]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
vm_pager: Remove the default pager
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150
151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154
155 /* 
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161
162 /*
163  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
164  *
165  *      Asserts that the starting and ending region
166  *      addresses fall within the valid range of the map.
167  */
168 #define VM_MAP_RANGE_CHECK(map, start, end)             \
169                 {                                       \
170                 if (start < vm_map_min(map))            \
171                         start = vm_map_min(map);        \
172                 if (end > vm_map_max(map))              \
173                         end = vm_map_max(map);          \
174                 if (start > end)                        \
175                         start = end;                    \
176                 }
177
178 #ifndef UMA_MD_SMALL_ALLOC
179
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192         vm_offset_t addr;
193         int error, locked;
194
195         *pflag = UMA_SLAB_PRIV;
196
197         if (!(locked = vm_map_locked(kernel_map)))
198                 vm_map_lock(kernel_map);
199         addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200         if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201                 panic("%s: kernel map is exhausted", __func__);
202         error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204         if (error != KERN_SUCCESS)
205                 panic("%s: vm_map_insert() failed: %d", __func__, error);
206         if (!locked)
207                 vm_map_unlock(kernel_map);
208         error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209             M_USE_RESERVE | (wait & M_ZERO));
210         if (error == KERN_SUCCESS) {
211                 return ((void *)addr);
212         } else {
213                 if (!locked)
214                         vm_map_lock(kernel_map);
215                 vm_map_delete(kernel_map, addr, bytes);
216                 if (!locked)
217                         vm_map_unlock(kernel_map);
218                 return (NULL);
219         }
220 }
221
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225         vm_offset_t addr;
226         int error __diagused;
227
228         if ((pflag & UMA_SLAB_PRIV) == 0)
229                 /* XXX leaked */
230                 return;
231
232         addr = (vm_offset_t)item;
233         kmem_unback(kernel_object, addr, size);
234         error = vm_map_remove(kernel_map, addr, addr + size);
235         KASSERT(error == KERN_SUCCESS,
236             ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define KMAPENT_RESERVE         1
244
245 #endif /* !UMD_MD_SMALL_ALLOC */
246
247 /*
248  *      vm_map_startup:
249  *
250  *      Initialize the vm_map module.  Must be called before any other vm_map
251  *      routines.
252  *
253  *      User map and entry structures are allocated from the general purpose
254  *      memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *      require special handling to avoid recursion; see the comments above
256  *      kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262
263         /*
264          * Disable the use of per-CPU buckets: map entry allocation is
265          * serialized by the kernel map lock.
266          */
267         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269             UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271         /* Reserve an extra map entry for use when replenishing the reserve. */
272         uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273         uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274         uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275         uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277
278         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282             vmspace_zdtor,
283 #else
284             NULL,
285 #endif
286             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292         struct vmspace *vm;
293         vm_map_t map;
294
295         vm = (struct vmspace *)mem;
296         map = &vm->vm_map;
297
298         memset(map, 0, sizeof(*map));
299         mtx_init(&map->system_mtx, "vm map (system)", NULL,
300             MTX_DEF | MTX_DUPOK);
301         sx_init(&map->lock, "vm map (user)");
302         PMAP_LOCK_INIT(vmspace_pmap(vm));
303         return (0);
304 }
305
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310         struct vmspace *vm;
311
312         vm = (struct vmspace *)mem;
313         KASSERT(vm->vm_map.nentries == 0,
314             ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315         KASSERT(vm->vm_map.size == 0,
316             ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif  /* INVARIANTS */
319
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327         struct vmspace *vm;
328
329         vm = uma_zalloc(vmspace_zone, M_WAITOK);
330         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331         if (!pinit(vmspace_pmap(vm))) {
332                 uma_zfree(vmspace_zone, vm);
333                 return (NULL);
334         }
335         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337         refcount_init(&vm->vm_refcnt, 1);
338         vm->vm_shm = NULL;
339         vm->vm_swrss = 0;
340         vm->vm_tsize = 0;
341         vm->vm_dsize = 0;
342         vm->vm_ssize = 0;
343         vm->vm_taddr = 0;
344         vm->vm_daddr = 0;
345         vm->vm_maxsaddr = 0;
346         return (vm);
347 }
348
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353
354         PROC_LOCK(p);
355         racct_set(p, RACCT_DATA, 0);
356         racct_set(p, RACCT_STACK, 0);
357         racct_set(p, RACCT_RSS, 0);
358         racct_set(p, RACCT_MEMLOCK, 0);
359         racct_set(p, RACCT_VMEM, 0);
360         PROC_UNLOCK(p);
361 }
362 #endif
363
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367
368         CTR1(KTR_VM, "vmspace_free: %p", vm);
369
370         /*
371          * Make sure any SysV shm is freed, it might not have been in
372          * exit1().
373          */
374         shmexit(vm);
375
376         /*
377          * Lock the map, to wait out all other references to it.
378          * Delete all of the mappings and pages they hold, then call
379          * the pmap module to reclaim anything left.
380          */
381         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382             vm_map_max(&vm->vm_map));
383
384         pmap_release(vmspace_pmap(vm));
385         vm->vm_map.pmap = NULL;
386         uma_zfree(vmspace_zone, vm);
387 }
388
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392
393         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394             "vmspace_free() called");
395
396         if (refcount_release(&vm->vm_refcnt))
397                 vmspace_dofree(vm);
398 }
399
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403         struct vmspace *vm;
404
405         PROC_VMSPACE_LOCK(p);
406         vm = p->p_vmspace;
407         p->p_vmspace = NULL;
408         PROC_VMSPACE_UNLOCK(p);
409         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410         vmspace_free(vm);
411 }
412
413 void
414 vmspace_exit(struct thread *td)
415 {
416         struct vmspace *vm;
417         struct proc *p;
418         bool released;
419
420         p = td->td_proc;
421         vm = p->p_vmspace;
422
423         /*
424          * Prepare to release the vmspace reference.  The thread that releases
425          * the last reference is responsible for tearing down the vmspace.
426          * However, threads not releasing the final reference must switch to the
427          * kernel's vmspace0 before the decrement so that the subsequent pmap
428          * deactivation does not modify a freed vmspace.
429          */
430         refcount_acquire(&vmspace0.vm_refcnt);
431         if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432                 if (p->p_vmspace != &vmspace0) {
433                         PROC_VMSPACE_LOCK(p);
434                         p->p_vmspace = &vmspace0;
435                         PROC_VMSPACE_UNLOCK(p);
436                         pmap_activate(td);
437                 }
438                 released = refcount_release(&vm->vm_refcnt);
439         }
440         if (released) {
441                 /*
442                  * pmap_remove_pages() expects the pmap to be active, so switch
443                  * back first if necessary.
444                  */
445                 if (p->p_vmspace != vm) {
446                         PROC_VMSPACE_LOCK(p);
447                         p->p_vmspace = vm;
448                         PROC_VMSPACE_UNLOCK(p);
449                         pmap_activate(td);
450                 }
451                 pmap_remove_pages(vmspace_pmap(vm));
452                 PROC_VMSPACE_LOCK(p);
453                 p->p_vmspace = &vmspace0;
454                 PROC_VMSPACE_UNLOCK(p);
455                 pmap_activate(td);
456                 vmspace_dofree(vm);
457         }
458 #ifdef RACCT
459         if (racct_enable)
460                 vmspace_container_reset(p);
461 #endif
462 }
463
464 /* Acquire reference to vmspace owned by another process. */
465
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469         struct vmspace *vm;
470
471         PROC_VMSPACE_LOCK(p);
472         vm = p->p_vmspace;
473         if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474                 PROC_VMSPACE_UNLOCK(p);
475                 return (NULL);
476         }
477         if (vm != p->p_vmspace) {
478                 PROC_VMSPACE_UNLOCK(p);
479                 vmspace_free(vm);
480                 return (NULL);
481         }
482         PROC_VMSPACE_UNLOCK(p);
483         return (vm);
484 }
485
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504         struct vmspace *oldvm;
505
506         /* XXX: Need some way to assert that this is an aio daemon. */
507
508         KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509             ("vmspace_switch_aio: newvm unreferenced"));
510
511         oldvm = curproc->p_vmspace;
512         if (oldvm == newvm)
513                 return;
514
515         /*
516          * Point to the new address space and refer to it.
517          */
518         curproc->p_vmspace = newvm;
519         refcount_acquire(&newvm->vm_refcnt);
520
521         /* Activate the new mapping. */
522         pmap_activate(curthread);
523
524         vmspace_free(oldvm);
525 }
526
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530
531         if (map->system_map)
532                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
533         else
534                 sx_xlock_(&map->lock, file, line);
535         map->timestamp++;
536 }
537
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541         vm_object_t object;
542         struct vnode *vp;
543         bool vp_held;
544
545         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546                 return;
547         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548             ("Submap with execs"));
549         object = entry->object.vm_object;
550         KASSERT(object != NULL, ("No object for text, entry %p", entry));
551         if ((object->flags & OBJ_ANON) != 0)
552                 object = object->handle;
553         else
554                 KASSERT(object->backing_object == NULL,
555                     ("non-anon object %p shadows", object));
556         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557             entry, entry->object.vm_object));
558
559         /*
560          * Mostly, we do not lock the backing object.  It is
561          * referenced by the entry we are processing, so it cannot go
562          * away.
563          */
564         vm_pager_getvp(object, &vp, &vp_held);
565         if (vp != NULL) {
566                 if (add) {
567                         VOP_SET_TEXT_CHECKED(vp);
568                 } else {
569                         vn_lock(vp, LK_SHARED | LK_RETRY);
570                         VOP_UNSET_TEXT_CHECKED(vp);
571                         VOP_UNLOCK(vp);
572                 }
573                 if (vp_held)
574                         vdrop(vp);
575         }
576 }
577
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587         struct thread *td;
588         vm_map_entry_t entry, next;
589         vm_object_t object;
590
591         td = curthread;
592         entry = td->td_map_def_user;
593         td->td_map_def_user = NULL;
594         while (entry != NULL) {
595                 next = entry->defer_next;
596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC));
599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600                         /*
601                          * Decrement the object's writemappings and
602                          * possibly the vnode's v_writecount.
603                          */
604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605                             ("Submap with writecount"));
606                         object = entry->object.vm_object;
607                         KASSERT(object != NULL, ("No object for writecount"));
608                         vm_pager_release_writecount(object, entry->start,
609                             entry->end);
610                 }
611                 vm_map_entry_set_vnode_text(entry, false);
612                 vm_map_entry_deallocate(entry, FALSE);
613                 entry = next;
614         }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622         if (map->system_map)
623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624         else
625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
646         if (map->nupdates > map->nentries) {                            \
647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
648                 map->nupdates = 0;                                      \
649         }                                                               \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664         VM_MAP_UNLOCK_CONSISTENT(map);
665         if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667                 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668                         uma_prealloc(kmapentzone, 1);
669                         map->flags &= ~MAP_REPLENISH;
670                 }
671 #endif
672                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673         } else {
674                 sx_xunlock_(&map->lock, file, line);
675                 vm_map_process_deferred();
676         }
677 }
678
679 void
680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682
683         if (map->system_map)
684                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
685         else
686                 sx_slock_(&map->lock, file, line);
687 }
688
689 void
690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692
693         if (map->system_map) {
694                 KASSERT((map->flags & MAP_REPLENISH) == 0,
695                     ("%s: MAP_REPLENISH leaked", __func__));
696                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697         } else {
698                 sx_sunlock_(&map->lock, file, line);
699                 vm_map_process_deferred();
700         }
701 }
702
703 int
704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706         int error;
707
708         error = map->system_map ?
709             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710             !sx_try_xlock_(&map->lock, file, line);
711         if (error == 0)
712                 map->timestamp++;
713         return (error == 0);
714 }
715
716 int
717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719         int error;
720
721         error = map->system_map ?
722             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723             !sx_try_slock_(&map->lock, file, line);
724         return (error == 0);
725 }
726
727 /*
728  *      _vm_map_lock_upgrade:   [ internal use only ]
729  *
730  *      Tries to upgrade a read (shared) lock on the specified map to a write
731  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
732  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
733  *      returned without a read or write lock held.
734  *
735  *      Requires that the map be read locked.
736  */
737 int
738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740         unsigned int last_timestamp;
741
742         if (map->system_map) {
743                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744         } else {
745                 if (!sx_try_upgrade_(&map->lock, file, line)) {
746                         last_timestamp = map->timestamp;
747                         sx_sunlock_(&map->lock, file, line);
748                         vm_map_process_deferred();
749                         /*
750                          * If the map's timestamp does not change while the
751                          * map is unlocked, then the upgrade succeeds.
752                          */
753                         sx_xlock_(&map->lock, file, line);
754                         if (last_timestamp != map->timestamp) {
755                                 sx_xunlock_(&map->lock, file, line);
756                                 return (1);
757                         }
758                 }
759         }
760         map->timestamp++;
761         return (0);
762 }
763
764 void
765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767
768         if (map->system_map) {
769                 KASSERT((map->flags & MAP_REPLENISH) == 0,
770                     ("%s: MAP_REPLENISH leaked", __func__));
771                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772         } else {
773                 VM_MAP_UNLOCK_CONSISTENT(map);
774                 sx_downgrade_(&map->lock, file, line);
775         }
776 }
777
778 /*
779  *      vm_map_locked:
780  *
781  *      Returns a non-zero value if the caller holds a write (exclusive) lock
782  *      on the specified map and the value "0" otherwise.
783  */
784 int
785 vm_map_locked(vm_map_t map)
786 {
787
788         if (map->system_map)
789                 return (mtx_owned(&map->system_mtx));
790         else
791                 return (sx_xlocked(&map->lock));
792 }
793
794 /*
795  *      _vm_map_unlock_and_wait:
796  *
797  *      Atomically releases the lock on the specified map and puts the calling
798  *      thread to sleep.  The calling thread will remain asleep until either
799  *      vm_map_wakeup() is performed on the map or the specified timeout is
800  *      exceeded.
801  *
802  *      WARNING!  This function does not perform deferred deallocations of
803  *      objects and map entries.  Therefore, the calling thread is expected to
804  *      reacquire the map lock after reawakening and later perform an ordinary
805  *      unlock operation, such as vm_map_unlock(), before completing its
806  *      operation on the map.
807  */
808 int
809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811
812         VM_MAP_UNLOCK_CONSISTENT(map);
813         mtx_lock(&map_sleep_mtx);
814         if (map->system_map) {
815                 KASSERT((map->flags & MAP_REPLENISH) == 0,
816                     ("%s: MAP_REPLENISH leaked", __func__));
817                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818         } else {
819                 sx_xunlock_(&map->lock, file, line);
820         }
821         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822             timo));
823 }
824
825 /*
826  *      vm_map_wakeup:
827  *
828  *      Awaken any threads that have slept on the map using
829  *      vm_map_unlock_and_wait().
830  */
831 void
832 vm_map_wakeup(vm_map_t map)
833 {
834
835         /*
836          * Acquire and release map_sleep_mtx to prevent a wakeup()
837          * from being performed (and lost) between the map unlock
838          * and the msleep() in _vm_map_unlock_and_wait().
839          */
840         mtx_lock(&map_sleep_mtx);
841         mtx_unlock(&map_sleep_mtx);
842         wakeup(&map->root);
843 }
844
845 void
846 vm_map_busy(vm_map_t map)
847 {
848
849         VM_MAP_ASSERT_LOCKED(map);
850         map->busy++;
851 }
852
853 void
854 vm_map_unbusy(vm_map_t map)
855 {
856
857         VM_MAP_ASSERT_LOCKED(map);
858         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861                 wakeup(&map->busy);
862         }
863 }
864
865 void 
866 vm_map_wait_busy(vm_map_t map)
867 {
868
869         VM_MAP_ASSERT_LOCKED(map);
870         while (map->busy) {
871                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872                 if (map->system_map)
873                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874                 else
875                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876         }
877         map->timestamp++;
878 }
879
880 long
881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883         return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885
886 /*
887  * Initialize an existing vm_map structure
888  * such as that in the vmspace structure.
889  */
890 static void
891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893
894         map->header.eflags = MAP_ENTRY_HEADER;
895         map->needs_wakeup = FALSE;
896         map->system_map = 0;
897         map->pmap = pmap;
898         map->header.end = min;
899         map->header.start = max;
900         map->flags = 0;
901         map->header.left = map->header.right = &map->header;
902         map->root = NULL;
903         map->timestamp = 0;
904         map->busy = 0;
905         map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907         map->nupdates = 0;
908 #endif
909 }
910
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914
915         _vm_map_init(map, pmap, min, max);
916         mtx_init(&map->system_mtx, "vm map (system)", NULL,
917             MTX_DEF | MTX_DUPOK);
918         sx_init(&map->lock, "vm map (user)");
919 }
920
921 /*
922  *      vm_map_entry_dispose:   [ internal use only ]
923  *
924  *      Inverse of vm_map_entry_create.
925  */
926 static void
927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931
932 /*
933  *      vm_map_entry_create:    [ internal use only ]
934  *
935  *      Allocates a VM map entry for insertion.
936  *      No entry fields are filled in.
937  */
938 static vm_map_entry_t
939 vm_map_entry_create(vm_map_t map)
940 {
941         vm_map_entry_t new_entry;
942
943 #ifndef UMA_MD_SMALL_ALLOC
944         if (map == kernel_map) {
945                 VM_MAP_ASSERT_LOCKED(map);
946
947                 /*
948                  * A new slab of kernel map entries cannot be allocated at this
949                  * point because the kernel map has not yet been updated to
950                  * reflect the caller's request.  Therefore, we allocate a new
951                  * map entry, dipping into the reserve if necessary, and set a
952                  * flag indicating that the reserve must be replenished before
953                  * the map is unlocked.
954                  */
955                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956                 if (new_entry == NULL) {
957                         new_entry = uma_zalloc(kmapentzone,
958                             M_NOWAIT | M_NOVM | M_USE_RESERVE);
959                         kernel_map->flags |= MAP_REPLENISH;
960                 }
961         } else
962 #endif
963         if (map->system_map) {
964                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965         } else {
966                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
967         }
968         KASSERT(new_entry != NULL,
969             ("vm_map_entry_create: kernel resources exhausted"));
970         return (new_entry);
971 }
972
973 /*
974  *      vm_map_entry_set_behavior:
975  *
976  *      Set the expected access behavior, either normal, random, or
977  *      sequential.
978  */
979 static inline void
980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983             (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985
986 /*
987  *      vm_map_entry_max_free_{left,right}:
988  *
989  *      Compute the size of the largest free gap between two entries,
990  *      one the root of a tree and the other the ancestor of that root
991  *      that is the least or greatest ancestor found on the search path.
992  */
993 static inline vm_size_t
994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996
997         return (root->left != left_ancestor ?
998             root->left->max_free : root->start - left_ancestor->end);
999 }
1000
1001 static inline vm_size_t
1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004
1005         return (root->right != right_ancestor ?
1006             root->right->max_free : right_ancestor->start - root->end);
1007 }
1008
1009 /*
1010  *      vm_map_entry_{pred,succ}:
1011  *
1012  *      Find the {predecessor, successor} of the entry by taking one step
1013  *      in the appropriate direction and backtracking as much as necessary.
1014  *      vm_map_entry_succ is defined in vm_map.h.
1015  */
1016 static inline vm_map_entry_t
1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019         vm_map_entry_t prior;
1020
1021         prior = entry->left;
1022         if (prior->right->start < entry->start) {
1023                 do
1024                         prior = prior->right;
1025                 while (prior->right != entry);
1026         }
1027         return (prior);
1028 }
1029
1030 static inline vm_size_t
1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033
1034         return (a > b ? a : b);
1035 }
1036
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1038         vm_map_entry_t z;                                               \
1039         vm_size_t max_free;                                             \
1040                                                                         \
1041         /*                                                              \
1042          * Infer root->right->max_free == root->max_free when           \
1043          * y->max_free < root->max_free || root->max_free == 0.         \
1044          * Otherwise, look right to find it.                            \
1045          */                                                             \
1046         y = root->left;                                                 \
1047         max_free = root->max_free;                                      \
1048         KASSERT(max_free == vm_size_max(                                \
1049             vm_map_entry_max_free_left(root, llist),                    \
1050             vm_map_entry_max_free_right(root, rlist)),                  \
1051             ("%s: max_free invariant fails", __func__));                \
1052         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1053                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1054         if (y != llist && (test)) {                                     \
1055                 /* Rotate right and make y root. */                     \
1056                 z = y->right;                                           \
1057                 if (z != root) {                                        \
1058                         root->left = z;                                 \
1059                         y->right = root;                                \
1060                         if (max_free < y->max_free)                     \
1061                             root->max_free = max_free =                 \
1062                             vm_size_max(max_free, z->max_free);         \
1063                 } else if (max_free < y->max_free)                      \
1064                         root->max_free = max_free =                     \
1065                             vm_size_max(max_free, root->start - y->end);\
1066                 root = y;                                               \
1067                 y = root->left;                                         \
1068         }                                                               \
1069         /* Copy right->max_free.  Put root on rlist. */                 \
1070         root->max_free = max_free;                                      \
1071         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1072             ("%s: max_free not copied from right", __func__));          \
1073         root->left = rlist;                                             \
1074         rlist = root;                                                   \
1075         root = y != llist ? y : NULL;                                   \
1076 } while (0)
1077
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1079         vm_map_entry_t z;                                               \
1080         vm_size_t max_free;                                             \
1081                                                                         \
1082         /*                                                              \
1083          * Infer root->left->max_free == root->max_free when            \
1084          * y->max_free < root->max_free || root->max_free == 0.         \
1085          * Otherwise, look left to find it.                             \
1086          */                                                             \
1087         y = root->right;                                                \
1088         max_free = root->max_free;                                      \
1089         KASSERT(max_free == vm_size_max(                                \
1090             vm_map_entry_max_free_left(root, llist),                    \
1091             vm_map_entry_max_free_right(root, rlist)),                  \
1092             ("%s: max_free invariant fails", __func__));                \
1093         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1094                 max_free = vm_map_entry_max_free_left(root, llist);     \
1095         if (y != rlist && (test)) {                                     \
1096                 /* Rotate left and make y root. */                      \
1097                 z = y->left;                                            \
1098                 if (z != root) {                                        \
1099                         root->right = z;                                \
1100                         y->left = root;                                 \
1101                         if (max_free < y->max_free)                     \
1102                             root->max_free = max_free =                 \
1103                             vm_size_max(max_free, z->max_free);         \
1104                 } else if (max_free < y->max_free)                      \
1105                         root->max_free = max_free =                     \
1106                             vm_size_max(max_free, y->start - root->end);\
1107                 root = y;                                               \
1108                 y = root->right;                                        \
1109         }                                                               \
1110         /* Copy left->max_free.  Put root on llist. */                  \
1111         root->max_free = max_free;                                      \
1112         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1113             ("%s: max_free not copied from left", __func__));           \
1114         root->right = llist;                                            \
1115         llist = root;                                                   \
1116         root = y != rlist ? y : NULL;                                   \
1117 } while (0)
1118
1119 /*
1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1123  * the two sides in reverse order (bottom-up), with llist linked by the right
1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125  * lists terminated by &map->header.  This function, and the subsequent call to
1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127  * values in &map->header.
1128  */
1129 static __always_inline vm_map_entry_t
1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133         vm_map_entry_t left, right, root, y;
1134
1135         left = right = &map->header;
1136         root = map->root;
1137         while (root != NULL && root->max_free >= length) {
1138                 KASSERT(left->end <= root->start &&
1139                     root->end <= right->start,
1140                     ("%s: root not within tree bounds", __func__));
1141                 if (addr < root->start) {
1142                         SPLAY_LEFT_STEP(root, y, left, right,
1143                             y->max_free >= length && addr < y->start);
1144                 } else if (addr >= root->end) {
1145                         SPLAY_RIGHT_STEP(root, y, left, right,
1146                             y->max_free >= length && addr >= y->end);
1147                 } else
1148                         break;
1149         }
1150         *llist = left;
1151         *rlist = right;
1152         return (root);
1153 }
1154
1155 static __always_inline void
1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158         vm_map_entry_t hi, right, y;
1159
1160         right = *rlist;
1161         hi = root->right == right ? NULL : root->right;
1162         if (hi == NULL)
1163                 return;
1164         do
1165                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1166         while (hi != NULL);
1167         *rlist = right;
1168 }
1169
1170 static __always_inline void
1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173         vm_map_entry_t left, lo, y;
1174
1175         left = *llist;
1176         lo = root->left == left ? NULL : root->left;
1177         if (lo == NULL)
1178                 return;
1179         do
1180                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181         while (lo != NULL);
1182         *llist = left;
1183 }
1184
1185 static inline void
1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188         vm_map_entry_t tmp;
1189
1190         tmp = *b;
1191         *b = *a;
1192         *a = tmp;
1193 }
1194
1195 /*
1196  * Walk back up the two spines, flip the pointers and set max_free.  The
1197  * subtrees of the root go at the bottom of llist and rlist.
1198  */
1199 static vm_size_t
1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203         do {
1204                 /*
1205                  * The max_free values of the children of llist are in
1206                  * llist->max_free and max_free.  Update with the
1207                  * max value.
1208                  */
1209                 llist->max_free = max_free =
1210                     vm_size_max(llist->max_free, max_free);
1211                 vm_map_entry_swap(&llist->right, &tail);
1212                 vm_map_entry_swap(&tail, &llist);
1213         } while (llist != header);
1214         root->left = tail;
1215         return (max_free);
1216 }
1217
1218 /*
1219  * When llist is known to be the predecessor of root.
1220  */
1221 static inline vm_size_t
1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223     vm_map_entry_t llist)
1224 {
1225         vm_size_t max_free;
1226
1227         max_free = root->start - llist->end;
1228         if (llist != header) {
1229                 max_free = vm_map_splay_merge_left_walk(header, root,
1230                     root, max_free, llist);
1231         } else {
1232                 root->left = header;
1233                 header->right = root;
1234         }
1235         return (max_free);
1236 }
1237
1238 /*
1239  * When llist may or may not be the predecessor of root.
1240  */
1241 static inline vm_size_t
1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243     vm_map_entry_t llist)
1244 {
1245         vm_size_t max_free;
1246
1247         max_free = vm_map_entry_max_free_left(root, llist);
1248         if (llist != header) {
1249                 max_free = vm_map_splay_merge_left_walk(header, root,
1250                     root->left == llist ? root : root->left,
1251                     max_free, llist);
1252         }
1253         return (max_free);
1254 }
1255
1256 static vm_size_t
1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260         do {
1261                 /*
1262                  * The max_free values of the children of rlist are in
1263                  * rlist->max_free and max_free.  Update with the
1264                  * max value.
1265                  */
1266                 rlist->max_free = max_free =
1267                     vm_size_max(rlist->max_free, max_free);
1268                 vm_map_entry_swap(&rlist->left, &tail);
1269                 vm_map_entry_swap(&tail, &rlist);
1270         } while (rlist != header);
1271         root->right = tail;
1272         return (max_free);
1273 }
1274
1275 /*
1276  * When rlist is known to be the succecessor of root.
1277  */
1278 static inline vm_size_t
1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280     vm_map_entry_t rlist)
1281 {
1282         vm_size_t max_free;
1283
1284         max_free = rlist->start - root->end;
1285         if (rlist != header) {
1286                 max_free = vm_map_splay_merge_right_walk(header, root,
1287                     root, max_free, rlist);
1288         } else {
1289                 root->right = header;
1290                 header->left = root;
1291         }
1292         return (max_free);
1293 }
1294
1295 /*
1296  * When rlist may or may not be the succecessor of root.
1297  */
1298 static inline vm_size_t
1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300     vm_map_entry_t rlist)
1301 {
1302         vm_size_t max_free;
1303
1304         max_free = vm_map_entry_max_free_right(root, rlist);
1305         if (rlist != header) {
1306                 max_free = vm_map_splay_merge_right_walk(header, root,
1307                     root->right == rlist ? root : root->right,
1308                     max_free, rlist);
1309         }
1310         return (max_free);
1311 }
1312
1313 /*
1314  *      vm_map_splay:
1315  *
1316  *      The Sleator and Tarjan top-down splay algorithm with the
1317  *      following variation.  Max_free must be computed bottom-up, so
1318  *      on the downward pass, maintain the left and right spines in
1319  *      reverse order.  Then, make a second pass up each side to fix
1320  *      the pointers and compute max_free.  The time bound is O(log n)
1321  *      amortized.
1322  *
1323  *      The tree is threaded, which means that there are no null pointers.
1324  *      When a node has no left child, its left pointer points to its
1325  *      predecessor, which the last ancestor on the search path from the root
1326  *      where the search branched right.  Likewise, when a node has no right
1327  *      child, its right pointer points to its successor.  The map header node
1328  *      is the predecessor of the first map entry, and the successor of the
1329  *      last.
1330  *
1331  *      The new root is the vm_map_entry containing "addr", or else an
1332  *      adjacent entry (lower if possible) if addr is not in the tree.
1333  *
1334  *      The map must be locked, and leaves it so.
1335  *
1336  *      Returns: the new root.
1337  */
1338 static vm_map_entry_t
1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341         vm_map_entry_t header, llist, rlist, root;
1342         vm_size_t max_free_left, max_free_right;
1343
1344         header = &map->header;
1345         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346         if (root != NULL) {
1347                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1348                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349         } else if (llist != header) {
1350                 /*
1351                  * Recover the greatest node in the left
1352                  * subtree and make it the root.
1353                  */
1354                 root = llist;
1355                 llist = root->right;
1356                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1357                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358         } else if (rlist != header) {
1359                 /*
1360                  * Recover the least node in the right
1361                  * subtree and make it the root.
1362                  */
1363                 root = rlist;
1364                 rlist = root->left;
1365                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367         } else {
1368                 /* There is no root. */
1369                 return (NULL);
1370         }
1371         root->max_free = vm_size_max(max_free_left, max_free_right);
1372         map->root = root;
1373         VM_MAP_ASSERT_CONSISTENT(map);
1374         return (root);
1375 }
1376
1377 /*
1378  *      vm_map_entry_{un,}link:
1379  *
1380  *      Insert/remove entries from maps.  On linking, if new entry clips
1381  *      existing entry, trim existing entry to avoid overlap, and manage
1382  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1383  *      called for, and manage offsets.  Callers should not modify fields in
1384  *      entries already mapped.
1385  */
1386 static void
1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389         vm_map_entry_t header, llist, rlist, root;
1390         vm_size_t max_free_left, max_free_right;
1391
1392         CTR3(KTR_VM,
1393             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394             map->nentries, entry);
1395         VM_MAP_ASSERT_LOCKED(map);
1396         map->nentries++;
1397         header = &map->header;
1398         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399         if (root == NULL) {
1400                 /*
1401                  * The new entry does not overlap any existing entry in the
1402                  * map, so it becomes the new root of the map tree.
1403                  */
1404                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406         } else if (entry->start == root->start) {
1407                 /*
1408                  * The new entry is a clone of root, with only the end field
1409                  * changed.  The root entry will be shrunk to abut the new
1410                  * entry, and will be the right child of the new root entry in
1411                  * the modified map.
1412                  */
1413                 KASSERT(entry->end < root->end,
1414                     ("%s: clip_start not within entry", __func__));
1415                 vm_map_splay_findprev(root, &llist);
1416                 root->offset += entry->end - root->start;
1417                 root->start = entry->end;
1418                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419                 max_free_right = root->max_free = vm_size_max(
1420                     vm_map_splay_merge_pred(entry, root, entry),
1421                     vm_map_splay_merge_right(header, root, rlist));
1422         } else {
1423                 /*
1424                  * The new entry is a clone of root, with only the start field
1425                  * changed.  The root entry will be shrunk to abut the new
1426                  * entry, and will be the left child of the new root entry in
1427                  * the modified map.
1428                  */
1429                 KASSERT(entry->end == root->end,
1430                     ("%s: clip_start not within entry", __func__));
1431                 vm_map_splay_findnext(root, &rlist);
1432                 entry->offset += entry->start - root->start;
1433                 root->end = entry->start;
1434                 max_free_left = root->max_free = vm_size_max(
1435                     vm_map_splay_merge_left(header, root, llist),
1436                     vm_map_splay_merge_succ(entry, root, entry));
1437                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1438         }
1439         entry->max_free = vm_size_max(max_free_left, max_free_right);
1440         map->root = entry;
1441         VM_MAP_ASSERT_CONSISTENT(map);
1442 }
1443
1444 enum unlink_merge_type {
1445         UNLINK_MERGE_NONE,
1446         UNLINK_MERGE_NEXT
1447 };
1448
1449 static void
1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1451     enum unlink_merge_type op)
1452 {
1453         vm_map_entry_t header, llist, rlist, root;
1454         vm_size_t max_free_left, max_free_right;
1455
1456         VM_MAP_ASSERT_LOCKED(map);
1457         header = &map->header;
1458         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1459         KASSERT(root != NULL,
1460             ("vm_map_entry_unlink: unlink object not mapped"));
1461
1462         vm_map_splay_findprev(root, &llist);
1463         vm_map_splay_findnext(root, &rlist);
1464         if (op == UNLINK_MERGE_NEXT) {
1465                 rlist->start = root->start;
1466                 rlist->offset = root->offset;
1467         }
1468         if (llist != header) {
1469                 root = llist;
1470                 llist = root->right;
1471                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1472                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473         } else if (rlist != header) {
1474                 root = rlist;
1475                 rlist = root->left;
1476                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478         } else {
1479                 header->left = header->right = header;
1480                 root = NULL;
1481         }
1482         if (root != NULL)
1483                 root->max_free = vm_size_max(max_free_left, max_free_right);
1484         map->root = root;
1485         VM_MAP_ASSERT_CONSISTENT(map);
1486         map->nentries--;
1487         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488             map->nentries, entry);
1489 }
1490
1491 /*
1492  *      vm_map_entry_resize:
1493  *
1494  *      Resize a vm_map_entry, recompute the amount of free space that
1495  *      follows it and propagate that value up the tree.
1496  *
1497  *      The map must be locked, and leaves it so.
1498  */
1499 static void
1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501 {
1502         vm_map_entry_t header, llist, rlist, root;
1503
1504         VM_MAP_ASSERT_LOCKED(map);
1505         header = &map->header;
1506         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508         vm_map_splay_findnext(root, &rlist);
1509         entry->end += grow_amount;
1510         root->max_free = vm_size_max(
1511             vm_map_splay_merge_left(header, root, llist),
1512             vm_map_splay_merge_succ(header, root, rlist));
1513         map->root = root;
1514         VM_MAP_ASSERT_CONSISTENT(map);
1515         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516             __func__, map, map->nentries, entry);
1517 }
1518
1519 /*
1520  *      vm_map_lookup_entry:    [ internal use only ]
1521  *
1522  *      Finds the map entry containing (or
1523  *      immediately preceding) the specified address
1524  *      in the given map; the entry is returned
1525  *      in the "entry" parameter.  The boolean
1526  *      result indicates whether the address is
1527  *      actually contained in the map.
1528  */
1529 boolean_t
1530 vm_map_lookup_entry(
1531         vm_map_t map,
1532         vm_offset_t address,
1533         vm_map_entry_t *entry)  /* OUT */
1534 {
1535         vm_map_entry_t cur, header, lbound, ubound;
1536         boolean_t locked;
1537
1538         /*
1539          * If the map is empty, then the map entry immediately preceding
1540          * "address" is the map's header.
1541          */
1542         header = &map->header;
1543         cur = map->root;
1544         if (cur == NULL) {
1545                 *entry = header;
1546                 return (FALSE);
1547         }
1548         if (address >= cur->start && cur->end > address) {
1549                 *entry = cur;
1550                 return (TRUE);
1551         }
1552         if ((locked = vm_map_locked(map)) ||
1553             sx_try_upgrade(&map->lock)) {
1554                 /*
1555                  * Splay requires a write lock on the map.  However, it only
1556                  * restructures the binary search tree; it does not otherwise
1557                  * change the map.  Thus, the map's timestamp need not change
1558                  * on a temporary upgrade.
1559                  */
1560                 cur = vm_map_splay(map, address);
1561                 if (!locked) {
1562                         VM_MAP_UNLOCK_CONSISTENT(map);
1563                         sx_downgrade(&map->lock);
1564                 }
1565
1566                 /*
1567                  * If "address" is contained within a map entry, the new root
1568                  * is that map entry.  Otherwise, the new root is a map entry
1569                  * immediately before or after "address".
1570                  */
1571                 if (address < cur->start) {
1572                         *entry = header;
1573                         return (FALSE);
1574                 }
1575                 *entry = cur;
1576                 return (address < cur->end);
1577         }
1578         /*
1579          * Since the map is only locked for read access, perform a
1580          * standard binary search tree lookup for "address".
1581          */
1582         lbound = ubound = header;
1583         for (;;) {
1584                 if (address < cur->start) {
1585                         ubound = cur;
1586                         cur = cur->left;
1587                         if (cur == lbound)
1588                                 break;
1589                 } else if (cur->end <= address) {
1590                         lbound = cur;
1591                         cur = cur->right;
1592                         if (cur == ubound)
1593                                 break;
1594                 } else {
1595                         *entry = cur;
1596                         return (TRUE);
1597                 }
1598         }
1599         *entry = lbound;
1600         return (FALSE);
1601 }
1602
1603 /*
1604  *      vm_map_insert:
1605  *
1606  *      Inserts the given whole VM object into the target
1607  *      map at the specified address range.  The object's
1608  *      size should match that of the address range.
1609  *
1610  *      Requires that the map be locked, and leaves it so.
1611  *
1612  *      If object is non-NULL, ref count must be bumped by caller
1613  *      prior to making call to account for the new entry.
1614  */
1615 int
1616 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1617     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1618 {
1619         vm_map_entry_t new_entry, next_entry, prev_entry;
1620         struct ucred *cred;
1621         vm_eflags_t protoeflags;
1622         vm_inherit_t inheritance;
1623         u_long bdry;
1624         u_int bidx;
1625
1626         VM_MAP_ASSERT_LOCKED(map);
1627         KASSERT(object != kernel_object ||
1628             (cow & MAP_COPY_ON_WRITE) == 0,
1629             ("vm_map_insert: kernel object and COW"));
1630         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631             (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632             ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633             object, cow));
1634         KASSERT((prot & ~max) == 0,
1635             ("prot %#x is not subset of max_prot %#x", prot, max));
1636
1637         /*
1638          * Check that the start and end points are not bogus.
1639          */
1640         if (start == end || !vm_map_range_valid(map, start, end))
1641                 return (KERN_INVALID_ADDRESS);
1642
1643         if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644             VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645                 return (KERN_PROTECTION_FAILURE);
1646
1647         /*
1648          * Find the entry prior to the proposed starting address; if it's part
1649          * of an existing entry, this range is bogus.
1650          */
1651         if (vm_map_lookup_entry(map, start, &prev_entry))
1652                 return (KERN_NO_SPACE);
1653
1654         /*
1655          * Assert that the next entry doesn't overlap the end point.
1656          */
1657         next_entry = vm_map_entry_succ(prev_entry);
1658         if (next_entry->start < end)
1659                 return (KERN_NO_SPACE);
1660
1661         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662             max != VM_PROT_NONE))
1663                 return (KERN_INVALID_ARGUMENT);
1664
1665         protoeflags = 0;
1666         if (cow & MAP_COPY_ON_WRITE)
1667                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668         if (cow & MAP_NOFAULT)
1669                 protoeflags |= MAP_ENTRY_NOFAULT;
1670         if (cow & MAP_DISABLE_SYNCER)
1671                 protoeflags |= MAP_ENTRY_NOSYNC;
1672         if (cow & MAP_DISABLE_COREDUMP)
1673                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674         if (cow & MAP_STACK_GROWS_DOWN)
1675                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676         if (cow & MAP_STACK_GROWS_UP)
1677                 protoeflags |= MAP_ENTRY_GROWS_UP;
1678         if (cow & MAP_WRITECOUNT)
1679                 protoeflags |= MAP_ENTRY_WRITECNT;
1680         if (cow & MAP_VN_EXEC)
1681                 protoeflags |= MAP_ENTRY_VN_EXEC;
1682         if ((cow & MAP_CREATE_GUARD) != 0)
1683                 protoeflags |= MAP_ENTRY_GUARD;
1684         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688         if (cow & MAP_INHERIT_SHARE)
1689                 inheritance = VM_INHERIT_SHARE;
1690         else
1691                 inheritance = VM_INHERIT_DEFAULT;
1692         if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693                 /* This magically ignores index 0, for usual page size. */
1694                 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1695                     MAP_SPLIT_BOUNDARY_SHIFT;
1696                 if (bidx >= MAXPAGESIZES)
1697                         return (KERN_INVALID_ARGUMENT);
1698                 bdry = pagesizes[bidx] - 1;
1699                 if ((start & bdry) != 0 || (end & bdry) != 0)
1700                         return (KERN_INVALID_ARGUMENT);
1701                 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702         }
1703
1704         cred = NULL;
1705         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706                 goto charged;
1707         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710                         return (KERN_RESOURCE_SHORTAGE);
1711                 KASSERT(object == NULL ||
1712                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713                     object->cred == NULL,
1714                     ("overcommit: vm_map_insert o %p", object));
1715                 cred = curthread->td_ucred;
1716         }
1717
1718 charged:
1719         /* Expand the kernel pmap, if necessary. */
1720         if (map == kernel_map && end > kernel_vm_end)
1721                 pmap_growkernel(end);
1722         if (object != NULL) {
1723                 /*
1724                  * OBJ_ONEMAPPING must be cleared unless this mapping
1725                  * is trivially proven to be the only mapping for any
1726                  * of the object's pages.  (Object granularity
1727                  * reference counting is insufficient to recognize
1728                  * aliases with precision.)
1729                  */
1730                 if ((object->flags & OBJ_ANON) != 0) {
1731                         VM_OBJECT_WLOCK(object);
1732                         if (object->ref_count > 1 || object->shadow_count != 0)
1733                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1734                         VM_OBJECT_WUNLOCK(object);
1735                 }
1736         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737             protoeflags &&
1738             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1739             MAP_VN_EXEC)) == 0 &&
1740             prev_entry->end == start && (prev_entry->cred == cred ||
1741             (prev_entry->object.vm_object != NULL &&
1742             prev_entry->object.vm_object->cred == cred)) &&
1743             vm_object_coalesce(prev_entry->object.vm_object,
1744             prev_entry->offset,
1745             (vm_size_t)(prev_entry->end - prev_entry->start),
1746             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748                 /*
1749                  * We were able to extend the object.  Determine if we
1750                  * can extend the previous map entry to include the
1751                  * new range as well.
1752                  */
1753                 if (prev_entry->inheritance == inheritance &&
1754                     prev_entry->protection == prot &&
1755                     prev_entry->max_protection == max &&
1756                     prev_entry->wired_count == 0) {
1757                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758                             0, ("prev_entry %p has incoherent wiring",
1759                             prev_entry));
1760                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761                                 map->size += end - prev_entry->end;
1762                         vm_map_entry_resize(map, prev_entry,
1763                             end - prev_entry->end);
1764                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1765                         return (KERN_SUCCESS);
1766                 }
1767
1768                 /*
1769                  * If we can extend the object but cannot extend the
1770                  * map entry, we have to create a new map entry.  We
1771                  * must bump the ref count on the extended object to
1772                  * account for it.  object may be NULL.
1773                  */
1774                 object = prev_entry->object.vm_object;
1775                 offset = prev_entry->offset +
1776                     (prev_entry->end - prev_entry->start);
1777                 vm_object_reference(object);
1778                 if (cred != NULL && object != NULL && object->cred != NULL &&
1779                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780                         /* Object already accounts for this uid. */
1781                         cred = NULL;
1782                 }
1783         }
1784         if (cred != NULL)
1785                 crhold(cred);
1786
1787         /*
1788          * Create a new entry
1789          */
1790         new_entry = vm_map_entry_create(map);
1791         new_entry->start = start;
1792         new_entry->end = end;
1793         new_entry->cred = NULL;
1794
1795         new_entry->eflags = protoeflags;
1796         new_entry->object.vm_object = object;
1797         new_entry->offset = offset;
1798
1799         new_entry->inheritance = inheritance;
1800         new_entry->protection = prot;
1801         new_entry->max_protection = max;
1802         new_entry->wired_count = 0;
1803         new_entry->wiring_thread = NULL;
1804         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805         new_entry->next_read = start;
1806
1807         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809         new_entry->cred = cred;
1810
1811         /*
1812          * Insert the new entry into the list
1813          */
1814         vm_map_entry_link(map, new_entry);
1815         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816                 map->size += new_entry->end - new_entry->start;
1817
1818         /*
1819          * Try to coalesce the new entry with both the previous and next
1820          * entries in the list.  Previously, we only attempted to coalesce
1821          * with the previous entry when object is NULL.  Here, we handle the
1822          * other cases, which are less common.
1823          */
1824         vm_map_try_merge_entries(map, prev_entry, new_entry);
1825         vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829                     end - start, cow & MAP_PREFAULT_PARTIAL);
1830         }
1831
1832         return (KERN_SUCCESS);
1833 }
1834
1835 /*
1836  *      vm_map_findspace:
1837  *
1838  *      Find the first fit (lowest VM address) for "length" free bytes
1839  *      beginning at address >= start in the given map.
1840  *
1841  *      In a vm_map_entry, "max_free" is the maximum amount of
1842  *      contiguous free space between an entry in its subtree and a
1843  *      neighbor of that entry.  This allows finding a free region in
1844  *      one path down the tree, so O(log n) amortized with splay
1845  *      trees.
1846  *
1847  *      The map must be locked, and leaves it so.
1848  *
1849  *      Returns: starting address if sufficient space,
1850  *               vm_map_max(map)-length+1 if insufficient space.
1851  */
1852 vm_offset_t
1853 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1854 {
1855         vm_map_entry_t header, llist, rlist, root, y;
1856         vm_size_t left_length, max_free_left, max_free_right;
1857         vm_offset_t gap_end;
1858
1859         VM_MAP_ASSERT_LOCKED(map);
1860
1861         /*
1862          * Request must fit within min/max VM address and must avoid
1863          * address wrap.
1864          */
1865         start = MAX(start, vm_map_min(map));
1866         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1867                 return (vm_map_max(map) - length + 1);
1868
1869         /* Empty tree means wide open address space. */
1870         if (map->root == NULL)
1871                 return (start);
1872
1873         /*
1874          * After splay_split, if start is within an entry, push it to the start
1875          * of the following gap.  If rlist is at the end of the gap containing
1876          * start, save the end of that gap in gap_end to see if the gap is big
1877          * enough; otherwise set gap_end to start skip gap-checking and move
1878          * directly to a search of the right subtree.
1879          */
1880         header = &map->header;
1881         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1882         gap_end = rlist->start;
1883         if (root != NULL) {
1884                 start = root->end;
1885                 if (root->right != rlist)
1886                         gap_end = start;
1887                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1888                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1889         } else if (rlist != header) {
1890                 root = rlist;
1891                 rlist = root->left;
1892                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1893                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1894         } else {
1895                 root = llist;
1896                 llist = root->right;
1897                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1898                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1899         }
1900         root->max_free = vm_size_max(max_free_left, max_free_right);
1901         map->root = root;
1902         VM_MAP_ASSERT_CONSISTENT(map);
1903         if (length <= gap_end - start)
1904                 return (start);
1905
1906         /* With max_free, can immediately tell if no solution. */
1907         if (root->right == header || length > root->right->max_free)
1908                 return (vm_map_max(map) - length + 1);
1909
1910         /*
1911          * Splay for the least large-enough gap in the right subtree.
1912          */
1913         llist = rlist = header;
1914         for (left_length = 0;;
1915             left_length = vm_map_entry_max_free_left(root, llist)) {
1916                 if (length <= left_length)
1917                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1918                             length <= vm_map_entry_max_free_left(y, llist));
1919                 else
1920                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1921                             length > vm_map_entry_max_free_left(y, root));
1922                 if (root == NULL)
1923                         break;
1924         }
1925         root = llist;
1926         llist = root->right;
1927         max_free_left = vm_map_splay_merge_left(header, root, llist);
1928         if (rlist == header) {
1929                 root->max_free = vm_size_max(max_free_left,
1930                     vm_map_splay_merge_succ(header, root, rlist));
1931         } else {
1932                 y = rlist;
1933                 rlist = y->left;
1934                 y->max_free = vm_size_max(
1935                     vm_map_splay_merge_pred(root, y, root),
1936                     vm_map_splay_merge_right(header, y, rlist));
1937                 root->max_free = vm_size_max(max_free_left, y->max_free);
1938         }
1939         map->root = root;
1940         VM_MAP_ASSERT_CONSISTENT(map);
1941         return (root->end);
1942 }
1943
1944 int
1945 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1946     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1947     vm_prot_t max, int cow)
1948 {
1949         vm_offset_t end;
1950         int result;
1951
1952         end = start + length;
1953         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1954             object == NULL,
1955             ("vm_map_fixed: non-NULL backing object for stack"));
1956         vm_map_lock(map);
1957         VM_MAP_RANGE_CHECK(map, start, end);
1958         if ((cow & MAP_CHECK_EXCL) == 0) {
1959                 result = vm_map_delete(map, start, end);
1960                 if (result != KERN_SUCCESS)
1961                         goto out;
1962         }
1963         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1964                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1965                     prot, max, cow);
1966         } else {
1967                 result = vm_map_insert(map, object, offset, start, end,
1968                     prot, max, cow);
1969         }
1970 out:
1971         vm_map_unlock(map);
1972         return (result);
1973 }
1974
1975 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1976 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1977
1978 static int cluster_anon = 1;
1979 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1980     &cluster_anon, 0,
1981     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1982
1983 static bool
1984 clustering_anon_allowed(vm_offset_t addr)
1985 {
1986
1987         switch (cluster_anon) {
1988         case 0:
1989                 return (false);
1990         case 1:
1991                 return (addr == 0);
1992         case 2:
1993         default:
1994                 return (true);
1995         }
1996 }
1997
1998 static long aslr_restarts;
1999 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2000     &aslr_restarts, 0,
2001     "Number of aslr failures");
2002
2003 /*
2004  * Searches for the specified amount of free space in the given map with the
2005  * specified alignment.  Performs an address-ordered, first-fit search from
2006  * the given address "*addr", with an optional upper bound "max_addr".  If the
2007  * parameter "alignment" is zero, then the alignment is computed from the
2008  * given (object, offset) pair so as to enable the greatest possible use of
2009  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2010  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2011  *
2012  * The map must be locked.  Initially, there must be at least "length" bytes
2013  * of free space at the given address.
2014  */
2015 static int
2016 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2017     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2018     vm_offset_t alignment)
2019 {
2020         vm_offset_t aligned_addr, free_addr;
2021
2022         VM_MAP_ASSERT_LOCKED(map);
2023         free_addr = *addr;
2024         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2025             ("caller failed to provide space %#jx at address %p",
2026              (uintmax_t)length, (void *)free_addr));
2027         for (;;) {
2028                 /*
2029                  * At the start of every iteration, the free space at address
2030                  * "*addr" is at least "length" bytes.
2031                  */
2032                 if (alignment == 0)
2033                         pmap_align_superpage(object, offset, addr, length);
2034                 else
2035                         *addr = roundup2(*addr, alignment);
2036                 aligned_addr = *addr;
2037                 if (aligned_addr == free_addr) {
2038                         /*
2039                          * Alignment did not change "*addr", so "*addr" must
2040                          * still provide sufficient free space.
2041                          */
2042                         return (KERN_SUCCESS);
2043                 }
2044
2045                 /*
2046                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2047                  * be a valid address, in which case vm_map_findspace() cannot
2048                  * be relied upon to fail.
2049                  */
2050                 if (aligned_addr < free_addr)
2051                         return (KERN_NO_SPACE);
2052                 *addr = vm_map_findspace(map, aligned_addr, length);
2053                 if (*addr + length > vm_map_max(map) ||
2054                     (max_addr != 0 && *addr + length > max_addr))
2055                         return (KERN_NO_SPACE);
2056                 free_addr = *addr;
2057                 if (free_addr == aligned_addr) {
2058                         /*
2059                          * If a successful call to vm_map_findspace() did not
2060                          * change "*addr", then "*addr" must still be aligned
2061                          * and provide sufficient free space.
2062                          */
2063                         return (KERN_SUCCESS);
2064                 }
2065         }
2066 }
2067
2068 int
2069 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2070     vm_offset_t max_addr, vm_offset_t alignment)
2071 {
2072         /* XXXKIB ASLR eh ? */
2073         *addr = vm_map_findspace(map, *addr, length);
2074         if (*addr + length > vm_map_max(map) ||
2075             (max_addr != 0 && *addr + length > max_addr))
2076                 return (KERN_NO_SPACE);
2077         return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2078             alignment));
2079 }
2080
2081 /*
2082  *      vm_map_find finds an unallocated region in the target address
2083  *      map with the given length.  The search is defined to be
2084  *      first-fit from the specified address; the region found is
2085  *      returned in the same parameter.
2086  *
2087  *      If object is non-NULL, ref count must be bumped by caller
2088  *      prior to making call to account for the new entry.
2089  */
2090 int
2091 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2092             vm_offset_t *addr,  /* IN/OUT */
2093             vm_size_t length, vm_offset_t max_addr, int find_space,
2094             vm_prot_t prot, vm_prot_t max, int cow)
2095 {
2096         vm_offset_t alignment, curr_min_addr, min_addr;
2097         int gap, pidx, rv, try;
2098         bool cluster, en_aslr, update_anon;
2099
2100         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2101             object == NULL,
2102             ("vm_map_find: non-NULL backing object for stack"));
2103         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2104             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2105         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2106             (object->flags & OBJ_COLORED) == 0))
2107                 find_space = VMFS_ANY_SPACE;
2108         if (find_space >> 8 != 0) {
2109                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2110                 alignment = (vm_offset_t)1 << (find_space >> 8);
2111         } else
2112                 alignment = 0;
2113         en_aslr = (map->flags & MAP_ASLR) != 0;
2114         update_anon = cluster = clustering_anon_allowed(*addr) &&
2115             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2116             find_space != VMFS_NO_SPACE && object == NULL &&
2117             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2118             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2119         curr_min_addr = min_addr = *addr;
2120         if (en_aslr && min_addr == 0 && !cluster &&
2121             find_space != VMFS_NO_SPACE &&
2122             (map->flags & MAP_ASLR_IGNSTART) != 0)
2123                 curr_min_addr = min_addr = vm_map_min(map);
2124         try = 0;
2125         vm_map_lock(map);
2126         if (cluster) {
2127                 curr_min_addr = map->anon_loc;
2128                 if (curr_min_addr == 0)
2129                         cluster = false;
2130         }
2131         if (find_space != VMFS_NO_SPACE) {
2132                 KASSERT(find_space == VMFS_ANY_SPACE ||
2133                     find_space == VMFS_OPTIMAL_SPACE ||
2134                     find_space == VMFS_SUPER_SPACE ||
2135                     alignment != 0, ("unexpected VMFS flag"));
2136 again:
2137                 /*
2138                  * When creating an anonymous mapping, try clustering
2139                  * with an existing anonymous mapping first.
2140                  *
2141                  * We make up to two attempts to find address space
2142                  * for a given find_space value. The first attempt may
2143                  * apply randomization or may cluster with an existing
2144                  * anonymous mapping. If this first attempt fails,
2145                  * perform a first-fit search of the available address
2146                  * space.
2147                  *
2148                  * If all tries failed, and find_space is
2149                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2150                  * Again enable clustering and randomization.
2151                  */
2152                 try++;
2153                 MPASS(try <= 2);
2154
2155                 if (try == 2) {
2156                         /*
2157                          * Second try: we failed either to find a
2158                          * suitable region for randomizing the
2159                          * allocation, or to cluster with an existing
2160                          * mapping.  Retry with free run.
2161                          */
2162                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2163                             vm_map_min(map) : min_addr;
2164                         atomic_add_long(&aslr_restarts, 1);
2165                 }
2166
2167                 if (try == 1 && en_aslr && !cluster) {
2168                         /*
2169                          * Find space for allocation, including
2170                          * gap needed for later randomization.
2171                          */
2172                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2173                             (find_space == VMFS_SUPER_SPACE || find_space ==
2174                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2175                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2176                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2177                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2178                         *addr = vm_map_findspace(map, curr_min_addr,
2179                             length + gap * pagesizes[pidx]);
2180                         if (*addr + length + gap * pagesizes[pidx] >
2181                             vm_map_max(map))
2182                                 goto again;
2183                         /* And randomize the start address. */
2184                         *addr += (arc4random() % gap) * pagesizes[pidx];
2185                         if (max_addr != 0 && *addr + length > max_addr)
2186                                 goto again;
2187                 } else {
2188                         *addr = vm_map_findspace(map, curr_min_addr, length);
2189                         if (*addr + length > vm_map_max(map) ||
2190                             (max_addr != 0 && *addr + length > max_addr)) {
2191                                 if (cluster) {
2192                                         cluster = false;
2193                                         MPASS(try == 1);
2194                                         goto again;
2195                                 }
2196                                 rv = KERN_NO_SPACE;
2197                                 goto done;
2198                         }
2199                 }
2200
2201                 if (find_space != VMFS_ANY_SPACE &&
2202                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2203                     max_addr, alignment)) != KERN_SUCCESS) {
2204                         if (find_space == VMFS_OPTIMAL_SPACE) {
2205                                 find_space = VMFS_ANY_SPACE;
2206                                 curr_min_addr = min_addr;
2207                                 cluster = update_anon;
2208                                 try = 0;
2209                                 goto again;
2210                         }
2211                         goto done;
2212                 }
2213         } else if ((cow & MAP_REMAP) != 0) {
2214                 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2215                         rv = KERN_INVALID_ADDRESS;
2216                         goto done;
2217                 }
2218                 rv = vm_map_delete(map, *addr, *addr + length);
2219                 if (rv != KERN_SUCCESS)
2220                         goto done;
2221         }
2222         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2223                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2224                     max, cow);
2225         } else {
2226                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2227                     prot, max, cow);
2228         }
2229         if (rv == KERN_SUCCESS && update_anon)
2230                 map->anon_loc = *addr + length;
2231 done:
2232         vm_map_unlock(map);
2233         return (rv);
2234 }
2235
2236 /*
2237  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2238  *      additional parameter (min_addr) and treats the given address
2239  *      (*addr) differently.  Specifically, it treats *addr as a hint
2240  *      and not as the minimum address where the mapping is created.
2241  *
2242  *      This function works in two phases.  First, it tries to
2243  *      allocate above the hint.  If that fails and the hint is
2244  *      greater than min_addr, it performs a second pass, replacing
2245  *      the hint with min_addr as the minimum address for the
2246  *      allocation.
2247  */
2248 int
2249 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2250     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2251     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2252     int cow)
2253 {
2254         vm_offset_t hint;
2255         int rv;
2256
2257         hint = *addr;
2258         for (;;) {
2259                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2260                     find_space, prot, max, cow);
2261                 if (rv == KERN_SUCCESS || min_addr >= hint)
2262                         return (rv);
2263                 *addr = hint = min_addr;
2264         }
2265 }
2266
2267 /*
2268  * A map entry with any of the following flags set must not be merged with
2269  * another entry.
2270  */
2271 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2272             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2273
2274 static bool
2275 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2276 {
2277
2278         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2279             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2280             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2281             prev, entry));
2282         return (prev->end == entry->start &&
2283             prev->object.vm_object == entry->object.vm_object &&
2284             (prev->object.vm_object == NULL ||
2285             prev->offset + (prev->end - prev->start) == entry->offset) &&
2286             prev->eflags == entry->eflags &&
2287             prev->protection == entry->protection &&
2288             prev->max_protection == entry->max_protection &&
2289             prev->inheritance == entry->inheritance &&
2290             prev->wired_count == entry->wired_count &&
2291             prev->cred == entry->cred);
2292 }
2293
2294 static void
2295 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2296 {
2297
2298         /*
2299          * If the backing object is a vnode object, vm_object_deallocate()
2300          * calls vrele().  However, vrele() does not lock the vnode because
2301          * the vnode has additional references.  Thus, the map lock can be
2302          * kept without causing a lock-order reversal with the vnode lock.
2303          *
2304          * Since we count the number of virtual page mappings in
2305          * object->un_pager.vnp.writemappings, the writemappings value
2306          * should not be adjusted when the entry is disposed of.
2307          */
2308         if (entry->object.vm_object != NULL)
2309                 vm_object_deallocate(entry->object.vm_object);
2310         if (entry->cred != NULL)
2311                 crfree(entry->cred);
2312         vm_map_entry_dispose(map, entry);
2313 }
2314
2315 /*
2316  *      vm_map_try_merge_entries:
2317  *
2318  *      Compare the given map entry to its predecessor, and merge its precessor
2319  *      into it if possible.  The entry remains valid, and may be extended.
2320  *      The predecessor may be deleted.
2321  *
2322  *      The map must be locked.
2323  */
2324 void
2325 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2326     vm_map_entry_t entry)
2327 {
2328
2329         VM_MAP_ASSERT_LOCKED(map);
2330         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2331             vm_map_mergeable_neighbors(prev_entry, entry)) {
2332                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2333                 vm_map_merged_neighbor_dispose(map, prev_entry);
2334         }
2335 }
2336
2337 /*
2338  *      vm_map_entry_back:
2339  *
2340  *      Allocate an object to back a map entry.
2341  */
2342 static inline void
2343 vm_map_entry_back(vm_map_entry_t entry)
2344 {
2345         vm_object_t object;
2346
2347         KASSERT(entry->object.vm_object == NULL,
2348             ("map entry %p has backing object", entry));
2349         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2350             ("map entry %p is a submap", entry));
2351         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2352             entry->cred, entry->end - entry->start);
2353         entry->object.vm_object = object;
2354         entry->offset = 0;
2355         entry->cred = NULL;
2356 }
2357
2358 /*
2359  *      vm_map_entry_charge_object
2360  *
2361  *      If there is no object backing this entry, create one.  Otherwise, if
2362  *      the entry has cred, give it to the backing object.
2363  */
2364 static inline void
2365 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2366 {
2367
2368         VM_MAP_ASSERT_LOCKED(map);
2369         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2370             ("map entry %p is a submap", entry));
2371         if (entry->object.vm_object == NULL && !map->system_map &&
2372             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2373                 vm_map_entry_back(entry);
2374         else if (entry->object.vm_object != NULL &&
2375             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2376             entry->cred != NULL) {
2377                 VM_OBJECT_WLOCK(entry->object.vm_object);
2378                 KASSERT(entry->object.vm_object->cred == NULL,
2379                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2380                 entry->object.vm_object->cred = entry->cred;
2381                 entry->object.vm_object->charge = entry->end - entry->start;
2382                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2383                 entry->cred = NULL;
2384         }
2385 }
2386
2387 /*
2388  *      vm_map_entry_clone
2389  *
2390  *      Create a duplicate map entry for clipping.
2391  */
2392 static vm_map_entry_t
2393 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2394 {
2395         vm_map_entry_t new_entry;
2396
2397         VM_MAP_ASSERT_LOCKED(map);
2398
2399         /*
2400          * Create a backing object now, if none exists, so that more individual
2401          * objects won't be created after the map entry is split.
2402          */
2403         vm_map_entry_charge_object(map, entry);
2404
2405         /* Clone the entry. */
2406         new_entry = vm_map_entry_create(map);
2407         *new_entry = *entry;
2408         if (new_entry->cred != NULL)
2409                 crhold(entry->cred);
2410         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2411                 vm_object_reference(new_entry->object.vm_object);
2412                 vm_map_entry_set_vnode_text(new_entry, true);
2413                 /*
2414                  * The object->un_pager.vnp.writemappings for the object of
2415                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2416                  * virtual pages are re-distributed among the clipped entries,
2417                  * so the sum is left the same.
2418                  */
2419         }
2420         return (new_entry);
2421 }
2422
2423 /*
2424  *      vm_map_clip_start:      [ internal use only ]
2425  *
2426  *      Asserts that the given entry begins at or after
2427  *      the specified address; if necessary,
2428  *      it splits the entry into two.
2429  */
2430 static int
2431 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2432 {
2433         vm_map_entry_t new_entry;
2434         int bdry_idx;
2435
2436         if (!map->system_map)
2437                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2438                     "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2439                     (uintmax_t)startaddr);
2440
2441         if (startaddr <= entry->start)
2442                 return (KERN_SUCCESS);
2443
2444         VM_MAP_ASSERT_LOCKED(map);
2445         KASSERT(entry->end > startaddr && entry->start < startaddr,
2446             ("%s: invalid clip of entry %p", __func__, entry));
2447
2448         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2449             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2450         if (bdry_idx != 0) {
2451                 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2452                         return (KERN_INVALID_ARGUMENT);
2453         }
2454
2455         new_entry = vm_map_entry_clone(map, entry);
2456
2457         /*
2458          * Split off the front portion.  Insert the new entry BEFORE this one,
2459          * so that this entry has the specified starting address.
2460          */
2461         new_entry->end = startaddr;
2462         vm_map_entry_link(map, new_entry);
2463         return (KERN_SUCCESS);
2464 }
2465
2466 /*
2467  *      vm_map_lookup_clip_start:
2468  *
2469  *      Find the entry at or just after 'start', and clip it if 'start' is in
2470  *      the interior of the entry.  Return entry after 'start', and in
2471  *      prev_entry set the entry before 'start'.
2472  */
2473 static int
2474 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2475     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2476 {
2477         vm_map_entry_t entry;
2478         int rv;
2479
2480         if (!map->system_map)
2481                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2482                     "%s: map %p start 0x%jx prev %p", __func__, map,
2483                     (uintmax_t)start, prev_entry);
2484
2485         if (vm_map_lookup_entry(map, start, prev_entry)) {
2486                 entry = *prev_entry;
2487                 rv = vm_map_clip_start(map, entry, start);
2488                 if (rv != KERN_SUCCESS)
2489                         return (rv);
2490                 *prev_entry = vm_map_entry_pred(entry);
2491         } else
2492                 entry = vm_map_entry_succ(*prev_entry);
2493         *res_entry = entry;
2494         return (KERN_SUCCESS);
2495 }
2496
2497 /*
2498  *      vm_map_clip_end:        [ internal use only ]
2499  *
2500  *      Asserts that the given entry ends at or before
2501  *      the specified address; if necessary,
2502  *      it splits the entry into two.
2503  */
2504 static int
2505 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2506 {
2507         vm_map_entry_t new_entry;
2508         int bdry_idx;
2509
2510         if (!map->system_map)
2511                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2512                     "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2513                     (uintmax_t)endaddr);
2514
2515         if (endaddr >= entry->end)
2516                 return (KERN_SUCCESS);
2517
2518         VM_MAP_ASSERT_LOCKED(map);
2519         KASSERT(entry->start < endaddr && entry->end > endaddr,
2520             ("%s: invalid clip of entry %p", __func__, entry));
2521
2522         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2523             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2524         if (bdry_idx != 0) {
2525                 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2526                         return (KERN_INVALID_ARGUMENT);
2527         }
2528
2529         new_entry = vm_map_entry_clone(map, entry);
2530
2531         /*
2532          * Split off the back portion.  Insert the new entry AFTER this one,
2533          * so that this entry has the specified ending address.
2534          */
2535         new_entry->start = endaddr;
2536         vm_map_entry_link(map, new_entry);
2537
2538         return (KERN_SUCCESS);
2539 }
2540
2541 /*
2542  *      vm_map_submap:          [ kernel use only ]
2543  *
2544  *      Mark the given range as handled by a subordinate map.
2545  *
2546  *      This range must have been created with vm_map_find,
2547  *      and no other operations may have been performed on this
2548  *      range prior to calling vm_map_submap.
2549  *
2550  *      Only a limited number of operations can be performed
2551  *      within this rage after calling vm_map_submap:
2552  *              vm_fault
2553  *      [Don't try vm_map_copy!]
2554  *
2555  *      To remove a submapping, one must first remove the
2556  *      range from the superior map, and then destroy the
2557  *      submap (if desired).  [Better yet, don't try it.]
2558  */
2559 int
2560 vm_map_submap(
2561         vm_map_t map,
2562         vm_offset_t start,
2563         vm_offset_t end,
2564         vm_map_t submap)
2565 {
2566         vm_map_entry_t entry;
2567         int result;
2568
2569         result = KERN_INVALID_ARGUMENT;
2570
2571         vm_map_lock(submap);
2572         submap->flags |= MAP_IS_SUB_MAP;
2573         vm_map_unlock(submap);
2574
2575         vm_map_lock(map);
2576         VM_MAP_RANGE_CHECK(map, start, end);
2577         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2578             (entry->eflags & MAP_ENTRY_COW) == 0 &&
2579             entry->object.vm_object == NULL) {
2580                 result = vm_map_clip_start(map, entry, start);
2581                 if (result != KERN_SUCCESS)
2582                         goto unlock;
2583                 result = vm_map_clip_end(map, entry, end);
2584                 if (result != KERN_SUCCESS)
2585                         goto unlock;
2586                 entry->object.sub_map = submap;
2587                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2588                 result = KERN_SUCCESS;
2589         }
2590 unlock:
2591         vm_map_unlock(map);
2592
2593         if (result != KERN_SUCCESS) {
2594                 vm_map_lock(submap);
2595                 submap->flags &= ~MAP_IS_SUB_MAP;
2596                 vm_map_unlock(submap);
2597         }
2598         return (result);
2599 }
2600
2601 /*
2602  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2603  */
2604 #define MAX_INIT_PT     96
2605
2606 /*
2607  *      vm_map_pmap_enter:
2608  *
2609  *      Preload the specified map's pmap with mappings to the specified
2610  *      object's memory-resident pages.  No further physical pages are
2611  *      allocated, and no further virtual pages are retrieved from secondary
2612  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2613  *      limited number of page mappings are created at the low-end of the
2614  *      specified address range.  (For this purpose, a superpage mapping
2615  *      counts as one page mapping.)  Otherwise, all resident pages within
2616  *      the specified address range are mapped.
2617  */
2618 static void
2619 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2620     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2621 {
2622         vm_offset_t start;
2623         vm_page_t p, p_start;
2624         vm_pindex_t mask, psize, threshold, tmpidx;
2625
2626         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2627                 return;
2628         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2629                 VM_OBJECT_WLOCK(object);
2630                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2631                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2632                             size);
2633                         VM_OBJECT_WUNLOCK(object);
2634                         return;
2635                 }
2636                 VM_OBJECT_LOCK_DOWNGRADE(object);
2637         } else
2638                 VM_OBJECT_RLOCK(object);
2639
2640         psize = atop(size);
2641         if (psize + pindex > object->size) {
2642                 if (pindex >= object->size) {
2643                         VM_OBJECT_RUNLOCK(object);
2644                         return;
2645                 }
2646                 psize = object->size - pindex;
2647         }
2648
2649         start = 0;
2650         p_start = NULL;
2651         threshold = MAX_INIT_PT;
2652
2653         p = vm_page_find_least(object, pindex);
2654         /*
2655          * Assert: the variable p is either (1) the page with the
2656          * least pindex greater than or equal to the parameter pindex
2657          * or (2) NULL.
2658          */
2659         for (;
2660              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2661              p = TAILQ_NEXT(p, listq)) {
2662                 /*
2663                  * don't allow an madvise to blow away our really
2664                  * free pages allocating pv entries.
2665                  */
2666                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2667                     vm_page_count_severe()) ||
2668                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2669                     tmpidx >= threshold)) {
2670                         psize = tmpidx;
2671                         break;
2672                 }
2673                 if (vm_page_all_valid(p)) {
2674                         if (p_start == NULL) {
2675                                 start = addr + ptoa(tmpidx);
2676                                 p_start = p;
2677                         }
2678                         /* Jump ahead if a superpage mapping is possible. */
2679                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2680                             (pagesizes[p->psind] - 1)) == 0) {
2681                                 mask = atop(pagesizes[p->psind]) - 1;
2682                                 if (tmpidx + mask < psize &&
2683                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2684                                         p += mask;
2685                                         threshold += mask;
2686                                 }
2687                         }
2688                 } else if (p_start != NULL) {
2689                         pmap_enter_object(map->pmap, start, addr +
2690                             ptoa(tmpidx), p_start, prot);
2691                         p_start = NULL;
2692                 }
2693         }
2694         if (p_start != NULL)
2695                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2696                     p_start, prot);
2697         VM_OBJECT_RUNLOCK(object);
2698 }
2699
2700 /*
2701  *      vm_map_protect:
2702  *
2703  *      Sets the protection and/or the maximum protection of the
2704  *      specified address region in the target map.
2705  */
2706 int
2707 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2708     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2709 {
2710         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2711         vm_object_t obj;
2712         struct ucred *cred;
2713         vm_prot_t old_prot;
2714         int rv;
2715
2716         if (start == end)
2717                 return (KERN_SUCCESS);
2718
2719         if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
2720             (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
2721             (new_prot & new_maxprot) != new_prot)
2722                 return (KERN_OUT_OF_BOUNDS);
2723
2724 again:
2725         in_tran = NULL;
2726         vm_map_lock(map);
2727
2728         if ((map->flags & MAP_WXORX) != 0 &&
2729             (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2730             (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2731             VM_PROT_EXECUTE)) {
2732                 vm_map_unlock(map);
2733                 return (KERN_PROTECTION_FAILURE);
2734         }
2735
2736         /*
2737          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2738          * need to fault pages into the map and will drop the map lock while
2739          * doing so, and the VM object may end up in an inconsistent state if we
2740          * update the protection on the map entry in between faults.
2741          */
2742         vm_map_wait_busy(map);
2743
2744         VM_MAP_RANGE_CHECK(map, start, end);
2745
2746         if (!vm_map_lookup_entry(map, start, &first_entry))
2747                 first_entry = vm_map_entry_succ(first_entry);
2748
2749         /*
2750          * Make a first pass to check for protection violations.
2751          */
2752         for (entry = first_entry; entry->start < end;
2753             entry = vm_map_entry_succ(entry)) {
2754                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2755                         continue;
2756                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2757                         vm_map_unlock(map);
2758                         return (KERN_INVALID_ARGUMENT);
2759                 }
2760                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2761                         new_prot = entry->protection;
2762                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2763                         new_maxprot = entry->max_protection;
2764                 if ((new_prot & entry->max_protection) != new_prot ||
2765                     (new_maxprot & entry->max_protection) != new_maxprot) {
2766                         vm_map_unlock(map);
2767                         return (KERN_PROTECTION_FAILURE);
2768                 }
2769                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2770                         in_tran = entry;
2771         }
2772
2773         /*
2774          * Postpone the operation until all in-transition map entries have
2775          * stabilized.  An in-transition entry might already have its pages
2776          * wired and wired_count incremented, but not yet have its
2777          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2778          * vm_fault_copy_entry() in the final loop below.
2779          */
2780         if (in_tran != NULL) {
2781                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2782                 vm_map_unlock_and_wait(map, 0);
2783                 goto again;
2784         }
2785
2786         /*
2787          * Before changing the protections, try to reserve swap space for any
2788          * private (i.e., copy-on-write) mappings that are transitioning from
2789          * read-only to read/write access.  If a reservation fails, break out
2790          * of this loop early and let the next loop simplify the entries, since
2791          * some may now be mergeable.
2792          */
2793         rv = vm_map_clip_start(map, first_entry, start);
2794         if (rv != KERN_SUCCESS) {
2795                 vm_map_unlock(map);
2796                 return (rv);
2797         }
2798         for (entry = first_entry; entry->start < end;
2799             entry = vm_map_entry_succ(entry)) {
2800                 rv = vm_map_clip_end(map, entry, end);
2801                 if (rv != KERN_SUCCESS) {
2802                         vm_map_unlock(map);
2803                         return (rv);
2804                 }
2805
2806                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2807                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2808                     ENTRY_CHARGED(entry) ||
2809                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2810                         continue;
2811
2812                 cred = curthread->td_ucred;
2813                 obj = entry->object.vm_object;
2814
2815                 if (obj == NULL ||
2816                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2817                         if (!swap_reserve(entry->end - entry->start)) {
2818                                 rv = KERN_RESOURCE_SHORTAGE;
2819                                 end = entry->end;
2820                                 break;
2821                         }
2822                         crhold(cred);
2823                         entry->cred = cred;
2824                         continue;
2825                 }
2826
2827                 VM_OBJECT_WLOCK(obj);
2828                 if ((obj->flags & OBJ_SWAP) == 0) {
2829                         VM_OBJECT_WUNLOCK(obj);
2830                         continue;
2831                 }
2832
2833                 /*
2834                  * Charge for the whole object allocation now, since
2835                  * we cannot distinguish between non-charged and
2836                  * charged clipped mapping of the same object later.
2837                  */
2838                 KASSERT(obj->charge == 0,
2839                     ("vm_map_protect: object %p overcharged (entry %p)",
2840                     obj, entry));
2841                 if (!swap_reserve(ptoa(obj->size))) {
2842                         VM_OBJECT_WUNLOCK(obj);
2843                         rv = KERN_RESOURCE_SHORTAGE;
2844                         end = entry->end;
2845                         break;
2846                 }
2847
2848                 crhold(cred);
2849                 obj->cred = cred;
2850                 obj->charge = ptoa(obj->size);
2851                 VM_OBJECT_WUNLOCK(obj);
2852         }
2853
2854         /*
2855          * If enough swap space was available, go back and fix up protections.
2856          * Otherwise, just simplify entries, since some may have been modified.
2857          * [Note that clipping is not necessary the second time.]
2858          */
2859         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2860             entry->start < end;
2861             vm_map_try_merge_entries(map, prev_entry, entry),
2862             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2863                 if (rv != KERN_SUCCESS ||
2864                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2865                         continue;
2866
2867                 old_prot = entry->protection;
2868
2869                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2870                         entry->max_protection = new_maxprot;
2871                         entry->protection = new_maxprot & old_prot;
2872                 }
2873                 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2874                         entry->protection = new_prot;
2875
2876                 /*
2877                  * For user wired map entries, the normal lazy evaluation of
2878                  * write access upgrades through soft page faults is
2879                  * undesirable.  Instead, immediately copy any pages that are
2880                  * copy-on-write and enable write access in the physical map.
2881                  */
2882                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2883                     (entry->protection & VM_PROT_WRITE) != 0 &&
2884                     (old_prot & VM_PROT_WRITE) == 0)
2885                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2886
2887                 /*
2888                  * When restricting access, update the physical map.  Worry
2889                  * about copy-on-write here.
2890                  */
2891                 if ((old_prot & ~entry->protection) != 0) {
2892 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2893                                                         VM_PROT_ALL)
2894                         pmap_protect(map->pmap, entry->start,
2895                             entry->end,
2896                             entry->protection & MASK(entry));
2897 #undef  MASK
2898                 }
2899         }
2900         vm_map_try_merge_entries(map, prev_entry, entry);
2901         vm_map_unlock(map);
2902         return (rv);
2903 }
2904
2905 /*
2906  *      vm_map_madvise:
2907  *
2908  *      This routine traverses a processes map handling the madvise
2909  *      system call.  Advisories are classified as either those effecting
2910  *      the vm_map_entry structure, or those effecting the underlying
2911  *      objects.
2912  */
2913 int
2914 vm_map_madvise(
2915         vm_map_t map,
2916         vm_offset_t start,
2917         vm_offset_t end,
2918         int behav)
2919 {
2920         vm_map_entry_t entry, prev_entry;
2921         int rv;
2922         bool modify_map;
2923
2924         /*
2925          * Some madvise calls directly modify the vm_map_entry, in which case
2926          * we need to use an exclusive lock on the map and we need to perform
2927          * various clipping operations.  Otherwise we only need a read-lock
2928          * on the map.
2929          */
2930         switch(behav) {
2931         case MADV_NORMAL:
2932         case MADV_SEQUENTIAL:
2933         case MADV_RANDOM:
2934         case MADV_NOSYNC:
2935         case MADV_AUTOSYNC:
2936         case MADV_NOCORE:
2937         case MADV_CORE:
2938                 if (start == end)
2939                         return (0);
2940                 modify_map = true;
2941                 vm_map_lock(map);
2942                 break;
2943         case MADV_WILLNEED:
2944         case MADV_DONTNEED:
2945         case MADV_FREE:
2946                 if (start == end)
2947                         return (0);
2948                 modify_map = false;
2949                 vm_map_lock_read(map);
2950                 break;
2951         default:
2952                 return (EINVAL);
2953         }
2954
2955         /*
2956          * Locate starting entry and clip if necessary.
2957          */
2958         VM_MAP_RANGE_CHECK(map, start, end);
2959
2960         if (modify_map) {
2961                 /*
2962                  * madvise behaviors that are implemented in the vm_map_entry.
2963                  *
2964                  * We clip the vm_map_entry so that behavioral changes are
2965                  * limited to the specified address range.
2966                  */
2967                 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2968                 if (rv != KERN_SUCCESS) {
2969                         vm_map_unlock(map);
2970                         return (vm_mmap_to_errno(rv));
2971                 }
2972
2973                 for (; entry->start < end; prev_entry = entry,
2974                     entry = vm_map_entry_succ(entry)) {
2975                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2976                                 continue;
2977
2978                         rv = vm_map_clip_end(map, entry, end);
2979                         if (rv != KERN_SUCCESS) {
2980                                 vm_map_unlock(map);
2981                                 return (vm_mmap_to_errno(rv));
2982                         }
2983
2984                         switch (behav) {
2985                         case MADV_NORMAL:
2986                                 vm_map_entry_set_behavior(entry,
2987                                     MAP_ENTRY_BEHAV_NORMAL);
2988                                 break;
2989                         case MADV_SEQUENTIAL:
2990                                 vm_map_entry_set_behavior(entry,
2991                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2992                                 break;
2993                         case MADV_RANDOM:
2994                                 vm_map_entry_set_behavior(entry,
2995                                     MAP_ENTRY_BEHAV_RANDOM);
2996                                 break;
2997                         case MADV_NOSYNC:
2998                                 entry->eflags |= MAP_ENTRY_NOSYNC;
2999                                 break;
3000                         case MADV_AUTOSYNC:
3001                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3002                                 break;
3003                         case MADV_NOCORE:
3004                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3005                                 break;
3006                         case MADV_CORE:
3007                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3008                                 break;
3009                         default:
3010                                 break;
3011                         }
3012                         vm_map_try_merge_entries(map, prev_entry, entry);
3013                 }
3014                 vm_map_try_merge_entries(map, prev_entry, entry);
3015                 vm_map_unlock(map);
3016         } else {
3017                 vm_pindex_t pstart, pend;
3018
3019                 /*
3020                  * madvise behaviors that are implemented in the underlying
3021                  * vm_object.
3022                  *
3023                  * Since we don't clip the vm_map_entry, we have to clip
3024                  * the vm_object pindex and count.
3025                  */
3026                 if (!vm_map_lookup_entry(map, start, &entry))
3027                         entry = vm_map_entry_succ(entry);
3028                 for (; entry->start < end;
3029                     entry = vm_map_entry_succ(entry)) {
3030                         vm_offset_t useEnd, useStart;
3031
3032                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3033                                 continue;
3034
3035                         /*
3036                          * MADV_FREE would otherwise rewind time to
3037                          * the creation of the shadow object.  Because
3038                          * we hold the VM map read-locked, neither the
3039                          * entry's object nor the presence of a
3040                          * backing object can change.
3041                          */
3042                         if (behav == MADV_FREE &&
3043                             entry->object.vm_object != NULL &&
3044                             entry->object.vm_object->backing_object != NULL)
3045                                 continue;
3046
3047                         pstart = OFF_TO_IDX(entry->offset);
3048                         pend = pstart + atop(entry->end - entry->start);
3049                         useStart = entry->start;
3050                         useEnd = entry->end;
3051
3052                         if (entry->start < start) {
3053                                 pstart += atop(start - entry->start);
3054                                 useStart = start;
3055                         }
3056                         if (entry->end > end) {
3057                                 pend -= atop(entry->end - end);
3058                                 useEnd = end;
3059                         }
3060
3061                         if (pstart >= pend)
3062                                 continue;
3063
3064                         /*
3065                          * Perform the pmap_advise() before clearing
3066                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3067                          * concurrent pmap operation, such as pmap_remove(),
3068                          * could clear a reference in the pmap and set
3069                          * PGA_REFERENCED on the page before the pmap_advise()
3070                          * had completed.  Consequently, the page would appear
3071                          * referenced based upon an old reference that
3072                          * occurred before this pmap_advise() ran.
3073                          */
3074                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
3075                                 pmap_advise(map->pmap, useStart, useEnd,
3076                                     behav);
3077
3078                         vm_object_madvise(entry->object.vm_object, pstart,
3079                             pend, behav);
3080
3081                         /*
3082                          * Pre-populate paging structures in the
3083                          * WILLNEED case.  For wired entries, the
3084                          * paging structures are already populated.
3085                          */
3086                         if (behav == MADV_WILLNEED &&
3087                             entry->wired_count == 0) {
3088                                 vm_map_pmap_enter(map,
3089                                     useStart,
3090                                     entry->protection,
3091                                     entry->object.vm_object,
3092                                     pstart,
3093                                     ptoa(pend - pstart),
3094                                     MAP_PREFAULT_MADVISE
3095                                 );
3096                         }
3097                 }
3098                 vm_map_unlock_read(map);
3099         }
3100         return (0);
3101 }
3102
3103 /*
3104  *      vm_map_inherit:
3105  *
3106  *      Sets the inheritance of the specified address
3107  *      range in the target map.  Inheritance
3108  *      affects how the map will be shared with
3109  *      child maps at the time of vmspace_fork.
3110  */
3111 int
3112 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3113                vm_inherit_t new_inheritance)
3114 {
3115         vm_map_entry_t entry, lentry, prev_entry, start_entry;
3116         int rv;
3117
3118         switch (new_inheritance) {
3119         case VM_INHERIT_NONE:
3120         case VM_INHERIT_COPY:
3121         case VM_INHERIT_SHARE:
3122         case VM_INHERIT_ZERO:
3123                 break;
3124         default:
3125                 return (KERN_INVALID_ARGUMENT);
3126         }
3127         if (start == end)
3128                 return (KERN_SUCCESS);
3129         vm_map_lock(map);
3130         VM_MAP_RANGE_CHECK(map, start, end);
3131         rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3132         if (rv != KERN_SUCCESS)
3133                 goto unlock;
3134         if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3135                 rv = vm_map_clip_end(map, lentry, end);
3136                 if (rv != KERN_SUCCESS)
3137                         goto unlock;
3138         }
3139         if (new_inheritance == VM_INHERIT_COPY) {
3140                 for (entry = start_entry; entry->start < end;
3141                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3142                         if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3143                             != 0) {
3144                                 rv = KERN_INVALID_ARGUMENT;
3145                                 goto unlock;
3146                         }
3147                 }
3148         }
3149         for (entry = start_entry; entry->start < end; prev_entry = entry,
3150             entry = vm_map_entry_succ(entry)) {
3151                 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3152                     entry, (uintmax_t)entry->end, (uintmax_t)end));
3153                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3154                     new_inheritance != VM_INHERIT_ZERO)
3155                         entry->inheritance = new_inheritance;
3156                 vm_map_try_merge_entries(map, prev_entry, entry);
3157         }
3158         vm_map_try_merge_entries(map, prev_entry, entry);
3159 unlock:
3160         vm_map_unlock(map);
3161         return (rv);
3162 }
3163
3164 /*
3165  *      vm_map_entry_in_transition:
3166  *
3167  *      Release the map lock, and sleep until the entry is no longer in
3168  *      transition.  Awake and acquire the map lock.  If the map changed while
3169  *      another held the lock, lookup a possibly-changed entry at or after the
3170  *      'start' position of the old entry.
3171  */
3172 static vm_map_entry_t
3173 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3174     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3175 {
3176         vm_map_entry_t entry;
3177         vm_offset_t start;
3178         u_int last_timestamp;
3179
3180         VM_MAP_ASSERT_LOCKED(map);
3181         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3182             ("not in-tranition map entry %p", in_entry));
3183         /*
3184          * We have not yet clipped the entry.
3185          */
3186         start = MAX(in_start, in_entry->start);
3187         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3188         last_timestamp = map->timestamp;
3189         if (vm_map_unlock_and_wait(map, 0)) {
3190                 /*
3191                  * Allow interruption of user wiring/unwiring?
3192                  */
3193         }
3194         vm_map_lock(map);
3195         if (last_timestamp + 1 == map->timestamp)
3196                 return (in_entry);
3197
3198         /*
3199          * Look again for the entry because the map was modified while it was
3200          * unlocked.  Specifically, the entry may have been clipped, merged, or
3201          * deleted.
3202          */
3203         if (!vm_map_lookup_entry(map, start, &entry)) {
3204                 if (!holes_ok) {
3205                         *io_end = start;
3206                         return (NULL);
3207                 }
3208                 entry = vm_map_entry_succ(entry);
3209         }
3210         return (entry);
3211 }
3212
3213 /*
3214  *      vm_map_unwire:
3215  *
3216  *      Implements both kernel and user unwiring.
3217  */
3218 int
3219 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3220     int flags)
3221 {
3222         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3223         int rv;
3224         bool holes_ok, need_wakeup, user_unwire;
3225
3226         if (start == end)
3227                 return (KERN_SUCCESS);
3228         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3229         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3230         vm_map_lock(map);
3231         VM_MAP_RANGE_CHECK(map, start, end);
3232         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3233                 if (holes_ok)
3234                         first_entry = vm_map_entry_succ(first_entry);
3235                 else {
3236                         vm_map_unlock(map);
3237                         return (KERN_INVALID_ADDRESS);
3238                 }
3239         }
3240         rv = KERN_SUCCESS;
3241         for (entry = first_entry; entry->start < end; entry = next_entry) {
3242                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3243                         /*
3244                          * We have not yet clipped the entry.
3245                          */
3246                         next_entry = vm_map_entry_in_transition(map, start,
3247                             &end, holes_ok, entry);
3248                         if (next_entry == NULL) {
3249                                 if (entry == first_entry) {
3250                                         vm_map_unlock(map);
3251                                         return (KERN_INVALID_ADDRESS);
3252                                 }
3253                                 rv = KERN_INVALID_ADDRESS;
3254                                 break;
3255                         }
3256                         first_entry = (entry == first_entry) ?
3257                             next_entry : NULL;
3258                         continue;
3259                 }
3260                 rv = vm_map_clip_start(map, entry, start);
3261                 if (rv != KERN_SUCCESS)
3262                         break;
3263                 rv = vm_map_clip_end(map, entry, end);
3264                 if (rv != KERN_SUCCESS)
3265                         break;
3266
3267                 /*
3268                  * Mark the entry in case the map lock is released.  (See
3269                  * above.)
3270                  */
3271                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3272                     entry->wiring_thread == NULL,
3273                     ("owned map entry %p", entry));
3274                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3275                 entry->wiring_thread = curthread;
3276                 next_entry = vm_map_entry_succ(entry);
3277                 /*
3278                  * Check the map for holes in the specified region.
3279                  * If holes_ok, skip this check.
3280                  */
3281                 if (!holes_ok &&
3282                     entry->end < end && next_entry->start > entry->end) {
3283                         end = entry->end;
3284                         rv = KERN_INVALID_ADDRESS;
3285                         break;
3286                 }
3287                 /*
3288                  * If system unwiring, require that the entry is system wired.
3289                  */
3290                 if (!user_unwire &&
3291                     vm_map_entry_system_wired_count(entry) == 0) {
3292                         end = entry->end;
3293                         rv = KERN_INVALID_ARGUMENT;
3294                         break;
3295                 }
3296         }
3297         need_wakeup = false;
3298         if (first_entry == NULL &&
3299             !vm_map_lookup_entry(map, start, &first_entry)) {
3300                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3301                 prev_entry = first_entry;
3302                 entry = vm_map_entry_succ(first_entry);
3303         } else {
3304                 prev_entry = vm_map_entry_pred(first_entry);
3305                 entry = first_entry;
3306         }
3307         for (; entry->start < end;
3308             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3309                 /*
3310                  * If holes_ok was specified, an empty
3311                  * space in the unwired region could have been mapped
3312                  * while the map lock was dropped for draining
3313                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3314                  * could be simultaneously wiring this new mapping
3315                  * entry.  Detect these cases and skip any entries
3316                  * marked as in transition by us.
3317                  */
3318                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3319                     entry->wiring_thread != curthread) {
3320                         KASSERT(holes_ok,
3321                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3322                         continue;
3323                 }
3324
3325                 if (rv == KERN_SUCCESS && (!user_unwire ||
3326                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3327                         if (entry->wired_count == 1)
3328                                 vm_map_entry_unwire(map, entry);
3329                         else
3330                                 entry->wired_count--;
3331                         if (user_unwire)
3332                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3333                 }
3334                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3335                     ("vm_map_unwire: in-transition flag missing %p", entry));
3336                 KASSERT(entry->wiring_thread == curthread,
3337                     ("vm_map_unwire: alien wire %p", entry));
3338                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3339                 entry->wiring_thread = NULL;
3340                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3341                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3342                         need_wakeup = true;
3343                 }
3344                 vm_map_try_merge_entries(map, prev_entry, entry);
3345         }
3346         vm_map_try_merge_entries(map, prev_entry, entry);
3347         vm_map_unlock(map);
3348         if (need_wakeup)
3349                 vm_map_wakeup(map);
3350         return (rv);
3351 }
3352
3353 static void
3354 vm_map_wire_user_count_sub(u_long npages)
3355 {
3356
3357         atomic_subtract_long(&vm_user_wire_count, npages);
3358 }
3359
3360 static bool
3361 vm_map_wire_user_count_add(u_long npages)
3362 {
3363         u_long wired;
3364
3365         wired = vm_user_wire_count;
3366         do {
3367                 if (npages + wired > vm_page_max_user_wired)
3368                         return (false);
3369         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3370             npages + wired));
3371
3372         return (true);
3373 }
3374
3375 /*
3376  *      vm_map_wire_entry_failure:
3377  *
3378  *      Handle a wiring failure on the given entry.
3379  *
3380  *      The map should be locked.
3381  */
3382 static void
3383 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3384     vm_offset_t failed_addr)
3385 {
3386
3387         VM_MAP_ASSERT_LOCKED(map);
3388         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3389             entry->wired_count == 1,
3390             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3391         KASSERT(failed_addr < entry->end,
3392             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3393
3394         /*
3395          * If any pages at the start of this entry were successfully wired,
3396          * then unwire them.
3397          */
3398         if (failed_addr > entry->start) {
3399                 pmap_unwire(map->pmap, entry->start, failed_addr);
3400                 vm_object_unwire(entry->object.vm_object, entry->offset,
3401                     failed_addr - entry->start, PQ_ACTIVE);
3402         }
3403
3404         /*
3405          * Assign an out-of-range value to represent the failure to wire this
3406          * entry.
3407          */
3408         entry->wired_count = -1;
3409 }
3410
3411 int
3412 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3413 {
3414         int rv;
3415
3416         vm_map_lock(map);
3417         rv = vm_map_wire_locked(map, start, end, flags);
3418         vm_map_unlock(map);
3419         return (rv);
3420 }
3421
3422 /*
3423  *      vm_map_wire_locked:
3424  *
3425  *      Implements both kernel and user wiring.  Returns with the map locked,
3426  *      the map lock may be dropped.
3427  */
3428 int
3429 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3430 {
3431         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3432         vm_offset_t faddr, saved_end, saved_start;
3433         u_long incr, npages;
3434         u_int bidx, last_timestamp;
3435         int rv;
3436         bool holes_ok, need_wakeup, user_wire;
3437         vm_prot_t prot;
3438
3439         VM_MAP_ASSERT_LOCKED(map);
3440
3441         if (start == end)
3442                 return (KERN_SUCCESS);
3443         prot = 0;
3444         if (flags & VM_MAP_WIRE_WRITE)
3445                 prot |= VM_PROT_WRITE;
3446         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3447         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3448         VM_MAP_RANGE_CHECK(map, start, end);
3449         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3450                 if (holes_ok)
3451                         first_entry = vm_map_entry_succ(first_entry);
3452                 else
3453                         return (KERN_INVALID_ADDRESS);
3454         }
3455         for (entry = first_entry; entry->start < end; entry = next_entry) {
3456                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3457                         /*
3458                          * We have not yet clipped the entry.
3459                          */
3460                         next_entry = vm_map_entry_in_transition(map, start,
3461                             &end, holes_ok, entry);
3462                         if (next_entry == NULL) {
3463                                 if (entry == first_entry)
3464                                         return (KERN_INVALID_ADDRESS);
3465                                 rv = KERN_INVALID_ADDRESS;
3466                                 goto done;
3467                         }
3468                         first_entry = (entry == first_entry) ?
3469                             next_entry : NULL;
3470                         continue;
3471                 }
3472                 rv = vm_map_clip_start(map, entry, start);
3473                 if (rv != KERN_SUCCESS)
3474                         goto done;
3475                 rv = vm_map_clip_end(map, entry, end);
3476                 if (rv != KERN_SUCCESS)
3477                         goto done;
3478
3479                 /*
3480                  * Mark the entry in case the map lock is released.  (See
3481                  * above.)
3482                  */
3483                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3484                     entry->wiring_thread == NULL,
3485                     ("owned map entry %p", entry));
3486                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3487                 entry->wiring_thread = curthread;
3488                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3489                     || (entry->protection & prot) != prot) {
3490                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3491                         if (!holes_ok) {
3492                                 end = entry->end;
3493                                 rv = KERN_INVALID_ADDRESS;
3494                                 goto done;
3495                         }
3496                 } else if (entry->wired_count == 0) {
3497                         entry->wired_count++;
3498
3499                         npages = atop(entry->end - entry->start);
3500                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3501                                 vm_map_wire_entry_failure(map, entry,
3502                                     entry->start);
3503                                 end = entry->end;
3504                                 rv = KERN_RESOURCE_SHORTAGE;
3505                                 goto done;
3506                         }
3507
3508                         /*
3509                          * Release the map lock, relying on the in-transition
3510                          * mark.  Mark the map busy for fork.
3511                          */
3512                         saved_start = entry->start;
3513                         saved_end = entry->end;
3514                         last_timestamp = map->timestamp;
3515                         bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3516                             >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3517                         incr =  pagesizes[bidx];
3518                         vm_map_busy(map);
3519                         vm_map_unlock(map);
3520
3521                         for (faddr = saved_start; faddr < saved_end;
3522                             faddr += incr) {
3523                                 /*
3524                                  * Simulate a fault to get the page and enter
3525                                  * it into the physical map.
3526                                  */
3527                                 rv = vm_fault(map, faddr, VM_PROT_NONE,
3528                                     VM_FAULT_WIRE, NULL);
3529                                 if (rv != KERN_SUCCESS)
3530                                         break;
3531                         }
3532                         vm_map_lock(map);
3533                         vm_map_unbusy(map);
3534                         if (last_timestamp + 1 != map->timestamp) {
3535                                 /*
3536                                  * Look again for the entry because the map was
3537                                  * modified while it was unlocked.  The entry
3538                                  * may have been clipped, but NOT merged or
3539                                  * deleted.
3540                                  */
3541                                 if (!vm_map_lookup_entry(map, saved_start,
3542                                     &next_entry))
3543                                         KASSERT(false,
3544                                             ("vm_map_wire: lookup failed"));
3545                                 first_entry = (entry == first_entry) ?
3546                                     next_entry : NULL;
3547                                 for (entry = next_entry; entry->end < saved_end;
3548                                     entry = vm_map_entry_succ(entry)) {
3549                                         /*
3550                                          * In case of failure, handle entries
3551                                          * that were not fully wired here;
3552                                          * fully wired entries are handled
3553                                          * later.
3554                                          */
3555                                         if (rv != KERN_SUCCESS &&
3556                                             faddr < entry->end)
3557                                                 vm_map_wire_entry_failure(map,
3558                                                     entry, faddr);
3559                                 }
3560                         }
3561                         if (rv != KERN_SUCCESS) {
3562                                 vm_map_wire_entry_failure(map, entry, faddr);
3563                                 if (user_wire)
3564                                         vm_map_wire_user_count_sub(npages);
3565                                 end = entry->end;
3566                                 goto done;
3567                         }
3568                 } else if (!user_wire ||
3569                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3570                         entry->wired_count++;
3571                 }
3572                 /*
3573                  * Check the map for holes in the specified region.
3574                  * If holes_ok was specified, skip this check.
3575                  */
3576                 next_entry = vm_map_entry_succ(entry);
3577                 if (!holes_ok &&
3578                     entry->end < end && next_entry->start > entry->end) {
3579                         end = entry->end;
3580                         rv = KERN_INVALID_ADDRESS;
3581                         goto done;
3582                 }
3583         }
3584         rv = KERN_SUCCESS;
3585 done:
3586         need_wakeup = false;
3587         if (first_entry == NULL &&
3588             !vm_map_lookup_entry(map, start, &first_entry)) {
3589                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3590                 prev_entry = first_entry;
3591                 entry = vm_map_entry_succ(first_entry);
3592         } else {
3593                 prev_entry = vm_map_entry_pred(first_entry);
3594                 entry = first_entry;
3595         }
3596         for (; entry->start < end;
3597             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3598                 /*
3599                  * If holes_ok was specified, an empty
3600                  * space in the unwired region could have been mapped
3601                  * while the map lock was dropped for faulting in the
3602                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3603                  * Moreover, another thread could be simultaneously
3604                  * wiring this new mapping entry.  Detect these cases
3605                  * and skip any entries marked as in transition not by us.
3606                  *
3607                  * Another way to get an entry not marked with
3608                  * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3609                  * which set rv to KERN_INVALID_ARGUMENT.
3610                  */
3611                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3612                     entry->wiring_thread != curthread) {
3613                         KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3614                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3615                         continue;
3616                 }
3617
3618                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3619                         /* do nothing */
3620                 } else if (rv == KERN_SUCCESS) {
3621                         if (user_wire)
3622                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3623                 } else if (entry->wired_count == -1) {
3624                         /*
3625                          * Wiring failed on this entry.  Thus, unwiring is
3626                          * unnecessary.
3627                          */
3628                         entry->wired_count = 0;
3629                 } else if (!user_wire ||
3630                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3631                         /*
3632                          * Undo the wiring.  Wiring succeeded on this entry
3633                          * but failed on a later entry.  
3634                          */
3635                         if (entry->wired_count == 1) {
3636                                 vm_map_entry_unwire(map, entry);
3637                                 if (user_wire)
3638                                         vm_map_wire_user_count_sub(
3639                                             atop(entry->end - entry->start));
3640                         } else
3641                                 entry->wired_count--;
3642                 }
3643                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3644                     ("vm_map_wire: in-transition flag missing %p", entry));
3645                 KASSERT(entry->wiring_thread == curthread,
3646                     ("vm_map_wire: alien wire %p", entry));
3647                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3648                     MAP_ENTRY_WIRE_SKIPPED);
3649                 entry->wiring_thread = NULL;
3650                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3651                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3652                         need_wakeup = true;
3653                 }
3654                 vm_map_try_merge_entries(map, prev_entry, entry);
3655         }
3656         vm_map_try_merge_entries(map, prev_entry, entry);
3657         if (need_wakeup)
3658                 vm_map_wakeup(map);
3659         return (rv);
3660 }
3661
3662 /*
3663  * vm_map_sync
3664  *
3665  * Push any dirty cached pages in the address range to their pager.
3666  * If syncio is TRUE, dirty pages are written synchronously.
3667  * If invalidate is TRUE, any cached pages are freed as well.
3668  *
3669  * If the size of the region from start to end is zero, we are
3670  * supposed to flush all modified pages within the region containing
3671  * start.  Unfortunately, a region can be split or coalesced with
3672  * neighboring regions, making it difficult to determine what the
3673  * original region was.  Therefore, we approximate this requirement by
3674  * flushing the current region containing start.
3675  *
3676  * Returns an error if any part of the specified range is not mapped.
3677  */
3678 int
3679 vm_map_sync(
3680         vm_map_t map,
3681         vm_offset_t start,
3682         vm_offset_t end,
3683         boolean_t syncio,
3684         boolean_t invalidate)
3685 {
3686         vm_map_entry_t entry, first_entry, next_entry;
3687         vm_size_t size;
3688         vm_object_t object;
3689         vm_ooffset_t offset;
3690         unsigned int last_timestamp;
3691         int bdry_idx;
3692         boolean_t failed;
3693
3694         vm_map_lock_read(map);
3695         VM_MAP_RANGE_CHECK(map, start, end);
3696         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3697                 vm_map_unlock_read(map);
3698                 return (KERN_INVALID_ADDRESS);
3699         } else if (start == end) {
3700                 start = first_entry->start;
3701                 end = first_entry->end;
3702         }
3703
3704         /*
3705          * Make a first pass to check for user-wired memory, holes,
3706          * and partial invalidation of largepage mappings.
3707          */
3708         for (entry = first_entry; entry->start < end; entry = next_entry) {
3709                 if (invalidate) {
3710                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3711                                 vm_map_unlock_read(map);
3712                                 return (KERN_INVALID_ARGUMENT);
3713                         }
3714                         bdry_idx = (entry->eflags &
3715                             MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3716                             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3717                         if (bdry_idx != 0 &&
3718                             ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3719                             (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3720                                 vm_map_unlock_read(map);
3721                                 return (KERN_INVALID_ARGUMENT);
3722                         }
3723                 }
3724                 next_entry = vm_map_entry_succ(entry);
3725                 if (end > entry->end &&
3726                     entry->end != next_entry->start) {
3727                         vm_map_unlock_read(map);
3728                         return (KERN_INVALID_ADDRESS);
3729                 }
3730         }
3731
3732         if (invalidate)
3733                 pmap_remove(map->pmap, start, end);
3734         failed = FALSE;
3735
3736         /*
3737          * Make a second pass, cleaning/uncaching pages from the indicated
3738          * objects as we go.
3739          */
3740         for (entry = first_entry; entry->start < end;) {
3741                 offset = entry->offset + (start - entry->start);
3742                 size = (end <= entry->end ? end : entry->end) - start;
3743                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3744                         vm_map_t smap;
3745                         vm_map_entry_t tentry;
3746                         vm_size_t tsize;
3747
3748                         smap = entry->object.sub_map;
3749                         vm_map_lock_read(smap);
3750                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3751                         tsize = tentry->end - offset;
3752                         if (tsize < size)
3753                                 size = tsize;
3754                         object = tentry->object.vm_object;
3755                         offset = tentry->offset + (offset - tentry->start);
3756                         vm_map_unlock_read(smap);
3757                 } else {
3758                         object = entry->object.vm_object;
3759                 }
3760                 vm_object_reference(object);
3761                 last_timestamp = map->timestamp;
3762                 vm_map_unlock_read(map);
3763                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3764                         failed = TRUE;
3765                 start += size;
3766                 vm_object_deallocate(object);
3767                 vm_map_lock_read(map);
3768                 if (last_timestamp == map->timestamp ||
3769                     !vm_map_lookup_entry(map, start, &entry))
3770                         entry = vm_map_entry_succ(entry);
3771         }
3772
3773         vm_map_unlock_read(map);
3774         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3775 }
3776
3777 /*
3778  *      vm_map_entry_unwire:    [ internal use only ]
3779  *
3780  *      Make the region specified by this entry pageable.
3781  *
3782  *      The map in question should be locked.
3783  *      [This is the reason for this routine's existence.]
3784  */
3785 static void
3786 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3787 {
3788         vm_size_t size;
3789
3790         VM_MAP_ASSERT_LOCKED(map);
3791         KASSERT(entry->wired_count > 0,
3792             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3793
3794         size = entry->end - entry->start;
3795         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3796                 vm_map_wire_user_count_sub(atop(size));
3797         pmap_unwire(map->pmap, entry->start, entry->end);
3798         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3799             PQ_ACTIVE);
3800         entry->wired_count = 0;
3801 }
3802
3803 static void
3804 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3805 {
3806
3807         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3808                 vm_object_deallocate(entry->object.vm_object);
3809         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3810 }
3811
3812 /*
3813  *      vm_map_entry_delete:    [ internal use only ]
3814  *
3815  *      Deallocate the given entry from the target map.
3816  */
3817 static void
3818 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3819 {
3820         vm_object_t object;
3821         vm_pindex_t offidxstart, offidxend, size1;
3822         vm_size_t size;
3823
3824         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3825         object = entry->object.vm_object;
3826
3827         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3828                 MPASS(entry->cred == NULL);
3829                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3830                 MPASS(object == NULL);
3831                 vm_map_entry_deallocate(entry, map->system_map);
3832                 return;
3833         }
3834
3835         size = entry->end - entry->start;
3836         map->size -= size;
3837
3838         if (entry->cred != NULL) {
3839                 swap_release_by_cred(size, entry->cred);
3840                 crfree(entry->cred);
3841         }
3842
3843         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3844                 entry->object.vm_object = NULL;
3845         } else if ((object->flags & OBJ_ANON) != 0 ||
3846             object == kernel_object) {
3847                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3848                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3849                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3850                 offidxstart = OFF_TO_IDX(entry->offset);
3851                 offidxend = offidxstart + atop(size);
3852                 VM_OBJECT_WLOCK(object);
3853                 if (object->ref_count != 1 &&
3854                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3855                     object == kernel_object)) {
3856                         vm_object_collapse(object);
3857
3858                         /*
3859                          * The option OBJPR_NOTMAPPED can be passed here
3860                          * because vm_map_delete() already performed
3861                          * pmap_remove() on the only mapping to this range
3862                          * of pages. 
3863                          */
3864                         vm_object_page_remove(object, offidxstart, offidxend,
3865                             OBJPR_NOTMAPPED);
3866                         if (offidxend >= object->size &&
3867                             offidxstart < object->size) {
3868                                 size1 = object->size;
3869                                 object->size = offidxstart;
3870                                 if (object->cred != NULL) {
3871                                         size1 -= object->size;
3872                                         KASSERT(object->charge >= ptoa(size1),
3873                                             ("object %p charge < 0", object));
3874                                         swap_release_by_cred(ptoa(size1),
3875                                             object->cred);
3876                                         object->charge -= ptoa(size1);
3877                                 }
3878                         }
3879                 }
3880                 VM_OBJECT_WUNLOCK(object);
3881         }
3882         if (map->system_map)
3883                 vm_map_entry_deallocate(entry, TRUE);
3884         else {
3885                 entry->defer_next = curthread->td_map_def_user;
3886                 curthread->td_map_def_user = entry;
3887         }
3888 }
3889
3890 /*
3891  *      vm_map_delete:  [ internal use only ]
3892  *
3893  *      Deallocates the given address range from the target
3894  *      map.
3895  */
3896 int
3897 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3898 {
3899         vm_map_entry_t entry, next_entry, scratch_entry;
3900         int rv;
3901
3902         VM_MAP_ASSERT_LOCKED(map);
3903
3904         if (start == end)
3905                 return (KERN_SUCCESS);
3906
3907         /*
3908          * Find the start of the region, and clip it.
3909          * Step through all entries in this region.
3910          */
3911         rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3912         if (rv != KERN_SUCCESS)
3913                 return (rv);
3914         for (; entry->start < end; entry = next_entry) {
3915                 /*
3916                  * Wait for wiring or unwiring of an entry to complete.
3917                  * Also wait for any system wirings to disappear on
3918                  * user maps.
3919                  */
3920                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3921                     (vm_map_pmap(map) != kernel_pmap &&
3922                     vm_map_entry_system_wired_count(entry) != 0)) {
3923                         unsigned int last_timestamp;
3924                         vm_offset_t saved_start;
3925
3926                         saved_start = entry->start;
3927                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3928                         last_timestamp = map->timestamp;
3929                         (void) vm_map_unlock_and_wait(map, 0);
3930                         vm_map_lock(map);
3931                         if (last_timestamp + 1 != map->timestamp) {
3932                                 /*
3933                                  * Look again for the entry because the map was
3934                                  * modified while it was unlocked.
3935                                  * Specifically, the entry may have been
3936                                  * clipped, merged, or deleted.
3937                                  */
3938                                 rv = vm_map_lookup_clip_start(map, saved_start,
3939                                     &next_entry, &scratch_entry);
3940                                 if (rv != KERN_SUCCESS)
3941                                         break;
3942                         } else
3943                                 next_entry = entry;
3944                         continue;
3945                 }
3946
3947                 /* XXXKIB or delete to the upper superpage boundary ? */
3948                 rv = vm_map_clip_end(map, entry, end);
3949                 if (rv != KERN_SUCCESS)
3950                         break;
3951                 next_entry = vm_map_entry_succ(entry);
3952
3953                 /*
3954                  * Unwire before removing addresses from the pmap; otherwise,
3955                  * unwiring will put the entries back in the pmap.
3956                  */
3957                 if (entry->wired_count != 0)
3958                         vm_map_entry_unwire(map, entry);
3959
3960                 /*
3961                  * Remove mappings for the pages, but only if the
3962                  * mappings could exist.  For instance, it does not
3963                  * make sense to call pmap_remove() for guard entries.
3964                  */
3965                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3966                     entry->object.vm_object != NULL)
3967                         pmap_remove(map->pmap, entry->start, entry->end);
3968
3969                 if (entry->end == map->anon_loc)
3970                         map->anon_loc = entry->start;
3971
3972                 /*
3973                  * Delete the entry only after removing all pmap
3974                  * entries pointing to its pages.  (Otherwise, its
3975                  * page frames may be reallocated, and any modify bits
3976                  * will be set in the wrong object!)
3977                  */
3978                 vm_map_entry_delete(map, entry);
3979         }
3980         return (rv);
3981 }
3982
3983 /*
3984  *      vm_map_remove:
3985  *
3986  *      Remove the given address range from the target map.
3987  *      This is the exported form of vm_map_delete.
3988  */
3989 int
3990 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3991 {
3992         int result;
3993
3994         vm_map_lock(map);
3995         VM_MAP_RANGE_CHECK(map, start, end);
3996         result = vm_map_delete(map, start, end);
3997         vm_map_unlock(map);
3998         return (result);
3999 }
4000
4001 /*
4002  *      vm_map_check_protection:
4003  *
4004  *      Assert that the target map allows the specified privilege on the
4005  *      entire address region given.  The entire region must be allocated.
4006  *
4007  *      WARNING!  This code does not and should not check whether the
4008  *      contents of the region is accessible.  For example a smaller file
4009  *      might be mapped into a larger address space.
4010  *
4011  *      NOTE!  This code is also called by munmap().
4012  *
4013  *      The map must be locked.  A read lock is sufficient.
4014  */
4015 boolean_t
4016 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4017                         vm_prot_t protection)
4018 {
4019         vm_map_entry_t entry;
4020         vm_map_entry_t tmp_entry;
4021
4022         if (!vm_map_lookup_entry(map, start, &tmp_entry))
4023                 return (FALSE);
4024         entry = tmp_entry;
4025
4026         while (start < end) {
4027                 /*
4028                  * No holes allowed!
4029                  */
4030                 if (start < entry->start)
4031                         return (FALSE);
4032                 /*
4033                  * Check protection associated with entry.
4034                  */
4035                 if ((entry->protection & protection) != protection)
4036                         return (FALSE);
4037                 /* go to next entry */
4038                 start = entry->end;
4039                 entry = vm_map_entry_succ(entry);
4040         }
4041         return (TRUE);
4042 }
4043
4044 /*
4045  *
4046  *      vm_map_copy_swap_object:
4047  *
4048  *      Copies a swap-backed object from an existing map entry to a
4049  *      new one.  Carries forward the swap charge.  May change the
4050  *      src object on return.
4051  */
4052 static void
4053 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4054     vm_offset_t size, vm_ooffset_t *fork_charge)
4055 {
4056         vm_object_t src_object;
4057         struct ucred *cred;
4058         int charged;
4059
4060         src_object = src_entry->object.vm_object;
4061         charged = ENTRY_CHARGED(src_entry);
4062         if ((src_object->flags & OBJ_ANON) != 0) {
4063                 VM_OBJECT_WLOCK(src_object);
4064                 vm_object_collapse(src_object);
4065                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4066                         vm_object_split(src_entry);
4067                         src_object = src_entry->object.vm_object;
4068                 }
4069                 vm_object_reference_locked(src_object);
4070                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4071                 VM_OBJECT_WUNLOCK(src_object);
4072         } else
4073                 vm_object_reference(src_object);
4074         if (src_entry->cred != NULL &&
4075             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4076                 KASSERT(src_object->cred == NULL,
4077                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4078                      src_object));
4079                 src_object->cred = src_entry->cred;
4080                 src_object->charge = size;
4081         }
4082         dst_entry->object.vm_object = src_object;
4083         if (charged) {
4084                 cred = curthread->td_ucred;
4085                 crhold(cred);
4086                 dst_entry->cred = cred;
4087                 *fork_charge += size;
4088                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4089                         crhold(cred);
4090                         src_entry->cred = cred;
4091                         *fork_charge += size;
4092                 }
4093         }
4094 }
4095
4096 /*
4097  *      vm_map_copy_entry:
4098  *
4099  *      Copies the contents of the source entry to the destination
4100  *      entry.  The entries *must* be aligned properly.
4101  */
4102 static void
4103 vm_map_copy_entry(
4104         vm_map_t src_map,
4105         vm_map_t dst_map,
4106         vm_map_entry_t src_entry,
4107         vm_map_entry_t dst_entry,
4108         vm_ooffset_t *fork_charge)
4109 {
4110         vm_object_t src_object;
4111         vm_map_entry_t fake_entry;
4112         vm_offset_t size;
4113
4114         VM_MAP_ASSERT_LOCKED(dst_map);
4115
4116         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4117                 return;
4118
4119         if (src_entry->wired_count == 0 ||
4120             (src_entry->protection & VM_PROT_WRITE) == 0) {
4121                 /*
4122                  * If the source entry is marked needs_copy, it is already
4123                  * write-protected.
4124                  */
4125                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4126                     (src_entry->protection & VM_PROT_WRITE) != 0) {
4127                         pmap_protect(src_map->pmap,
4128                             src_entry->start,
4129                             src_entry->end,
4130                             src_entry->protection & ~VM_PROT_WRITE);
4131                 }
4132
4133                 /*
4134                  * Make a copy of the object.
4135                  */
4136                 size = src_entry->end - src_entry->start;
4137                 if ((src_object = src_entry->object.vm_object) != NULL) {
4138                         if ((src_object->flags & OBJ_SWAP) != 0) {
4139                                 vm_map_copy_swap_object(src_entry, dst_entry,
4140                                     size, fork_charge);
4141                                 /* May have split/collapsed, reload obj. */
4142                                 src_object = src_entry->object.vm_object;
4143                         } else {
4144                                 vm_object_reference(src_object);
4145                                 dst_entry->object.vm_object = src_object;
4146                         }
4147                         src_entry->eflags |= MAP_ENTRY_COW |
4148                             MAP_ENTRY_NEEDS_COPY;
4149                         dst_entry->eflags |= MAP_ENTRY_COW |
4150                             MAP_ENTRY_NEEDS_COPY;
4151                         dst_entry->offset = src_entry->offset;
4152                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4153                                 /*
4154                                  * MAP_ENTRY_WRITECNT cannot
4155                                  * indicate write reference from
4156                                  * src_entry, since the entry is
4157                                  * marked as needs copy.  Allocate a
4158                                  * fake entry that is used to
4159                                  * decrement object->un_pager writecount
4160                                  * at the appropriate time.  Attach
4161                                  * fake_entry to the deferred list.
4162                                  */
4163                                 fake_entry = vm_map_entry_create(dst_map);
4164                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4165                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4166                                 vm_object_reference(src_object);
4167                                 fake_entry->object.vm_object = src_object;
4168                                 fake_entry->start = src_entry->start;
4169                                 fake_entry->end = src_entry->end;
4170                                 fake_entry->defer_next =
4171                                     curthread->td_map_def_user;
4172                                 curthread->td_map_def_user = fake_entry;
4173                         }
4174
4175                         pmap_copy(dst_map->pmap, src_map->pmap,
4176                             dst_entry->start, dst_entry->end - dst_entry->start,
4177                             src_entry->start);
4178                 } else {
4179                         dst_entry->object.vm_object = NULL;
4180                         dst_entry->offset = 0;
4181                         if (src_entry->cred != NULL) {
4182                                 dst_entry->cred = curthread->td_ucred;
4183                                 crhold(dst_entry->cred);
4184                                 *fork_charge += size;
4185                         }
4186                 }
4187         } else {
4188                 /*
4189                  * We don't want to make writeable wired pages copy-on-write.
4190                  * Immediately copy these pages into the new map by simulating
4191                  * page faults.  The new pages are pageable.
4192                  */
4193                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4194                     fork_charge);
4195         }
4196 }
4197
4198 /*
4199  * vmspace_map_entry_forked:
4200  * Update the newly-forked vmspace each time a map entry is inherited
4201  * or copied.  The values for vm_dsize and vm_tsize are approximate
4202  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4203  */
4204 static void
4205 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4206     vm_map_entry_t entry)
4207 {
4208         vm_size_t entrysize;
4209         vm_offset_t newend;
4210
4211         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4212                 return;
4213         entrysize = entry->end - entry->start;
4214         vm2->vm_map.size += entrysize;
4215         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4216                 vm2->vm_ssize += btoc(entrysize);
4217         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4218             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4219                 newend = MIN(entry->end,
4220                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4221                 vm2->vm_dsize += btoc(newend - entry->start);
4222         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4223             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4224                 newend = MIN(entry->end,
4225                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4226                 vm2->vm_tsize += btoc(newend - entry->start);
4227         }
4228 }
4229
4230 /*
4231  * vmspace_fork:
4232  * Create a new process vmspace structure and vm_map
4233  * based on those of an existing process.  The new map
4234  * is based on the old map, according to the inheritance
4235  * values on the regions in that map.
4236  *
4237  * XXX It might be worth coalescing the entries added to the new vmspace.
4238  *
4239  * The source map must not be locked.
4240  */
4241 struct vmspace *
4242 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4243 {
4244         struct vmspace *vm2;
4245         vm_map_t new_map, old_map;
4246         vm_map_entry_t new_entry, old_entry;
4247         vm_object_t object;
4248         int error, locked __diagused;
4249         vm_inherit_t inh;
4250
4251         old_map = &vm1->vm_map;
4252         /* Copy immutable fields of vm1 to vm2. */
4253         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4254             pmap_pinit);
4255         if (vm2 == NULL)
4256                 return (NULL);
4257
4258         vm2->vm_taddr = vm1->vm_taddr;
4259         vm2->vm_daddr = vm1->vm_daddr;
4260         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4261         vm2->vm_stacktop = vm1->vm_stacktop;
4262         vm_map_lock(old_map);
4263         if (old_map->busy)
4264                 vm_map_wait_busy(old_map);
4265         new_map = &vm2->vm_map;
4266         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4267         KASSERT(locked, ("vmspace_fork: lock failed"));
4268
4269         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4270         if (error != 0) {
4271                 sx_xunlock(&old_map->lock);
4272                 sx_xunlock(&new_map->lock);
4273                 vm_map_process_deferred();
4274                 vmspace_free(vm2);
4275                 return (NULL);
4276         }
4277
4278         new_map->anon_loc = old_map->anon_loc;
4279         new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4280             MAP_ASLR_STACK | MAP_WXORX);
4281
4282         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4283                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4284                         panic("vm_map_fork: encountered a submap");
4285
4286                 inh = old_entry->inheritance;
4287                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4288                     inh != VM_INHERIT_NONE)
4289                         inh = VM_INHERIT_COPY;
4290
4291                 switch (inh) {
4292                 case VM_INHERIT_NONE:
4293                         break;
4294
4295                 case VM_INHERIT_SHARE:
4296                         /*
4297                          * Clone the entry, creating the shared object if
4298                          * necessary.
4299                          */
4300                         object = old_entry->object.vm_object;
4301                         if (object == NULL) {
4302                                 vm_map_entry_back(old_entry);
4303                                 object = old_entry->object.vm_object;
4304                         }
4305
4306                         /*
4307                          * Add the reference before calling vm_object_shadow
4308                          * to insure that a shadow object is created.
4309                          */
4310                         vm_object_reference(object);
4311                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4312                                 vm_object_shadow(&old_entry->object.vm_object,
4313                                     &old_entry->offset,
4314                                     old_entry->end - old_entry->start,
4315                                     old_entry->cred,
4316                                     /* Transfer the second reference too. */
4317                                     true);
4318                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4319                                 old_entry->cred = NULL;
4320
4321                                 /*
4322                                  * As in vm_map_merged_neighbor_dispose(),
4323                                  * the vnode lock will not be acquired in
4324                                  * this call to vm_object_deallocate().
4325                                  */
4326                                 vm_object_deallocate(object);
4327                                 object = old_entry->object.vm_object;
4328                         } else {
4329                                 VM_OBJECT_WLOCK(object);
4330                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4331                                 if (old_entry->cred != NULL) {
4332                                         KASSERT(object->cred == NULL,
4333                                             ("vmspace_fork both cred"));
4334                                         object->cred = old_entry->cred;
4335                                         object->charge = old_entry->end -
4336                                             old_entry->start;
4337                                         old_entry->cred = NULL;
4338                                 }
4339
4340                                 /*
4341                                  * Assert the correct state of the vnode
4342                                  * v_writecount while the object is locked, to
4343                                  * not relock it later for the assertion
4344                                  * correctness.
4345                                  */
4346                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4347                                     object->type == OBJT_VNODE) {
4348                                         KASSERT(((struct vnode *)object->
4349                                             handle)->v_writecount > 0,
4350                                             ("vmspace_fork: v_writecount %p",
4351                                             object));
4352                                         KASSERT(object->un_pager.vnp.
4353                                             writemappings > 0,
4354                                             ("vmspace_fork: vnp.writecount %p",
4355                                             object));
4356                                 }
4357                                 VM_OBJECT_WUNLOCK(object);
4358                         }
4359
4360                         /*
4361                          * Clone the entry, referencing the shared object.
4362                          */
4363                         new_entry = vm_map_entry_create(new_map);
4364                         *new_entry = *old_entry;
4365                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4366                             MAP_ENTRY_IN_TRANSITION);
4367                         new_entry->wiring_thread = NULL;
4368                         new_entry->wired_count = 0;
4369                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4370                                 vm_pager_update_writecount(object,
4371                                     new_entry->start, new_entry->end);
4372                         }
4373                         vm_map_entry_set_vnode_text(new_entry, true);
4374
4375                         /*
4376                          * Insert the entry into the new map -- we know we're
4377                          * inserting at the end of the new map.
4378                          */
4379                         vm_map_entry_link(new_map, new_entry);
4380                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4381
4382                         /*
4383                          * Update the physical map
4384                          */
4385                         pmap_copy(new_map->pmap, old_map->pmap,
4386                             new_entry->start,
4387                             (old_entry->end - old_entry->start),
4388                             old_entry->start);
4389                         break;
4390
4391                 case VM_INHERIT_COPY:
4392                         /*
4393                          * Clone the entry and link into the map.
4394                          */
4395                         new_entry = vm_map_entry_create(new_map);
4396                         *new_entry = *old_entry;
4397                         /*
4398                          * Copied entry is COW over the old object.
4399                          */
4400                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4401                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4402                         new_entry->wiring_thread = NULL;
4403                         new_entry->wired_count = 0;
4404                         new_entry->object.vm_object = NULL;
4405                         new_entry->cred = NULL;
4406                         vm_map_entry_link(new_map, new_entry);
4407                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4408                         vm_map_copy_entry(old_map, new_map, old_entry,
4409                             new_entry, fork_charge);
4410                         vm_map_entry_set_vnode_text(new_entry, true);
4411                         break;
4412
4413                 case VM_INHERIT_ZERO:
4414                         /*
4415                          * Create a new anonymous mapping entry modelled from
4416                          * the old one.
4417                          */
4418                         new_entry = vm_map_entry_create(new_map);
4419                         memset(new_entry, 0, sizeof(*new_entry));
4420
4421                         new_entry->start = old_entry->start;
4422                         new_entry->end = old_entry->end;
4423                         new_entry->eflags = old_entry->eflags &
4424                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4425                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4426                             MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4427                         new_entry->protection = old_entry->protection;
4428                         new_entry->max_protection = old_entry->max_protection;
4429                         new_entry->inheritance = VM_INHERIT_ZERO;
4430
4431                         vm_map_entry_link(new_map, new_entry);
4432                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4433
4434                         new_entry->cred = curthread->td_ucred;
4435                         crhold(new_entry->cred);
4436                         *fork_charge += (new_entry->end - new_entry->start);
4437
4438                         break;
4439                 }
4440         }
4441         /*
4442          * Use inlined vm_map_unlock() to postpone handling the deferred
4443          * map entries, which cannot be done until both old_map and
4444          * new_map locks are released.
4445          */
4446         sx_xunlock(&old_map->lock);
4447         sx_xunlock(&new_map->lock);
4448         vm_map_process_deferred();
4449
4450         return (vm2);
4451 }
4452
4453 /*
4454  * Create a process's stack for exec_new_vmspace().  This function is never
4455  * asked to wire the newly created stack.
4456  */
4457 int
4458 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4459     vm_prot_t prot, vm_prot_t max, int cow)
4460 {
4461         vm_size_t growsize, init_ssize;
4462         rlim_t vmemlim;
4463         int rv;
4464
4465         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4466         growsize = sgrowsiz;
4467         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4468         vm_map_lock(map);
4469         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4470         /* If we would blow our VMEM resource limit, no go */
4471         if (map->size + init_ssize > vmemlim) {
4472                 rv = KERN_NO_SPACE;
4473                 goto out;
4474         }
4475         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4476             max, cow);
4477 out:
4478         vm_map_unlock(map);
4479         return (rv);
4480 }
4481
4482 static int stack_guard_page = 1;
4483 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4484     &stack_guard_page, 0,
4485     "Specifies the number of guard pages for a stack that grows");
4486
4487 static int
4488 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4489     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4490 {
4491         vm_map_entry_t new_entry, prev_entry;
4492         vm_offset_t bot, gap_bot, gap_top, top;
4493         vm_size_t init_ssize, sgp;
4494         int orient, rv;
4495
4496         /*
4497          * The stack orientation is piggybacked with the cow argument.
4498          * Extract it into orient and mask the cow argument so that we
4499          * don't pass it around further.
4500          */
4501         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4502         KASSERT(orient != 0, ("No stack grow direction"));
4503         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4504             ("bi-dir stack"));
4505
4506         if (max_ssize == 0 ||
4507             !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4508                 return (KERN_INVALID_ADDRESS);
4509         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4510             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4511             (vm_size_t)stack_guard_page * PAGE_SIZE;
4512         if (sgp >= max_ssize)
4513                 return (KERN_INVALID_ARGUMENT);
4514
4515         init_ssize = growsize;
4516         if (max_ssize < init_ssize + sgp)
4517                 init_ssize = max_ssize - sgp;
4518
4519         /* If addr is already mapped, no go */
4520         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4521                 return (KERN_NO_SPACE);
4522
4523         /*
4524          * If we can't accommodate max_ssize in the current mapping, no go.
4525          */
4526         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4527                 return (KERN_NO_SPACE);
4528
4529         /*
4530          * We initially map a stack of only init_ssize.  We will grow as
4531          * needed later.  Depending on the orientation of the stack (i.e.
4532          * the grow direction) we either map at the top of the range, the
4533          * bottom of the range or in the middle.
4534          *
4535          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4536          * and cow to be 0.  Possibly we should eliminate these as input
4537          * parameters, and just pass these values here in the insert call.
4538          */
4539         if (orient == MAP_STACK_GROWS_DOWN) {
4540                 bot = addrbos + max_ssize - init_ssize;
4541                 top = bot + init_ssize;
4542                 gap_bot = addrbos;
4543                 gap_top = bot;
4544         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4545                 bot = addrbos;
4546                 top = bot + init_ssize;
4547                 gap_bot = top;
4548                 gap_top = addrbos + max_ssize;
4549         }
4550         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4551         if (rv != KERN_SUCCESS)
4552                 return (rv);
4553         new_entry = vm_map_entry_succ(prev_entry);
4554         KASSERT(new_entry->end == top || new_entry->start == bot,
4555             ("Bad entry start/end for new stack entry"));
4556         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4557             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4558             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4559         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4560             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4561             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4562         if (gap_bot == gap_top)
4563                 return (KERN_SUCCESS);
4564         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4565             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4566             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4567         if (rv == KERN_SUCCESS) {
4568                 /*
4569                  * Gap can never successfully handle a fault, so
4570                  * read-ahead logic is never used for it.  Re-use
4571                  * next_read of the gap entry to store
4572                  * stack_guard_page for vm_map_growstack().
4573                  */
4574                 if (orient == MAP_STACK_GROWS_DOWN)
4575                         vm_map_entry_pred(new_entry)->next_read = sgp;
4576                 else
4577                         vm_map_entry_succ(new_entry)->next_read = sgp;
4578         } else {
4579                 (void)vm_map_delete(map, bot, top);
4580         }
4581         return (rv);
4582 }
4583
4584 /*
4585  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4586  * successfully grow the stack.
4587  */
4588 static int
4589 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4590 {
4591         vm_map_entry_t stack_entry;
4592         struct proc *p;
4593         struct vmspace *vm;
4594         struct ucred *cred;
4595         vm_offset_t gap_end, gap_start, grow_start;
4596         vm_size_t grow_amount, guard, max_grow;
4597         rlim_t lmemlim, stacklim, vmemlim;
4598         int rv, rv1 __diagused;
4599         bool gap_deleted, grow_down, is_procstack;
4600 #ifdef notyet
4601         uint64_t limit;
4602 #endif
4603 #ifdef RACCT
4604         int error __diagused;
4605 #endif
4606
4607         p = curproc;
4608         vm = p->p_vmspace;
4609
4610         /*
4611          * Disallow stack growth when the access is performed by a
4612          * debugger or AIO daemon.  The reason is that the wrong
4613          * resource limits are applied.
4614          */
4615         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4616             p->p_textvp == NULL))
4617                 return (KERN_FAILURE);
4618
4619         MPASS(!map->system_map);
4620
4621         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4622         stacklim = lim_cur(curthread, RLIMIT_STACK);
4623         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4624 retry:
4625         /* If addr is not in a hole for a stack grow area, no need to grow. */
4626         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4627                 return (KERN_FAILURE);
4628         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4629                 return (KERN_SUCCESS);
4630         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4631                 stack_entry = vm_map_entry_succ(gap_entry);
4632                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4633                     stack_entry->start != gap_entry->end)
4634                         return (KERN_FAILURE);
4635                 grow_amount = round_page(stack_entry->start - addr);
4636                 grow_down = true;
4637         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4638                 stack_entry = vm_map_entry_pred(gap_entry);
4639                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4640                     stack_entry->end != gap_entry->start)
4641                         return (KERN_FAILURE);
4642                 grow_amount = round_page(addr + 1 - stack_entry->end);
4643                 grow_down = false;
4644         } else {
4645                 return (KERN_FAILURE);
4646         }
4647         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4648             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4649             gap_entry->next_read;
4650         max_grow = gap_entry->end - gap_entry->start;
4651         if (guard > max_grow)
4652                 return (KERN_NO_SPACE);
4653         max_grow -= guard;
4654         if (grow_amount > max_grow)
4655                 return (KERN_NO_SPACE);
4656
4657         /*
4658          * If this is the main process stack, see if we're over the stack
4659          * limit.
4660          */
4661         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4662             addr < (vm_offset_t)vm->vm_stacktop;
4663         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4664                 return (KERN_NO_SPACE);
4665
4666 #ifdef RACCT
4667         if (racct_enable) {
4668                 PROC_LOCK(p);
4669                 if (is_procstack && racct_set(p, RACCT_STACK,
4670                     ctob(vm->vm_ssize) + grow_amount)) {
4671                         PROC_UNLOCK(p);
4672                         return (KERN_NO_SPACE);
4673                 }
4674                 PROC_UNLOCK(p);
4675         }
4676 #endif
4677
4678         grow_amount = roundup(grow_amount, sgrowsiz);
4679         if (grow_amount > max_grow)
4680                 grow_amount = max_grow;
4681         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4682                 grow_amount = trunc_page((vm_size_t)stacklim) -
4683                     ctob(vm->vm_ssize);
4684         }
4685
4686 #ifdef notyet
4687         PROC_LOCK(p);
4688         limit = racct_get_available(p, RACCT_STACK);
4689         PROC_UNLOCK(p);
4690         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4691                 grow_amount = limit - ctob(vm->vm_ssize);
4692 #endif
4693
4694         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4695                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4696                         rv = KERN_NO_SPACE;
4697                         goto out;
4698                 }
4699 #ifdef RACCT
4700                 if (racct_enable) {
4701                         PROC_LOCK(p);
4702                         if (racct_set(p, RACCT_MEMLOCK,
4703                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4704                                 PROC_UNLOCK(p);
4705                                 rv = KERN_NO_SPACE;
4706                                 goto out;
4707                         }
4708                         PROC_UNLOCK(p);
4709                 }
4710 #endif
4711         }
4712
4713         /* If we would blow our VMEM resource limit, no go */
4714         if (map->size + grow_amount > vmemlim) {
4715                 rv = KERN_NO_SPACE;
4716                 goto out;
4717         }
4718 #ifdef RACCT
4719         if (racct_enable) {
4720                 PROC_LOCK(p);
4721                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4722                         PROC_UNLOCK(p);
4723                         rv = KERN_NO_SPACE;
4724                         goto out;
4725                 }
4726                 PROC_UNLOCK(p);
4727         }
4728 #endif
4729
4730         if (vm_map_lock_upgrade(map)) {
4731                 gap_entry = NULL;
4732                 vm_map_lock_read(map);
4733                 goto retry;
4734         }
4735
4736         if (grow_down) {
4737                 grow_start = gap_entry->end - grow_amount;
4738                 if (gap_entry->start + grow_amount == gap_entry->end) {
4739                         gap_start = gap_entry->start;
4740                         gap_end = gap_entry->end;
4741                         vm_map_entry_delete(map, gap_entry);
4742                         gap_deleted = true;
4743                 } else {
4744                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4745                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4746                         gap_deleted = false;
4747                 }
4748                 rv = vm_map_insert(map, NULL, 0, grow_start,
4749                     grow_start + grow_amount,
4750                     stack_entry->protection, stack_entry->max_protection,
4751                     MAP_STACK_GROWS_DOWN);
4752                 if (rv != KERN_SUCCESS) {
4753                         if (gap_deleted) {
4754                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4755                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4756                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4757                                 MPASS(rv1 == KERN_SUCCESS);
4758                         } else
4759                                 vm_map_entry_resize(map, gap_entry,
4760                                     grow_amount);
4761                 }
4762         } else {
4763                 grow_start = stack_entry->end;
4764                 cred = stack_entry->cred;
4765                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4766                         cred = stack_entry->object.vm_object->cred;
4767                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4768                         rv = KERN_NO_SPACE;
4769                 /* Grow the underlying object if applicable. */
4770                 else if (stack_entry->object.vm_object == NULL ||
4771                     vm_object_coalesce(stack_entry->object.vm_object,
4772                     stack_entry->offset,
4773                     (vm_size_t)(stack_entry->end - stack_entry->start),
4774                     grow_amount, cred != NULL)) {
4775                         if (gap_entry->start + grow_amount == gap_entry->end) {
4776                                 vm_map_entry_delete(map, gap_entry);
4777                                 vm_map_entry_resize(map, stack_entry,
4778                                     grow_amount);
4779                         } else {
4780                                 gap_entry->start += grow_amount;
4781                                 stack_entry->end += grow_amount;
4782                         }
4783                         map->size += grow_amount;
4784                         rv = KERN_SUCCESS;
4785                 } else
4786                         rv = KERN_FAILURE;
4787         }
4788         if (rv == KERN_SUCCESS && is_procstack)
4789                 vm->vm_ssize += btoc(grow_amount);
4790
4791         /*
4792          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4793          */
4794         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4795                 rv = vm_map_wire_locked(map, grow_start,
4796                     grow_start + grow_amount,
4797                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4798         }
4799         vm_map_lock_downgrade(map);
4800
4801 out:
4802 #ifdef RACCT
4803         if (racct_enable && rv != KERN_SUCCESS) {
4804                 PROC_LOCK(p);
4805                 error = racct_set(p, RACCT_VMEM, map->size);
4806                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4807                 if (!old_mlock) {
4808                         error = racct_set(p, RACCT_MEMLOCK,
4809                             ptoa(pmap_wired_count(map->pmap)));
4810                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4811                 }
4812                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4813                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4814                 PROC_UNLOCK(p);
4815         }
4816 #endif
4817
4818         return (rv);
4819 }
4820
4821 /*
4822  * Unshare the specified VM space for exec.  If other processes are
4823  * mapped to it, then create a new one.  The new vmspace is null.
4824  */
4825 int
4826 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4827 {
4828         struct vmspace *oldvmspace = p->p_vmspace;
4829         struct vmspace *newvmspace;
4830
4831         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4832             ("vmspace_exec recursed"));
4833         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4834         if (newvmspace == NULL)
4835                 return (ENOMEM);
4836         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4837         /*
4838          * This code is written like this for prototype purposes.  The
4839          * goal is to avoid running down the vmspace here, but let the
4840          * other process's that are still using the vmspace to finally
4841          * run it down.  Even though there is little or no chance of blocking
4842          * here, it is a good idea to keep this form for future mods.
4843          */
4844         PROC_VMSPACE_LOCK(p);
4845         p->p_vmspace = newvmspace;
4846         PROC_VMSPACE_UNLOCK(p);
4847         if (p == curthread->td_proc)
4848                 pmap_activate(curthread);
4849         curthread->td_pflags |= TDP_EXECVMSPC;
4850         return (0);
4851 }
4852
4853 /*
4854  * Unshare the specified VM space for forcing COW.  This
4855  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4856  */
4857 int
4858 vmspace_unshare(struct proc *p)
4859 {
4860         struct vmspace *oldvmspace = p->p_vmspace;
4861         struct vmspace *newvmspace;
4862         vm_ooffset_t fork_charge;
4863
4864         /*
4865          * The caller is responsible for ensuring that the reference count
4866          * cannot concurrently transition 1 -> 2.
4867          */
4868         if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4869                 return (0);
4870         fork_charge = 0;
4871         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4872         if (newvmspace == NULL)
4873                 return (ENOMEM);
4874         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4875                 vmspace_free(newvmspace);
4876                 return (ENOMEM);
4877         }
4878         PROC_VMSPACE_LOCK(p);
4879         p->p_vmspace = newvmspace;
4880         PROC_VMSPACE_UNLOCK(p);
4881         if (p == curthread->td_proc)
4882                 pmap_activate(curthread);
4883         vmspace_free(oldvmspace);
4884         return (0);
4885 }
4886
4887 /*
4888  *      vm_map_lookup:
4889  *
4890  *      Finds the VM object, offset, and
4891  *      protection for a given virtual address in the
4892  *      specified map, assuming a page fault of the
4893  *      type specified.
4894  *
4895  *      Leaves the map in question locked for read; return
4896  *      values are guaranteed until a vm_map_lookup_done
4897  *      call is performed.  Note that the map argument
4898  *      is in/out; the returned map must be used in
4899  *      the call to vm_map_lookup_done.
4900  *
4901  *      A handle (out_entry) is returned for use in
4902  *      vm_map_lookup_done, to make that fast.
4903  *
4904  *      If a lookup is requested with "write protection"
4905  *      specified, the map may be changed to perform virtual
4906  *      copying operations, although the data referenced will
4907  *      remain the same.
4908  */
4909 int
4910 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4911               vm_offset_t vaddr,
4912               vm_prot_t fault_typea,
4913               vm_map_entry_t *out_entry,        /* OUT */
4914               vm_object_t *object,              /* OUT */
4915               vm_pindex_t *pindex,              /* OUT */
4916               vm_prot_t *out_prot,              /* OUT */
4917               boolean_t *wired)                 /* OUT */
4918 {
4919         vm_map_entry_t entry;
4920         vm_map_t map = *var_map;
4921         vm_prot_t prot;
4922         vm_prot_t fault_type;
4923         vm_object_t eobject;
4924         vm_size_t size;
4925         struct ucred *cred;
4926
4927 RetryLookup:
4928
4929         vm_map_lock_read(map);
4930
4931 RetryLookupLocked:
4932         /*
4933          * Lookup the faulting address.
4934          */
4935         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4936                 vm_map_unlock_read(map);
4937                 return (KERN_INVALID_ADDRESS);
4938         }
4939
4940         entry = *out_entry;
4941
4942         /*
4943          * Handle submaps.
4944          */
4945         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4946                 vm_map_t old_map = map;
4947
4948                 *var_map = map = entry->object.sub_map;
4949                 vm_map_unlock_read(old_map);
4950                 goto RetryLookup;
4951         }
4952
4953         /*
4954          * Check whether this task is allowed to have this page.
4955          */
4956         prot = entry->protection;
4957         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4958                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4959                 if (prot == VM_PROT_NONE && map != kernel_map &&
4960                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4961                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4962                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4963                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4964                         goto RetryLookupLocked;
4965         }
4966         fault_type = fault_typea & VM_PROT_ALL;
4967         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4968                 vm_map_unlock_read(map);
4969                 return (KERN_PROTECTION_FAILURE);
4970         }
4971         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4972             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4973             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4974             ("entry %p flags %x", entry, entry->eflags));
4975         if ((fault_typea & VM_PROT_COPY) != 0 &&
4976             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4977             (entry->eflags & MAP_ENTRY_COW) == 0) {
4978                 vm_map_unlock_read(map);
4979                 return (KERN_PROTECTION_FAILURE);
4980         }
4981
4982         /*
4983          * If this page is not pageable, we have to get it for all possible
4984          * accesses.
4985          */
4986         *wired = (entry->wired_count != 0);
4987         if (*wired)
4988                 fault_type = entry->protection;
4989         size = entry->end - entry->start;
4990
4991         /*
4992          * If the entry was copy-on-write, we either ...
4993          */
4994         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4995                 /*
4996                  * If we want to write the page, we may as well handle that
4997                  * now since we've got the map locked.
4998                  *
4999                  * If we don't need to write the page, we just demote the
5000                  * permissions allowed.
5001                  */
5002                 if ((fault_type & VM_PROT_WRITE) != 0 ||
5003                     (fault_typea & VM_PROT_COPY) != 0) {
5004                         /*
5005                          * Make a new object, and place it in the object
5006                          * chain.  Note that no new references have appeared
5007                          * -- one just moved from the map to the new
5008                          * object.
5009                          */
5010                         if (vm_map_lock_upgrade(map))
5011                                 goto RetryLookup;
5012
5013                         if (entry->cred == NULL) {
5014                                 /*
5015                                  * The debugger owner is charged for
5016                                  * the memory.
5017                                  */
5018                                 cred = curthread->td_ucred;
5019                                 crhold(cred);
5020                                 if (!swap_reserve_by_cred(size, cred)) {
5021                                         crfree(cred);
5022                                         vm_map_unlock(map);
5023                                         return (KERN_RESOURCE_SHORTAGE);
5024                                 }
5025                                 entry->cred = cred;
5026                         }
5027                         eobject = entry->object.vm_object;
5028                         vm_object_shadow(&entry->object.vm_object,
5029                             &entry->offset, size, entry->cred, false);
5030                         if (eobject == entry->object.vm_object) {
5031                                 /*
5032                                  * The object was not shadowed.
5033                                  */
5034                                 swap_release_by_cred(size, entry->cred);
5035                                 crfree(entry->cred);
5036                         }
5037                         entry->cred = NULL;
5038                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5039
5040                         vm_map_lock_downgrade(map);
5041                 } else {
5042                         /*
5043                          * We're attempting to read a copy-on-write page --
5044                          * don't allow writes.
5045                          */
5046                         prot &= ~VM_PROT_WRITE;
5047                 }
5048         }
5049
5050         /*
5051          * Create an object if necessary.
5052          */
5053         if (entry->object.vm_object == NULL && !map->system_map) {
5054                 if (vm_map_lock_upgrade(map))
5055                         goto RetryLookup;
5056                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5057                     NULL, entry->cred, size);
5058                 entry->offset = 0;
5059                 entry->cred = NULL;
5060                 vm_map_lock_downgrade(map);
5061         }
5062
5063         /*
5064          * Return the object/offset from this entry.  If the entry was
5065          * copy-on-write or empty, it has been fixed up.
5066          */
5067         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5068         *object = entry->object.vm_object;
5069
5070         *out_prot = prot;
5071         return (KERN_SUCCESS);
5072 }
5073
5074 /*
5075  *      vm_map_lookup_locked:
5076  *
5077  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
5078  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5079  */
5080 int
5081 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
5082                      vm_offset_t vaddr,
5083                      vm_prot_t fault_typea,
5084                      vm_map_entry_t *out_entry, /* OUT */
5085                      vm_object_t *object,       /* OUT */
5086                      vm_pindex_t *pindex,       /* OUT */
5087                      vm_prot_t *out_prot,       /* OUT */
5088                      boolean_t *wired)          /* OUT */
5089 {
5090         vm_map_entry_t entry;
5091         vm_map_t map = *var_map;
5092         vm_prot_t prot;
5093         vm_prot_t fault_type = fault_typea;
5094
5095         /*
5096          * Lookup the faulting address.
5097          */
5098         if (!vm_map_lookup_entry(map, vaddr, out_entry))
5099                 return (KERN_INVALID_ADDRESS);
5100
5101         entry = *out_entry;
5102
5103         /*
5104          * Fail if the entry refers to a submap.
5105          */
5106         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5107                 return (KERN_FAILURE);
5108
5109         /*
5110          * Check whether this task is allowed to have this page.
5111          */
5112         prot = entry->protection;
5113         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5114         if ((fault_type & prot) != fault_type)
5115                 return (KERN_PROTECTION_FAILURE);
5116
5117         /*
5118          * If this page is not pageable, we have to get it for all possible
5119          * accesses.
5120          */
5121         *wired = (entry->wired_count != 0);
5122         if (*wired)
5123                 fault_type = entry->protection;
5124
5125         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5126                 /*
5127                  * Fail if the entry was copy-on-write for a write fault.
5128                  */
5129                 if (fault_type & VM_PROT_WRITE)
5130                         return (KERN_FAILURE);
5131                 /*
5132                  * We're attempting to read a copy-on-write page --
5133                  * don't allow writes.
5134                  */
5135                 prot &= ~VM_PROT_WRITE;
5136         }
5137
5138         /*
5139          * Fail if an object should be created.
5140          */
5141         if (entry->object.vm_object == NULL && !map->system_map)
5142                 return (KERN_FAILURE);
5143
5144         /*
5145          * Return the object/offset from this entry.  If the entry was
5146          * copy-on-write or empty, it has been fixed up.
5147          */
5148         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5149         *object = entry->object.vm_object;
5150
5151         *out_prot = prot;
5152         return (KERN_SUCCESS);
5153 }
5154
5155 /*
5156  *      vm_map_lookup_done:
5157  *
5158  *      Releases locks acquired by a vm_map_lookup
5159  *      (according to the handle returned by that lookup).
5160  */
5161 void
5162 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5163 {
5164         /*
5165          * Unlock the main-level map
5166          */
5167         vm_map_unlock_read(map);
5168 }
5169
5170 vm_offset_t
5171 vm_map_max_KBI(const struct vm_map *map)
5172 {
5173
5174         return (vm_map_max(map));
5175 }
5176
5177 vm_offset_t
5178 vm_map_min_KBI(const struct vm_map *map)
5179 {
5180
5181         return (vm_map_min(map));
5182 }
5183
5184 pmap_t
5185 vm_map_pmap_KBI(vm_map_t map)
5186 {
5187
5188         return (map->pmap);
5189 }
5190
5191 bool
5192 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5193 {
5194
5195         return (vm_map_range_valid(map, start, end));
5196 }
5197
5198 #ifdef INVARIANTS
5199 static void
5200 _vm_map_assert_consistent(vm_map_t map, int check)
5201 {
5202         vm_map_entry_t entry, prev;
5203         vm_map_entry_t cur, header, lbound, ubound;
5204         vm_size_t max_left, max_right;
5205
5206 #ifdef DIAGNOSTIC
5207         ++map->nupdates;
5208 #endif
5209         if (enable_vmmap_check != check)
5210                 return;
5211
5212         header = prev = &map->header;
5213         VM_MAP_ENTRY_FOREACH(entry, map) {
5214                 KASSERT(prev->end <= entry->start,
5215                     ("map %p prev->end = %jx, start = %jx", map,
5216                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5217                 KASSERT(entry->start < entry->end,
5218                     ("map %p start = %jx, end = %jx", map,
5219                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5220                 KASSERT(entry->left == header ||
5221                     entry->left->start < entry->start,
5222                     ("map %p left->start = %jx, start = %jx", map,
5223                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5224                 KASSERT(entry->right == header ||
5225                     entry->start < entry->right->start,
5226                     ("map %p start = %jx, right->start = %jx", map,
5227                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5228                 cur = map->root;
5229                 lbound = ubound = header;
5230                 for (;;) {
5231                         if (entry->start < cur->start) {
5232                                 ubound = cur;
5233                                 cur = cur->left;
5234                                 KASSERT(cur != lbound,
5235                                     ("map %p cannot find %jx",
5236                                     map, (uintmax_t)entry->start));
5237                         } else if (cur->end <= entry->start) {
5238                                 lbound = cur;
5239                                 cur = cur->right;
5240                                 KASSERT(cur != ubound,
5241                                     ("map %p cannot find %jx",
5242                                     map, (uintmax_t)entry->start));
5243                         } else {
5244                                 KASSERT(cur == entry,
5245                                     ("map %p cannot find %jx",
5246                                     map, (uintmax_t)entry->start));
5247                                 break;
5248                         }
5249                 }
5250                 max_left = vm_map_entry_max_free_left(entry, lbound);
5251                 max_right = vm_map_entry_max_free_right(entry, ubound);
5252                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5253                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5254                     (uintmax_t)entry->max_free,
5255                     (uintmax_t)max_left, (uintmax_t)max_right));
5256                 prev = entry;
5257         }
5258         KASSERT(prev->end <= entry->start,
5259             ("map %p prev->end = %jx, start = %jx", map,
5260             (uintmax_t)prev->end, (uintmax_t)entry->start));
5261 }
5262 #endif
5263
5264 #include "opt_ddb.h"
5265 #ifdef DDB
5266 #include <sys/kernel.h>
5267
5268 #include <ddb/ddb.h>
5269
5270 static void
5271 vm_map_print(vm_map_t map)
5272 {
5273         vm_map_entry_t entry, prev;
5274
5275         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5276             (void *)map,
5277             (void *)map->pmap, map->nentries, map->timestamp);
5278
5279         db_indent += 2;
5280         prev = &map->header;
5281         VM_MAP_ENTRY_FOREACH(entry, map) {
5282                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5283                     (void *)entry, (void *)entry->start, (void *)entry->end,
5284                     entry->eflags);
5285                 {
5286                         static const char * const inheritance_name[4] =
5287                         {"share", "copy", "none", "donate_copy"};
5288
5289                         db_iprintf(" prot=%x/%x/%s",
5290                             entry->protection,
5291                             entry->max_protection,
5292                             inheritance_name[(int)(unsigned char)
5293                             entry->inheritance]);
5294                         if (entry->wired_count != 0)
5295                                 db_printf(", wired");
5296                 }
5297                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5298                         db_printf(", share=%p, offset=0x%jx\n",
5299                             (void *)entry->object.sub_map,
5300                             (uintmax_t)entry->offset);
5301                         if (prev == &map->header ||
5302                             prev->object.sub_map !=
5303                                 entry->object.sub_map) {
5304                                 db_indent += 2;
5305                                 vm_map_print((vm_map_t)entry->object.sub_map);
5306                                 db_indent -= 2;
5307                         }
5308                 } else {
5309                         if (entry->cred != NULL)
5310                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5311                         db_printf(", object=%p, offset=0x%jx",
5312                             (void *)entry->object.vm_object,
5313                             (uintmax_t)entry->offset);
5314                         if (entry->object.vm_object && entry->object.vm_object->cred)
5315                                 db_printf(", obj ruid %d charge %jx",
5316                                     entry->object.vm_object->cred->cr_ruid,
5317                                     (uintmax_t)entry->object.vm_object->charge);
5318                         if (entry->eflags & MAP_ENTRY_COW)
5319                                 db_printf(", copy (%s)",
5320                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5321                         db_printf("\n");
5322
5323                         if (prev == &map->header ||
5324                             prev->object.vm_object !=
5325                                 entry->object.vm_object) {
5326                                 db_indent += 2;
5327                                 vm_object_print((db_expr_t)(intptr_t)
5328                                                 entry->object.vm_object,
5329                                                 0, 0, (char *)0);
5330                                 db_indent -= 2;
5331                         }
5332                 }
5333                 prev = entry;
5334         }
5335         db_indent -= 2;
5336 }
5337
5338 DB_SHOW_COMMAND(map, map)
5339 {
5340
5341         if (!have_addr) {
5342                 db_printf("usage: show map <addr>\n");
5343                 return;
5344         }
5345         vm_map_print((vm_map_t)addr);
5346 }
5347
5348 DB_SHOW_COMMAND(procvm, procvm)
5349 {
5350         struct proc *p;
5351
5352         if (have_addr) {
5353                 p = db_lookup_proc(addr);
5354         } else {
5355                 p = curproc;
5356         }
5357
5358         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5359             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5360             (void *)vmspace_pmap(p->p_vmspace));
5361
5362         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5363 }
5364
5365 #endif /* DDB */