN_SUCCESS ? 0 : EFAULT);
225 }
226
227 void
228 vsunlock(void *addr, size_t len)
229 {
230
231         /* Rely on the parameter sanity checks performed by vslock(). */
232         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
233             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
234             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
235 }
236
237 /*
238  * Create the U area for a new process.
239  * This routine directly affects the fork perf for a process.
240  */
241 void
242 vm_proc_new(struct proc *p)
243 {
244         vm_page_t ma[UAREA_PAGES];
245         vm_object_t upobj;
246         vm_offset_t up;
247         vm_page_t m;
248         u_int i;
249
250         /*
251          * Get a kernel virtual address for the U area for this process.
252          */
253         up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
254         if (up == 0)
255                 panic("vm_proc_new: upage allocation failed");
256         p->p_uarea = (struct user *)up;
257
258         /*
259          * Allocate object and page(s) for the U area.
260          */
261         upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
262         p->p_upages_obj = upobj;
263         VM_OBJECT_LOCK(upobj);
264         for (i = 0; i < UAREA_PAGES; i++) {
265                 m = vm_page_grab(upobj, i,
266                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
267                 ma[i] = m;
268
269                 vm_page_lock_queues();
270                 vm_page_wakeup(m);
271                 m->valid = VM_PAGE_BITS_ALL;
272                 vm_page_unlock_queues();
273         }
274         VM_OBJECT_UNLOCK(upobj);
275
276         /*
277          * Enter the pages into the kernel address space.
278          */
279         pmap_qenter(up, ma, UAREA_PAGES);
280 }
281
282 /*
283  * Dispose the U area for a process that has exited.
284  * This routine directly impacts the exit perf of a process.
285  * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
286  */
287 void
288 vm_proc_dispose(struct proc *p)
289 {
290         vm_object_t upobj;
291         vm_offset_t up;
292         vm_page_t m;
293
294         upobj = p->p_upages_obj;
295         VM_OBJECT_LOCK(upobj);
296         if (upobj->resident_page_count != UAREA_PAGES)
297                 panic("vm_proc_dispose: incorrect number of pages in upobj");
298         vm_page_lock_queues();
299         while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
300                 vm_page_busy(m);
301                 vm_page_unwire(m, 0);
302                 vm_page_free(m);
303         }
304         vm_page_unlock_queues();
305         VM_OBJECT_UNLOCK(upobj);
306         up = (vm_offset_t)p->p_uarea;
307         pmap_qremove(up, UAREA_PAGES);
308         kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
309         vm_object_deallocate(upobj);
310 }
311
312 #ifndef NO_SWAPPING
313 /*
314  * Allow the U area for a process to be prejudicially paged out.
315  */
316 static void
317 vm_proc_swapout(struct proc *p)
318 {
319         vm_object_t upobj;
320         vm_offset_t up;
321         vm_page_t m;
322
323         upobj = p->p_upages_obj;
324         VM_OBJECT_LOCK(upobj);
325         if (upobj->resident_page_count != UAREA_PAGES)
326                 panic("vm_proc_dispose: incorrect number of pages in upobj");
327         vm_page_lock_queues();
328         TAILQ_FOREACH(m, &upobj->memq, listq) {
329                 vm_page_dirty(m);
330                 vm_page_unwire(m, 0);
331         }
332         vm_page_unlock_queues();
333         VM_OBJECT_UNLOCK(upobj);
334         up = (vm_offset_t)p->p_uarea;
335         pmap_qremove(up, UAREA_PAGES);
336 }
337
338 /*
339  * Bring the U area for a specified process back in.
340  */
341 static void
342 vm_proc_swapin(struct proc *p)
343 {
344         vm_page_t ma[UAREA_PAGES];
345         vm_object_t upobj;
346         vm_offset_t up;
347         vm_page_t m;
348         int rv;
349         int i;
350
351         upobj = p->p_upages_obj;
352         VM_OBJECT_LOCK(upobj);
353         for (i = 0; i < UAREA_PAGES; i++) {
354                 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
355                 if (m->valid != VM_PAGE_BITS_ALL) {
356                         rv = vm_pager_get_pages(upobj, &m, 1, 0);
357                         if (rv != VM_PAGER_OK)
358                                 panic("vm_proc_swapin: cannot get upage");
359                 }
360                 ma[i] = m;
361         }
362         if (upobj->resident_page_count != UAREA_PAGES)
363                 panic("vm_proc_swapin: lost pages from upobj");
364         vm_page_lock_queues();
365         TAILQ_FOREACH(m, &upobj->memq, listq) {
366                 m->valid = VM_PAGE_BITS_ALL;
367                 vm_page_wire(m);
368                 vm_page_wakeup(m);
369         }
370         vm_page_unlock_queues();
371         VM_OBJECT_UNLOCK(upobj);
372         up = (vm_offset_t)p->p_uarea;
373         pmap_qenter(up, ma, UAREA_PAGES);
374 }
375
376 /*
377  * Swap in the UAREAs of all processes swapped out to the given device.
378  * The pages in the UAREA are marked dirty and their swap metadata is freed.
379  */
380 void
381 vm_proc_swapin_all(struct swdevt *devidx)
382 {
383         struct proc *p;
384         vm_object_t object;
385         vm_page_t m;
386
387 retry:
388         sx_slock(&allproc_lock);
389         FOREACH_PROC_IN_SYSTEM(p) {
390                 PROC_LOCK(p);
391                 object = p->p_upages_obj;
392                 if (object != NULL) {
393                         VM_OBJECT_LOCK(object);
394                         if (swap_pager_isswapped(object, devidx)) {
395                                 VM_OBJECT_UNLOCK(object);
396                                 sx_sunlock(&allproc_lock);
397                                 faultin(p);
398                                 PROC_UNLOCK(p);
399                                 VM_OBJECT_LOCK(object);
400                                 vm_page_lock_queues();
401                                 TAILQ_FOREACH(m, &object->memq, listq)
402                                         vm_page_dirty(m);
403                                 vm_page_unlock_queues();
404                                 swap_pager_freespace(object, 0,
405                                     object->un_pager.swp.swp_bcount);
406                                 VM_OBJECT_UNLOCK(object);
407                                 goto retry;
408                         }
409                         VM_OBJECT_UNLOCK(object);
410                 }
411                 PROC_UNLOCK(p);
412         }
413         sx_sunlock(&allproc_lock);
414 }
415 #endif
416
417 #ifndef KSTACK_MAX_PAGES
418 #define KSTACK_MAX_PAGES 32
419 #endif
420
421 /*
422  * Create the kernel stack (including pcb for i386) for a new thread.
423  * This routine directly affects the fork perf for a process and
424  * create performance for a thread.
425  */
426 void
427 vm_thread_new(struct thread *td, int pages)
428 {
429         vm_object_t ksobj;
430         vm_offset_t ks;
431         vm_page_t m, ma[KSTACK_MAX_PAGES];
432         int i;
433
434         /* Bounds check */
435         if (pages <= 1)
436                 pages = KSTACK_PAGES;
437         else if (pages > KSTACK_MAX_PAGES)
438                 pages = KSTACK_MAX_PAGES;
439         /*
440          * Allocate an object for the kstack.
441          */
442         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
443         td->td_kstack_obj = ksobj;
444         /*
445          * Get a kernel virtual address for this thread's kstack.
446          */
447         ks = kmem_alloc_nofault(kernel_map,
448            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
449         if (ks == 0)
450                 panic("vm_thread_new: kstack allocation failed");
451         if (KSTACK_GUARD_PAGES != 0) {
452                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
453                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
454         }
455         td->td_kstack = ks;
456         /*
457          * Knowing the number of pages allocated is useful when you
458          * want to deallocate them.
459          */
460         td->td_kstack_pages = pages;
461         /* 
462          * For the length of the stack, link in a real page of ram for each
463          * page of stack.
464          */
465         VM_OBJECT_LOCK(ksobj);
466         for (i = 0; i < pages; i++) {
467                 /*
468                  * Get a kernel stack page.
469                  */
470                 m = vm_page_grab(ksobj, i,
471                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
472                 ma[i] = m;
473                 vm_page_lock_queues();
474                 vm_page_wakeup(m);
475                 m->valid = VM_PAGE_BITS_ALL;
476                 vm_page_unlock_queues();
477         }
478         VM_OBJECT_UNLOCK(ksobj);
479         pmap_qenter(ks, ma, pages);
480 }
481
482 /*
483  * Dispose of a thread's kernel stack.
484  */
485 void
486 vm_thread_dispose(struct thread *td)
487 {
488         vm_object_t ksobj;
489         vm_offset_t ks;
490         vm_page_t m;
491         int i, pages;
492
493         pages = td->td_kstack_pages;
494         ksobj = td->td_kstack_obj;
495         ks = td->td_kstack;
496         pmap_qremove(ks, pages);
497         VM_OBJECT_LOCK(ksobj);
498         for (i = 0; i < pages; i++) {
499                 m = vm_page_lookup(ksobj, i);
500                 if (m == NULL)
501                         panic("vm_thread_dispose: kstack already missing?");
502                 vm_page_lock_queues();
503                 vm_page_busy(m);
504                 vm_page_unwire(m, 0);
505                 vm_page_free(m);
506                 vm_page_unlock_queues();
507         }
508         VM_OBJECT_UNLOCK(ksobj);
509         vm_object_deallocate(ksobj);
510         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
511             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
512 }
513
514 /*
515  * Allow a thread's kernel stack to be paged out.
516  */
517 void
518 vm_thread_swapout(struct thread *td)
519 {
520         vm_object_t ksobj;
521         vm_page_t m;
522         int i, pages;
523
524         cpu_thread_swapout(td);
525         pages = td->td_kstack_pages;
526         ksobj = td->td_kstack_obj;
527         pmap_qremove(td->td_kstack, pages);
528         VM_OBJECT_LOCK(ksobj);
529         for (i = 0; i < pages; i++) {
530                 m = vm_page_lookup(ksobj, i);
531                 if (m == NULL)
532                         panic("vm_thread_swapout: kstack already missing?");
533                 vm_page_lock_queues();
534                 vm_page_dirty(m);
535                 vm_page_unwire(m, 0);
536                 vm_page_unlock_queues();
537         }
538         VM_OBJECT_UNLOCK(ksobj);
539 }
540
541 /*
542  * Bring the kernel stack for a specified thread back in.
543  */
544 void
545 vm_thread_swapin(struct thread *td)
546 {
547         vm_object_t ksobj;
548         vm_page_t m, ma[KSTACK_MAX_PAGES];
549         int i, pages, rv;
550
551         pages = td->td_kstack_pages;
552         ksobj = td->td_kstack_obj;
553         VM_OBJECT_LOCK(ksobj);
554         for (i = 0; i < pages; i++) {
555                 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
556                 if (m->valid != VM_PAGE_BITS_ALL) {
557                         rv = vm_pager_get_pages(ksobj, &m, 1, 0);
558                         if (rv != VM_PAGER_OK)
559                                 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
560                         m = vm_page_lookup(ksobj, i);
561                         m->valid = VM_PAGE_BITS_ALL;
562                 }
563                 ma[i] = m;
564                 vm_page_lock_queues();
565                 vm_page_wire(m);
566                 vm_page_wakeup(m);
567                 vm_page_unlock_queues();
568         }
569         VM_OBJECT_UNLOCK(ksobj);
570         pmap_qenter(td->td_kstack, ma, pages);
571         cpu_thread_swapin(td);
572 }
573
574 /*
575  * Set up a variable-sized alternate kstack.
576  */
577 void
578 vm_thread_new_altkstack(struct thread *td, int pages)
579 {
580
581         td->td_altkstack = td->td_kstack;
582         td->td_altkstack_obj = td->td_kstack_obj;
583         td->td_altkstack_pages = td->td_kstack_pages;
584
585         vm_thread_new(td, pages);
586 }
587
588 /*
589  * Restore the original kstack.
590  */
591 void
592 vm_thread_dispose_altkstack(struct thread *td)
593 {
594
595         vm_thread_dispose(td);
596
597         td->td_kstack = td->td_altkstack;
598         td->td_kstack_obj = td->td_altkstack_obj;
599         td->td_kstack_pages = td->td_altkstack_pages;
600         td->td_altkstack = 0;
601         td->td_altkstack_obj = NULL;
602         td->td_altkstack_pages = 0;
603 }
604
605 /*
606  * Implement fork's actions on an address space.
607  * Here we arrange for the address space to be copied or referenced,
608  * allocate a user struct (pcb and kernel stack), then call the
609  * machine-dependent layer to fill those in and make the new process
610  * ready to run.  The new process is set up so that it returns directly
611  * to user mode to avoid stack copying and relocation problems.
612  */
613 void
614 vm_forkproc(td, p2, td2, flags)
615         struct thread *td;
616         struct proc *p2;
617         struct thread *td2;
618         int flags;
619 {
620         struct proc *p1 = td->td_proc;
621
622         GIANT_REQUIRED;
623
624         if ((flags & RFPROC) == 0) {
625                 /*
626                  * Divorce the memory, if it is shared, essentially
627                  * this changes shared memory amongst threads, into
628                  * COW locally.
629                  */
630                 if ((flags & RFMEM) == 0) {
631                         if (p1->p_vmspace->vm_refcnt > 1) {
632                                 vmspace_unshare(p1);
633                         }
634                 }
635                 cpu_fork(td, p2, td2, flags);
636                 return;
637         }
638
639         if (flags & RFMEM) {
640                 p2->p_vmspace = p1->p_vmspace;
641                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
642         }
643
644         while (vm_page_count_severe()) {
645                 VM_WAIT;
646         }
647
648         if ((flags & RFMEM) == 0) {
649                 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
650                 if (p1->p_vmspace->vm_shm)
651                         shmfork(p1, p2);
652         }
653
654         /*
655          * p_stats currently points at fields in the user struct.
656          * Copy parts of p_stats; zero the rest of p_stats (statistics).
657          */
658 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
659
660         p2->p_stats = &p2->p_uarea->u_stats;
661         bzero(&p2->p_stats->pstat_startzero,
662             (unsigned) RANGEOF(struct pstats, pstat_startzero, pstat_endzero));
663         bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
664             (unsigned) RANGEOF(struct pstats, pstat_startcopy, pstat_endcopy));
665 #undef RANGEOF
666
667         /*
668          * cpu_fork will copy and update the pcb, set up the kernel stack,
669          * and make the child ready to run.
670          */
671         cpu_fork(td, p2, td2, flags);
672 }
673
674 /*
675  * Called after process has been wait(2)'ed apon and is being reaped.
676  * The idea is to reclaim resources that we could not reclaim while
677  * the process was still executing.
678  */
679 void
680 vm_waitproc(p)
681         struct proc *p;
682 {
683
684         vmspace_exitfree(p);            /* and clean-out the vmspace */
685 }
686
687 /*
688  * Set default limits for VM system.
689  * Called for proc 0, and then inherited by all others.
690  *
691  * XXX should probably act directly on proc0.
692  */
693 static void
694 vm_init_limits(udata)
695         void *udata;
696 {
697         struct proc *p = udata;
698         struct plimit *limp;
699         int rss_limit;
700
701         /*
702          * Set up the initial limits on process VM. Set the maximum resident
703          * set size to be half of (reasonably) available memory.  Since this
704          * is a soft limit, it comes into effect only when the system is out
705          * of memory - half of main memory helps to favor smaller processes,
706          * and reduces thrashing of the object cache.
707          */
708         limp = p->p_limit;
709         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
710         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
711         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
712         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
713         /* limit the limit to no less than 2MB */
714         rss_limit = max(cnt.v_free_count, 512);
715         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
716         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
717 }
718
719 void
720 faultin(p)
721         struct proc *p;
722 {
723 #ifdef NO_SWAPPING
724
725         PROC_LOCK_ASSERT(p, MA_OWNED);
726         if ((p->p_sflag & PS_INMEM) == 0)
727                 panic("faultin: proc swapped out with NO_SWAPPING!");
728 #else /* !NO_SWAPPING */
729         struct thread *td;
730
731         GIANT_REQUIRED;
732         PROC_LOCK_ASSERT(p, MA_OWNED);
733         /*
734          * If another process is swapping in this process,
735          * just wait until it finishes.
736          */
737         if (p->p_sflag & PS_SWAPPINGIN)
738                 msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
739         else if ((p->p_sflag & PS_INMEM) == 0) {
740                 /*
741                  * Don't let another thread swap process p out while we are
742                  * busy swapping it in.
743                  */
744                 ++p->p_lock;
745                 mtx_lock_spin(&sched_lock);
746                 p->p_sflag |= PS_SWAPPINGIN;
747                 mtx_unlock_spin(&sched_lock);
748                 PROC_UNLOCK(p);
749
750                 vm_proc_swapin(p);
751                 FOREACH_THREAD_IN_PROC(p, td)
752                         vm_thread_swapin(td);
753
754                 PROC_LOCK(p);
755                 mtx_lock_spin(&sched_lock);
756                 p->p_sflag &= ~PS_SWAPPINGIN;
757                 p->p_sflag |= PS_INMEM;
758                 FOREACH_THREAD_IN_PROC(p, td) {
759                         TD_CLR_SWAPPED(td);
760                         if (TD_CAN_RUN(td))
761                                 setrunnable(td);
762                 }
763                 mtx_unlock_spin(&sched_lock);
764
765                 wakeup(&p->p_sflag);
766
767                 /* Allow other threads to swap p out now. */
768                 --p->p_lock;
769         }
770 #endif /* NO_SWAPPING */
771 }
772
773 /*
774  * This swapin algorithm attempts to swap-in processes only if there
775  * is enough space for them.  Of course, if a process waits for a long
776  * time, it will be swapped in anyway.
777  *
778  *  XXXKSE - process with the thread with highest priority counts..
779  *
780  * Giant is still held at this point, to be released in tsleep.
781  */
782 /* ARGSUSED*/
783 static void
784 scheduler(dummy)
785         void *dummy;
786 {
787         struct proc *p;
788         struct thread *td;
789         int pri;
790         struct proc *pp;
791         int ppri;
792
793         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
794         /* GIANT_REQUIRED */
795
796 loop:
797         if (vm_page_count_min()) {
798                 VM_WAIT;
799                 goto loop;
800         }
801
802         pp = NULL;
803         ppri = INT_MIN;
804         sx_slock(&allproc_lock);
805         FOREACH_PROC_IN_SYSTEM(p) {
806                 struct ksegrp *kg;
807                 if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
808                         continue;
809                 }
810                 mtx_lock_spin(&sched_lock);
811                 FOREACH_THREAD_IN_PROC(p, td) {
812                         /*
813                          * An otherwise runnable thread of a process
814                          * swapped out has only the TDI_SWAPPED bit set.
815                          * 
816                          */
817                         if (td->td_inhibitors == TDI_SWAPPED) {
818                                 kg = td->td_ksegrp;
819                                 pri = p->p_swtime + kg->kg_slptime;
820                                 if ((p->p_sflag & PS_SWAPINREQ) == 0) {
821                                         pri -= p->p_nice * 8;
822                                 }
823
824                                 /*
825                                  * if this ksegrp is higher priority
826                                  * and there is enough space, then select
827                                  * this process instead of the previous
828                                  * selection.
829                                  */
830                                 if (pri > ppri) {
831                                         pp = p;
832                                         ppri = pri;
833                                 }
834                         }
835                 }
836                 mtx_unlock_spin(&sched_lock);
837         }
838         sx_sunlock(&allproc_lock);
839
840         /*
841          * Nothing to do, back to sleep.
842          */
843         if ((p = pp) == NULL) {
844                 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
845                 goto loop;
846         }
847         PROC_LOCK(p);
848
849         /*
850          * Another process may be bringing or may have already
851          * brought this process in while we traverse all threads.
852          * Or, this process may even be being swapped out again.
853          */
854         if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
855                 PROC_UNLOCK(p);
856                 goto loop;
857         }
858
859         mtx_lock_spin(&sched_lock);
860         p->p_sflag &= ~PS_SWAPINREQ;
861         mtx_unlock_spin(&sched_lock);
862
863         /*
864          * We would like to bring someone in. (only if there is space).
865          * [What checks the space? ]
866          */
867         faultin(p);
868         PROC_UNLOCK(p);
869         mtx_lock_spin(&sched_lock);
870         p->p_swtime = 0;
871         mtx_unlock_spin(&sched_lock);
872         goto loop;
873 }
874
875 #ifndef NO_SWAPPING
876
877 /*
878  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
879  */
880 static int swap_idle_threshold1 = 2;
881 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
882     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
883
884 /*
885  * Swap_idle_threshold2 is the time that a process can be idle before
886  * it will be swapped out, if idle swapping is enabled.
887  */
888 static int swap_idle_threshold2 = 10;
889 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
890     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
891
892 /*
893  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
894  * procs and unwire their u-areas.  We try to always "swap" at least one
895  * process in case we need the room for a swapin.
896  * If any procs have been sleeping/stopped for at least maxslp seconds,
897  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
898  * if any, otherwise the longest-resident process.
899  */
900 void
901 swapout_procs(action)
902 int action;
903 {
904         struct proc *p;
905         struct thread *td;
906         struct ksegrp *kg;
907         int didswap = 0;
908
909         GIANT_REQUIRED;
910
911 retry:
912         sx_slock(&allproc_lock);
913         FOREACH_PROC_IN_SYSTEM(p) {
914                 struct vmspace *vm;
915                 int minslptime = 100000;
916                 
917                 /*
918                  * Watch out for a process in
919                  * creation.  It may have no
920                  * address space or lock yet.
921                  */
922                 mtx_lock_spin(&sched_lock);
923                 if (p->p_state == PRS_NEW) {
924                         mtx_unlock_spin(&sched_lock);
925                         continue;
926                 }
927                 mtx_unlock_spin(&sched_lock);
928
929                 /*
930                  * An aio daemon switches its
931                  * address space while running.
932                  * Perform a quick check whether
933                  * a process has P_SYSTEM.
934                  */
935                 if ((p->p_flag & P_SYSTEM) != 0)
936                         continue;
937
938                 /*
939                  * Do not swapout a process that
940                  * is waiting for VM data
941                  * structures as there is a possible
942                  * deadlock.  Test this first as
943                  * this may block.
944                  *
945                  * Lock the map until swapout
946                  * finishes, or a thread of this
947                  * process may attempt to alter
948                  * the map.
949                  */
950                 PROC_LOCK(p);
951                 vm = p->p_vmspace;
952                 KASSERT(vm != NULL,
953                         ("swapout_procs: a process has no address space"));
954                 atomic_add_int(&vm->vm_refcnt, 1);
955                 PROC_UNLOCK(p);
956                 if (!vm_map_trylock(&vm->vm_map))
957                         goto nextproc1;
958
959                 PROC_LOCK(p);
960                 if (p->p_lock != 0 ||
961                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
962                     ) != 0) {
963                         goto nextproc2;
964                 }
965                 /*
966                  * only aiod changes vmspace, however it will be
967                  * skipped because of the if statement above checking 
968                  * for P_SYSTEM
969                  */
970                 if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
971                         goto nextproc2;
972
973                 switch (p->p_state) {
974                 default:
975                         /* Don't swap out processes in any sort
976                          * of 'special' state. */
977                         break;
978
979                 case PRS_NORMAL:
980                         mtx_lock_spin(&sched_lock);
981                         /*
982                          * do not swapout a realtime process
983                          * Check all the thread groups..
984                          */
985                         FOREACH_KSEGRP_IN_PROC(p, kg) {
986                                 if (PRI_IS_REALTIME(kg->kg_pri_class))
987                                         goto nextproc;
988
989                                 /*
990                                  * Guarantee swap_idle_threshold1
991                                  * time in memory.
992                                  */
993                                 if (kg->kg_slptime < swap_idle_threshold1)
994                                         goto nextproc;
995
996                                 /*
997                                  * Do not swapout a process if it is
998                                  * waiting on a critical event of some
999                                  * kind or there is a thread whose
1000                                  * pageable memory may be accessed.
1001                                  *
1002                                  * This could be refined to support
1003                                  * swapping out a thread.
1004                                  */
1005                                 FOREACH_THREAD_IN_GROUP(kg, td) {
1006                                         if ((td->td_priority) < PSOCK ||
1007                                             !thread_safetoswapout(td))
1008                                                 goto nextproc;
1009                                 }
1010                                 /*
1011                                  * If the system is under memory stress,
1012                                  * or if we are swapping
1013                                  * idle processes >= swap_idle_threshold2,
1014                                  * then swap the process out.
1015                                  */
1016                                 if (((action & VM_SWAP_NORMAL) == 0) &&
1017                                     (((action & VM_SWAP_IDLE) == 0) ||
1018                                     (kg->kg_slptime < swap_idle_threshold2)))
1019                                         goto nextproc;
1020
1021                                 if (minslptime > kg->kg_slptime)
1022                                         minslptime = kg->kg_slptime;
1023                         }
1024
1025                         /*
1026                          * If the pageout daemon didn't free enough pages,
1027                          * or if this process is idle and the system is
1028                          * configured to swap proactively, swap it out.
1029                          */
1030                         if ((action & VM_SWAP_NORMAL) ||
1031                                 ((action & VM_SWAP_IDLE) &&
1032                                  (minslptime > swap_idle_threshold2))) {
1033                                 swapout(p);
1034                                 didswap++;
1035                                 mtx_unlock_spin(&sched_lock);
1036                                 PROC_UNLOCK(p);
1037                                 vm_map_unlock(&vm->vm_map);
1038                                 vmspace_free(vm);
1039                                 sx_sunlock(&allproc_lock);
1040                                 goto retry;
1041                         }
1042 nextproc:                       
1043                         mtx_unlock_spin(&sched_lock);
1044                 }
1045 nextproc2:
1046                 PROC_UNLOCK(p);
1047                 vm_map_unlock(&vm->vm_map);
1048 nextproc1:
1049                 vmspace_free(vm);
1050                 continue;
1051         }
1052         sx_sunlock(&allproc_lock);
1053         /*
1054          * If we swapped something out, and another process needed memory,
1055          * then wakeup the sched process.
1056          */
1057         if (didswap)
1058                 wakeup(&proc0);
1059 }
1060
1061 static void
1062 swapout(p)
1063         struct proc *p;
1064 {
1065         struct thread *td;
1066
1067         PROC_LOCK_ASSERT(p, MA_OWNED);
1068         mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1069 #if defined(SWAP_DEBUG)
1070         printf("swapping out %d\n", p->p_pid);
1071 #endif
1072
1073         /*
1074          * The states of this process and its threads may have changed
1075          * by now.  Assuming that there is only one pageout daemon thread,
1076          * this process should still be in memory.
1077          */
1078         KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1079                 ("swapout: lost a swapout race?"));
1080
1081 #if defined(INVARIANTS)
1082         /*
1083          * Make sure that all threads are safe to be swapped out.
1084          *
1085          * Alternatively, we could swap out only safe threads.
1086          */
1087         FOREACH_THREAD_IN_PROC(p, td) {
1088                 KASSERT(thread_safetoswapout(td),
1089                         ("swapout: there is a thread not safe for swapout"));
1090         }
1091 #endif /* INVARIANTS */
1092
1093         ++p->p_stats->p_ru.ru_nswap;
1094         /*
1095          * remember the process resident count
1096          */
1097         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1098
1099         p->p_sflag &= ~PS_INMEM;
1100         p->p_sflag |= PS_SWAPPINGOUT;
1101         PROC_UNLOCK(p);
1102         FOREACH_THREAD_IN_PROC(p, td)
1103                 TD_SET_SWAPPED(td);
1104         mtx_unlock_spin(&sched_lock);
1105
1106         vm_proc_swapout(p);
1107         FOREACH_THREAD_IN_PROC(p, td)
1108                 vm_thread_swapout(td);
1109
1110         PROC_LOCK(p);
1111         mtx_lock_spin(&sched_lock);
1112         p->p_sflag &= ~PS_SWAPPINGOUT;
1113         p->p_swtime = 0;
1114 }
1115 #endif /* !NO_SWAPPING */