]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_init.c
Import tzdata 2018c
[FreeBSD/FreeBSD.git] / sys / vm / vm_init.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_init.c     8.1 (Berkeley) 6/11/93
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Initialize the Virtual Memory subsystem.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/proc.h>
74 #include <sys/rwlock.h>
75 #include <sys/malloc.h>
76 #include <sys/sysctl.h>
77 #include <sys/systm.h>
78 #include <sys/selinfo.h>
79 #include <sys/smp.h>
80 #include <sys/pipe.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/vmem.h>
84 #include <sys/vmmeter.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_phys.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_extern.h>
95
96
97 #if VM_NRESERVLEVEL > 0
98 #define KVA_QUANTUM     (1 << (VM_LEVEL_0_ORDER + PAGE_SHIFT))
99 #else
100         /* On non-superpage architectures want large import sizes. */
101 #define KVA_QUANTUM     (PAGE_SIZE * 1024)
102 #endif
103 long physmem;
104
105 /*
106  * System initialization
107  */
108 static void vm_mem_init(void *);
109 SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_FIRST, vm_mem_init, NULL);
110
111 /*
112  * Import kva into the kernel arena.
113  */
114 static int
115 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
116 {
117         vm_offset_t addr;
118         int result;
119
120         KASSERT((size % KVA_QUANTUM) == 0,
121             ("kva_import: Size %jd is not a multiple of %d",
122             (intmax_t)size, (int)KVA_QUANTUM));
123         addr = vm_map_min(kernel_map);
124         result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
125             VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
126         if (result != KERN_SUCCESS)
127                 return (ENOMEM);
128
129         *addrp = addr;
130
131         return (0);
132 }
133
134 /*
135  *      vm_init initializes the virtual memory system.
136  *      This is done only by the first cpu up.
137  *
138  *      The start and end address of physical memory is passed in.
139  */
140 /* ARGSUSED*/
141 static void
142 vm_mem_init(dummy)
143         void *dummy;
144 {
145         int domain;
146
147         /*
148          * Initializes resident memory structures. From here on, all physical
149          * memory is accounted for, and we use only virtual addresses.
150          */
151         vm_set_page_size();
152         virtual_avail = vm_page_startup(virtual_avail);
153         
154         /*
155          * Initialize other VM packages
156          */
157         vmem_startup();
158         vm_object_init();
159         vm_map_startup();
160         kmem_init(virtual_avail, virtual_end);
161
162         /*
163          * Initialize the kernel_arena.  This can grow on demand.
164          */
165         vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
166         vmem_set_import(kernel_arena, kva_import, NULL, NULL, KVA_QUANTUM);
167
168         for (domain = 0; domain < vm_ndomains; domain++) {
169                 vm_dom[domain].vmd_kernel_arena = vmem_create(
170                     "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
171                 vmem_set_import(vm_dom[domain].vmd_kernel_arena,
172                     (vmem_import_t *)vmem_alloc, NULL, kernel_arena,
173                     KVA_QUANTUM);
174         }
175
176         kmem_init_zero_region();
177         pmap_init();
178         vm_pager_init();
179 }
180
181 void
182 vm_ksubmap_init(struct kva_md_info *kmi)
183 {
184         vm_offset_t firstaddr;
185         caddr_t v;
186         vm_size_t size = 0;
187         long physmem_est;
188         vm_offset_t minaddr;
189         vm_offset_t maxaddr;
190
191         /*
192          * Allocate space for system data structures.
193          * The first available kernel virtual address is in "v".
194          * As pages of kernel virtual memory are allocated, "v" is incremented.
195          * As pages of memory are allocated and cleared,
196          * "firstaddr" is incremented.
197          */
198
199         /*
200          * Make two passes.  The first pass calculates how much memory is
201          * needed and allocates it.  The second pass assigns virtual
202          * addresses to the various data structures.
203          */
204         firstaddr = 0;
205 again:
206         v = (caddr_t)firstaddr;
207
208         /*
209          * Discount the physical memory larger than the size of kernel_map
210          * to avoid eating up all of KVA space.
211          */
212         physmem_est = lmin(physmem, btoc(kernel_map->max_offset -
213             kernel_map->min_offset));
214
215         v = kern_vfs_bio_buffer_alloc(v, physmem_est);
216
217         /*
218          * End of first pass, size has been calculated so allocate memory
219          */
220         if (firstaddr == 0) {
221                 size = (vm_size_t)v;
222 #ifdef VM_FREELIST_DMA32
223                 /*
224                  * Try to protect 32-bit DMAable memory from the largest
225                  * early alloc of wired mem.
226                  */
227                 firstaddr = kmem_alloc_attr(kernel_arena, size,
228                     M_ZERO | M_NOWAIT, (vm_paddr_t)1 << 32,
229                     ~(vm_paddr_t)0, VM_MEMATTR_DEFAULT);
230                 if (firstaddr == 0)
231 #endif
232                         firstaddr = kmem_malloc(kernel_arena, size,
233                             M_ZERO | M_WAITOK);
234                 if (firstaddr == 0)
235                         panic("startup: no room for tables");
236                 goto again;
237         }
238
239         /*
240          * End of second pass, addresses have been assigned
241          */
242         if ((vm_size_t)((char *)v - firstaddr) != size)
243                 panic("startup: table size inconsistency");
244
245         /*
246          * Allocate the clean map to hold all of the paging and I/O virtual
247          * memory.
248          */
249         size = (long)nbuf * BKVASIZE + (long)nswbuf * MAXPHYS +
250             (long)bio_transient_maxcnt * MAXPHYS;
251         kmi->clean_sva = firstaddr = kva_alloc(size);
252         kmi->clean_eva = firstaddr + size;
253
254         /*
255          * Allocate the buffer arena.
256          *
257          * Enable the quantum cache if we have more than 4 cpus.  This
258          * avoids lock contention at the expense of some fragmentation.
259          */
260         size = (long)nbuf * BKVASIZE;
261         kmi->buffer_sva = firstaddr;
262         kmi->buffer_eva = kmi->buffer_sva + size;
263         vmem_init(buffer_arena, "buffer arena", kmi->buffer_sva, size,
264             PAGE_SIZE, (mp_ncpus > 4) ? BKVASIZE * 8 : 0, 0);
265         firstaddr += size;
266
267         /*
268          * Now swap kva.
269          */
270         swapbkva = firstaddr;
271         size = (long)nswbuf * MAXPHYS;
272         firstaddr += size;
273
274         /*
275          * And optionally transient bio space.
276          */
277         if (bio_transient_maxcnt != 0) {
278                 size = (long)bio_transient_maxcnt * MAXPHYS;
279                 vmem_init(transient_arena, "transient arena",
280                     firstaddr, size, PAGE_SIZE, 0, 0);
281                 firstaddr += size;
282         }
283         if (firstaddr != kmi->clean_eva)
284                 panic("Clean map calculation incorrect");
285
286         /*
287          * Allocate the pageable submaps.  We may cache an exec map entry per
288          * CPU, so we therefore need to reserve space for at least ncpu+1
289          * entries to avoid deadlock.  The exec map is also used by some image
290          * activators, so we leave a fixed number of pages for their use.
291          */
292 #ifdef __LP64__
293         exec_map_entries = 8 * mp_ncpus;
294 #else
295         exec_map_entries = 2 * mp_ncpus + 4;
296 #endif
297         exec_map_entry_size = round_page(PATH_MAX + ARG_MAX);
298         exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
299             exec_map_entries * exec_map_entry_size + 64 * PAGE_SIZE, FALSE);
300         pipe_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, maxpipekva,
301             FALSE);
302 }